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A B S T R A C T   

The present study hypothesizes that raw materials used in bread making can transfer antibiotic resistance genes 
(ARGs) to processed breads. Four types of flour and four types of semolina were purchased from supermarkets 
and inoculated with a commercial dried sourdough starter to make breads. The microbiological characteristics of 
all raw materials and fermented doughs were investigated. The levels of yeasts and lactic acid bacteria (LAB) 
increased up to 107 CFU/g. The values of pH decreased to 4.54–4.86 while total titratable acidity increased 
inversely. All unprocessed and processed samples, including breads, were analyzed by a molecular approach to 
detect bacterial and fungal DNAs and 17 antibiotic resistance genes for penicillins, macrolides, tetracyclines, and 
chloramphenicol. Illumina technology showed that the operational taxonomy units (OTUs) identified from un
processed wheat milling products, fermented doughs, and baked products mainly belonged to Acetobacteraceae. 
Enterococci were present in all doughs. After baking, the relative abundance (RA)% of Enterococcus and Ace
tobacteraceae decreased. The DNA analyzed for fungal composition showed that Kazachstania humilis dominated 
dried sourdough starter and doughs, and its OTUs were also detected at high RA% in baked products. The search 
for ARGs revealed that all samples analyzed did not show resistance to penicillins, chloramphenicol, and mac
rolides. However, three of the semolinas included in this study (S1, S3 and S4) and the corresponding doughs 
(SD1, SD3 and SD4) were positive for tet(A) and tet(B) resistance genes. This work indicated that breads have a 
limited role in the dissemination of ARGs.   

1. Introduction 

Antimicrobial resistance is a natural adaptive mechanism through 
which microorganisms acquire the ability to survive or grow in the 
presence of antimicrobial agents that would otherwise inhibit or kill 
them (Arzanlou, Chai, & Venter, 2017). The continuous and excessive 
use of antimicrobials in humans, animals, and plants leads to the 
emergence of antimicrobial resistance. According to One Health 
approach, this phenomenon has a significant impact on the health of 
humans, animals, and the environment (Hernando-Amado, Coque, 
Baquero, & Martínez, 2019; McEwen & Collignon, 2018). Controlling 
the spread of antimicrobial resistance is challenging because the 
responsible genes can be transferred to different types of bacteria 
(Prestinaci, Pezzotti, & Pantosti, 2015). Antimicrobial resistance genes 
(ARGs) are carried on mobile genetic elements that allow their transfer 

between different bacterial genera (Flores-Orozco et al., 2023). Anti
microbial resistant bacteria can be carried by humans, animals, animal 
products, and the environment (Gardner et al., 2023). Among 
food-associated microorganisms, those carrying ARGs include micro
cocci, kokurias, coagulase-negative staphylococci (Gardini, Tofalo, & 
Suzzi, 2003), enterococci (Chajęcka-Wierzchowska, Zarzecka, & 
Zadernowska, 2021), non-enterococcal lactic acid bacteria (LAB), Bifi
dobacterium (Ammor, Flórez, & Mayo, 2007), several foodborne bacteria 
(Caniça, Manageiro, Abriouel, Moran-Gilad, & Franz, 2019), and some 
yeasts (Wolfe, 2023). 

According to Zarzecka, Zadernowska, and Chajęcka-Wierzchowska 
(2020), starter strains are responsible for the dissemination of ARGs for 
antibiotics used to treat human diseases. Therefore, the European Food 
Safety Authority (EFSA) strongly recommends screening starter cultures 
for ARGs before commercialization (EFSA, 2018). Besides starter 
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cultures, raw materials are also involved in the dissemination of ARGs 
into fermented food production systems, especially in case these are of 
animal origin, because milk and meat may transfer antimicrobial resis
tant microorganisms (Frétin et al., 2018; Pisacane, Callegari, Puglisi, 
Dallolio, & Rebecchi, 2015). In fact, animals might be subjected to 
antibiotic treatments during their life, and the microorganisms associ
ated with animal-derived raw materials may acquire ARGs (Catry, 
Laevens, Devriese, Opsomer, & de Kruif, 2003). Unlike animals, plants 
are not typically exposed to antibiotics on a large scale. The spreading of 
ARGs in crop systems has been addressed by analyzing soil, water, and 
manure samples (Heuer, Schmitt, & Smalla, 2011; Hölzel, Tetens, & 
Schwaiger, 2018). However, information on raw materials used in bread 
production is limited. Wolfe (2023) reported that the relative risk of 
antibiotic resistance in sourdough breads is low because the fermenting 
microbiota is no longer viable at consumption due to baking exposure. 

The aim of this work was to monitor the transfer of ARGs through 
sourdough bread making and to evaluate the potential transfer of ARGs 
from residual DNA after baking. The microbiological characteristics of 
raw materials used in bread making, fermented doughs, and final breads 
produced from tender flour and durum semolina were investigated. All 
samples were also tested for the presence of ARGs toward the classes of 
antibiotics most commonly used in animal husbandry and agriculture: 
tetracyclines, penicillins, chloramphenicol, and macrolides. A meta
genomic (culture-independent) approach was applied to search for 
ARGs in the raw materials (semolinas, flours, salt, water, dried sour
dough starter), doughs, and finished baked products from the total 
extracted DNA of individual samples. 

