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The effect of vertical ground movement on masonry
walls simulated through an elastic-plastic interphase
meso-model: a case study.
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Abstract The present paper proposes an interphase model for the simulation
of damage propagation in masonry walls in the framework of a mesoscopic ap-
proach. The model is thermodynamically consistent, with constitutive relations
derived from a Helmholtz free potential energy. With respect to classic interface
elements the internal stress contribute is added to the contact stresses. It is con-
sidered that damage, in the form of loss of adhesion or cohesion, can potentially
take place at each of the two blocks-mortar physical interfaces. Flow rules are ob-
tained in the framework of the Theory of Plasticity, considering bilinear domains
of ’Coulomb with tension cut-off’ type. The model aims to be a first research step
to solve the inverse problem of damage propagation in masonry generated by ver-
tical ground movements, in order to ex-post identify the cause of a visible damage.
The constitutive model is written in a discrete form for its implementation in a
research-oriented finite element program. The response at the quadrature point is
analyzed first. Then, the model is validated through comparisons with experimen-
tal results and finally employed to simulate the failure occurred in a wall of an
ancient masonry building, where an arched collapse took place due to a lowering
of the ground level under part of its foundation.

Keywords masonry · interphase model · ground movement · foundation
settlement · finite elements

1 Introduction

Masonry is one of the most ancient building techniques, extensively used all around
the world thanks to the possibility to obtain its basic constituents starting from
local raw materials. A great number of historical buildings are masonry structures,
often constituting the world cultural heritage, located in residential zones and even
in seismic areas.
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Since it is known that masonry is a quasi-brittle material which easily suffers the
consequences of external actions, a big effort was done in the past to better un-
derstand its mechanical behavior. Even today this effort continues in order to find
the most efficient strategy which best reproduces masonry response to the most
common boundary conditions. The complexity of the problem and the continuous
need to preserve historical buildings from natural events or human tendency to
renew residential areas make this topic still now an open field. The necessity to
find relatively quick answers to specific situations encourages many researches to
join discussions and furnish sophisticated numerical models able to reproduce each
single problem compatibly with the power of actual calculators.
Despite cracks in masonry can be caused, from a structural point of view, by either
the behavior of its constituents (mortar shrinkage, brick expansion, brick-mortar
compatibility, etc.) or a modification of the structural arrangement (that leads in
some cases to a dangerous redistribution of stresses), the main cause of masonry
failure is due to ground movements. It is possible to distinguish between horizontal
and vertical movements, the former mainly derived by seismic actions or landslides,
the latter connectable with soil consolidation and foundation settlement, ground
subsidence, tunneling-induced deformations.
The existing numerical models can be divided into three main groups: models in
which the building, the ground and any action on the ground are combined in
a single numerical model; models in which the building is analyzed by includ-
ing the effects of the soil-structure interaction; models in which the building only
is analyzed under specific boundary conditions. If the model is used to simulate
qualitatively the overall behavior of a structure on the basis of a modification in
a specific area of the ground, then the models of the first group are the best ones.
If the desired answer requires a detailed outcome for the structure, the third type
is the most suitable, since more accurate analyzes can be conducted on the single
building or part of it.
The majority of the papers investigating damage caused by vertical movements at
the base of masonry structures concentrate on the problems of foundation settle-
ment or settlement caused by tunneling. The first problem arises anytime a new
construction is built, especially on unconsolidated soils. The second problem is
deeply felt during excavation for underground facilities, mining, or deep founda-
tions in urban areas.
An extended investigation on the tunneling-induced settlement of masonry build-
ings was made by Houlsby and his group: a 2D finite element (FE) analysis on a
masonry facade including its interaction with soil was performed by Liu et al. [23]
considering an elastoplastic behavior for the soil and an elastic no-tension model
for masonry; a complete 3D FE model in which tunnel, soil and building are all
treated in a single analysis was presented in Burd et al [9]; the same 3D model
was studied by Augarde and Burd [6] discussing the advantages of using shell or
tetrahedral continuum elements for lined tunnels.
In all these previous works simple damage models were employed for the structure.
However, new numerical studies performed by Son and Cording [35] demonstrated
that the structural response to excavation-induced ground movements is highly
dependent on both cracking in the structure and structural type. This was con-
firmed by Truong-Hong and Laefer [38]. By employing a smeared crack model for
masonry, they analyzed 16 FE models on masonry walls subjected to excavation-
induced settlements, to investigate the impact on the building response of 3 par-
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ticular window shapes, window size and brick orientation.
Netzel and Ziji [28] studied solid masonry walls where the soil-structure interaction
was modeled through an elastic-perfectly plastic interface and the structure as an
anisotropic continuum material with a Rankine-Hill behavior. Giardina et al. [20]
used a semi-coupled approach to develop a 2D FE model with settlements applied
to a non-linear interface to simulate the soil-structure interaction and masonry
treated as a single material with homogenized properties and smeared damage.
A similar approach was followed by Amorosi et al. [5] for application to a real
structure (the Felice aqueduct in Rome). They simulated the structure as a ho-
mogenized anisotropic continuum in plane stress conditions (whose constitutive
relations were derived from masonry with a periodic texture), and the soil as a
linear elastic-perfectly plastic material where Gaussian-type displacements were
imposed.
Galassi et al. [12] chose a different way to simulate the non-linear behavior of ma-
sonry. They imagined masonry as a system of rigid blocks connected by no-tension
resistant frictional links and simulated damage propagation in arches and trabs of
the Pompeianus Forum (Naples) by imposing external settlements.
A larger interest towards more accurate damage propagation in masonry took
place in the last years, thanks to the great progress in Continuum Damage Me-
chanics, Theory of Plasticity, and Fracture Mechanics. Many of these models are
validated on laboratory tests only, and not so much works show results on real
structures. A wide numerical investigation was performed by Alessandri et al. [3]
to solve an inverse problem in order to identify the location and the entity of the
settlement in the Palazzo Gulinelli (Ferrara). The numerical survey was performed
through 2D and 3D nonlinear FE analyses employing different material behaviors
and a Mohr-Coulomb criterion for masonry failure. The authors highlighted the
importance to correctly identify and quantify settlements provoking visible crack
patterns, in order to establish the most correct intervention of rehabilitation.
A 3D rigid block limit analysis using a Mohr-Coulomb type point-contact formula-
tion was used by Portioli and Cascini [31]. An inverse problem to predict fracture
