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Abstract

We propose some general growth conditions on the function f = f (x, ξ),
including the so-called natural growth, or polynomial, or p, q−growth con-

ditions, or even exponential growth, in order to obtain that any local min-
imizer of the energy integral

∫
Ω
f (x,Du) dx is locally Lipschitz continu-

ous in Ω. In fact this is the fundamental step for further regularity: the
local boundedness of the gradient of any Lipschitz continuous local mini-
mizer a-posteriori makes irrelevant the behavior of the integrand f (x, ξ)
as |ξ| → +∞; i.e., the general growth conditions a posteriori are reduced
to a standard growth, with the possibility to apply the classical regularity
theory. In other words, we reduce some classes of non-uniform elliptic
variational problems to a context of uniform ellipticity.
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1 Introduction

Let Ω be an open set in R
n, n ≥ 2, and x ∈ Ω ⊂ R

n, ξ ∈ R
n be generic vectors.

Let f = f (x, ξ), f : Ω × R
n → R be a continuous function in Ω × R

n. The
related energy integral where to look for local minimizers is

v →
∫

Ω

f (x,Dv) dx . (1.1)
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As well known a local minimizer of the energy integral (1.1) is a Sobolev function
u such that f (x,Du) ∈ L1

loc (Ω) and
∫

Ω f (x,Du) dx ≤
∫

Ω f (x,Du+Dϕ) dx
for every Sobolev function ϕ whose support is contained in Ω.

In this manuscript we allow examples of anisotropic polynomial growth, a
class of variational energy integrals which may have singular (even not bounded)
local minimizers. Such as for instance

f (x,Dv) =

n
∑

i,j=1

aij (x) vxiuxj + |vxn |q ,

with q ≥ 2 and (aij) being an n×n a positive definite matrix of locally Lipschitz
continuous coefficients in Ω. We also allow exponential growth such as, for
example,

f (x,Dv) = exp(a (x) |Dv|2).
For these examples ellipticity holds, but not uniform ellipticity as in the state-
ment (1.2) below.

Our aim is to propose some general growth conditions on the function f =
f (x, ξ) (including the previous polynomial and exponential examples) in order
to obtain that any local minimizer is locally Lipschitz continuous in Ω. In fact
this one is the fundamental property for a local minimizer for further regu-
larity: the local boundedness of the gradient of any Lipschitz continuous local
minimizer a-posteriori makes irrelevant the behavior of the integrand f (x, ξ)
as |ξ| → +∞; i.e., the general growth conditions a posteriori are reduced to a
standard growth, with the possibility to apply the classical regularity theory,
valid in the uniform elliptic contexts and obtain, when possible, C1,α−regularity
as a consequence. In fact, having in force the local Lipschitz continuity con-
sidered in this manuscript, also the C1,α regularity can be deduced under the
same assumptions made in the context of natural growth, for instance as in
Ladyženskaja-Ural’ceva [42, Chapter 4, Section 61] or in Giusti [38, Sections 8.6
and 8.8]; see the p, q−growth cases in [44, Section 7, Theorem D] and in [45,
Corollary 2.2]. See also the recent non-uniformly elliptic approach and gradient
Hölder continuity by DeFilippis-Mingione [29, Section 6.4].

The convexity with respect to the gradient variable ξ ∈ R
n is the clas-

sical assumption on the function f = f (x, ξ) when we consider existence of
minimizers, once the class of competing v in (1.1) is fixed at the boundary
∂Ω. The corresponding convexity condition for a C2−function ξ → f (x, ξ),
as well known, is related to the n × n matrix of second derivatives (fξiξj )n×n

and it is the positivity of the quadratic form λ ∈ R
n → ∑

i,j fξiξj (x, ξ)λiλj .
When a strict qualified positivity is required, we have the ellipticity condition
∑

i,j fξiξj (x, ξ) λiλj ≥ m |λ|2, valid for all λ, ξ ∈ R
n, x ∈ Ω and for some posi-

tive constant m. More precisely, often it is useful to emphasize the dependence
of m on the gradient variable ξ; in fact more properly in general the constant
m is replaced by a function of ξ. In this manuscript we assume the following
ellipticity condition

∑

i,j

fξiξj (x, ξ) λiλj ≥ g1 (|ξ|) |λ|2 , ∀ λ, ξ ∈ R
n, x ∈ Ω,

3



where g1 : [0,+∞) → [0,+∞) is a nonnegative increasing function. Less
standard is the bound from above for the n × n matrix of second derivatives
(fξiξj )n×n. The classical case is the uniformly elliptic one. This happens when
a similar bound exists from above too:

uniformly ellipticity: g1 (|ξ|) |λ|2 ≤
n
∑

i,j=1

fξiξj (x, ξ)λiλj ≤Mg1 (|ξ|) |λ|2 ,

(1.2)
for all λ, ξ ∈ R

n, x ∈ Ω, and for a constant M ≥ 1. The main example is the
p−Laplacian; i.e., when the integral in (1.1) is the p−Dirichlet integral, with
f (ξ) = |ξ|p. In this case a computation shows

n
∑

i,j=1

fξiξj (ξ)λiλj = p [|ξ|2 |λ|2 + (p− 2) (

n
∑

i=1

ξiλi)
2)] |ξ|p−4

and thus the validity of the uniformly elliptic estimates

p− Laplacian: p |ξ|p−2 |λ|2 ≤
∑

i,j

fξiξj (ξ)λiλj ≤ p (p− 1) |ξ|p−2 |λ|2 ,

for all λ, ξ ∈ R
n, x ∈ Ω, when p ≥ 2; otherwise, if 1 < p < 2, it is necessary to

interchange the first and the last sides.
Let us go back to what we said at the very beginning of this introduction.

It is known that perturbations of the p−Dirichlet integral f (ξ) = |ξ|p, ξ =
(ξ1, ξ2, . . . , ξn), for instance with either f (ξ) =

∑n
i=1 |ξi|pi , or f (ξ) = |ξ|p +

|ξn|q with p < q, give rise to energy integrals as in (1.1) which may admit not
smooth local minimizers, even unbounded local minimizers; see for instance [45,
Theorem 6.1]. In these cases the uniform ellipticity condition (1.2) does not
hold. In the non-uniformly elliptic case regularity of local minima may not be
true.

Another non-uniformly elliptic case which we like to emphasize is the expo-
nential one, for instance with f (ξ) = e|ξ|

2

. In this example a local minimizer of
the corresponding energy integral in (1.1) a-priori not necessarily satisfies the
Euler’s differential equation. The reason is due to the fact that if u is a local
minimizer, with

∫

Ω
e|Du|2 dx < +∞, then to obtain the first variation and the

Euler’s equation, for any fixed test function ϕ we need to compute the limit, as
h→ 0 (h ∈ R, h 6= 0), of the difference quotient

1
h (

∫

Ω

e|D(u+hϕ)|2 dx−
∫

Ω

e|Du|2 dx ) ;

if ϕ = ηu and η = 1 on a subset of Ω (as usually it happens in the regularity

approach), i.e. if ϕ = u and h > 0 on a subset Ω′ of Ω, then
∫

Ω′ e
|D(u+hϕ)|2 dx =

∫

Ω′ e
(1+h)2|Du|2 dx; thus the summability of e|Du|2 in general does not implies

the summability of e(1+h)2|Du|2 because of the factor (1 + h)
2
> 1 and is not

possible to go directly to the Euler’s equation. An energy integral of exponential
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type in general is more difficult to be studied from the regularity point of view.
The exponential energy integrals are not uniformly elliptic and sometime they
need to be treated with appropriate specific techniques (see Cellina-Staicu [9]).

In this manuscript we propose a unified approach to regularity for minimizers
of nonuniformly elliptic energy integral, which include exponential growth and
p, q−growth. This last case is related to the functions g1,g2 below in (1.3), when
they are powers with exponents p, q; more precisely, g1,g2 being compared with
the second derivatives of f with respect to the gradient variable ξ, the powers to
compare g1,g2 respectively are |ξ|p−2

and 1 + |ξ|q−2
, or (1 + |ξ|2)(q−2)/2. More

in general we consider the

non-uniformly elliptic case: g1 (|ξ|) |λ|2 ≤
n
∑

i,j=1

fξiξj (x, ξ)λiλj ≤ g2 (|ξ|) |λ|2 ,

(1.3)
for all λ, ξ ∈ R

n, x ∈ Ω, with g1, g2 : [0,+∞) → [0,+∞) nonnegative increasing
functions. Of course it is necessary to impose conditions on these functions
g1, g2 in order to obtain a-priori estimates for regularity. Full details are stated
in Section 2, together with the assumption of the local Lipschitz continuity in
Ω × R

n of the gradient with respect to ξ ∈ R
n of f = f (x, ξ); i.e. the local

Lipschitz continuity of Dξf (x, ξ) = (fξi (x, ξ))i=1,2,...,n.
Nowadays many papers deal with regularity for non-uniformly elliptic prob-

lems. Limited to the more recent literature, for interior regularity we refer to
Colombo-Mingione [15]-[17], Baroni-Colombo-Mingione [1], Eleuteri-Marcellini-
Mascolo [36], Bousquet-Brasco [6], DeFilippis-Mingione [27]-[29], Mingione-Rădu-
lescu [51], Bögelein-Duzaar-Giova-Passarelli-Scheven [4]; see also [19]-[23] and
[34]-[37]. About recent boundary regularity under general growth conditions
we mention Cianchi-Maz’ya [12],[13], Bögelein-Duzaar-Marcellini-Scheven [5],
DeFilippis-Piccinini [30]. For Orlicz-Sobolev spaces, variable exponents and dou-
ble phase see Diening-Harjulehto-Hasto-Ruzicka [32], Chlebicka [10], Chlebicka-
DeFilippis [11], Byun-Oh [8], Ragusa-Tachikawa [55], Hästö-Ok [40], Crespo-
Blanco-Gasiński-Winkert [18]. Higher integrability and stability of p, q−quasi-
minimizers in double phase problems by Kinnunen-Nastasi-Pacchiano Camacho
[41] and Nastasi-Pacchiano Camacho [52]-[54]. Quasiconvex integrals of the cal-
culus of variations in [3],[24],[43], and about partial regularity by Schmidt [57],
DeFilippis [25], DeFilippis-Stroffolini [31], Gmeineder-Kristensen [39].

Particularly related to this manuscript, the literature on regularity for non-
uniformly elliptic problems, which consider at the same time exponential growth,
is less wide. It starts from [46, Section 6] for a class of non-uniformly elliptic
equations including “slow” exponential growth. The first regularity result spe-
cific for local minimizers in u ∈ W 1,2

loc (Ω) such that f (Du) ∈ L1
loc (Ω), possibly

with exponential growth, is in [47], which deals with energy integrals as in (1.1)
with integrand f = f (ξ) independent of x, who partially inspired our research
here. In the same year an approach to the vector-valued case was introduced in
[48], later generalized by Marcellini-Papi [49], both again related to f = f (ξ)
independent of x. The first extensions to f = f (x, ξ) are due to Mascolo-
Migliorini [50] and DiMarco-Marcellini [33], who treated the vector-valued case,
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with f := g (x, |ξ|) of Uhlenbeck-type [58], i.e. depending on the modulus |ξ|.
Finally we mention Beck-Mingione [2], who studied energy integrals of the
form

∫

Ω
{g (|Du|) + h (x) · u} dx and they considered some sharp assumptions

on the function h (x), of the type h ∈ L (n, 1) (Ω;Rm) in dimension n > 2 (i.e.,
∫ +∞
0

meas {x ∈ Ω : |h (x)| > λ}1/n dλ < +∞; note that Ln+ε ⊂ L (n, 1) ⊂ Ln),
or h ∈ L2 (logL)

α
(Ω;Rm) for some α > 2 when n = 2. Beck-Mingione ob-

tained the local boundedness of the gradient Du allowing exponential growth
too; however the function g (|ξ|) is assumed to be depending on the modulus
|ξ| of ξ and independent of x. Therefore the a-priori estimates of Theorem 2.2
below is new with respect to the known literature, and in particular with respect
to the quoted references.