2. Materials and methods 

2.1. Raw materials, bread production and sample collection 

In this study, sourdoughs were processed from commercial durum 
wheat semolinas and tender wheat flours (Table 1). A commercial dried 
sourdough (Molino Rossetto S. p.A., Pontelongo, Italy) was used as 
starter. Kitchen salt (Sosalt S. p.A., Trapani, Italy) and tap water were 
added according to the recipe provided by the sourdough starter pro
ducer: semolina/flour (250 g); commercial dried sourdough starter 
(17.5 g); salt (5 g); tap water (150 mL). 

The doughs were mixed using a planetary mixer model XBM10S 
(Electrolux Professional, SpA, Pordenone, Italy) equipped with a paddle 
at speed 1 for 5 min followed by 2 min at speed 2. Three aliquots of 100 g 
per dough were transferred into trapezoidal stainless steel baking pans 
of the dimension reported by the American Association of Cereal 
Chemists – Method 10-10 B of AACC (2000) and kept at 28 ◦C for 2 h 
(fermentation duration was indicated by the sourdough starter 

producer’s instructions). After fermentation, all dough replicates were 
baked in a Compact Combi (Electrolux, Pordenone, Italy) 
semi-industrial oven at 200 ◦C for 5 min under hot air/steam followed 
by 200 ◦C for 15 min under hot air only. The process of bread production 
is illustrated in Fig. 1. 

Samples of commercial flours (F1 – F4) and semolinas (S1 – S4), tap 
water (TW), kitchen salt (KS), dried sourdough starter (DSS), doughs 
(FD1 – FD4; SD1 – SD4) just after ingredient mixing (T0) and at the end 
of fermentation (T2), and final breads (FB1 – FB4; SB1 – SB4) were 
collected for analyses. 

2.2. Fermentation process 

The acidification of the doughs was monitored by measuring pH, 
total titratable acidity (TTA) and the levels of different microbial groups. 
The pH values were determined electrometrically using a pH meter (XS 
Instruments, Carpi, Italy) by directly inserting the probe. TTA was 
determined by titration with 0.1 N NaOH on 10 g of dough and 
expressed in terms of mL of NaOH. 

To investigate the presence of microorganisms, plate counts were 
performed on 10 g of each dough. The dough was suspended into 90 mL 
of Ringer’s solution (Sigma-Aldrich, Milan, Italy), homogenized through 
stomacher (BagMixer® 400, Interscience, Saint Nom, France) at the 
highest speed for 2 min, and serially diluted. The following microor
ganisms were studied: total mesophilic microorganisms (TMM) on plate 
count agar (PCA) incubated aerobically at 30 ◦C for 72 h; LAB rods on 
modified de Man, Rogosa, and Sharpe (mMRS) agar prepared as 
described by Corsetti, Settanni, Braga, de Fatima Silva Lopes, and Suzzi 
(2008), incubated anaerobically at 30 ◦C for 48 h; LAB cocci on Media 
17 (M17) incubated anaerobically at 30 ◦C for 48 h; and total yeasts on 
yeast extract peptone dextrose (YPD) agar incubated at 28 ◦C for 48 h. 
To inhibit fungal growth, cycloheximide (10 mg/mL) was added to 
mMRS and M17, while chloramphenicol (0.1 mg/mL) was added to YPD 
to prevent bacterial growth. All media were purchased from Oxoid 
(Basingstoke, UK). Plate counts were performed in triplicate. 

2.3. Culture-independent analysis of total microbial community 

2.3.1. DNA extraction 
Total genomic DNA was extracted from each sample (10 mg) using 

the QIAamp® DNA Investigator Kit (QIAGEN, Hilden, Germany) 
following the manufacturer’s instructions. The quality and concentra
tion of DNA were determined using the NanoDrop™ 8000 Microvolume 
UV–Vis spectrophotometer (ThermoFisher Scientific, Inc.,Wilmington, 
DE, USA). 

2.3.2. MiSeq library preparation and illumina sequencing 
At the Sequencing Platform, Fondazione Edmund Mach (FEM, San 

Michele a/Adige, Italy), the Illumina MiSeq system (Illumina, USA) was 
used to perform amplicon library preparation, quality and quantification 
of pooled libraries, and pair-end sequencing. Briefly, bacterial V3–V4 
region (Baker, Smith, & Cowan, 2003; Claesson et al., 2010) of the 16 S 
rRNA gene (Escherichia coli positions 341 to 805), and ITS1F/ITS4 spe
cific for the ITS1-5.8 S fungi region (Gardes & Bruns, 1993) were 
amplified for bacteria and fungi, respectively, from samples of flours, 
semolinas, DSS, TW, KS, doughs at T2, and breads. 