patterns in masonry structures produced by imposed settlements or distortions
with application to two reals structures is lately faced by Iannuzzo et al. [21].
They simulated the structure as a Heyman simplified masonry model looking for
the minimum potential energy of the structure for given piecewise rigid displace-
ments.
Except some of the latest works, most of the cited papers treat masonry as a
homogeneous material in the framework of a macroscopic approach. In the macro-
scopic approach, constitutive laws are expressed in terms of macroscopic stress
and average strain for the equivalent continuum. This approach permits to obtain
more or less good results depending on the complexity of the averaging process
and sometimes it fails in the proper masonry description since the specific inter-
action between elements is not taken into consideration. Other two alternative
approaches have been studied: the mesoscopic approach and the multiscale ap-
proach. The mesoscopic approach is the best existing method for the description
of damage propagation in masonry. It considers masonry as a heterogeneous ma-
terial made of blocks and mortar, which are individually modeled. Since masonry
presents a mechanical response strongly dependent on the inelastic phenomena
occurring at the joints, a common strategy is to substitute mortar joints with
non-linear mechanical devices called zero-thickness interface/interphase elements.
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In such elements the inelastic phenomena are properly described starting from the
displacement discontinuities between the two blocks in contact. Many examples of
interface/interphase application to masonry can be found in literature. The most
recent ones are mentioned in the following.
Lofti and Shing [24] and Lourenço and Rots [25] proposed interface models in the
framework of plasticity for non-standard materials and fracture mechanics adopt-
ing Mohr-Coulomb type failure criteria. Giambanco et al. [15] proposed a similar
model, focusing on the cohesive-frictional joint transition and taking into account
the effect of geometrical dilatancy. Giambanco and Fileccia Scimemi [13] devel-
oped a time-dependent interface in the framework of viscoplasticity. Alfano and
Sacco [4], Parrinello et al. [29], Spada et al. [36] combined damage and plasticity
considering the contact area divided in a fully damaged part and an undamaged
part, with a sort of phase transition occurring on the basis of damage propaga-
tion and inelastic strains taking place when the stress level violated appropriate
elastic-plastic domains. A combined finite-discrete element method allowing frag-
mentation of masonry walls was introduced by Smoljanović et al. [34], while a
comparison between discrete models and discrete-finite element models was fur-
nished by Baraldi et al. [7].
The enhancement of the interface elements is represented by the interphase ele-
ments. The novelty introduced by these models resides in the addition of inter-
nal stresses to the contact tractions of the interface models. After the pioneering
work of Giambanco and Mróz [14] and the implementation in the framework of
finite elements by Giambanco et al. [16], some application to masonry material
appeared in the last years. Fileccia Scimemi et al. [11] developed an interphase
model where damage in the joint material is described separately from the loss of
adhesion at the joint-adherent contact surface. Addessi and Sacco [2] proposed a
kinematic enriched model for the analysis of masonry subjected to in-plane loading
conditions using a damage-friction failure criterion based on an extension of the
Mohr-Coulomb law for mortar joints. A soft interface comprising large displace-
ments and evolving microcraking was introduced as an interphase model by Raffa
et al. [32]. Serpieri et al. [33] finally worked with a 3D interphase formulation to
reproduce crack formation and relative frictional and dilatancy effects in masonry
panels.
In the last decades great attention has been paid to the multiscale approach,
whose virtues and vices are still nowadays debated. This technique consists in
performing numerical analyses coupling two different scales, by employing appo-
site transition laws. At the macroscale the structure is treated as a homogeneous
continuum whose constitutive behavior is determined ’on the fly’ by solving a
mesoscale boundary value problem. Multiscale models are commonly divided in
two groups. In the first order methods the Cauchy model is used at both scales:
usually FEs are employed at both scales and periodic boundary conditions at the
mesoscale ([22, 26, 27, 30]). Alternatively, the Meshless method and linear bound-
ary conditions have been proposed ([17, 19, 37]). In the second order methods
Cosserat or higher order continua are used, when strong strain and stress gradi-
ents arise at the macroscale ([1]).
The present paper builds on the works of Giambanco and Mróz [14], Giambanco
et al. [16], Fileccia Scimemi et al. [11], and propose an interphase model with
the specific aim to solve the inverse problem in real cases with damage patterns
generated by vertical ground movements, in order to ex-post look for the cause
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of a visible damage. The basic kinematic assumptions of the interphase model
are furnished by Giambanco and Mróz [14] and are here reported in Section 2
for the sake of completeness. A simpler constitutive model is proposed with re-
spect to that one developed by Fileccia Scimemi et al. [11]. Even if for certain
aspects the two models are similar, they differ in two key points. First, inelasticity
is assumed potentially developing on two separate surfaces rather than a unique,
collapsed middle surface. Second, damage effects related to internal stresses are
neglected, living their insertion for eventual future developments. The main idea
is based on the assumption that ancient masonry presents poor quality of mortar,
with strongly reduced values of cohesion and adhesion at the mortar-block phys-
ical interfaces, where usually detachments take place. For this reason, although
a coupled plastic-damage formulation would always give a more refined response
(but a harder formulation and implementation), a plasticity model only is con-
sidered sufficient to catch the qualitatively correct collapse mechanism. It is in
fact remarkable to note that the calibration of damage parameters is not easy if
not supported by specific laboratory tests. The possibility to obtain the correct
behavior using only plasticity has also been shown by Giambanco and Di Gati
[18], translating the activation domain in the displacement space.
The proposed model is thermodynamically consistent. Flow rules are written in
the framework of the Theory of Plasticity, considering bilinear domains of the
’Coulomb with tension cut-off’ type. The model was implemented in a research-
oriented FE analysis program able to run numerical analyses within the meso-
scopic approach, but it can be potentially incorporated in programs where the
soil-structure interaction is also taken into account. Regarding the quadrature
rule of the finite element, the Selective Reduced Integration (SRI) scheme showed
in Giambanco et al. [16] was applied. The soundness of the model is showed an-
alyzing its behavior at quadrature point and reproducing experimental results on
masonry panels available in literature. A case-study on a wall of a real ancient
masonry building where a failure clearly took place due to the vertical movement
of part of its foundation is also shown. The latter could be considered as the main
novelty point of the paper.
The paper is organized as follows. In Section 2 the interphase concept is recalled.
In Section 3 the interphase constitutive model is presented, while in Section 4
its discrete formulation is furnished. Section 5 shows the performance of a single
interphase element when subjected to simple and mixed modes. In Section 6 the
model is validated showing the comparison between numerical results and experi-
mental data by Portioli and Cascini [31]. In Section 7 the model is applied to solve
the case of ’Baglio Granatelli’ (Trapani). Conclusions and future developments are
finally reported in Section 8.

