

Diagnostics to trace shocked ejecta in SN 1987A with XRISM - Resolve

Vincenzo Sapienza

Department of Physics and Chemistry "Emilio Segré" - University of Palermo INAF - Osservatorio Astronomico di Palermo University of Tokyo

Collaborators:

M. Miceli, A. Bamba, S. Orlando, S. Lee, S. Nagataki, M. Ono, S. Katsuda, K. Mori, M. Sawada, Y. Terada, R. Giuffrida and F. Bocchino

SN 1987A

Distance (kpc)	Age (yrs)	Physical origin
51.4	36	core collapse SN

Interacting with complex circumstellar medium:

- Dense and clumpy Equatorial Ring
- Diffuse hourglass-like H II region

CSM dominated the X-ray emission in the past

But

Fast moving outer ejecta started to be shocked

SN1987A, Image credit: Radio (ALMA, red); Optical (HST, green) X-ray (Chandra, blue)

Hybrid approach: data and models

Can we disentangle ejecta and CSM?

Miceli et al. (2019): Chandra data and models derived from the HD simulation of the Fe XVII emission line

Tracing ejecta signatures with XRISM

XRISM mission launched 06/09/2023

Resolve spectrometer High-resolution Spectroscopy

It will observe SN 1987A during the PV phase

Adopting a similar approach of Miceli et al. (2019)

AIM:

Synthesize the XRISM - Resolve spectrum of SN1987A to find a new diagnostic to trace ejecta signature

The MHD model (Orlando et al. 2020)

From the SN explosion (Ono et al. 2020) to the SNR

Progenitor star: 18.3 $\rm M_{\odot}$ Blue supergiant

Merging of two massive stars (14 ${\rm M}_{\odot}$ and 9 ${\rm M}_{\odot})$

Model vs. Data

Synthesis procedure

Synthesis procedure

10¹ Folded through the response matrix (resolve_h7ev_2019a.rmf) 7eV res. 100 Summed cell by cell Flux (s⁻¹ keV⁻¹) 10^{-1} Ability to distinguish the emission from: Ejecta CSM (Ring and HII region) 10^{-2} Ability to add line broadening: Bulk motion velocity thermal motion from the ions 10^{-3} 0.5 5

Energy (keV)

Applying the bulk motion broadening

Comparison between epochs

Sapienza et al. (in prep.): Normalized Emission Measure (EM) distribution as a function of the velocity along the line of sight for the 2011 (left panel) and 2024 (right panel).

Examining the lines profile

Sapienza et al. (in prep.): Close-up view of in the 1.27-1.55 keV band (left) and 1.78-2.08 keV band (right).

Heavy under-ionized ejecta = Higher contribution to the X-ray emission in He-like lines

A diagnostic to retrieve ejecta dynamics

Sapienza et al. (in prep.): Close-up views of the synthetic XRISM - Resolve spectrum in 1.27-1.55 keV band (left) and 1.78-2.08 keV band (right), with the corresponding best-fit model and residual.

Synthesis of XRISM observation of SN 1987A

The synthetic spectrum show largely broadened lines due to plasma bulk motior

Measurement of the broadening will provide direct evidence for shocked ejecta expansion

We demonstrated that we can provide direct evidence for shocked ejecta

disentangling:

- Peaked CSM emission (low velocity)
- Ejecta broad emission (high velocity)

Line Broadening: Ions Temperature

Optically thin plasma in Non equilibrium of Ionization

The heating process is collisionless $I_{_{Sh}} \ll \lambda_{_{Coulomb}}$

Temperature of the ions \propto Mass of the ions

Thermal motion of lons results in a Doppler broadening

The width of the emission line $\propto T^{1/2}$

Line Broadening: Plasma Bulk Motion

Shocked plasma moves with high velocity in every direction

Redshift if it moves away from us

+

Blueshift if it moves towards us

=

Doppler Broadening effect

Contribution to X-ray emission

Contribution from the ejecta increased

Comparable to the EM of the ring

CSM emission dominated by the ring

The ring has on average higher $n_{a}t$

Sapienza et al. (in prep.): Distribution of the emission measure as a function of the temperature kT and the ionization parameter $n_{e}t$ (τ) for the year 2024

Adding the thermal broadening

Sapienza et al. (in prep.): Comparison between the spectral models with No broadening (black), Bulk motion (Blue) and bulk motion plus thermal (red), for the Si XIV and Fe XXV lines.