To facilitate the pooling and subsequent differentiation of samples, 
unique barcodes were attached before the forward primers. The ampli
cons were cleaned using the Agencourt AMPure kit (Beckman coulter) 
according to the manufacturer’s instructions to prevent preferential 
sequencing of the smaller amplicons. Subsequently, DNA concentrations 
of the amplicons were determined using the Quant-iT PicoGreen dsDNA 
kit (Invitrogen) following the manufacturer’s instructions. To ensure the 
absence of primer dimers and to assay the purity, the quality of the 
generated amplicon libraries was evaluated by a Bioanalyzer 2100 
(Agilent, Palo Alto, CA, USA) using the High Sensitivity DNA Kit 

Table 1 
Samples of wheat flours used to produce traditional sourdough breads in Sicily.  

Samples Type Commercial 
name 

Company 

F1 Soft wheat flour Manitoba Type 
“0″ 

Barilla S.p.A., Casalgrasso 
(CN) 

F2 Soft wheat flour Manitoba Type 
“0″ 

Molino Spadoni S.p.A., 
Coccolia (RA) 

F3 Soft wheat flour Manitoba Type 
“0″ 

Molino Rossetto S.p.A., 
Pontelongo (PD) 

F4 Soft wheat flour Manitoba Type 
“0″ 

Molino Oddo Vito, Valderice 
(TP) 

S1 Durum wheat 
semolina 

Semola 
rimacinata 

Molino Rossetto S.p.A., 
Pontelongo (PD) 

S2 Durum wheat 
semolina 

Semola 
rimacinata 

Molino Casillo, Ortona (CH) 

S3 Durum wheat 
semolina 

Semola 
rimacinata 

La Molisana S.p.A., 
Ripalimosani (CB) 

S4 Durum wheat 
semolina 

Semola 
rimacinata 

Poiatti S.p.A., Mazara del 
Vallo (TP)  
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(Agilent). After quantitation, cleaned amplicons were mixed and com
bined in equimolar ratios. 

2.3.3. Illumina data analysis and sequences identification by QIIME2 
The raw paired-end FASTQ files were demultiplexed using idemp 

(https://github.com/yhwu/idemp/blob/master/idemp.cpp) and im
ported into Quantitative Insights Into Microbial Ecology (Qiime2, 
version 2018.2). The sequences were quality filtered, trimmed, de- 
noised, and merged using DADA2 (Callahan et al., 2016). Chimeric se
quences were identified and removed via the consensus method in 
DADA2. Representative bacterial sequences were aligned with MAFFT 
and used for phylogenetic reconstruction in FastTree using plugins 
alignment and phylogeny (Katoh & Standley, 2013; Price, Dehal, & 
Arkin, 2009). For bacteria, taxonomic and compositional analyses were 
conducted by using plugins feature-classifier (https://github.com/qiim 
e2/q2-feature-classifier). A pre-trained Naive Bayes classifier based on 
the Greengenes 13_8 99% Operational Taxonomic Units (OTUs) data
base, which had been previously trimmed to the V4 region of 16 S rDNA 
bound by the 341F/805 R primer pair, was applied to paired-end 
sequence reads to generate taxonomy tables. Fungal sequences were 
classified to the species-level using a 97 or 99% threshold using UNITE 
dynamic classifier version 8.0 released for Qiime2 (UNITE QIIME release 
for Fungi. Version November 18, 2018. UNITE Community. https://doi. 
org/10.15156/BIO/786334). The data generated by MiSeq Illumina 
sequencing were deposited in the NCBI Sequence Read Archive (SRA) 
and are available under Ac. No. PRJNA987557. 

2.4. Detection of antimicrobial resistance genes 

The search for 17 ARGs (Table 2) that may contribute to resistance 
toward penicillins, macrolides, tetracyclines, and chloramphenicol 

(Campedelli et al., 2019; Lee, Heo, Jeong, & Jeong, 2019) was con
ducted on raw materials (semolinas, flours, water, salt, and dry com
mercial yeast), sourdoughs, and breads obtained by experimental 
baking. Briefly, 10 ng of sample DNA and 0.4 μM of forward and reverse 
primers listed in Table 2 were used in a total volume of 25 μL of 
Advanced Universal EVA Green Supermix 1 × (Bio-Rad Laboratories, 
Hercules, CA, USA). A portion of the 16 S rDNA of about 200 bp was used 
as a positive control (Lu, Perng, Lee, & Wan, 2000). The reaction con
ditions for DNA amplification included initial denaturation for 5 min at 
94 ◦C, 30 cycles each of denaturation (94 ◦C for 1 min), annealing (refer 
to Table 2), and extension (72 ◦C for 2 min), followed by final extension 
at 72 ◦C for 10 min. Fluorescence during extension was recorded to 
generate the amplification curves. For real-time PCR, melting curve and 
peak analysis were performed at a melting rate of 0.2 ◦C/min from 65 to 
95 ◦C. Moreover, all samples that tested positive by real-time PCR were 
verified by electrophoresis on E-Gel™ Go! Agarose gel, 2% (Thermo 
Fisher Scientific, Waltham, MA, USA). To confirm identity, the ampli
cons genes detected by PCR were then sequenced. DNA sequences were 
determined using the dideoxy chain termination method with the 
commercial DNA sequencing kit BigDye™ Terminator v3.1 Cycle 
Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA) accord
ing to the manufacturer’s instructions. The obtained sequences were 
analyzed for nucleotide sequence identity by comparing them with 
reference strains in the GenBank database, using the Basic Local Align
ment Search Tool (BLAST) and The Comprehensive Antimicrobial 
Resistance Database (https://card.mcmaster.ca, accessed on date 2 June 
2023). 