2 The interphase concept

Let us consider, in the Euclidean space <3, a system formed by two adherents Ω+

and Ω− connected by a third weak body whose thickness h is small with respect
to other dimensions. With reference to Fig. 1a, where a local x − z view of the
system is depicted, Σ+ and Σ− identify two physical interfaces through which the
weak body of volume V interacts with the two adherents, exchanging the trac-
tions t+ and t− respectively, as shown in Fig. 1b. The tractions t+ and t− can be
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considered as external actions for the third body, whose stress state is completely
defined by the indicated σx, σz and τxz components, under the hypothesis of plane
stress conditions. In Fig. 1b n+, s+, n−, s− identify the normal and tangential
unit vectors to the Σ+ and Σ− surfaces respectively.
The weak body can be regarded as an interphase model, where the fibers directed
along the normal to the middle surface Σ are maintained rectilinear along the
deformation process [14]. This hypothesis permits to define the displacement field
u in the interphase, once the displacements u+ and u− in Σ+ and Σ− are respec-
tively known:

u(x, y, z) =

(
1

2
+
z

h

)
u+ (x, y) +

(
1

2
− z

h

)
u− (x, y) . (1)

where y identifies the third direction of the local reference system.
The correspondent strain field is classically obtained by applying the compatibility
matrix C on the displacement field u, thus:

ε(x, y, z) = Cu(x, y, z) =

= C

[(
1

2
+
z

h

)
u+ (x, y)

]
+ C

[(
1

2
− z

h

)
u− (x, y)

]
. (2)

Assuming a uniform strain over the thickness of the joint, due to its smallness
with respect to other two dimensions, we have:

ε̂(x, y) =
1

h

∫ h/2

−h/2
ε(x, y, z)dz =

1

2h

∫ h/2

−h/2
C
[
u+ (x, y) + u− (x, y)

]
dz+

+
1

h2

∫ h/2

−h/2

(
z C̃ + C̃n

) [
u+ (x, y)− u− (x, y)

]
dz, (3)

where ε̂ represents the mean value of the strain over the thickness of the joint.
The three compatibility matrices can be explicitly written as:

C =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


C̃ =



∂
∂x 0 0

0 ∂
∂y 0

0 0 0
∂
∂y

∂
∂x 0

0 0 ∂
∂x

0 0 ∂
∂y


C̃n =



0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0

 . (4)

By solving the integrals of Eq. (3) a more compact expression is obtained for ε̂,
that is:

ε̂(x, y) =
C

2

[
u+ (x, y) + u− (x, y)

]
+

C̃n

h

[
u+ (x, y)− u− (x, y)

]
. (5)

The equilibrium of the third body when subjected to the external tractions t+

and t− is guaranteed invoking the principle of virtual displacements (PVD). Let
δu+, δu− and δε̂ be virtual displacements and strain imposed to Σ+, Σ− and the
volume V respectively. The following PVD condition holds:∫

Σ+

t+
T

δu+dΣ +

∫
Σ−

t−
T

δu−dΣ =

∫
V
σT δε̂ dV = h

∫
Σ
σT δε̂ dΣ, (6)



Title Suppressed Due to Excessive Length 7

with σ the stress vector.
Taking account of Eq. (5), the last integral in Eq. (6) can be replaced by:

∫
Σ
σT δε̂ dΣ =

1

2

∫
Σ
σTC

[
δu+ + δu−

]
dΣ+

+
1

h

∫
Σ
σT C̃n

[
δu+ − δu−

]
dΣ. (7)

Integrating by parts the first of the two integrals in Eq. (7) right hand side we
have:∫

Σ
σTC

[
δu+ + δu−

]
dΣ =

∫
Γ

(
CT
nσ
)T [

δu+ + δu−
]
dΓ+

−
∫
Σ

(
CTσ

)T [
δu+ + δu−

]
dΣ, (8)

where Γ represents the perimeter of the middle plane Σ, while Cn is the com-
patibility matrix depending on the normal vector at boundary. Assuming that
Σ+ = Σ− = Σ, we can finally rewrite the PVD condition as:

∫
Σ+

[
t+ − C̃

T
nσ +

h

2
CTσ

]T
δu+dΣ +

∫
Σ−

[
t− + C̃

T
nσ +

h

2
CTσ

]T
δu−dΣ+

−
∫
Γ

h

2

(
CT
nσ
)T [

δu+ + δu−
]
dΓ = 0. (9)

Since the PVD holds for any virtual displacement fields δu+ and δu−, the following
equilibrium conditions are derived at the interphase:

t+ − C̃
T
nσ +

h

2
CTσ = 0 on Σ+, (10a)

t− + C̃
T
nσ +

h

2
CTσ = 0 on Σ−, (10b)

CT
nσ = 0 on Γ. (10c)

3 Thermodynamic formulation of the interphase constitutive model

Looking at Fig. 1, inelasticity can take place on Σ+ due to the intensities of t+

tractions, on Σ− due to the intensities of t− tractions, on Σ due to the stress
state σ in the joint. While at the physical interfaces Σ+ and Σ− inelasticity is
related to loss of cohesion and adhesion, in the bulk volume inelasticity can have
a plastic nature, a damaging nature or a combination of both [11]. For the sake
of simplicity, in this work only plasticity taking place on Σ+ and/or on Σ− is
considered. The Helmholtz free potential energy can therefore be written, in its
most general form, as:

Ψ
(
ε̂e, ξp+, ξp−

)
=

1

2
ε̂e

T

E ε̂e + Ψp+
(
ξp+

)
+ Ψp−

(
ξp−

)
, (11)
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where ε̂e is the elastic contribute of the strain at the interphase, under the hy-
pothesis of additive decomposition of the total strain in an elastic and a plastic
part:

ε̂ = ε̂e + ε̂p, (12)

while ξp+ and ξp− are two plastic internal variables. ε̂p is a vector for this model
having a null component on the x direction. E is the elasticity matrix.
The two intrinsic free energies Ψp+ and Ψp− are given here in the following simple
explicit expressions:

Ψp+
(
ξp+

)
=

1

2
hp+ ξp+

2

(13a)

Ψp−
(
ξp−

)
=

1

2
hp− ξp−

2

, (13b)

with hp+ and hp− two material constants regulating plasticity evolution.
In order to derive the interphase constitutive equations, the second principle of
Thermodynamics is invoked, according to which any real mechanical process pro-
duces an increment of the total entropy. If the first principle of Thermodynamics
is also considered (energy balance equation), it follows that both principles are
respected if the Clausius-Duhem inequality is valid. For small displacements and
isothermal purely mechanical evolutive processes, this inequality is written as

D = σT ˙̂ε− Ψ̇ ≥ 0 (14)

where D is the intrinsic dissipation or entropy production at the interphase and
the dot refers to the derivative with respect to time of the correspondent quantity.
In this particular case the dissipation can be rewritten as:

D = σT ˙̂εp − χp+ ξ̇p+ − χp− ξ̇p− ≥ 0, (15)

where the following positions are made:

σ = E ε̂e (16)

χp+ = hp+ ξp+ (17)

χp− = hp− ξp−. (18)

The onset and evolution of irreversible phenomena at the interphase are governed
by plastic limit conditions. A convex Mohr-Coulomb bilinear limit surface with a
tension cut-off (Fig. 2) is assumed for the physical interfaces. This convex limit
domain can be expressed in the stress space using the inequalities

φp1+ =
∣∣∣s+T

t+
∣∣∣+

(
n+T

t+
)
tanϕ+ − c+0

(
1− χp+

)
≤ 0 (19)

φp2+ =
(
n+T

t+
)
− σ+

0

(
1− χp+

)
≤ 0 (20)

for the Σ+ interface, and

φp1− =
∣∣∣s−T

t−
∣∣∣+

(
n−T

t−
)
tanϕ− − c−0

(
1− χp−

)
≤ 0 (21)

φp2− =
(
n−T

t−
)
− σ−

0

(
1− χp−

)
≤ 0 (22)

for the Σ− interface. c0 and σ0 symbols have the meaning of cohesion and adhesion
strengths respectively. ϕ represents the frictional angle.
For each interface, four cases can be distinguished:
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1. elastic case: φp1 < 0, φp2 < 0;
2. simple plasticity in shear: φp1 = 0, φp2 < 0;
3. simple plasticity in tension: φp1 < 0, φp2 = 0;
4. corner plasticity case: φp1 = 0, φp2 = 0.

Once any irreversible phenomenon occurs, the principle of maximum dissipation
must be applied, subjected to the conditions (19-22). Exploiting the Lagrangian
method, the following function is firstly built:

L = D − λ̇p1+ φp1+ − λ̇p2+ φp2+ − λ̇p1− φp1− − λ̇p2− φp2−, (23)

where λ̇p1 and λ̇p2 are plastic lagrangian multipliers. Then, the stationariety of
the Lagrangian with respect to the mechanical variables is looked for:

∂L

∂σ
= ˙̂εp − λ̇p1+ ∂φ

p1+

∂σ
− λ̇p2+ ∂φ

p2+

∂σ
− λ̇p1− ∂φ

p1−

∂σ
− λ̇p2− ∂φ

p2−

∂σ
= 0, (24)

∂L

∂χp+
= −ξ̇p+ − c+0 λ̇

p1+ − σ+
0 λ̇

p2+ = 0, (25)

∂L

∂χp−
= −ξ̇p− − c−0 λ̇

p1− − σ−
0 λ̇

p2− = 0. (26)

Including Eqs. (10a-b) in Eqs. (19-22) for a plane stress condition case, Eq. (24)
can be explicitly separated in:

∂L

∂σx
= ˙̂εpx− λ̇p1+

(
−h

2

∂

∂σx

∂σx
∂x

)
Sign

(
t+x
)
− λ̇p1−

(
h

2

∂

∂σx

∂σx
∂x

)
Sign

(
−t−x

)
= 0

(27)
∂L

∂σz
= ˙̂εpz − λ̇p1+tanϕ+ − λ̇p2+ + λ̇p1−tanϕ− + λ̇p2− = 0 (28)

∂L

∂τxz
= ˙̂γpxz − λ̇p1+Sign

(
t+x
)
− λ̇p2+

(
−h

2

∂

∂τxz

∂τxz
∂x

)
+

+ λ̇p1−Sign
(
−t−x

)
− λ̇p2−

(
h

2

∂

∂τxz

∂τxz
∂x

)
= 0, (29)

where ε̂px, ε̂pz and γ̂pxz are the components of the vector ε̂p. t+x and t−x represent
the projections of t+ and t− tractions along s+ and s− directions respectively.
By virtue of the Schwartz’s theorem, the symmetry of the second derivatives brings
to:

∂

∂σx

(
∂σx
∂x

)
=

∂

∂x

(
∂σx
∂σx

)
= 0, (30a)

∂

∂τxz

(
∂τxz
∂x

)
=

∂

∂x

(
∂τxz
∂τxz

)
= 0, (30b)

which permit to conclude that
˙̂εpx = 0, (31)

˙̂εpz = λ̇p1+tanϕ+ + λ̇p2+ − λ̇p1−tanϕ− − λ̇p2−, (32)

˙̂γpxz = λ̇p1+Sign
(
t+x
)
− λ̇p1−Sign

(
−t−x

)
, (33)

ξ̇p+ = −c+0 λ̇
p1+ − σ+

0 λ̇
p2+, (34)



10 Antonino Spada

ξ̇p− = −c−0 λ̇
p1− − σ−

0 λ̇
p2−. (35)

Eqs. (31-35) correspond to the flow rules of the interphase written in rate form,
and can be applied only if the following loading and unloading conditions hold:

φpi+ ≤ 0 λ̇pi+ ≥ 0 λ̇pi+φpi+ = 0 λ̇pi+φ̇pi+ = 0, (36a)

φpi− ≤ 0 λ̇pi− ≥ 0 λ̇pi−φpi− = 0 λ̇pi−φ̇pi− = 0, (36b)

being i = 1, 2.
Mixing Eqs. (34-35) and Eqs. (17-18), it is clear that hp+ and hp− must assume
negative values in order to obtain an elastic-plastic behavior with softening.
To incorporate the dilatancy effect in the model, the evolution of plasticity has
to be determined assuming a non-associative case. The non-associative plastic
potentials could be chosen formally equal to the limit conditions φp1+ and φp1−,
with the frictional angles replaced by the dilatancy angles δ+ and δ− respectively
([11, 15, 36]). Therefore, Eq. (32) should be substituted by:

˙̂εpz = λ̇p1+tan
(
δ+
)

+ λ̇p2+ − λ̇p1−tan
(
δ−
)
− λ̇p2−. (37)

4 Discrete formulation of the constitutive model.

In order to comply with a finite element environment, it is necessary to proceed
with a time-discretization of the constitutive model.
Let us assume that all the kinematic variables are known at the time tn ⊂ [0, T ] ∈
<, with T the overall duration of the analysis:{

ε̂en, ξ
p+
n , ξp−n

}
assigned at tn.