2 Statement of the main results

We consider a function f = f (x, ξ), f : Ω × R
n → R, whose gradient with

respect to the ξ−variable Dξf (x, ξ) = (fξi (x, ξ))i=1,2,...,n is locally Lipschitz
continuous in Ω× R

n. We assume that the following second partial derivatives
of f (which exist in theW 1,∞

loc −sense) satisfy the following ellipticity and growth
conditions: for every open set Ω′ compactly contained in Ω there exist nonneg-
ative increasing functions g1, g2, g3 : [0,+∞) → [0,+∞), not identically equal
to zero, such that

g1 (|ξ|) |λ|2 ≤
∑

i,j

fξiξj (x, ξ) λiλj ≤ g2 (|ξ|) |λ|2 , (2.1)

∑

i

|fξixk
(x, ξ)| ≤ g3 (|ξ|) , (2.2)

for all ξ, λ ∈ R
n, k = 1, 2, . . . , n, a.e. x ∈ Ω′. These functions g1, g2, g3 are

related to each other by

(g2 (t))
2γ−1

t2 ≤M

{

1 +

∫ t

0

√

g1 (s)ds

}α

, (2.3)

(g2 (|ξ|))2γ−1 |ξ|2γ ≤M {1 + f (x, ξ)}β , (2.4)

g3 (t) ≤M (1 + tγ) (g1 (t))
1
2 (g2 (t))

γ− 1
2 , (2.5)

for a positive constant M = M (Ω′) and for all ξ ∈ R
n and t ≥ 0. Finally, the

exponents α, β, γ satisfy the bounds

2 ≤ α < 2∗ − 2 (γ − 1) , (2.6)

1 ≤ β <
2 (α+ 2γ − 2)

n (α+ 2γ − 4)
, (2.7)

for some γ ≥ 1. Here, as usual, we denote by 2∗ the Sobolev exponent defined
by 2∗ = 2n

n−2 if n > 2, while 2∗ is a fixed real number large enough when n = 2;

precisely such that α < 2∗ and γ < 2∗−α+2
2 .
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Remark 2.1 The conditions (2.6),(2.7) on the exponents α,β and γ ≥ 1 are
satisfied if we choose, for instance,

β =
α

2
+ δ , and γ = 1 + δ , (2.8)

with 2 ≤ α < 2∗ − 2 (γ − 1) = 2∗ − 2δ, 1 ≤ β < 1 + 2
n and 0 ≤ δ < 4

n(n−2) .

Indeed, with the choice γ = 1 + δ, (2.7) assumes the form

1 ≤ α
2 + δ = α+2δ

2 < 2(α+2δ)
n(α−2+2δ) ,

which gives α − 2 + 2δ < 4
n , that is β < 1 + 2

n . Finally, we must satisfy the

α−bound α < 2∗ − 2δ, i.e. 0 ≤ δ < 2∗−α
2 . Since α = 2(β− δ) ≤ 2β < 2+ 4

n , we
obtain the sufficient bound for δ

0 ≤ δ <
2∗−2− 4

n

2 =
if n>2

4
n(n−2) .

In the particular case γ = 1 conditions (2.6),(2.7) simplify into 2 ≤ α < 2∗

and 1 ≤ β < 2α
n(α−2) . For instance, for the so called natural growth conditions

with, up to multiplicative constants, g1 (t) = tp−2, g2 (t) = (1 + t)
p−2

for some
p ≥ 2, (2.3) becomes

(1 + t)
p−2

t2 ≤M

{

1 +

∫ t

0

s
p
2−1ds

}α

=M1

(

1 + t
α
2 p
)

(2.9)

and it is satisfied for a constant M1 and for all t ≥ 0 by choosing α = 2.
Similarly (2.4) holds for g2 (t) = (1 + t)

p−2
and f (x, ξ) ≥ const |ξ|p if β = 1.

This in the natural growth conditions the simplest choice is α = 2, β = 1 and
γ = 1. Similar computations when γ = 1 can be done for the p, q−growth case,
with g1 (t) = tp−2, g2 (t) = (1 + t)

q−2
and f (ξ) ≥ const |ξ|p for some exponents

q ≥ p ≥ 2. To test (2.3) we change p with q in the left hand side of (2.9)
and we obtain q ≤ α

2 p . To test (2.4), we consider the sufficient condition

(1 + |ξ|)q−2 |ξ|2 ≤ M {1 + |ξ|p}β, which holds with q ≤ βp. In this case the
natural choice, as in (2.8), is to fix β = α

2 when γ = 1 (i.e. δ = 0), under
the constraint α − 2 < 4

n or equivalently β < 1 + 2
n , which - written in the

explicit form q
p < 1+ 2

n - is a natural bound for p, q−growth variational problems

without x−dependence (see for instance [47, Remark 2.1] or [15],[20],[36]). Note
however that in general the x−dependence and specifically the exponential growth
need to choose the parameter γ strictly grater than 1, for instance as in (2.8).
See details in Section 3.

We are ready to state in Theorem 2.2 below our regularity result, whose
proof, divided into several steps, is given in Section 4. With regularity of u
we mean interior regularity, without fixing Dirichlet boundary conditions, or
without other types of boundary conditions. Precisely, we obtain local Lipschitz
continuity estimates for u and also local estimates of the L2−norm of the n×n

7



matrixD2u of the second derivatives of a local minimizer u of the energy integral
(1.1). A local minimizer is a Sobolev function u such that

∫

Ω′

f (x,Du) dx < +∞ and

∫

Ω′

f (x,Du) dx ≤
∫

Ω′

f (x,D (u+ ψ)) dx ,

for every ψ ∈W 1,2 (Ω) with support in the open set Ω′ whose closure is contained
in Ω. Theorem 2.2 is a regularity result for smooth local minimizers u of the
energy integral (1.1). These estimates are in fact a priori estimates : they hold
for a priori smooth local minimizers; precisely, for local minimizers u in the class

{

u ∈W 2,2 (Ω′) :

∫

Ω′

|Du|2γ (g2(|Du|))2γ−1
dx+

∫

Ω′

g2 (|Du|)
∣

∣D2u
∣

∣

2
dx < +∞

}

,

(2.10)
where these summability conditions are valid for all sets Ω′ compactly contained
in Ω. As well known, the natural condition is to impose finite energy for the
local minimizer u; i.e. to belong to the class

{

u ∈ W 1,1 (Ω′) :

∫

Ω′

f (x,Du) dx < +∞
}

, (2.11)

while (2.10) is an a priori proper condition useful to prove the estimates (2.12)-
(2.13) of Theorem 2.2.

The auxiliary assumption (2.10) should be removed later. Usually, the main
steps for regularity are the a-priori estimates ; the following steps are obtained
through an approximation procedure. A reference example of this method can
be found in the first Lipschitz continuity result under non-uniformly elliptic and
general growth condition, obtained in [47, Step 5] for local minimizers, however
for the simpler case f (x, ξ) = f (ξ), i.e. with f independent of x. A further
approximation procedure to go from the a priori estimates to full regularity was
done in [36]: also this one is related to a special case; precisely with modulus-
dependence on the ξ−variable f (x, ξ) = g (x, |ξ|), named Uhlenbeck structure,
recalling the celebrated paper [58] published in 1977 by Karen Uhlenbeck.

Finally we observe that we do not assume structure conditions on the func-
tion f : Ω × R

n → R. In particular we do not assume the mentioned Uhlen-
beck structure with the modulus dependence f (x, ξ) = g (x, |ξ|) on the gradient
variable, not even the so-called double phase structure, with f = f (x, ξ) :=
|ξ|p + a (x) |ξ|q, where a (x) is a nonnegative coefficient which is equal to zero
somewhere in Ω, neither the more general p, q−growth conditions, which are
more general than the double phase case, but which of course do not include ex-
ponential growth, a case on the contrary that enters in our Lipschitz continuous
a-priori estimates of Theorem 2.2.

Theorem 2.2 Under the ellipticity and growth conditions (2.1)-(2.7), let u be
a local minimizer of the energy integral (1.1) in the Sobolev class (2.10). Then
some uniform a-priori estimates hold for the L∞

loc−norm of the gradient Du and
for the n × n matrix D2u of the second derivatives of u. Precisely, for every

8



open set Ω′ compactly contained in Ω there exist exponents θ1, θ3 > 1, θ2, θ4 > 0
and a radius R0 > 0 such that

‖Du‖2L∞(Bρ;Rn) ≤ c
(R−ρ)θ2

(
∫

BR

(1 + f (Du)) dx

)θ1

, (2.12)

∫

Bρ

g1 (|Du|)
∣

∣D2u
∣

∣

2
dx ≤ c

(R−ρ)θ4

(∫

BR

(1 + f (Du)) dx

)θ3

, (2.13)

for every ρ, R with 0 < ρ < R ≤ R0 and for a positive constant c, where Bρ,
BR are concentric balls contained in Ω′ with respective radii ρ, R.

The constant c in (2.12),(2.13) depends on the dimension n and on the
data, but it is independent of u itself. An explicit analytic representation of
the exponent θ1 is given below in (4.50), as well as the analytic expression
of θ2, θ3, θ4 in the proof of Theorem 2.2. The a priori estimate (2.13) is a
W 2,2

loc (Ω)−bound of the local minimizer u of the energy integral (1.1) only on
subsets Ω′ ⊂⊂ Ω of the type {x ∈ Ω′ : g1 (|Du (x)|) ≥ m} for fixed constants
m > 0. For instance, when g1 : [0,+∞) → (0,+∞) is a positive function also at
t = 0, i.e. when m = g1 (0) > 0 as it happens in the nondegenerate p−Laplacian
and p (x)−Laplacian cases. In fact in these cases by (2.13)2 we get

the nondegenerate case:

∫

Bρ

∣

∣D2u
∣

∣

2
dx ≤ c

m(R−ρ)θ4

(∫

BR

(1 + f (Du)) dx

)θ3

.

(2.14)
As an example related to the estimate (2.13), we mention here the degenerate
case recently studied by Brasco-Carlier-Santambrogio [7], Santambrogio-Vespri
[56], Colombo-Figalli [14], Bögelein-Duzaar-Giova-Passarelli-Scheven [4]. It is a
very degenerate case, with f (x, t) = 1

p (t− 1)
p
+ − h (x) u (as before t = |ξ|) and

thus g1 (t) = g2 (t) = 0 for all t ∈ [0, 1] and g1 (t) > 0 when t > 1. In this case,
when h = 0, by Theorem 2.2 we deduce the L∞-local gradient bound (2.12),
while the W 2,2

loc (Ω)−bound (2.13) gives contribution only at the subset of Ω
where |Du (x)| > 1, being indefinite the gradient Du (x) and the matrix of its
second derivatives D2u (x) when |Du (x)| ≤ 1, since there any Sobolev function
u, with |Du (x)| ≤ 1, a-priori could be a minimizer.