2.5. Statistical analyses 

The data on pH, TTA, and plate count were statistically analyzed 

Fig. 1. Graphical representation of the experimental plan followed to track the transfer of antimicrobial resistance genes from raw materials to sourdough breads. 
Abbreviations: DSS, dried sourdough starter; F1–F4, commercial flours; S1–S4, commercial semolinas; FD1–FD4, flour doughs; SD1− SD4, semolina doughs; FB1–FB4, 
flour breads. SB1–SB4, semolina breads. 
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using one-way variance analysis (ANOVA). The Tukey’s test was applied 
to determine the difference between means when p < 0.05. The detec
tion of ARGs in all samples was graphically represented as a heat map 
generated using ascendant hierarchical clustering. The ARGs distribu
tion was graphically represented by two colours: yellow (no ARGs 
detection) and red (detection of ARGs). Statistical processing of chem
ical and microbiological data and the graphic constructions of ARGs 
detection were performed with the XLStat software version 2020.3.1 for 
Microsoft Excel (Addinsoft, New York, NY, USA). 

3. Results and discussion 

3.1. Sourdough acidification 

The evolution of pH and TTA during sourdough production are re
ported in Table 3. The kinetics of these two parameters was followed for 
only 2 h, which is the leavening duration indicated by the sourdough 
starter producer. Short sourdough fermentations are possible in the 
presence of baker’s yeasts (Xu et al., 2019). All initial pH values were in 
the range 5.58–5.70 and decreased to 4.54–4.86 at the end of fermen
tation. Sourdoughs propagated from flour displayed slightly lower pHs 
than those propagated from semolina. This difference is due to the 
different particle size of tender and durum wheat milling products 
(Stoddard, 1999), as the texture endosperm of the cultivars of Triticum 
aestivum and Triticum turgidum L. ssp. durum wheat are different (Pauly, 
Pareyt, Fierens, & Delcour, 2013), with the result that flour is finer than 
semolina (Posner, 2000). The smaller the particle size, the greater the 
contact surface area for bacteria and yeasts, which leads to higher 
consumption of fermentable carbohydrates and lower pH levels regis
tered in doughs at the end of fermentation (Ruisi et al., 2021). 

The values of TTA at the beginning of the process were around 3.00 
mL of 0.1 N NaOH and more than doubled after 2 h. The levels of total 

acidity of flour sourdoughs were, on average, higher (7.00 mL of 0.1 N 
NaOH) than those registered in semolina sourdoughs (6.70 mL of 0.1 N 
NaOH). These findings were expected, because a decrease in pH is 
directly and linearly related to an increase in TTA value (Alfonzo et al., 
2016). 

The values of both acidification parameters (pH and TTA) registered 
in this study are different from those generally recorded for mature 
semolina sourdoughs used in bread making in southern Italy (Alfonzo 
et al., 2016; Rizzello et al., 2015; Ventimiglia et al., 2015); in particular, 
pH is higher, while TTA is lower. This behaviour is undoubtedly due to 
the short fermentation time applied in this work. It is well known that 

Table 2 
Primer pairs and PCR conditions used for detection of selected ARGs.  

Antibiotic Target 
gene 

Primer sequence (5’→3′) Amplicon size 
(bp) 

Annealing temperature 
(◦C) 

References 

Chloramphenicol cat TTAGGTTATTGGGATAAGTTA 300 48 Guo et al. (2017) 
GCATGRTAACCATCACAWAC 

catA GGATATGAAATTTATCCCTC 486 50 
CAATCATCTACCCTATGAAT 

Macrolides erm(A) CCCGAAAAATACGCAAAATTTCAT 590 60 Duche et al. (2023) 
CCCTGTTTACCCATTTATAAACG 

erm(B) TGGTATTCCAAATGCGTAATG 745 60 
CTGTGGTATGGCGGGTAAGT 

erm(C) AATCGTCAATTCCTGCATGT 299 60 
TAATCGTGGAATACGGGTTTG 

Penicillin blaZ ACTTCAACACCTGCTGCTTTC 240 58 Guo et al. (2017) 
TAGGTTCAGATTGGCCCTTAG 

bla CATARTTCCGATAATASMGCC 297 50 
CGTSTTTAACTAAGTATSGY 

mecA GGGATCATAGCGTCATTATTC 1429 58 
AGTTCTGCAGTACCGGATTTGC 

blaTEM ATCAGCAATAAACCAGC 516 55 Anisimova, Gorokhova, Karimullina, and Yarullina 
(2022) CCCCGAAGAACGTTTTC 