The knowledge of these variables permits to evaluate the correspondent mechani-
cal quantities at the same instant tn.
The goal is now to update all the kinematic and mechanical variables at instant
tn+1 = tn +∆t, as a result of an increment ∆ε̂ of the interphase total strain. Em-
ploying an implicit backward-Euler integration procedure, the updated variables
are evaluated as:

ε̂en+1 = ε̂n +∆ε̂− ε̂pn −∆ε̂p, (38)

ξp+n+1 = ξp+n +∆ξp+, (39)

ξp−n+1 = ξp−n +∆ξp−, (40)

where

∆ε̂p =

∆ε̂px∆ε̂px
∆γ̂pxz

 =

 0
∆λp1+tan

(
ϕ+
)

+∆λp2+ −∆λp1−tan
(
ϕ−)−∆λp2−

∆λp1+Sign
(
t+x
)
n+1
−∆λp1−Sign

(
−t−x

)
n+1

 ,
(41)

∆ξp+ = −c+0 ∆λ
p1+ − σ+

0 ∆λ
p2+, (42)

∆ξp− = −c−0 ∆λ
p1− − σ−

0 ∆λ
p2−. (43)

At each time step, the numerical procedure starts with an elastic trial predictor
stage, eventually followed by a plastic corrector stage.
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In the elastic predictor stage (trial quantities) all the plastic kinematic variables
are kept equal to the values of the previous converged step:

ε̂p,trialn+1 = ε̂pn

ξp+,trialn+1 = ξp+n

ξp−,trialn+1 = ξp−n .

(44)

The mechanical quantities are updated accordingly:

σtrialx,n+1 =
E

1− ν2
[
ε̂x,n+1 + ν

(
ε̂z,n+1 − ε̂pz,n

)]
, (45)

σtrialz,n+1 =
E

1− ν2
[
ε̂z,n+1 − ε̂pz,n + νε̂x,n+1

]
, (46)

τ trialxz,n+1 = G
[
γ̂xz,n+1 − γ̂pxz,n

]
, (47)

t+,trialx,n+1 = τ trialxz,n+1 −
h

2

∂

∂x

(
σtrialx,n+1

)
, (48)

t+,trialz,n+1 = σtrialz,n+1 −
h

2

∂

∂x

(
τ trialxz,n+1

)
, (49)

t−,trialx,n+1 = −τ trialxz,n+1 −
h

2

∂

∂x

(
σtrialx,n+1

)
, (50)

t−,trialz,n+1 = −σtrialz,n+1 −
h

2

∂

∂x

(
τ trialxz,n+1

)
, (51)

χp+,trialn+1 = χp+n , (52)

χp−,trialn+1 = χp−n , (53)

with t+z and t−z the projections of t+ and t− along the correspondent n vectors,
E and G the longitudinal and tangential elastic moduli, ν the Poisson’s ratio.
At this point, plasticity activation is checked. If the following inequalities are
contemporary satisfied:

φp1+,trialn+1 < 0 φp2+,trialn+1 < 0 φp1−,trialn+1 < 0 φp2−,trialn+1 < 0, (54)

the step is purely elastic and the trial quantities can be accepted as the corrected
ones for the time tn+1, since they are associated to null values of plastic lagrangian
multipliers. If at least one of the inequalities (54) is not satisfied, a corrector stage
is performed. In this case, in order to respect the loading-unloading conditions
(36), a zero value of a plastic limit condition has to be associated with the corre-
spondent non-null plastic multiplier.
In the most complex case, a system formed by the following four non-linear equa-
tions needs to be solved:

φp1+n+1

(
∆λp1+,∆λp2+,∆λp1−,∆λp2−

)
=

=

∣∣∣∣τ trialxz,n+1 −G∆γ̂pxz −
h

2

∂

∂x

(
σtrialx,n+1 −

Eν

1− ν2∆ε̂
p
z

)∣∣∣∣+
+

[
σtrialz,n+1 −

E

1− ν2∆ε̂
p
z −

h

2

∂

∂x

(
τ trialxz,n+1 −G∆γ̂pxz

)]
tan

(
ϕ+
)

+

− c+0
(

1− χp+,trialn+1 − hp+∆ξp+
)

= 0, (55a)
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φp2+n+1

(
∆λp1+,∆λp2+,∆λp1−,∆λp2−

)
= σtrialz,n+1 −

E

1− ν2∆ε̂
p
z+

− h

2

∂

∂x

(
τ trialxz,n+1 −G∆γ̂pxz

)
− σ+

0

(
1− χp+,trialn+1 − hp+∆ξp+

)
= 0, (55b)

φp1−n+1

(
∆λp1+,∆λp2+,∆λp1−,∆λp2−

)
=

=

∣∣∣∣−τ trialxz,n+1 +G∆γ̂pxz −
h

2

∂

∂x

(
−σtrialx,n+1 +

Eν

1− ν2∆ε̂
p
z

)∣∣∣∣+
+

[
−σtrialz,n+1 +

E

1− ν2∆ε̂
p
z −

h

2

∂

∂x

(
−τ trialxz,n+1 +G∆γ̂pxz

)]
tan

(
ϕ−
)

+

− c−0
(

1− χp−,trialn+1 − hp−∆ξp−
)

= 0, (55c)

φp2−n+1

(
∆λp1+,∆λp2+,∆λp1−,∆λp2−

)
= −σtrialz,n+1 +

E

1− ν2∆ε̂
p
z+

− h

2

∂

∂x

(
−τ trialxz,n+1 +G∆γ̂pxz

)
− σ−

0

(
1− χp−,trialn+1 − hp−∆ξp−

)
= 0. (55d)