3 Consequences and examples

We collect some examples which satisfy the hypotheses (2.1)-(2.7) and we state a
specific version of Theorem 2.2 for each energy integral discussed below. For the
readers’ convenience we start by reporting two well-known properties which will
be used to show that the models proposed below satisfy the assumptions stated
in the previous section. In Proposition 3.1 we represent the quadratic form,
associated to the n× n matrix (fξiξj ) of the second derivatives of f (x, ξ) with
respect to ξ, in the particular case when f depends on ξ only thought its modulus
|ξ|. We recall that g1, g2, g3 : [0,+∞) → [0,+∞) are nonnegative increasing

9



functions. They are not identically equal to zero; the reason is to avoid the
trivial case when the integrand f = f (x, ξ) satisfies all conditions (2.1)-(2.7)
with g1, g2, g3 identically equal to zero; in this trivial case any u ∈ W 1,p

loc (Ω)
comes out to be a local minimizer of the ”zero integral” and of course regularity
results do not hold. Thus there exists t0 > 0 such that g2(t0) ≥ g1(t0) > 0 and,
up to a rescaling, we can consider t0 ≤ 1; therefore g2(1) ≥ g1(1) ≥ c > 0. If
necessary we multiply f , and thus g1, g2, g3 too, by the positive constant 1/c to
have

g2(1) ≥ g1(1) ≥ 1 . (3.1)

We introduce a function g : Ω× [0,+∞) → R, g = g (x, t), t ∈ [0,+∞), t = |ξ|,
g twice differentiable with respect to t > 0, such that

f (x, ξ) = g (x, |ξ|) , ∀ (x, ξ) ∈ Ω× R
n . (3.2)

Although we explicitly remember that our Theorem 2.2 deals with a general
energy integrand f (x, ξ) not necessarily of the form (3.2).

Proposition 3.1 Let f (x, ξ) be represented in the form g (x, |ξ|), as in (3.2),
with partial derivative gt (x, t) locally Lipschitz continuous in t ∈ [0,+∞) for
fixed x ∈ Ω, with gt (x, 0) = 0. Then the quadratic form associated to the n× n
matrix (fξiξj ) satisfies the bounds

g1 (x, |ξ|) |λ|2 ≤
∑

i,j

fξiξj (x, ξ) λiλj ≤ g2 (x, |ξ|) |λ|2 , (3.3)

for all (x, ξ) ∈ Ω× R
n, with g1 and g2 given by

(i) in general g1 = min
{

gt
t , gtt

}

and g2 = max
{

gt
t , gtt

}

;

(ii) g1 = gt
t and g2 = gtt, if

gt(x,t)
t is increasing with respect to t at x ∈ Ω;

(iii) g1 = gtt and g2 = gt
t , if

gt(x,t)
t is decreasing with respect to t at x ∈ Ω.

Usually, it is not difficult to compute explicitly g1 (|ξ|) and g2 (|ξ|) and to
check the monotoniticy of gt (x, t) /t. For instance for an integrand related to
the p−Laplacian, of the type (3.2), with f (x, ξ) = g (x, |ξ|) = a (x) |ξ|p and
g (x, t) = a (x) tp, we have gt (x, t) /t = pa (x) tp−2; therefore we are in the case
(ii) if p ≥ 2, while (iii) holds when p ∈ (1, 2]. In this case, if c1 ≤ a (x) ≤ c2 for
all x ∈ Ω (by ci we denote positive constants), then c3gt/t ≤ gtt ≤ c4gt/t for all
(x, t) ∈ Ω×(0,+∞); or equivalently c3 ≤ tgtt/gt ≤ c4 for all (x, t) ∈ Ω×(0,+∞).
Please, note the ”abuse of notation”, due to the fact that in Proposition 3.1
g1 and g2 are functions depending on (x, t) = (x, |ξ|), while in the ellipticity
condition (2.1) they are functions g1 = g1 (|ξ|), g2 = g2 (|ξ|) independent of
x. Of course to go from g1 in Proposition 3.1 to the g1 in the left hand side
of (2.1) we will consider the infimum of g1 (x, |ξ|) with respect to x; similarly,
the supremum with respect to x for g2. In general, if g1 ≤ g2 ≤ c5g1 for all
(x, ξ) ∈ Ω × R

n, we say that (3.3) are uniformly elliptic conditions. Therefore
the p−Laplacian is an uniformly elliptic operator. However in our Theorem 2.2
we do not assume uniform elliptic conditions.
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Proof of Proposition 3.1. For f (x, ξ) = g (x, |ξ|), as in (3.2), a computation
shows

fξi = gt
ξi
|ξ| , fξiξj = gtt

ξiξj
|ξ|2 + gt

δij |ξ|−ξi
ξj
|ξ|

|ξ|2 = ξiξj

(

gtt
|ξ|2 − gt

|ξ|3
)

+ δij
gt
|ξ| ,

for i, j = 1, 2, . . . , n, where, as well known, δij is the Kronecker delta: δij = 1 if
i = j and δij = 0 if i 6= j. Therefore

n
∑

i,j=1

fξiξj (x, ξ) λiλj =
1

|ξ|2
(

gtt − gt
|ξ|

)

n
∑

i,j=1

ξiξjλiλj +
gt
|ξ|
(

λ21 + λ22 + . . . λ2n
)

.

For the first sum we have
∑n

i,j=1 ξiξjλiλj = (
∑n

i=1 ξiλi)
2
= (ξ, λ)2, where

(ξ, λ) is the scalar product of ξ, λ ∈ R
n. Then we get

∑n
i,j=1 fξiξj (x, ξ)λiλj =

1
|ξ|2
(

gtt − gt
|ξ|

)

(ξ, λ)
2
+ gt

|ξ| |λ|
2
. By the Cauchy-Schwarz inequality |(ξ, λ)| ≤

|ξ| |λ|, for all (x, t) ∈ Ω× [0,+∞) such that gtt − gt
|ξ| ≥ 0 we finally deduce

gt
|ξ| |λ|

2 ≤
n
∑

i,j=1

fξiξj (x, ξ) λiλj ≤ 1
|ξ|2
(

gtt − gt
|ξ|

)

|ξ|2 |λ|2 + gt
|ξ| |λ|

2
= gtt |λ|2 ,

for all λ ∈ R
n; while, if at (x, t) ∈ Ω× [0,+∞) we have gtt − gt

|ξ| ≤ 0 then

gtt |λ|2 = 1
|ξ|2
(

gtt − gt
|ξ|

)

|ξ|2 |λ|2 + gt
|ξ| |λ|

2 ≤
n
∑

i,j=1

fξiξj (x, ξ)λiλj ≤ gt
|ξ| |λ|

2 ,

for all λ ∈ R
n, which is equivalent to the conclusion in (i).

By computing the partial derivative ∂
∂t

gt(x,t)
t = gtt(x,t)t−gt(x,t)

t2 we see that
at every x ∈ Ω such that gtt (x, t) t − gt (x, t) ≥ 0 for all t ∈ (0,+∞), then

t → gt(x,t)
t is increasing in (0,+∞) and vice versa. This proves (ii). Similarly

for (iii) when gtt (x, t) t− gt (x, t) ≤ 0 at x ∈ Ω, for all t ∈ (0,+∞).

The following property is elementary and does not need a proof.

Proposition 3.2 Let t0 ∈ R. If h(t) is a continuous function in [t0,+∞) such
that limt→+∞ h(t) ∈ R, then h(t) is bounded in [t0,+∞).

3.1 Anisotropic energy integrals

We emphasize that in this example the condition in (3.2), i.e. f (x, ξ) = g (x, |ξ|),
is not assumed. Not even f (x, ξ) should depend on ξ = (ξ1, ξ2, . . . , ξn) ∈ R

n

only through powers of its components |ξ1|p1 , |ξ2|p2 , . . ., |ξn|pn , for instance
as frequently represented in the recent literature on this subject, in the form

f (x, ξ) =
n
∑

i=1

ai (x) |uxi|pi for some exponents pi, i = 1, 2, . . . , n. .
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We fix some indices in the set {1, 2, . . . , n} in order to form a not empty
proper subset; for instance we fix the index {n} and we consider the energy
integral

∫

Ω

(

n
∑

i,j=1

aij (x) uxiuxj + |uxn |q ) dx , (3.4)

with q ≥ 2, where (aij (x)) is an n×n positive definite matrix of locally Lipschitz
continuous functions on Ω. Precisely, for every set Ω′ compactly contained in Ω

there exist positive constants c1, c2 such that c1 |λ|2 ≤
n
∑

i,j=1

aij (x) λiλj ≤ c2 |λ|2

for all λ ∈ R
n and x ∈ Ω′. Or more generally the anisotropic energy integrals

has the form
∫

Ω

{h (x,Du) + |uxn |q} dx , (3.5)

where h is a real function defined in Ω×R
n whose gradient Dξh (x, ξ) is locally

Lipschitz continuous in Ω × R
n with respect to ξ ∈ R

n and q ≥ p ≥ 2. More-
over h (x,Du) is locally uniformly elliptic and satisfies the standard (classical)
p−ellipticity and growth conditions

c1 |ξ|p−2 |λ|2 ≤
∑

i,j

hξiξj (x, ξ) λiλj ≤ c2

(

1 + |ξ|p−2
)

|λ|2 , (3.6)

∑

i

|hξixk
(x, ξ)| ≤ c3 |ξ|p−1 , (3.7)

for all ξ, λ ∈ R
n and k = 1, 2, . . . , n, a.e. x ∈ Ω′. In the particular case (3.4), with

h (x, ξ) =
∑

i,j

aij (x) ξiξj and p = 2, then
∑

i,j

hξiξj (x, ξ) λiλj = 2
∑

i,j

aij (x) λiλj

and (3.6) is satisfied with p = 2 (and different constants). It is not difficult to
test the ellipticity and growth conditions of the integrand f (x, ξ) = h (x, ξ) +

|ξn|q; since fξi = hξi for all i ∈ {1, 2, . . . , n− 1}, fξn = hξn + q |ξn|q−2
ξn , and

fξixk
= hξixk

for all i ∈ {1, 2, . . . , n− 1, n}, then

c1 |ξ|p−2 |λ|2 ≤
∑

i,j

fξiξj (x, ξ) λiλj ≤ c4

(

1 + |ξ|q−2
)

|λ|2 , (3.8)

∑

i

|fξixk
(x, ξ)| ≤ c3 |ξ|p−1

. (3.9)

In order to test conditions (2.1)-(2.7), in this case we fix (up to the multiplicative
constants) g1 (t) = tp−2, g2 (t) = 1+tq−2, g3 (t) = tp−1, under the usual notation
|ξ| = t. We start from (2.5), which takes the form

h (t) = tp−1

(1+tγ)(tp−2)
1
2 (1+tq−2)γ− 1

2
= tp/2

(1+tγ)(1+tq−2)γ− 1
2
≤M ,

for all t ∈ [0,+∞) and for a constant M > 0. As in Proposition 3.2, h (t)
is a bounded function in [0,+∞) if it has a finite limit as t → +∞. This
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finite limit condition limt→+∞ h(t) ∈ R is reduced to the exponents’ inequality
p
2 ≤ γ + (q − 2)

(

γ − 1
2

)

, which, for γ = 1, simply means p ≤ q. Therefore
assumption (2.5) in this case holds with γ = 1. Then (2.3) corresponds to

(1 + tq−2)2γ−1 t2 ≤M (1 +

∫ t

0

s
p
2−1ds)α =M (1 + 2

p t
p
2 )α, (3.10)

which is satisfied by a positive constant M and for all t ≥ 0, if we choose γ = 1
and α in such a way that [(q − 2) (2γ − 1)]γ=1 + 2 = q ≤ α p

2 ; i.e., if we choose

α = 2 q
p . To respect the conditions 2 ≤ α < 2∗ =: 2n

n−2 (there is not an upper

bound for α when n = 2) we need

2 ≤ 2 q
p <

2n
n−2 ⇔ 1 ≤ q

p <
n

n−2 .