Tetracycline tet(A) GCTACATCCTGCTTGCCTTC 210 60 Schneider, Müller, Miess, and Gross (2014) 
CATAGATCGCCGTGAAGAGG 

tet(B) TTGGTTAGGGGCAAGTTTTG 659 60 
GTAATGGGCCAATAACACCG 

tet(C) CTTGAGAGCCTTCAACCCAG 418 62 
ATGGTCGTCATCTACCTGCC 

tet(D) AAACCATTACGGCATTCTGC 787 62 
GACCGGATACACCATCCATC 

tet(M) GGTGAACATCATAGACACGC 401 58 Anisimova et al. (2022) 
CTTGTTCGAGTTCCAATGC 

tet(K) TTATGGTGGTTGTAGCTAGAAA 348 55 Thumu and Halami (2012) 
AAAGGGTTAGAAACTCTTGAAA 

tet(L) GTMGTTGCGCGCTATATTCC 696 55 
GTGAAMGRWAGCCCACCTAA 

tet(O) AATGAAGATTCCGACAATTT 781 55 
CTCATGCGTTGTAGTATTCCA  

Table 3 
Acidification of flour and semolina doughs during fermentation.  

Samples pH TTA 

T0 T2 T0 T2 

FD1 5.61 bc 4.68 bcd 2.95 bc 6.80 ab 
FD2 5.64 abc 4.62cde 3.10 abc 6.90 ab 
FD3 5.58 c 4.54 e 3.40 a 7.10 a 
FD4 5.68 ab 4.60 de 2.90 bc 7.20 a 
SD1 5.63 abc 4.71 bc 3.00 abc 6.80 ab 
SD2 5.70 a 4.86 a 2.80 c 6.60 b 
SD3 5.58 c 4.75 b 3.30 ab 6.80 ab 
SD4 5.66 abc 4.77 ab 3.00 abc 6.60 b 
SEM 0.01 0.02 0.04 0.04 
p value 0.001 < 0.0001 0.004 0.005 

Results indicate mean values of four determinations (performed in duplicate for 
two independent experiments). Data within a column followed by the same 
letter are not significantly different according to Tukey’s test. Abbreviations: 
TTA, total titratable acidity (mL of 0.1 N NaOH/10 g); T0, doughs just after 
ingredient mixing; T2, doughs at the end of fermentation; FD1–FD4, flour 
doughs; SEM, standard error of the mean; SD1− SD4, semolina doughs. 

V. Gargano et al.                                                                                                                                                                                                                                



Food Bioscience 57 (2024) 103478

5

fermentation time is a process parameter affecting pH kinetics in sour
dough (De Vuyst, Vrancken, Ravyts, Rimaux, & Weckx, 2009; Üçok & 
Sert, 2020). 

3.2. Cell counts 

Table 4 reports the levels of viable microorganisms hosted on all raw 
materials and sourdoughs. Plate counts specifically focused on TMM, 
yeasts, and LAB (both cocci and rods). All these groups were below the 
detection levels in tap water and kitchen salt, while the commercial 
sourdough starter was characterized by cell densities around 108 CFU/g 
for TMM and yeasts, while LAB were at almost two orders of magnitude 
lower. Indeed, yeast levels are comparable with those detected in other 
dried sourdough starters purchased in Italy (8.8–9.0 Log CFU/g) (Prin
cipato, Garrido, Massari, Dordoni, & Spigno, 2019). Principato et al. 
(2019) reported very low levels of LAB (2.5–4.7 Log CFU/g) for the same 
commercial starters and even discovered that one of the commercial 
dried sourdough starters analyzed lacked vital LAB. In this work, LAB 
rods and cocci detected in the dried sourdough starter were 7.30 and 
7.44 Log CFU/g, respectively. A consistent reduction of viability of LAB 
in commercial sourdough starter is a common phenomenon observed 
after drying (Reale et al., 2019; Tafti, Peighambardoust, Hesari, Bah
rami, & Bonab, 2013) and the reduction can account for four Log cycles 
when spray-drying is applied (Denkova, Georgieva, & Denkova, 2014). 

Both flour and semolina samples showed comparable cell densities 
(around 103 CFU/g) for all four microbial groups investigated. Previous 
works on flours and semolinas showed that the levels of indigenous LAB 
and yeasts in these unprocessed raw materials can reach up to 104 CFU/g 
(Alfonzo et al., 2013, 2016; Mamhoud et al., 2016; Pontonio et al., 
2015). 