The solution of the system in terms of the plastic multipliers is iteratively obtained
through a local Newton-Raphson procedure, and permits to arrive to the correct
values of the kinematic and mechanical variables at tn+1.
It remains to clarify how the partial derivatives are numerically evaluated. The
total strain vector at the interphase is obtained in accordance with Eq. (5). If two
shape function matrices N+ and N− are defined for the Σ+ and Σ− physical
interfaces respectively, it is possible to interpolate the displacement fields as:

u+ = N+ S+ U, (56a)

u− = N− S− U, (56b)

where S+ and S− are two selectivity matrices written in order to select only the
nodes on Σ+ or Σ− from vector U collecting all the nodal displacements at the
interphase. Substituting into Eq. (5):

ε̂ = BU, (57)

with

B =
1

2
C
[
N+S+ + N−S−

]
+

1

h
C̃n

[
N+S+ −N−S−

]
(58)

the kinematic compatibility matrix. Consequently, it is possible to evaluate ∂ε̂
∂x =

∂B
∂x U.
Since the derivatives of the plastic strains need also to be calculated, here it is
made the assumption that they are fractions of the total strains. In other words,
it is assumed that

ε̂pz = β ε̂z, (59)

γ̂pxz = η γ̂xz, (60)

with β, η ≤ 1.
In a step-by-step formulation, Eqs. (59) and (60) are rewritten, at time tn+1, as:

ε̂pz,n+1 = (βn +∆β) (ε̂z,n +∆ε̂z) , (61)



Title Suppressed Due to Excessive Length 13

γ̂pxz,n+1 = (ηn +∆η) (γ̂xz,n +∆γ̂xz) . (62)

After simple mathematical manipulations, the following extra equations giving
the other two unknowns ∆β and ∆η are added in the local Newton-Raphson
procedure:

∆β =
∆λp1+tan

(
ϕ+
)

+∆λp2+ −∆λp1−tan
(
ϕ−)−∆λp2− − βn∆ε̂z

ε̂z,n +∆ε̂z
, (63)

∆η =
∆λp1+Sign

(
t+x
)
n+1
−∆λp1−Sign

(
−t−x

)
n+1
− ηn∆ ˆγxz

γ̂xz,n +∆γ̂xz
. (64)

5 Single interphase FE outcomes at quadrature point.

The nonlinear behavior of the interphase element is checked, in this section, with
reference to the response to single modes.
The element has four nodes and two Gauss points, and is characterized by a
unitary length and a unitary thickness. The SRI method [16] is adopted for the
quadrature of the element. The tests are run in controlled displacements. Figs.
3a-c show the displacements imposed to the element for the mode I test, mode
II test and mixed mode test respectively. A displacement increment ∆u equal to
5 ·10−5 mm is considered. For each test a parametric analysis on the hp parameter
is performed, investigating the behavior with respect to the three particular values
that are reported in Table 1.
In the first case (Fig. 3a) vertical displacements only are imposed to the element.
The response is equal for both the two quadrature points and is reported in Fig. 4.
Fig. 4a shows the vertical and horizontal stresses trend with respect to the vertical
strain. Since equal displacements are imposed to nodes, no variation in the vertical
stresses between two Gauss points can be detected and a null spatial derivative is
returned. If zero horizontal displacements are also present, no tangential traction
and stress are obtained, while the vertical traction equals the vertical stress. Fig.
4a highlights the main characteristic of an interphase element, that is the possibil-
ity to transfer horizontal stresses: this is impossible for a classic interface element.
The nonlinear behavior begins when the vertical traction approaches its limit
value. The softening branch is linear with a slope as higher as greater is hp in
absolute value. A zero value of the stress/traction is maintained when the element
is completely damaged, correspondent to χp+ = 1 value in Fig. 4b. In the same
Fig. 4b the trend of the β coefficient is also reported. For the specific case, it
is clear how, after plasticity activation, the most of the strain increment quickly
transforms in a plastic contribution, with a small dependency on the hp param-
eter. This is reasonable, because it is related not only to the actual point in the
descending branch, but also and more to the stiffness of the element.
In the second case (Fig. 3b), horizontal displacements only are imposed, using the
same mechanical parameters adopted for the mode I test. This is a pure mode II
case and only tangential contributes for traction and stress are detectable, as no
gradient in the shear stress exists. The stress-strain curves at a quadrature point
of the interphase element are shown in Fig. 5a. Their information is completed by
the evolution of η and χp parameters, reported in the associated Fig. 5b. After the
achievement of the cohesion strength at the interphase, stresses descend linearly



14 Antonino Spada

till zero. At the same time, χp values vary linearly till 1 while correct non-linear
trend is obtained for η.
Fig. 6 shows the outcomes of the third case, when the boundary conditions im-
posed for modes I and II are mixed. A double vertical displacement on node 3 is
considered, as in Fig. 3c. Figs. 6a and b refer to the behavior of the interphase
in the z direction, Figs. 6c and d on the x direction. The results are reported for
the left quadrature point. Plasticity is firstly activated for vertical tractions only
(simple plasticity in tension) and evolves faster once a corner case is gotten. The
overall behavior of the interphase remains unchanged with respect to the simple
modes, with the only difference that the co-presence of contact tractions at the
physical interface leads to higher values of plasticity.
In Fig. 4 (mode I case) and Fig. 5 (mode II case) the results on Σ+ only are
shown, because equal results are obtained for Σ−. The situation changes in the
third case, where the vertical stress gradient leads to different values of the tan-
gential tractions and shear stresses. In Fig. 7a detail of Fig. 6c is shown. Also the
trend of t−x intensities for varying hp+ (= hp−) are included in the figure.