Let us now discuss assumption (2.4). For f (x, ξ) as in (3.5), being |f (x, ξ)| ≤
c5 (1 + |ξ|q), it corresponds to

(

1 + |ξ|q−2
)2γ−1

|ξ|2γ ≤M {1 + |ξ|q}β , which, in
terms of exponents, gives [(q − 2) (2γ − 1) + 2]γ=1 = q ≤ βq. Thus q

p ≤ β. To

respect the conditions for β in (2.7), i.e. 1 ≤ β <
[

2(α−2+2γ)
n(α−4+2γ)

]

γ=1
= 2α

n(α−2) , we

choose β = α
2 and we assume the condition 1 ≤ α

2 <
2α

n(α−2) , which is equivalent

to 2 ≤ α < 2 + 4
n . Recalling that we already choose α = 2 q

p , we finally impose

the bound on q
p

1 ≤ q
p < 1 + 2

n . (3.11)

As a consequence of Theorem 2.2, with parameters α = 2 q
p , β = α

2 = q
p , γ = 1,

we have proved the following result.

Example 3.3 (Lipschitz continuity result for anisotropic energy integrals)
Let 2 ≤ p ≤ q satisfy (3.11). Every local minimizer in the Sobolev class (2.10)
of the energy integral (3.5), or of the integral in (3.4) when p = 2, is locally
Lipschitz continuous in Ω and satisfies the uniform gradient estimate and the
estimates for the n × n matrix D2u of the second derivatives of u stated in
Theorem 2.2.

Remark 3.4 Similarly to the energy integrals (3.4),(3.5) considered in this Sec-
tion 3.1, it is possible to deal with

∫

Ω

(
n
∑

i,j=1

aij (x)uxiuxj + a (x) |uxn |q ) dx or

∫

Ω

{h (x,Du) + a (x) |uxn |q} dx ,

with a locally Lipschitz continuous coefficient a (x) ≥ 0 in Ω. Then the proof
should proceed similarly to the proof given in this section, by changing the choice
of γ = 1 with γ = 1 + δ, with δ > 0 as explicitly described in Remark 2.1. If
δ > 0 (and not δ = 0 as in the above proof), then the bound on the ratio q

p in

(3.11) becomes more strict.
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3.2 Exponential growth

We consider the energy integral

∫

Ω

f (x,Du) dx =

∫

Ω

ea(x)|Du|τ dx (3.12)

related to the exponential growth case f(x, ξ) = ea(x)|ξ|
τ

, with a(x) positive
locally Lipschitz function and τ ≥ 2. For simplicity, here we consider τ = 2.
Under the notations of Proposition 3.1 we have f(x, ξ) = g (x, |ξ|) and

g (x, t) = ea(x)t
2

, gt (x, t) = 2taeat
2

, gtt (x, t) = 4t2a2eat
2

+ 2aeat
2

.

Then gt (x, t) /t = 2a (x) ea(x)t
2

, being product of positive increasing functions,
is increasing with respect to t ∈ [0,+∞) for all x ∈ Ω. By (ii) of Proposition
3.1, (3.3) holds with g1 (x, t) = gt (x, t) /t and g2 (x, t) = gtt (x, t).

Let Ω′ be an open set compactly contained in Ω and BR a generic ball in
Ω′. The coefficient belongs to W 1,∞

loc (Ω) and thus is Lipschitz continuous in Ω′

with a Lipschitz constant L uniform for all BR ⊂ Ω′. We define

p = min{a (x) : x ∈ BR} and q = max{a (x) : x ∈ BR}. (3.13)

For every θ > 1 we can choose the radius R = R (θ) of the ball BR small enough
such that q ≤ θp; in fact q − p = a (x2) − a (x1) ≤ L |x2 − x1| ≤ 2R and thus
q ≤ p+ 2R < θp if we choose, for instance, θ = 1+ 3R/p. Therefore

gt (x, t) /t = 2a (x) ea(x)t
2 ≥ 2pept

2

, ∀ (x, t) ∈ BR × [0,+∞)

and similarly, being q ≤ θp, gtt (x, t) ≤ 4t2 [θp]
2
eθpt

2

+ 2θpeθpt
2

. Then, by
considering the infimum with respect to x ∈ BR of gt (x, t) /t and the supremum
with respect to x ∈ BR of gtt (x, t), the ellipticity condition (2.1) is satisfied in
BR with

g1(t) = c1e
pt2 and g2(t) = c2

(

1 + t2
)

eqt
2

, (3.14)

and c1 = 2p, c2 = (4p)
2
(with θ > 1 also bounded above by 2). Firstly, we verify

(2.3). Then for t ≥ t0 ≥ 1,

∫ t

0

√

g1(s) ds ≥
∫ t0

0

√

g1(s) ds+ p

∫ t

t0

e
ps2

2 s ds = c+ p e
p
2 t

2

.

We apply Proposition 3.2 with h(t) := ((eqt
2 (

1 + t2
)

)2γ−1 t2) / (1 + e
p
2 t

2

)α and
we require

q(2γ − 1) ≤ αp
2 (3.15)

in order to get a finite limit of h(t) as t → +∞. We use here the possibility
stated after the definition (3.13) of p, q; precisely, q

p = θ, with θ arbitrarily

close to 1. Then (3.15) becomes θp(2γ − 1) ≤ αp/2. As in Remark 2.1 we
pose γ = 1 + δ, therefore we get θp 2δ ≤ p

(

α
2 − θ

)

. Note that θp is a bounded
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quantity, since 1 ≤ θp ≤ 2p. We can choose α > 2 and θ sufficiently close to 1,
so that the right hand side is positive. Therefore we can also fix δ sufficiently
close to 0 in order to obtain the validity of the inequality in (3.15). For these
values of α and γ assumption (2.3) holds. To verify (2.4), it is enough to prove
that

(eqt
2 (

1 + t2
)

)2γ−1 t2γ ≤M (1 + ept
2

)β . (3.16)

Proceeding as in the previous lines, (3.16) holds if θ(2δ + 1) ≤ β. The previous
inequality is trivially true for β > 1, δ sufficiently close to 0 and θ sufficiently
close to 1. Now, we calculate gtxk

(x, ξ) = 2axk
(x)tea(x)t

2 (

1 + a(x)t2
)

. Since
a(x) is a locally Lipschitz function, then there exists a constant L > 0 such that
|axk

(x)| ≤ L, so hypothesis (2.2) is satisfied with

g3(t) = c3e
θpt2t

(

1 + t2
)

, (3.17)

where c3 = (1+2p)2L (here we have used that q ≤ θp and 1 < θ < 2). To verify
(2.5), we should prove that

eθpt
2

t
(

1 + t2
)

≤M(1 + tγ) (ept
2

)
1
2 (eθpt

2 (

1 + t2
)

)γ−
1
2 .

If t → 0+, the left hand side of the inequality goes to 0, while the right hand
side converges to a positive number, so (2.5) holds true. When t → +∞, (2.5)
is reduced to the exponents’ inequality θ

(

1
2 − δ

)

≤ 1
2 , which is true by choosing

δ sufficiently close to 0 and θ sufficiently close to 1.
As a consequence, we get the following consequence of Theorem 2.2, with

parameters β = α
2 + δ and γ = 1 + δ, where 2 < α < 2∗, 1 < β < 1 + 2

n and
0 < δ < 4

n(n−2) (see Remark 2.1).

Example 3.5 (Lipschitz continuity result under exponential growth)
Every smooth local minimizer of the energy integral (3.12) is locally Lipschitz
continuous in Ω and satisfies the uniform gradient estimate (2.12) and the es-
timates (2.13) for the n× n matrix D2u of the second derivatives of u.

3.3 p(x)−Laplacian and logarithm p(x)−Laplacian

We consider the energy integral
∫

Ω

f (x,Du) dx =

∫

Ω

|Du|p(x) dx (3.18)

related to the p(x)−Laplacian degenerate case f(x, ξ) = |ξ|p(x), with variable
exponent p(x) ∈ W 1,∞

loc (Ω), p(x) ≥ 2. Under the notations of Proposition 3.1
we have f(x, ξ) = g (x, |ξ|) and

g (x, t) = tp(x), gt (x, t) = p(x)tp(x)−1, gtt (x, t) = p(x) (p(x) − 1) tp(x)−2.

Then gt (x, t) /t = p(x)tp(x)−2 is locally Lipschitz continuous with respect to
t ∈ [0,+∞) for all x ∈ Ω. By (i) of Proposition 3.1, (3.3) holds with

g1 (x, t) = p(x)tp(x)−2 and g2 (x, t) = p(x) (p(x)− 1) tp(x)−2.
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Let Ω′ be an open set compactly contained in Ω and BR a generic ball in
Ω′. We define p = min{p (x) : x ∈ BR}, q = max{p (x) : x ∈ BR}. Given
θ > 1, we choose the radius R of the ball BR small enough such that q ≤ θp.
Therefore, for every x ∈ BR and t > 1, gt (x, t) /t ≥ ptp−2, and analogously,
gtt(x, t) ≤ θp(θp − 1)tθp−2. Then, the ellipticity condition (2.1) is satisfied in
BR with

g1(t) = c1t
p−2 and g2(t) = c2t

θp−2, (3.19)

and c1 = p, c2 = 2p(2p−1) (where we used that θ > 1 is also bounded above by
2). Similarly for t ∈ [0, 1], indeed in this case it is sufficient to interchange the
supremum with the infimum and viceversa. So that we obtain g1(t) = c1t

θp−2

and g2(t) = c2t
p−2. We observe that hypothesis (2.3) is automatically satisfied

when 0 ≤ t ≤ 1, since the left hand side is bounded from above and the right
hand side is bounded by a positive constant from below. In order to verify (2.3)

for t > 1, we need to prove that
(

c2t
θp−2

)2γ−1
t2 ≤M

(

1 +
2
√
c1

p t
p
2α
)

which, by

Proposition 3.2, follows from the condition (θp− 2) (2γ − 1) + 2 ≤ pα
2 . As in

Remark 2.1 we pose γ = 1 + δ, which gives

(θp− 2) 2δ ≤ p
(

α
2 − θ

)

. (3.20)

Note that (θp− 2) is a bounded quantity, since 0 ≤ θp − 2 ≤ 2 (p− 1). The
right hand side is positive if we fix α > 2 and θ sufficiently close to 1. Therefore
we can also fix δ sufficiently close to 0 in order to obtain the validity of the
inequality in (3.20). For these values of α and γ assumption (2.3) holds.
In order to verify (2.4), it is enough to show that

(

c2t
θp−2

)2γ−1
t2γ ≤M {1 + tp}β . (3.21)

Using Proposition 3.2, inequality (3.21) is true by imposing the following con-
dition (θp− 2)(2γ − 1) + 2γ ≤ pβ. As previously done, by Remark 2.1 we pose
γ = 1 + δ, obtaining

(θp− 1) 2δ ≤ p (β − θ) . (3.22)

Note that (θp− 1) is a bounded quantity, since 0 ≤ θp− 1 ≤ 2p− 1. The right
hand side is positive if we fix β > 1 and θ sufficiently close to 1. Therefore
we can also fix δ sufficiently close to 0 in order to obtain the validity of the
inequality in (3.22). For these values of β and γ assumption (2.4) holds. Now
we compute gtxk