Once raw materials were mixed with the commercial dried starter, 

the doughs were characterized by levels of TMM in the range 6.06–6.32 
Log CFU/g in presence of flour and 5.95–6.19 Log CFU/g when semolina 
was used. As expected, LAB (both groups, cocci and rods) and yeasts 
were inoculated at levels of almost two orders of magnitude lower than 
those registered in dried sourdough starter (105 and 106 CFU/g, 
respectively). All microbial groups monitored increased in 2 h of 
fermentation, but the increase was more consistent for LAB populations 
(ca. 2.0 Log CFU/g more than inoculums) rather than yeasts. Except 
sourdough FD4, yeast densities increased of at least one Log cycle. 
However, all microbial groups investigated reached the same level 
(around 107 CFU/g) at the end of fermentation. Flour sourdoughs dis
played the highest cell densities of LAB rods and yeasts. As per pH and 
TTA, the smaller particle size of flour determined a higher contact sur
face area for bacteria and yeasts than semolina (Ruisi et al., 2021). This 
explains their higher access to fermentable sugars and thus their higher 
viable counts in flour doughs rather than semolina doughs. 

3.3. Composition of bacterial and fungal communities 

All 27 samples’ DNA was successfully amplified. This approach also 
involved baked products to deeply analyse the fungal and bacterial DNA 
involved in the possible transfer of ARGs during bread consumption. 
After merging and quality trimming of raw data, 767,749 reads for 
bacteria and 263,888 reads for fungi remained for subsequent analysis. 
After alignment, the remaining OTUs were clustered at a 3% of distance. 

A total of 148 OTUs were identified from all samples. They were 
distributed among Acidobacteria, Actinobacteria, Bacteroidetes, Chlor
oflexi, Cyanobacteria, Firmicutes, Fusobacteria, Planctomycetes, Pro
teobacteria, Spirochaetes, Tenericutes and Verrucomicrobia phyla. Only 
the OTUs with a relative abundance (RA) above 0.1% (n = 16) are re
ported in Fig. 2 as this is the threshold for abundant communities 

Table 4 
Microbial loads of raw materials and doughs.  

Samples TMM LAB rods LAB cocci Yeastsa 

T0 T2 T0 T2 T0 T2 T0 T2 

TW 0.00 n.a. 0.00 n.a. 0.00 n.a. 0.00 n.a. 
KS <2 n.a. <1 n.a. <1 n.a. <2 n.a. 
DSS 8.11 n.a. 7.30 n.a. 7.44 n.a. 7.97 n.a. 
F1 2.82 n.a. 3.23 n.a. 3.11 n.a. 3.20 n.a. 
F2 3.10 n.a. 3.44 n.a. 3.49 n.a. 3.00 n.a. 
F3 2.84 n.a. 3.37 n.a. 3.22 n.a. 2.88 n.a. 
F4 2.91 n.a. 3.27 n.a. 3.34 n.a. 3.12 n.a. 
SEM 0.05 n.e. 0.04 n.e. 0.05 n.e. 0.04 n.e. 
p value 0.546 n.e. 0.630 n.e. 0.270 n.e. 0.216 n.e. 
FD1 6.22 7.56 5.25 7.70 5.41 7.61 6.04 7.21 
FD2 6.18 7.45 5.44 7.85 5.54 7.53 6.13 7.36 
FD3 6.32 7.30 5.40 7.68 5.30 7.27 5.99 7.27 
FD4 6.06 7.23 5.34 7.43 5.18 7.58 6.21 7.03 
SEM 0.05 0.06 0.04 0.06 0.06 0.06 0.06 0.05 
p value 0.753 0.619 0.746 0.376 0.698 0.642 0.837 0.506 
S1 3.09 n.a. 3.32 n.a. 3.56 n.a. 2.74 n.a. 
S2 2.88 n.a. 3.30 n.a. 3.64 n.a. 2.99 n.a. 
S3 3.11 n.a. 3.42 n.a. 3.69 n.a. 2.63 n.a. 
S4 2.79 n.a. 3.12 n.a. 3.49 n.a. 2.81 n.a. 
SEM 0.06 n.e. 0.05 n.e. 0.04 n.e. 0.05 n.e. 
p value 0.487 n.e. 0.632 n.e. 0.741 n.e. 0.696 n.e. 
SD1 6.11 7.15 5.27 7.24 5.33 7.40 5.80 6.94 
SD2 6.01 6.91 5.15 7.19 5.42 7.29 5.94 7.15 
SD3 6.19 7.03 5.33 7.30 5.59 7.68 5.75 6.88 
SD4 5.95 7.10 5.18 7.14 5.35 7.37 5.90 7.09 
SEM 0.05 0.04 0.05 0.03 0.07 0.05 0.04 0.05 
p value 0.665 0.634 0.793 0.750 0.833 0.242 0.742 0.586 

Results are expressed as Log CFU/g and indicate mean values of four plate counts (carried out in duplicate for two independent productions). Abbreviations: TMM, 
total mesophilic microorganisms counted on plate count agar (PCA); LAB, lactic acid bacteria counted on modified de Man, Rogosa, and Sharpe (mMRS) agar (rods) 
and Medium 17 (M17) agar (cocci); T0, doughs just after ingredient mixing; T2, doughs at the end of fermentation; TW, tap water; KS, kitchen salt; DSS, dried 
sourdough starter; F1–F4, commercial flours; FD1–FD4, flour doughs; S1–S4, commercial semolinas; SD1− SD4, semolina doughs; SEM, standard error of the mean; n. 
a., not analyzed; n.e., not evaluated. 

a Yeasts were counted on yeast peptone dextrose (YPD) agar. 
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(Logares et al., 2014). The same threshold level was applied to yeast 
OTUs, and only 17 of the 61 OTUs are reported in Fig. 3. 