6 Validation of the model

To validate the interphase model through comparisons with real cases, the results
of the experimental tests carried out by Portioli and Cascini [31] on two masonry
panels are numerically reproduced in this section. The two wall panels are schema-
tized in Fig. 8. They are made of bricks with dimensions of 200 x 100 x 50 mm,
and dry joints. The first panel (Fig. 8a) is composed of 8 courses for a total height
of 400 mm; the second panel (Fig. 8b) is instead made of 12 courses for a total
height of 600 mm. They were labeled as ’8C’ and 12C’ panels respectively. Both
specimens are five-and-half bricks wide for a total length of 1100 mm. The left
side of their foundation is fixed, the right side is instead movable in order to al-
low horizontal and vertical displacements. The support on the right is connected
to a scale able to measure its total vertical reaction. Vertical displacements were
experimentally imposed with increments of 1.0 mm.
In Fig. 9 a reproduction of the deformed shapes at vertical displacements equal to
20 mm (Fig. 9a) and 50 mm (Fig. 9b) is reported for the 8C panel. The same is
done in Figs. 10a-b for the 12C panel. Contemporaneously, Fig. 11 plots in sym-
bols the experimental base reaction vs the imposed vertical displacement.
For the 8C panel, an initial base reaction of 250 N was experimentally measured.
Then, during the test, a progressive loss of weight was observed until the failure
of the wall, reached when the base reaction was approximately equal to 104 N.
A a ’stair-stepped’ fracture induced by the applied displacement at the base pro-
gressively separates a bottom right triangular rigid macro-block from the rest of
the panel. At 50 mm, three different parts can be identified in the wall: two rigid
macro-blocks of triangular shape at the two sides, one fixed (left) and one moving
(right), and a third macro-block rotating with respect to the point which sepa-
rates the fixed and moving supports. The last macro-block shows diffused cracks
at failure.
For the 12C panel, again three macro-blocks could be distinguished at the end of
the experimental test, but the diffused cracks in the rotating macro-block are much
less pronounced, thanks to the stabilizing effect furnished by the added courses.
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For this panel, an initial base reaction of 375 N was obtained, monotonically de-
creasing till the value of 87 N at failure, when the complete detachment between
the movable rigid macro-block and the rest of the wall was experimentally ob-
served.
The numerical simulations were conducted trying to reproduce as much as possi-
ble the real configurations. Each masonry brick was discretized with two elastic
quadrilateral linear elements having elastic modulus equal to 12500 MPa, Pois-
son’s ratio 0.15, density 12.0 kN/m3. Each block was surrounded by 6 interphase
elements: two on the top, two on the bottom and one on each side of the brick.
Null values of cohesion c0, adhesion σ0 and plastic hardening hp were set for the
interphases, in order to comply with the real condition of dry joints. The friction
coefficient was chosen equal to 0.4, as suggested in [31]. In this way, a pure Coulomb
friction behavior was simulated. The stiffness of the joints was derived consider-
ing the elastic modulus equal to one thousandth of that of the bricks, while same
Poisson’s ratio was used. Regarding the boundary conditions, the fixed part of the
base was modeled by imposing null displacements for the correspondent nodes,
while for the movable part only horizontal displacements were allowed. The analy-
ses were carried out controlling the vertical displacement imposed to the movable
part, with a rate of 1 mm/step according to the experimental protocol.
For the 8C panel, an initial base reaction of 240 N was found (Fig. 11), depen-
dent on the chosen unit weight and slightly different than the experimental one.
For the entire analysis the base reaction vs imposed displacement curve matches
well the experimental data. Also the collapse mechanism is correctly caught: the
’stair-stepped’ fracture is visible at 20 mm (Fig. 9c), as the distinction of the three
macro-blocks at 50 mm (Fig. 9d), with diffused cracks in the rotating macro-block.
For the 12C panel, a base reaction of 360 N was numerically obtained at the be-
ginning of the analysis. In this case, the reaction-displacement curve (Fig. 11) is
quantitatively similar to the experimental data, but not as close as for the 8C panel.
Besides, the movable macro-block at the end of the analysis is still not completely
detached. However, the general judgment is positive. The reaction-displacement
curve in fact crosses that one of the 8C panel as expected, and furnishes almost the
same initial and final values. The diffused cracks in the wall at 50 mm (Fig. 10d)
are also less visible than those of the 8C panel at the same imposed displacement,
as experimentally obtained.
At the end, it is possible to conclude that the model correctly reproduced the col-
lapse mechanisms and furnished a good approximation of the experimental base
reaction-displacement curves. The meso-modeling approach is in fact able to re-
produce mechanically and kinematically all the intermediate configurations. This
is not possible, for example, if solving a limit analysis problem, where only the
configuration at collapse can be identified.

7 A case study: the analysis of a wall in ’Baglio Granatelli’ - Sicily.

7.1 Historical background and description of the structure and its materials.

The ’Baglio Granatelli’ is a big complex in the territory of Mazara del Vallo (Tra-
pani - Sicily), nearby county road 50. A lot of similar structures are present in
the same site, because they were commonly used in the past for many months of
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the year as residential buildings for entire families of farmers. The structure was
probably built in the first years of the 18th century.
In Fig. 8a an axonometric view of the complex is reported (Bianco et al. [8]), while
the Est front is visible in Fig. 8b. A map of the structure is instead furnished in
Fig. 8c. In these figures the wall, subject matter of this study, is enclosed in a
rectangle. The ’Baglio’ has an overall rectangular shape with an internal court.
All around, a lot of storage rooms were present. Only one side of the structure was
for residential use, and precisely the only part with two stories, close to a little
tower. A chapel is also present, external to the court, as typical in the zone. The
main entrance to the court was at the beginning on the opposite side with respect
to the actual position. It was later modified when a new more important road was
built.
The structure was totally built with masonry, with a lot of openings surrounded by
natural carving stones. Two openings have a round arch and one a lowered arch,
made with the same stones. The masonry blocks are constituted by calcareous
tuff, a very common material along the Sicilian coasts. Mortar was obtained from
a mixture of sand and lime. Wooden roofs were extensively used but also barrel
and cross vaults were present. In the actual state many of the roofs collapsed. Se-
rious damages are detectable: wind and water erosion on both blocks and ground,
ground movements related to the clay nature of the soil, deterioration of wood and
mortar, advanced state of abandonment.