(x, t) = pxk
(x)tp(x)−1 (1 + p(x) log t). We observe that, even if

|pxk
(x)| is locally bounded, because of the logarithmic factor, we cannot bound

|gtxk
(x, t)| only with the exponential term tp(x)−1. However, since log t < tω/ω

for every ω > 0, we can find a constant c3, which depends on ω and on the
L∞ (BR)-bounds of p(x) and pxk

(x), such that |gtxk
(x, t)| ≤ c3

(

1 + tθp−1+ω
)

.
So we fix

g3(t) = c3
(

1 + tθp−1+ω
)

. (3.23)

In order to verify (2.5), we need to find a constant M such that

c3
(

1 + tθp−1+ω
)

≤M(1 + tγ)
(

c1t
p−2
)

1
2
(

c2t
θp−2

)γ− 1
2 . (3.24)
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We apply Proposition 3.2, imposing the following inequality on the exponents

θp
(

3
2 − γ

)

+ ω ≤ p
2 + 1− γ . (3.25)

We can verify that γ = 1 is not a possible choice, since 1
2q+ω ≤ 1

2θp+ω ≤ 1
2p is

a false inequality even if q = p. Then we follow Remark 2.1 by posing γ = 1+ δ
(and β = α

2 + δ); from (3.25) we get θp
(

1
2 − δ

)

+ ω ≤ p
2 − δ, or equivalently

1
2θp + ω ≤ p

2 + δ (q − 1), which in terms of the parameter δ means (we choose
for δ the minimum possible value; i.e., when the equality sign holds)

δ = (θ−1)p+2ω
2(θp−1) . (3.26)

Finally we observe that the value of δ > 0 in (3.26) can be fixed as small as we
like, by choosing θ close to 1 and ω close to 0. Therefore we can fix θ > 1 and
ω > 0 such that the condition 0 ≤ δ < 4

n(n−2) in Remark 2.1 is satisfied.

At this point, we can state the following consequence of Theorem 2.2.

Example 3.6 (Lipschitz continuity for p(x) Laplacian integral) There ex-
ist α > 2, β > 1, γ > 1 and functions g1, g2, g3 defined as (3.19) and (3.23) sat-
isfying the ellipticity and growth conditions (2.1)-(2.7), such that every smooth
local minimizer of the energy integral (3.18) is locally Lipschitz continuous in Ω
and satisfies the uniform gradient estimate (2.12) and the estimates (2.13) for
the n× n matrix D2u of the second derivatives of u.

Similar computations can be carried out for the Orlicz type energy function-
als (logarithm p(x)−Laplacian)

f (x, ξ) = |ξ|p(x) log(1 + |ξ|2),

where p(x) ≥ 2 is a local Lipschitz continuous exponent. In this case we have
to test the hypotheses set under the choice

g1 (t) = tp−2 log(1+t2), g2 (t) = tθp−2
(

log(1 + t2) + 1
)

g3(t) =
(

1 + tθp−1+ω
)

,

where we have omitted multiplicative constants for simplicity.

3.4 Double phase case

We consider the energy integral
∫

Ω

f (x,Du) dx =

∫

Ω

{|Du|p + a(x) |Du|q} dx (3.27)

related to the double phase degenerate case f (x, ξ) = |ξ|p + a(x) |ξ|q , with
2 ≤ p ≤ q and a nonnegative locally Lipschitz continuous function in Ω. We fix

g1 (|ξ|) = |ξ|p−2, g2 (|ξ|) = |ξ|q−2 and g3 (|ξ|) = |ξ|q−1,

where we have omitted multiplicative constants for simplicity.
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We introduce a further exponent, greater than q, at the same distance q− p
from q; precisely q+(q − p) = 2q− p. Then for any fixed b ≥ 0, we consider the
auxiliary variational problem, related to a multiple phase, of the form

f (x, ξ) = |ξ|p + a (x) |ξ|q + b |ξ|2q−p
(3.28)

and g1 (|ξ|) = |ξ|p−2
, g2 (|ξ|) = |ξ|2q−p−2

, g3 (|ξ|) = |ξ|q−1
. We apply the

regularity Theorem 2.2. In particular assumption (2.5) trivially holds with
γ = 1. With the aim to test assumption (2.3), we note that

∫ t

0

√

g1(s)ds =

∫ t

0

s
p−2
2 ds = 2 t

p
2

p ;

therefore in order to obtain the validity of (2.3) we must impose 2q−p−2+2 =
2q − p ≤ p

2α, that is q
p ≤ 1 + α

2 . Taking into account the bound 2 ≤ α <

2∗ =
if n>2

2n
n−2 for α in (2.6) and letting α converge to the limit value 2∗ we

finally obtain
q
p < 1 + 2∗

2 =
if n>2

n
n−2 = 1 + 2

n−2 . (3.29)

Assumption (2.4) requires that t2q−p ≤ M
{

1 + tp + a(x)tq + bt2q−p
}β

, that is
β ≥ 1, which is true by assumption (2.7).

We remark that in the above considerations we used a nonnegative constant
coefficient b which can be chosen equal to zero too, the case which corresponds
to the original energy integral (3.27). Thus we have proved the following result,
as a consequence of the general Theorem 2.2.

Example 3.7 Under the bound (3.29) on the ratio q/p every local minimizer
u ∈ W 1,2q−p

loc (Ω) to the double phase energy integral in (3.27) (or, when b 6= 0,
a minimizer of the integral related to the auxiliary integrand (3.28) as well)
is locally Lipschitz continuous in Ω and satisfies the uniform gradient estimate
(2.12) and the estimates (2.13) for the n×n matrix D2u of the second derivatives
of u.

4 Proof of Theorem 2.2

4.1 Step 1. Second variation

We consider a local minimizer u of the energy integral (1.1) under the supple-
mentary assumptions (2.10). The local minimizer u satisfies the Euler’s first
variation in the weak form

∫

Ω

n
∑

i=1

fξi (x,Du)ψxi dx = 0 ,

18



for every ψ ∈ W 1,2
0 (Ω). Since u ∈ W 2,2

loc (Ω), we consider a generic integer

k ∈ {1, 2, . . . , n} and ψ = − ∂ϕ
∂xk

= −ϕxk
, where ϕ ∈ W 1,2

0 (Ω) is a generic test
function. By integrating by parts we get

∫

Ω





n
∑

i,j=1

fξiξj (x,Du)uxjxk
+

n
∑

i=1

fξixk
(x,Du)



ϕxi dx = 0 . (4.1)

We make a further choice of the test function ϕ, by posing ϕ = η2uxk
Φ (|Du|),

where η ∈ W 1,2
0 (Ω) and Φ : (0,+∞) → (0,+∞) is a nonnegative, increasing,

locally Lipschitz continuous function in (0,+∞), to be chosen later. Then

ϕxi = 2ηηxiuxk
Φ (|Du|) + η2uxkxiΦ (|Du|) + η2uxk

Φ′ (|Du|) |Du|xi
.

4.1.1 Terms to estimate from 1 to 6

The left hand side in (4.1) now splits into six addenda

1

∫

Ω

2ηΦ (|Du|)
n
∑

i,j=1

fξiξj (x,Du)uxjxk
ηxiuxk

dx

2 +

∫

Ω

η2Φ (|Du|)
n
∑

i,j=1

fξiξj (x,Du)uxjxk
uxkxi dx

3 +

∫

Ω

η2Φ′ (|Du|)
n
∑

i,j=1

fξiξj (x,Du)uxjxk
uxk

|Du|xi
dx

4 +

∫

Ω

2ηΦ (|Du|)
n
∑

i=1

fξixk
(x,Du) ηxiuxk

dx

5 +

∫

Ω

η2Φ (|Du|)
n
∑

i=1

fξixk
(x,Du)uxkxi dx

6 +

∫

Ω

η2Φ′ (|Du|)
n
∑

i=1

fξixk
(x,Du)uxk

|Du|xi
dx = 0 . (4.2)

In the following sections we estimate (4.2) term by term.

4.2 Step 2. Main estimates

In the proof of Theorem 2.2 we use several times the elementary inequality
(√

εa− 1
2
√
ε
b
)2

≥ 0; i.e., ab ≤ εa2 + 1
4εb

2, valid for all a, b ∈ R and ε > 0.
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4.2.1 Estimate of the term in 1

In order to estimate of the term in 1 we use here the Cauchy-Schwarz inequality
for symmetric quadratic forms

∣

∣

∣

∣

∣

∣

∫

Ω

2ηΦ (|Du|)
n
∑

i,j=1

fξiξj (x,Du)uxjxk
ηxiuxk

dx

∣

∣

∣

∣

∣

∣

≤
∫

Ω

2Φ (|Du|)



η2
n
∑

i,j=1

fξiξj (x,Du)uxixk
uxjxk





1/2

·



(uxk
)
2

n
∑

i,j=1

fξiξj (x,Du) ηxiηxj





1/2

dx

≤ 2ε

∫

Ω

η2Φ (|Du|)
n
∑

i,j=1

fξiξj (x,Du)uxixk
uxjxk

dx

+
1

2ε

∫

Ω

Φ (|Du|) (uxk
)
2

n
∑

i,j=1

fξiξj (x,Du) ηxiηxj dx.

By the growth condition in the right hand side of the (2.1), for ε = 1
4 we obtain

∣

∣

∣

∣

∣

∣

∫

Ω

2ηΦ (|Du|)
n
∑

i,j=1

fξiξj (x,Du)uxjxk
ηxiuxk

dx

∣

∣

∣

∣

∣

∣

≤ 1
2

∫

Ω

η2Φ (|Du|)
n
∑

i,j=1

fξiξj (x,Du)uxixk
uxjxk

dx

+2

∫

Ω

Φ (|Du|) (uxk
)
2
g2 (|Du|) |Dη|2 dx . (4.3)

We insert this inequality in the equation (4.2) obtained in the previous Section
4.1.1. We chose to put some addenda in the left hand side and some others
in the opposite side; the reason is clear by taking into account the sign of all
addenda and/or their absolute values. In particular 2 and 3 are nonnegative
as consequence of the ellipticity condition in the left hand side of (2.1). Precisely

3 is nonnegative after a sum with respect to k ∈ {1, 2, . . . , n}; see Section 4.2.3.

Since
∣

∣

∣ 1
∣

∣

∣ ≤ 1
2 2 plus the last term in (4.3), we get

1

2
2 + 3 ≤

∣

∣

∣ 4
∣

∣

∣+
∣

∣

∣ 5
∣

∣

∣+
∣

∣

∣ 6
∣

∣

∣+ 2

∫

Ω

|Dη|2 Φ (|Du|) (uxk
)
2
g2 (|Du|) dx .

(4.4)
We observe that, when we sum both sides over k ∈ {1, 2, . . . , n}, in the right

hand side of (4.4) we have
∑n

k=1 (uxk
)
2
= |Du|2.
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4.2.2 Use of ellipticity in the term in 2

This is the simplest step among these estimates. We bound from below the
addendum in 2 by mean of the ellipticity condition in the left hand side of
(2.1)

∫

Ω

η2Φ (|Du|)
n
∑

i,j=1

fξiξj (x,Du)uxjxk
uxkxi dx

≥
∫

Ω

η2Φ (|Du|) g1 (|Du|) |Duxk
|2 dx ,

by noting that for Sobolev functions uxjxk
= uxkxj a.e. in Ω. When we sum

both sides over k = 1, 2, . . . , n we observe that
∑n

k=1 |Duxk
|2 =

∣

∣D2u
∣

∣

2
.