The bacterial community composition of raw materials different 
from flours/semolinas (Fig. 2A) was very simple in case of kitchen salt 
and dried sourdough starter, except tap water. Kitchen salt only hosted 
Salinibacter; which are extremely halophilic bacteria (Oren, 2013). 
Surprisingly, dried sourdough starter preparation was characterized by 
90.94% RA of Enterococcus, 8.96% RA of Acetobacteraceae, and barely 
0.10% RA of other LAB. Although enterococci are part of the LAB pop
ulations particularly important during the first phases of sourdough 
fermentation (Corsetti, Settanni, Valmorri, Mastrangelo, & Suzzi, 2007), 
their dominance in mature sourdoughs is quite unusual. Enterococcus 
play a positive role in gluten protein degradation (Wieser, Vermeulen, 

Gaertner, & Vogel, 2008), especially gliadins (M’hir et al., 2008), but 
they are considered sourdough-atypical LAB (De Vuyst, 
González-Alonso, Wardhana, & Pradal, 2023) and their cell densities are 
strongly reduced when sourdough pH decreases significantly (Oshiro, 
Zendo, & Nakayama, 2021; Zotta, Parente, & Ricciardi, 2009). Tap 
water OTUs were mainly identified as Oxalobacteraceae, Achromo
bacter, Alphaproteobacteria (especially Acetobacteraceae) and Clos
tridia, but Bacteroidetes, Actinobacteria, and among Firmicutes 
Roseburia, Enterococcus and other unspeciated LAB were also identified. 

The OTUs identified from flours, fermented doughs, and baked 
products (Fig. 2B) mainly belong to Acetobacteraceae. This groups is 
generally associated with the fermentation of cereal-based foods 
(Kayitesi, Onojakpor, & Moyo, 2023; Shangpliang & Tamang, 2023), 

Fig. 2. Relative abundances% of the bacterial operational taxonomy units (OTUs) identified by MiSeq Illumina. A: TW, tap water; KS, kitchen salt; DSS, dried 
sourdough starter. B: F1–F4, commercial flours; FD1–FD4, flour doughs; FB1–FB4, flour breads. C: S1–S4, commercial semolinas; SD1− SD4, semolina doughs; 
SB1–SB4, semolina breads. 
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and accounted for 77.62–97.88% in flours before processing. After 2 h of 
fermentation, RA% of Acetobacteraceae decreased to 55.46–67.96, 
while Enterococcus were detected at 29.19–40.13%. Enterococci were 
the sole LAB present in doughs FD1, FD2 and FD4. Only FD3 showed the 
presence of unspeciated LAB other than Enterococcus, but at very low 
levels (2.02 RA%). The analysis of DNA extracted from breads showed 
that bacterial OTUs distribution remained almost unchanged after 
baking. However, consistent differences were detected for the produc
tion carried out with flour sample F2, because RA% of the OTUs allotted 
into Bacteroidetes, Roseburia, Clostridia, Oxalobacteraceae and 

Achromobacter increased from dough (FD2) to bread (FB2), while that 
of Enterococcus and Acetobacteraceae decreased. An almost similar trend 
was registered when breads were produced from semolina in place of 
flour (Fig. 2C). Acetobacteraceae dominated the unprocessed durum 
wheat milling products (S1 – S4) and were found at higher RA% than 
Enterococcus in doughs and breads. The analysis of the bacterial 
composition of breads showed that bacterial DNA was still accessible 
after baking. 

The DNA from raw materials and processed products was also 
analyzed for fungal composition (Fig. 3). Like for bacteria, kitchen salt 

Fig. 3. Relative abundances% of the fungal operational taxonomy units (OTUs) identified by MiSeq Illumina. A: TW, tap water; KS, kitchen salt; DSS, dried 
sourdough starter. B: F1–F4, commercial flours; FD1–FD4, flour doughs; FB1–FB4, flour breads. C: S1–S4, commercial semolinas; SD1− SD4, semolina doughs; 
SB1–SB4, semolina breads. 
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was characterized by 100% of a unique fungal genus Malassezia 
(Fig. 3A), which are lipid-dependent microorganisms inhabiting the skin 
and mucosa of humans and other warm-blooded animals (Theelen et al., 
2018). This genus, together with Thelebolus globosus and other uniden
tified fungi, constituted the diversity of tap water, while dried sour
dough starter was dominated by Kazachstania humilis. The last species, 
previously named Candida humilis, is a yeast commonly associated with 
sourdoughs (Palla et al., 2020) because it is typical of this ecological 
niche (De Vuyst, Harth, Van Kerrebroeck, & Leroy, 2016). 

The fungal diversity of flours and semolinas (Fig. 3B and C) was 
higher than that revealed by bacteria. Except for Capnodiales, Alternaria, 
and Fusarium found in all unprocessed samples, the fungal composition 
of flours and semolinas differed for Didymellaceae, mainly associated 
with flours, Pleosporales found at high RA% (35.14) only in sample S2, 
and Aspergillus, accounting for 36.65% in sample S1. Alternaria, Asper
gillus, and Fusarium are toxigenic moulds because of their mycotoxin 
generation (Medina et al., 2006) and are generally associated with ce
reals (Jedidi et al., 2018). Fermented doughs processed with dried 
sourdough starters from both flours and semolinas showed K. humilis as 
the dominating yeast. Kazachstania humilis DNA was highly accessible 
after baking; all breads were characterized by a RA% of this species in 
the range 45.55–76.17 in FB samples and 39.77–56.34 in SB samples. 

Illumina technology was helpful in better interpreting data from 
plate counts in light of dominant bacterial and fungal groups. Although 
sourdough LAB and yeasts show different carbohydrate uptake kinetics 
(Gobbetti, 1998), the interaction between LAB and certain yeasts, such 
as Kazachstania humilis, is supposed to be commensal rather than 
competitive, unlike in the presence of Saccharomyces cerevisiae (Rogal
ski, Ehrmann, & Vogel, 2021). This might explain the co-evolution of 
LAB and yeasts in the doughs of the present study. 

3.4. ARGs detection and amplicons sequencing 

The search for ARGs was conducted on all samples representative of 
the different stages of sourdough bread production (Fig. 4). PCRs con
ducted to search for resistance genes to penicillins, chloramphenicol, 
and macrolides did not detect amplification products matching the 
chosen targets. However, the detection of amplicons corresponding to 
some of the analyzed targets for tetracyclines gave positive results. 
Indeed, the analysis of the sequences of the amplicons confirmed the 

presence of two tet genes [tet(A) and tet(B)] among the eight genes tar
geted. Specifically, the tet(A) gene was detected in semolina samples S3 
and S4 and the resulting processed doughs. After baking, tet(A) gene was 
detected only in bread SB3. Regarding tet(B) gene, it was detected in 
semolina samples S1 and S4 and, after fermentation, in SD1 and SD4, but 
not after baking. 

The genes tet(A) and tet(B) encode for efflux pumps that eject the 
antibiotic from the bacterial cell and are among the most prevalent 
ARGs (Gargano et al., 2021). Tetracyclines have been extensively used 
in the livestock sector for growth promotion and infection control in 
farms. Since antibiotics are not totally digested and processed in the 
intestines of animals, up to 90% of them are then excreted in the ani
mal’s urine and/or feces, which are often used as fertilizers, thereby 
contaminating soils and groundwater (Qing, Qigen, Jian, Hongjun, & 
Jingdu, 2022). Several studies have shown that animal organic fertil
izers are a major vector of antibiotics, heavy metals, antibiotic resistance 
genes (ARGs), antibiotic-resistant bacteria (ARBs), and mobile genetic 
elements (MGEs) (Nõlvak et al., 2016). Therefore, the use of organic 
fertilizers of animal origin can significantly increase the level of anti
biotic resistance in soil, as well as change its properties and bacterial 
community composition (Qing et al., 2022). 

4. Conclusions 

In this study, a metagenomic approach was applied to investigate the 
microbial communities involved in semolina or flour sourdough bread 
production and the transfer of ARGs from raw materials and baked 
products. The presence of ARGs toward macrolides, penicillins, chlor
amphenicol and tetracyclines was screened and the results showed that 
only two of the 17 target genes screened for, namely the tet(A) and tet(B) 
genes, were found in the analyzed samples. Although the agricultural 
sector does not undergo the same level of antibiotics pressure as the 
veterinary and animal production sector, soils can be considered a 
reservoir of ARGs when amended with organic fertilizers of animal 
origin. Wheat plants can acquire these genes through soil microbial 
communities. Even though only one bread was positive for barely one tet 
gene, this study demonstrated that raw materials used in bread making 
(flour and semolina) are able to transfer their ARGs to the final breads. 
Future works will be carried out to specifically investigate the presence 
of tet(A) and tet(B) resistance genes in bacteria and fungi isolated from 

Fig. 4. Distribution of antibiotics resistance genes (ARGs) among samples. The heat map plot depicts the presence or absence of each ARGs. Abbreviations: TW, tap 
water; KS, kitchen salt; DSS, dried sourdough starter; F1–F4, commercial flours; FD1–FD4, flour doughs; FB1–FB4, flour breads; S1–S4, commercial semolinas; 
SD1− SD4, semolina doughs; SB1–SB4, semolina breads. 
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semolina samples S1, S3, and S4, whose DNAs were still accessible after 
the baking of the corresponding doughs (SD1, SD3, and SD4). 
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