4.2.3 Use of ellipticity in the term in 3

In order to estimate the term in 3 , we explicitly represent |Du|xi
, recalling

that for Sobolev functions the second order mixed derivatives coincide

|Du|xi
=

∂

∂xi
(

n
∑

k=1

(uxk
)
2
)1/2 =

∑n
k=1 uxk

uxkxi

|Du| . (4.5)

Thus,

1

|Du|

n
∑

i,j,k=1

fξiξj (x,Du)uxjxk
uxk

(|Du|)xi =
n
∑

i,j=1

fξiξj (x,Du) (|Du|)xj (|Du|)xi .

(4.6)

Under the notationD (|Du|) =
(

|Du|x1
, |Du|x2

, . . . , |Du|xn

)

and
∑n

i=1

(

|Du|xi

)2
=

|D (|Du|)|2, we sum over k in 3 and we get

∫

Ω

η2Φ′ (|Du|)
n
∑

i,j,k=1

fξiξj (x,Du)uxjxk
uxk

(|Du|)xi dx (4.7)

=

∫

Ω

η2Φ′ (|Du|) |Du|
n
∑

i,j=1

fξiξj (x,Du) (|Du|)xj (|Du|)xi dx

≥
∫

Ω

η2Φ′ (|Du|) |Du| g1 (|Du|) |D (|Du|)|2 dx,

where in the last inequality we have used again the ellipticity condition in the
left hand side of (2.1).

Remark 4.1 We use in (4.5) the Cauchy-Schwarz inequality

|Du|xi
=

∑n
k=1 uxk

uxkxi

|Du| ≤ |Du| (∑n
k=1 (uxkxi)

2
)

1
2

|Du| = (
n
∑

k=1

(uxixk
)2)

1
2 = |Duxi | .
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Therefore

|D (|Du|)|2 =

n
∑

i=1

(

|Du|xi

)2 ≤
n
∑

i=1

|Duxi |2 (4.8)

=

n
∑

i=1

(

n
∑

j=1

(

uxixj

)2
) =

n
∑

i,j=1

(

uxixj

)2
=
∣

∣D2u
∣

∣

2
.

For the term in 3 , as represented in (4.7), by the growth condition in the right
hand side of (2.1) we also deduce the estimate

0 ≤
∫

Ω

η2Φ′ (|Du|) |Du|
n
∑

i,j=1

fξiξj (x,Du) (|Du|)xj (|Du|)xi dx

≤
∫

Ω

η2Φ′ (|Du|) |Du| g2 (|Du|) |D (|Du|)|2 dx

≤
∫

Ω

η2Φ′ (|Du|) |Du| g2 (|Du|)
∣

∣D2u
∣

∣

2
dx . (4.9)

At the beginning of Section 4.5, for the first step of the iteration procedure, we
fix Φ (t) = t for all t ∈ [0,+∞), thus Φ′ (t) = 1. Therefore, as a consequence of

(2.10), (4.9) shows that the term in 3 is finite, as well as all the other addenda
listed in Section 4.1.1, when the iteration procedure starts with Φ (t) ≡ t.

4.2.4 Estimate of the term in 4

For any fixed k ∈ {1, 2, . . . , n}, by the growth conditions (2.2) and assumption
(2.5) we obtain
∣

∣

∣

∣

∣

∫

Ω

2ηΦ (|Du|)
n
∑

i=1

fξixk
(x,Du) ηxiuxk

dx

∣

∣

∣

∣

∣

≤
∫

Ω

2η |Dη|Φ (|Du|) |Du|
n
∑

i=1

|fξixk
(x,Du)| dx

≤
∫

Ω

2η |Dη|Φ (|Du|) |Du| g3 (|Du|) dx

≤ 2M

∫

Ω

η |Dη|Φ (|Du|) |Du| (1 + |Du|γ) (g1 (|Du|))
1
2 (g2 (|Du|))γ−

1
2 dx

≤ 2M

∫

Ω

η |Dη|Φ (|Du|) |Du| (1 + |Du|γ) (g2 (|Du|))γ dx.

We sum over k and, since the right hand side does not depend on k, we get

n
∑

k=1

∣

∣

∣

∣

∣

∫

Ω

2ηΦ (|Du|)
n
∑

i=1

fξixk
(x,Du) ηxiuxk

dx

∣

∣

∣

∣

∣

≤ 2nM

∫

Ω

η |Dη|Φ (|Du|) |Du| (1 + |Du|γ) (g2 (|Du|))γ dx.
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4.2.5 Estimate of the term in 5

We use the growth assumptions (2.2),(2.5) to get

∣

∣

∣

∣

∣

∫

Ω

η2Φ (|Du|)
n
∑

i=1

fξixk
(x,Du)uxkxi dx

∣

∣

∣

∣

∣

≤
∫

Ω

η2Φ (|Du|) g3 (|Du|) |Duxk
| dx

≤M

∫

Ω

η2Φ (|Du|) (g1 (|Du|))
1
2 (1 + |Du|γ) (g1 (|Du|))

γ−1
2 (g2 (|Du|))

γ
2 |Duxk

| dx

≤M

∫

Ω

η2Φ (|Du|) (g1 (|Du|))
1
2 (1 + |Du|γ) (g2 (|Du|))γ−

1
2 |Duxk

| dx

≤ εM

∫

Ω

η2Φ (|Du|) g1 (|Du|) |Duxk
|2 dx

+
M

4ε

∫

Ω

η2Φ (|Du|) (1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx .

We sum over k and we observe that
∑n

k=1 |Duxk
|2 =

∣

∣D2u
∣

∣

2

n
∑

k=1

∣

∣

∣

∣

∣

∫

Ω

η2Φ (|Du|)
n
∑

i=1

fξixk
(x,Du)uxkxi dx

∣

∣

∣

∣

∣

≤ εM

∫

Ω

η2Φ (|Du|) g1 (|Du|)
∣

∣D2u
∣

∣

2
dx

+
nM

4ε

∫

Ω

η2Φ (|Du|) (1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx .

4.2.6 Estimate of the term in 6

Similarly to the previous Sections, under the notationD (|Du|) =
(

|Du|xi

)

i=1,2,...,n

and
∑n

i=1

(

|Du|xi

)2
= |D (|Du|)|2, by the Cauchy-Schwarz inequality and (2.2),

(2.5), we obtain

∣

∣

∣

∣

∣

∫

Ω

η2Φ′ (|Du|)
n
∑

i=1

fξixk
(x,Du)uxk

|Du|xi
dx

∣

∣

∣

∣

∣

(4.10)

∫

Ω

η2Φ′ (|Du|) |uxk
| (

n
∑

i=1

(fξixk
(x,Du))

2
)

1
2 (

n
∑

i=1

(

|Du|xi

)2
)

1
2 dx

≤
√
n

∫

Ω

η2Φ′ (|Du|) |Du| g3 (|Du|) |D (|Du|)| dx

≤
√
nM

∫

Ω

η2Φ′ (|Du|) |Du| (g1 (|Du|))
1
2 (1 + |Du|γ) (g1 (|Du|))

γ−1
2 (g2 (|Du|))

γ
2 |D (|Du|)| dx
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≤ ε
√
nM

∫

Ω

η2Φ′ (|Du|) |Du| g1 (|Du|) |D (|Du|)|2 dx

+

√
nM

4ε

∫

Ω

η2Φ′ (|Du|) |Du| (1 + |Du|γ)2 (g2 (|Du|))2γ−1 dx .

4.3 Step 3. Collecting together the previous estimates

First we make the previous estimates uniform each other with a sum over
k ∈ {1, 2, . . . , n} where this has been not jet done. Then we collect them,

starting from the estimate of the term in 1 with the inequality (4.4), with

the nonnegative terms 2 and 3 in the left hand side. By also taking the

ε−addenda of 5 and 6 in the left hand side, we obtain

( 1
2
1

− εM
5

)

∫

Ω

η2Φ (|Du|) g1 (|Du|)
∣

∣D2u
∣

∣

2
dx

2

+ (1− ε
√
nM
6

)

∫

Ω

η2Φ′ (|Du|) |Du| g1 (|Du|) |D (|Du|)|2 dx
3

≤ 2nM

∫

Ω

η |Dη|Φ (|Du|) |Du| (1 + |Du|γ) (g2 (|Du|))γ
4

dx

+
nM

4ε

∫

Ω

η2Φ (|Du|) (1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx

5

+

√
nM

4ε

∫

Ω

η2Φ′ (|Du|) |Du| (1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx

6

+ 2

∫

Ω

|Dη|2 Φ (|Du|) |Du|2 g2 (|Du|) dx
1

.

We chose ε = 1
4M min

{

1; 3√
n

}

, so that 1
2 − εM ≥ 1

4 and 1 − ε
√
nM ≥ 1

4

too. Form the previous estimate we obtain the existence of a positive constant
c0 = c0 (n,M) such that

1
c0

∫

Ω

η2g1 (|Du|)
(

Φ (|Du|)
∣

∣D2u
∣

∣

2
+Φ′ (|Du|) |Du| |D (|Du|)|2

)

dx

≤
∫

Ω

η |Dη|Φ (|Du|) |Du| (1 + |Du|γ) (g2 (|Du|))γ dx

+

∫

Ω

η2 (Φ (|Du|) + Φ′ (|Du|) |Du|) (1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx

+

∫

Ω

|Dη|2 Φ (|Du|) |Du|2 g2 (|Du|) dx .
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We make use of the inequality (4.8); i.e., |D (|Du|)| ≤
∣

∣D2u
∣

∣. Therefore finally
we get

1
c0

∫

Ω

η2g1 (|Du|) (Φ (|Du|) + Φ′ (|Du|) |Du|) |D (|Du|)|2 dx (4.11)

≤
∫

Ω

η |Dη|Φ (|Du|) |Du| (1 + |Du|γ) (g2 (|Du|))γ dx

+

∫

Ω

η2 (Φ (|Du|) + Φ′ (|Du|) |Du|) (1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx

+

∫

Ω

|Dη|2 Φ (|Du|) |Du|2 g2 (|Du|) dx .

4.4 Step 4. Use of the Sobolev inequality

We define the integral function G : [0,+∞) → [1,+∞) by

G(t) = 1 +

∫ t

0

√

Φ(s)g1(s) ds. (4.12)

Since g1 and Φ are increasing, then
∫ t

0

√

Φ(s)g1(s) ≤
√

Φ(t)g1(t) · t and

[G(t)]2 ≤ 2

(

1 +

(∫ t

0

√

Φ(s)g1(s)

)2
)

≤ 2
(

1 + Φ(t)g1(t)t
2
)

.

We deduce

|D(ηG(|Du|)|2 ≤ 2|Dη|2[G(|Du|)]2 + 2η2[G′(|Du|)]2|D(|Du|)|2

≤ 4|Dη|2(1 + Φ(|Du|)g1(|Du|)|Du|2) + 2η2Φ(|Du|)g1(|Du|) |D(|Du|)|2.
By integrating we get

∫

Ω

|D(ηG(|Du|)|2 dx ≤ 4

∫

Ω

|Dη|2(1 + Φ(|Du|)g1(|Du|)|Du|2) dx (4.13)

+2

∫

Ω

η2Φ(|Du|)g1(|Du|) |D(|Du|)|2 dx .

When compared with the estimate (4.11), we note that the last addendum in
the right hand side of (4.13), is less that or equal to the left hand side of (4.11).
By combining (4.11), (4.13) we obtain

∫

Ω

|D(ηG(|Du|)|2 dx ≤
∫

Ω

|Dη|2(4 + 2c0Φ(|Du|)g1(|Du|)|Du|2) dx (4.14)

+2c0

∫

Ω

η |Dη|Φ (|Du|) |Du| (1 + |Du|γ) (g2 (|Du|))γ dx
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+2c0

∫

Ω

η2 (Φ (|Du|) + Φ′ (|Du|) |Du|) (1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx .

Recall that 2∗ = 2n
n−2 if n ≥ 3, while 2∗ is any fixed real number greater than α

if n = 2. By the Sobolev inequality, there exists a constant c1 such that
(∫

Ω

[ηG(|Du|)]2∗ dx
)2/2∗

≤ c1

∫

Ω

|D(ηG(|Du|)|2 dx , (4.15)

which naturally can be combined with (4.14), as done in the next section.

4.5 Step 5. Choice of the test function Φ

Let us define Φ(t) = t2λ for every t ≥ 0, with λ ≥ 1. Making use of [46, Lemma
3.4 (v)] we can estimate the integral function G(t) defined in (4.12) by

G(t) = 1 +

∫ t

0

√

Φ(s)g1(s) ds ≥ 1 +
tλ

λ+ 1

∫ t

0

√

g1(s) ds. (4.16)

Recall that the function g1 : [0,+∞) → [0,+∞) is increasing and not identically
zero. Then, there exists t0 > 0 such that g1(t) > 0, for every t ≥ t0. Up to a
rescaling, we can assume that t0 ≤ 1, so that

g1(1) = c2 > 0,

∫ 1

0

√

g1(s) ds = c3 > 0. (4.17)

Then, for every t ≥ 1, we have

2

∫ t

0

√

g1(s) ds ≥ c3 +

∫ t

0

√

g1(s) ds

≥ min{c3, 1}
(

1 +

∫ t

0

√

g1(s) ds

)

. (4.18)

Now, we use assumptions (2.4) and (2.7). By (2.4) and by (4.18), there exists a
constant c4 such that

(∫ t

0

√

g1(s) ds

)α

≥ c4(g2(t))
2γ−1t2, ∀t ≥ 1. (4.19)

Recall that by (2.6), 2 ≤ α < 2∗. Then, by (4.17), for every t ≥ 1 we obtain

(∫ t

0

√

g1(s) ds

)2∗

≥
(∫ t

0

√

g1(s) ds

)α

(c2(t− 1) + c3)
2∗−α

≥ (min{c2, c3})2
∗−αc4(g2(t))

2γ−1t2
∗−α+2, ∀t ≥ 1. (4.20)

We note that for the previous step, it’s fundamental assuming α strictly less
then 2∗. By (4.20) and (4.16), we deduce that for every t ≥ 1

[G(t)]2
∗ ≥ 1

2

(

1 +

(

tλ

(λ+ 1)

∫ t

0

√

g1(s) ds

)2∗
)

≥ 1

2
+

(min{c2, c3})2
∗−αc4

2(λ+ 1)2
(g2(t))

2γ−1t2
∗(λ+1)−α+2.
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That is, there exists a constant c5 such that

c5(λ+ 1)2
∗

[G(t)]2
∗ ≥ 1 + (g2(t))

2γ−1t2
∗(λ+1)−α+2,

for every t ≥ 1, and also for t ∈ [0, 1), since the left-hand side is bounded for
t ∈ (0, 1) by the constant (independent of γ) 1+g2(1), while the right-hand side
is bounded from below away from zero. So, for every t ≥ 0,

c5(λ+ 1)2
∗

[G(t)]2
∗ ≥ 1 + (g2(t))

2γ−1t2
∗(λ+1)−α+2 . (4.21)

Since Φ(t) = t2λ and g1(t) ≤ g2(t), from (4.14), (4.15) and (4.21), with positive
constants c6, c7, . . ., we obtain

(∫

Ω

η2
∗
{

1 + |Du|2
∗(λ+1)−α+2

(g2(|Du|))2γ−1
}

dx

)2/2∗

≤ c6 (λ+ 1)
2

(∫

Ω

η2
∗

[G(|Du|)]2∗ dx
)2/2∗

≤ c7 (λ+ 1)
2

{∫

Ω

|Dη|2(1 + |Du|2λ g2(|Du|) |Du|2) dx

+

∫

Ω

η |Dη| |Du|2λ+1
(1 + |Du|γ) (g2 (|Du|))γ dx

+

∫

Ω

η2
(

|Du|2λ + 2λ|Du|2λ
)

(1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx

}

.

Then we uniform as much as possible the right had side

(∫

Ω

η2
∗
{

1 + |Du|2
∗(λ+1)−α+2 (g2(|Du|))2γ−1

}

dx

)2/2∗

(4.22)

≤ c8 (λ+ 1)
3

{∫

Ω

|Dη|2(1 + |Du|2λ g2(|Du|) |Du|2) dx

+

∫

Ω

η |Dη| |Du|2λ+1
(1 + |Du|γ) (g2 (|Du|))γ dx

+

∫

Ω

η2
(

|Du|2λ + |Du|2λ
)

(1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx

}

.

With the aim to reduce the previous estimate to a unique addendum in the right
hand side we recall that γ ≥ 1 and λ ≥ 1. Moreover g2 : (0,+∞) → (0,+∞)
is an increasing function such that g2 (1) ≥ 1, and thus also g2 (t) ≥ 1 for all
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t ≥ 1. Thus for every t ≥ 0 we have

t2λ (1 + tγ)2 (g2 (t))
2γ−1 ≤

{

4 t2(λ+γ) (g2 (t))
2γ−1

if t ≥ 1

4 (g2 (1))
2γ−1

if 0 ≤ t ≤ 1

}

≤ max
{

4 (g2 (1))
2γ−1 ; 4 t2(λ+γ) (g2 (t))

2γ−1
}

≤ 4 (g2 (1))
2γ−1

+ 4 t2(λ+γ) (g2 (t))
2γ−1

≤ 4 (g2 (1))
2γ−1

+ 4 (g2 (1))
2γ−1

t2(λ+γ) (g2 (t))
2γ−1

= 4 (g2 (1))
2γ−1

(

1 + t2(λ+γ) (g2 (t))
2γ−1

)

. (4.23)

By proceeding in a similar way we get

t2λ+1(1 + t)γ (g2(t))
γ ≤

{

2 t2λ+γ+1 (g2(1))
γ if t ≥ 1

2 (g2(1))
γ

if 0 ≤ t ≤ 1

}

≤
{

2 t2(λ+γ) (g2(1))
γ

if t ≥ 1
2 (g2(1))

γ
if 0 ≤ t ≤ 1

}

≤ 2 (g2 (1))
2γ−1

(

1 + t2(λ+γ) (g2(t))
2γ−1

)

, ∀ t ≥ 0 ,

(4.24)

and

t2(λ+1)g2(t) ≤ g2(1)
(

1 + t2(λ+γ) (g2(t))
2γ−1

)

≤ (g2 (1))
2γ−1

(

1 + t2(λ+γ) (g2(t))
2γ−1

)

, ∀ t ≥ 0. (4.25)

By using (4.23), (4.24), (4.25), from (4.22) we get the final estimate with only
one addendum in the right hand side

(∫

Ω

η2
∗

[1 + |Du|2∗(λ+1)−α+2(g2(|Du|))2γ−1] dx

)2/2∗

≤ c(2λ+ 1)3
∫

Ω

(η + |Dη|)2
(

1 + |Du|2(λ+γ) (g2(|Du|))2γ−1
)

dx . (4.26)

Note that the constant c in (4.26) depends on the dimension n, on the other
constants m,M, γ, on the values g1(1), g2(1), but it is independent of λ.

Let us denote by BR and Bρ balls compactly contained in Ω, of radii respec-
tively R, ρ, with the same center. Let η be a test function equal to 1 in Bρ,
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whose support is contained in BR, such that |Dη| ≤ 2
R−ρ . Thus, we obtain

(

∫

Bρ

[1 + |Du|2∗(λ+1)−α+2(g2(|Du|))2γ−1] dx

)2/2∗

≤ c(2λ+ 1)3
∫

BR

(

η2 + |Dη|2
)

(

1 + |Du|2(λ+γ) (g2(|Du|))2γ−1
)

dx

≤ c(2λ+ 1)3
(

1 +
4

(R − ρ)2

)∫

BR

(

1 + |Du|2(λ+γ)
(g2(|Du|))2γ−1

)

dx .

(4.27)

4.6 Step 6. Iteration

We define by induction a sequence λk in the following way:

λ1 = 0, λk+1 =
2∗

2
λk +

2∗ − α+ 2

2
− γ, ∀k ∈ N; (4.28)

we note in particular that λk satisfies the property

2∗(λk + 1)− α+ 2 = 2(λk+1 + γ), ∀k ∈ N. (4.29)

It is easy to prove by induction the following representation formula for λk:

λk =
2∗ − α− 2(γ − 1)

2∗ − 2
[(
2∗

2
)k−1 − 1], ∀k ∈ N. (4.30)

Since α ≥ 2, from (4.29), (4.30), we deduce the inequality

(λk + 1)2∗ − α+ 2 ≥ 2
2∗ − a− 2(γ − 1)

2∗ − 2

(

2∗

2

)k

. (4.31)

For fixed R0 and ρ0, for all k ∈ N, we rewrite (4.27) with R = ρk−1 and ρ = ρk,
where ρk = ρ0 +

R0−ρ0

2k
; moreover, for k = 1, 2, 3, ..., i, with i fixed in N, we put

λ equal to λk. By iterating (4.27), by (4.29) we obtain

(

∫

Bρi

(

1 + |Du|(λi+1)2
∗−a+2

)

(g2(|Du|))2γ−1
dx

)
2
2∗

≤ c7

∫

BR0

(

1 + |Du|2γ (g2(|Du|))2γ−1
)

dx. (4.32)

Since R − ρ = ρk−1 − ρk = R0−ρ0

2k
for all k ∈ N, if n ≥ 3; otherwise, if n = 2,

then for every ǫ > 0 we can choose 2∗ so that

c7 =
c8

(R0 − ρ0)−2−ǫ
, for some constant c8. (4.33)
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Since g2 is increasing, then g2(t) ≥ g1(t) ≥ g1(1) > 0, for all t ≥ 1. Therefore
for r ≥ s ≥ 0, we have

g2(t)t
r + 1 ≥ g1(1)t

s, if t ≥ 1,

g2(t)t
r + 1 ≥ 1 ≥ ts, if 0 ≤ t ≤ 1.

Thus, by posing c9 = min{g1(1), 1}, we obtain

g2(t)t
r + 1 ≥ c9t

s, ∀t ≥ 0, ∀r ≥ s ≥ 0. (4.34)

Now, we go to the limit in (4.32) as i → +∞. We use the inequalities (4.31),
(4.32), (4.34) and we obtain

sup{|Du(x)|2
(

2∗−a−2(γ−1)
2∗−2

)

: x ∈ Bρ0}

= lim
i→+∞

(

∫

Bρ0

|Du|2
(

2∗−a−2(γ−1)
2∗−2

)

( 2∗

2 )
i

dx

)( 2
2∗ )

i

≤ lim sup
i→+∞

(

1

c9

∫

Bρi

(

1 + |Du|2∗(λi+1)−a+2 (g2(|Du|))2γ−1
)

dx

)( 2
2∗ )

i

≤ lim sup
i→+∞

c7
c9

∫

BR0

(

1 + |Du|2γ (g2(|Du|))2γ−1
)

dx

and by the representation of c7 in (4.33), we finally obtain

‖Du‖
2
(

2∗−a−2(γ−1)
2∗−2

)

L∞(Bρ0 ,R
n) ≤ c10

(R0 − ρ0)n

∫

BR0

(

1 + |Du|2γ (g2(|Du|))2γ−1
)

dx.

(4.35)

4.7 Step 7. A priori gradient estimate

We start putting together the inequalities (4.26), (4.14) and (4.15), with λ = 0,
that is Φ = 1, we get

(∫

Ω

(ηG(|Du|))2
∗

dx

)2/2∗

≤ c

∫

Ω

(

η2 + |Dη|2
)(

1 + |Du|2γ (g2(|Du|))2γ−1
)

dx . (4.36)

We note that, by assumption (2.6), 2∗

α−2+2γ > 1. Then we can define ν such
that

1 ≤ ν <
2∗

α− 2 + 2γ
. (4.37)
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Following the lines of Step 5, we have, for every t ≥ 1

(∫ t

0

√

g1(s) ds

)

2∗

ν

≥
(∫ t

0

√

g1(s) ds

)α

(c2(t− 1) + c3)
2∗

ν −α

≥ (min{c2, c3})
2∗

ν −αc4(g2(t))
2γ−1t

2∗

ν −α+2. (4.38)

By (4.38) and (4.16), we deduce that for every t ≥ 1

[G(t)]
2∗

ν ≥ 1

2



1 +

(∫ t

0

√
g1(s) ds

)

2∗

ν





≥ 1

2
+

(min{c2, c3})
2∗

ν −αc4
2

(g2(t))
2γ−1t

2∗

ν −α+2.

That is, there exists a constant c such that

[G(t)]
2∗

ν ≥ c
(

1 + (g2(t))
2γ−1t

2∗

ν −α+2
)

,

for every t ≥ 1, and also for t ∈ [0, 1), since the left-hand side is bounded for
t ∈ (0, 1) by the constant (independent of γ) 1+g2(1), while the right-hand side
is bounded from below away from zero. So, for every t ≥ 0,

[G(t)]
2∗

ν ≥ c
(

1 + (g2(t))
2γ−1t

2∗

ν −α+2
)

. (4.39)

Since ν < 2∗

α−2+2γ , we have 2∗

ν − α+ 2 > 2γ; by (4.36), (4.39), we get

(∫

Ω

η2
∗

[1 + |Du|2γ(g2(|Du|))2γ−1]ν dx

)2/2∗

≤
(∫

Ω

η2
∗

[1 + |Du| 2
∗

ν −α+2(g2(|Du|))2γ−1]ν dx

)2/2∗

≤ c

∫

Ω

(

η2 + |Dη|2
)(

1 + |Du|2γ (g2(|Du|))2γ−1
)

dx . (4.40)

Then, under the notation

V = V (x) = 1 + |Du|2γ (g2(|Du|))2γ−1
,

inequality (4.40) becomes

(∫

Ω

η2
∗

V ν dx

)2/2∗

≤ c

∫

Ω

(

η2 + |Dη|2
)

V dx . (4.41)

We consider a test function η = 1 in Bρ with |Dη| ≤ 2
R−ρ as in the previous

step, thus we get

(

∫

Bρ

V ν dx

)2/2∗

≤ c

(R − ρ)2

∫

BR

V dx . (4.42)
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Let µ > 2∗

2 to be chosen later. By Hölder inequality we have

(

∫

Bρ

V ν dx

)2/2∗

≤ c

(R− ρ)2

∫

BR

V
ν
µV 1− ν

µ dx

≤
(∫

BR

V ν dx

)
1
µ
(∫

BR

V
µ−ν
µ−1 dx

)
µ−1
µ

. (4.43)

Let R0 and ρ0 be fixed. For any i ∈ N we consider (4.43) with R = ρi and
ρ = ρi−1, where ρi = R0 − R0−ρ0

2i . By iterating (4.43) since R− ρ = R0−ρ0

2i , we
obtain

∫

Bρ0

V ν dx ≤
(

∫

Bρi

V ν dx

)( 2∗

2µ )
i

∞
∏

i=1

(

c4i+1

(R0 − ρ0)2

)µ( 2∗

2µ )
i

·
(

∫

Bρ0

V
µ−ν
µ−1 dx

)(µ−1)( 2∗

2µ )
i

≤
(

∫

Bρi

V ν dx

)( 2∗

2µ )
i

c

(

1

(R0 − ρ0)2

)
2∗µ

2µ−2∗

·
(

∫

Bρ0

V
µ−ν
µ−1 dx

)2∗ µ−1
2µ−2∗

. (4.44)

Now we use assumption (2.4):

V = 1 + |Du|2γ (g2(|Du|))2γ−1 ≤ 2max{1, c}(1 + f(Du))β , (4.45)

where, since ν ≥ 1,

β =
µ− 1

µ− ν
≥ 1. (4.46)

We recall that (4.37) holds, so we have

1 ≤ β <
µ− 1

µ− 2∗

α−2+2γ

.

We compute the limit as µ→ 2∗

2 of the right hand side, which, by computations,

is equal to 2(α−2+2γ)
n(α−4+2γ) . While the limit as µ → +∞ is equal to 1. Then it

is possible to choose µ ∈
(

2∗

2 ,+∞
)

so that the definition of β in (4.46) is

compatible with assumption (2.7).
We go to the limit in (4.44) as i→ +∞ and we use (4.45) and (4.46) to obtain

∫

Bρ0

V ν dx ≤ c

(

1

(R0 − ρ0)2

)
2∗µ

2µ−2∗
(

∫

BR0

(1 + f(Du)) dx

)

2∗(µ−1)
2µ−2∗

.
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Then we get

∫

Bρ0

V dx ≤ |Bρ0 |1−
1
ν

(

∫

Bρ0

V ν dx

)
1
ν

≤ c

(

1

(R0 − ρ0)2

)
2∗µ

(2µ−2∗)ν

(

∫

BR0

(1 + f(Du)) dx

)

2∗(µ−1)
(2µ−2∗)ν

. (4.47)

Therefore, with the notation θ0 = 2 2∗µ
(2µ−2∗)ν , there exists a constant c =

c(n, α, β, γ) such that
∫

Bρ0

{

1 + |Du|2γ (g2(|Du|))2γ−1
}

dx (4.48)

≤ c

(R0 − ρ0)θ0

(

∫

BR0

{1 + f(Du)} dx
)

2∗(µ−1)
(2µ−2∗)ν

.

By (4.35) finally we deduce that for all ρ0, R0 with 0 < ρ0 < R0

‖Du‖2L∞(Bρ0 ;R
n) ≤

c

(R0 − ρ0)
θ2

(

∫

BR0

{1 + f (Du)} dx
)θ1

, (4.49)

where we have used the notation

θ1 = 2∗(µ−1)
(2µ−2∗)ν · 2∗−2

2∗−α−2(γ−1) and θ2 = θ0
2∗−2

2∗−α−2(γ−1) . (4.50)

We observe that θ1 > 1; indeed 2∗−2
2∗−α−2(γ−1) ≥ 1 since α ≥ 2 and γ ≥ 1. The

other factor of θ1 is strictly greater than 1. In fact, being α ≥ 2 and γ ≥ 1, we
have that ν < 2∗

α−2+2γ ≤ 2∗

2 . Then we deduce

2∗(µ−1)
(2µ−2∗)ν >

2(µ−1)
2µ−2∗ > 1 . (4.51)

4.8 Step 8. W 2,2−estimate

We are ready to prove the W 2,2−estimate (2.13). We start from (4.11). At
the beginning of our proof we choose the test function ϕ = η2uxk

Φ (|Du|), with
η ∈ C1 (Ω) with compact support in Ω, Φ : [0,+∞) → [0,+∞) is a generic
nonnegative, increasing, locally Lipschitz continuous function in [0,+∞). Here,
in the estimate in (4.11), we simply consider the case when Φ is the constant
identically equal to 1. We obtain
∫

Ω

η2g1 (|Du|)
∣

∣D2u
∣

∣

2
dx ≤8Mn

∫

Ω

η |Dη| |Du|1+γ
(g2 (|Du|))γ dx

+ 8(Mn)2
∫

Ω

η2 (1 + |Du|γ)2 (g2 (|Du|))2γ−1
dx

+ 8

∫

Ω

|Dη|2 g2 (|Du|) |Du|2 dx.
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Since γ ≥ 1, in the integrands in the right hand side we can use the inequalities
for a constant c ≥ 1











|Du|1+γ , (1 + |Du|γ)2 and |Du|2 ≤ c
(

1 + |Du|2γ
)

(g2 (|Du|))γ and g2 (|Du|) ≤ 1 + (g2 (|Du|))2γ−1

η |Dη| , η2 and |Dη|2 ≤ (η + |Dη|)2

and, for a new positive constant c, we get
∫

Ω

η2g1 (|Du|)
∣

∣D2u
∣

∣

2
dx

≤ c

∫

Ω

(η + |Dη|)2
(

1 + |Du|2γ
)(

1 + (g2 (|Du|))2γ−1
)

dx . (4.52)

The function g2 : [0,+∞) → [0,+∞) is nonnegative, increasing and, as in (3.1),
g2(t) ≥ g2(1) ≥ 1 for all t ≥ 1; then

|Du|2γ and (g2 (|Du|))2γ−1 ≤ 1 + |Du|2γ (g2 (|Du|))2γ−1
.

Thus from (4.52), for a further constants c′ we deduce
∫

Ω

η2g1 (|Du|)
∣

∣D2u
∣

∣

2
dx

≤ c′
∫

Ω

(η + |Dη|)2
(

1 + |Du|2γ (g2 (|Du|))2γ−1
)

dx . (4.53)

We consider concentric balls BR, B(R+ρ)/2 and Bρ compactly contained in Ω,

with 0 < ρ < R+ρ
2 < R < R1. As usual we also consider a test function

η ∈ C1
0 (BR), 0 ≤ η ≤ 1 in BR, η = 1 in Bρ and η = 0 out of B(R+ρ)/2, with

pointwise gradient bound |Dη| ≤ 4/ (R− ρ) in B(R+ρ)/2\Bρ and of course in all
BR too. By (4.53) we have
∫

Bρ

g1 (|Du|)
∣

∣D2u
∣

∣

2
dx ≤ c′

(

1 + 4
R−ρ

)2
∫

BR+ρ
2

(

1 + |Du|2γ (g2 (|Du|))2γ−1
)

dx .

Since R ≤ R1, then
4

R−ρ ≥ 4
R1

and thus 1 ≤ R1

R−ρ . We obtain

∫

Bρ

g1 (|Du|)
∣

∣D2u
∣

∣

2
dx ≤ c′′(R2

1+4)2

(R−ρ)2

∫

BR+ρ
2

(

1 + |Du|2γ (g2 (|Du|))2γ−1
)

dx.

(4.54)
We rewrite (4.48) in the balls B(R+ρ)/2 and BR, being (with the notation there)

R0 − ρ0 = R− R+ρ
2 = R−ρ

2 ,

∫

BR+ρ
2

[

1 + |Du|2γ (g2(|Du|))2γ−1
]

dx ≤ 2θ0c

(R− ρ)θ0

(∫

BR

(1 + f(Du)) dx

)

2∗(µ−1)
(2µ−2∗)ν

.

(4.55)
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By combining (4.54),(4.55) we finally get

∫

Bρ

g1 (|Du|)
∣

∣D2u
∣

∣

2
dx ≤ c′′′

(R − ρ)2+θ0

(∫

BR

(1 + f(Du)) dx

)

2∗(µ−1)
(2µ−2∗)ν

.

for a constant c′′′. Therefore the W 2,2
loc (Ω)−bound stated in (2.13) is obtained,

with exponent θ3 = 2∗(µ−1)
(2µ−2∗)ν , which is greater than 1 (see (4.51)).
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