7.2 Numerical analysis of the wall.

With the aim to apply the proposed model to a real case, part of the wall in the
Est front was selected and analyzed. Attention was paid to a portion, between two
transverse bearing walls, where a collapse of masonry had taken place due to a
variation of the ground surface level. The vertical ground movement had imposed
a vertical displacement to the base of the wall, by which a typical arc-shaped col-
lapse happened. A picture of the actual state of the wall is shown in Fig. 13a. As
visible in the picture, also the roof had collapsed in the same portion. The author
of the present paper doesn’t know which one of them collapsed first. A detailed
survey of the wall is reported in Fig. 13b. This step is fundamental if the goal
is to run a simulation on a detailed model of the structure. In our case, being
concentrated more on the proposed model performance and being unknown the
real arrangement in the missing part, the analysis process was divided into two
steps. Starting from the real state of the structure (Fig. 13a-b), it was looked for
the most regular and periodic arrangement of blocks that best matched up with
the real configuration (Fig. 13c). This simplified configuration was last discretized
and then analyzed. The idealization of the real structure led to the recognition of
three main block sizes: 11.5× 23 cm, 24× 23 cm, 51× 23 cm. The average mortar
thickness was equal to around 2 cm. The total length of the analyzed wall was
10.51 m, its height 5.73 m, its depth 22 cm.
The finite element model (Fig. 14) was built using a total of 8999 finite elements,
5593 of which are solids elements with linear elastic behavior representing the
blocks, 3406 are instead elastoplastic interphase elements representing the mortar
joints. Each element has four nodes, for a total number of nodes of 9973. 2 × 2
Gauss points were chosen for solid elements. Zero displacements were imposed to
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the vertical boundaries due to the presence of transverse walls. Also zero displace-
ments were imposed at the two sides of the missing part. A distribution of vertical
springs whose thickness changed from infinite to zero was considered as boundary
condition at the base of the missing part, in order to simulate the erosion of the
ground under the wall.
The specific case is recognizable as one of the most known crack patterns in ma-
sonry building on the basis of the settlement location. A good list of these cases
can be found in Can et al. ([10]).
The adopted mechanical parameters are reported in Table 2. The values chosen for
blocks and mortar (subscripts b and m respectively) were derived by laboratory
tests not directly executed on the materials of the structure, but on blocks and
mortar of the same kind. These values were already available in literature.
The analysis was conducted using one step only, without imposition of any bound-
ary displacement or forces: from time 0 (infinite stiffness for springs) to time 1
(zero stiffness of springs) the self-weight of the bricks led to the collapse mecha-
nism shown in Fig. 15b. At the beginning of the analysis the springs acted on the
wall as if it was blocked on its entire base. As soon as the stiffness of the springs
felt down to zero the program started to iterate for a total of 9264 iterations, until
the value of 1.0 x 10−5 Ncm of relative energy was reached. At convergence, two
main ’stair-stepped’ fractures at the two sides appeared, connected on the top by
an horizontal crack and forming a typical arc-shaped collapse (Fig. 15b), as it had
happened to the wall (Fig. 15a). To better highlight the propagated fracture, it
has been schematized in thicker line in Fig. 15c. Comparing the actual state of the
wall and the outcome of the numerical simulation, it can be concluded that the
model was able to correctly catch its collapse mechanism.

8 Conclusions

In the present work an interphase constitutive model has been formulated with the
aim to simulate damages in masonry structures in the framework of a mesoscopic
approach.
The model has been written following a thermodynamically consistent theory. Its
discrete version has been also furnished and implemented in a research-oriented
finite element program. Numerical examples on a single interphase element high-
lighted the main features of the constitutive behavior at the quadrature point.
With respect to the classic interface elements the model also included the effects of
internal stresses. This fact, together with the possibility to identify the activation
of plasticity in both the two physical interfaces, makes the model more suitable
for solving real cases.
The model was validated through comparisons with experimental data available
in literature: the obtained results were satisfactory and encouraged the use of the
model for a real case. The model was therefore applied to solve, as a first attempt,
the inverse problem for a case-study, regarding a real wall with a missing part
clearly collapsed because of ground settlement. The typical arc-shaped collapse
mechanism for these cases was correctly simulated by eliminating part of the con-
straints at the base of the wall, as an effect of its self-weight only.
Thus, it potentially could be used for all those cases where differential founda-
tion settlements take place, better if included in a more complete model where
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also the ground-structure interaction is contemplated. This step could be a future
development of the model, together with more in-depth applications.
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Fig. 1 x− z view of (a) a weak joint of thickness h and volume V between two adherents Ω+

and Ω−; (b) schematic representation of the interphase element and its mechanical variables.
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Fig. 2 Bi-linear Mohr-Coulomb with tension cut-off activation domain.
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Fig. 3 Boundary conditions on the interphase finite element nodes in case of: (a) simple mode
I test; (b) simple mode II test; (c) mixed mode test. ∆u = 5 · 10−5mm
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Fig. 4 Mode I response: (a) stress-strain curves; (b) β − ε̂z and χp+ − ε̂z curves. Continuous
lines: hp+ = 0MPa−1; dotted lines: hp+ = −10MPa−10; dashed lines: hp+ = −20MPa−1.
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Fig. 5 Mode II response: (a) stress-strain curves; (b) η−γ̂xz and χp+−γ̂xz curves. Continuous
lines: hp+ = 0MPa−1; dotted lines: hp+ = −10MPa−1; dashed lines: hp+ = −20MPa−1.



26 Antonino Spada

0

3

6

9

12

15

18

 t
x+
, 

τ x
z
 [

M
P

a
]

0 0.0015 0.003 0.0045 0.006 0.0075

γ
^

xz

0

0.25

0.5

0.75

1

1.25

η
, 

χ
p

+

(c)

(d)

0

1

2

3

4

5

6

 t
z+
 =

 σ
z
, 

σ
x
 [

M
P

a
]

0 0.001 0.002 0.003 0.004 0.005 0.006

ε
^

z

0

0.25

0.5

0.75

1

1.25

β
, 

χ
p

+

(a)

(b)

Fig. 6 Mixed mode response: (a) stress-strain curves with respect to ε̂z ; (b) β − ε̂z and
χp+ − ε̂z curves; (c) stress-strain curves with respect to γ̂xz ; (d) η − γ̂xz and χp+ − γ̂xz
curves. Continuous lines: hp+ = 0MPa−1; dotted lines: hp+ = −10MPa−1; dashed lines:
hp+ = −20MPa−1.
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Fig. 7 Mixed mode response. A detail of: t+x − γ̂xz curves (black lines), τxz− γ̂xz curves (40 %

black lines), t−x − γ̂xz curves (70 % black lines). Continuous lines: hp+ = 0MPa−1; dotted
lines: hp+ = −10MPa−1; dashed lines: hp+ = −20MPa−1.
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Fig. 8 Geometry and boundary conditions for the experimental panels tested by Portioli and
Cascini [31]. (a) 8C panel; (b) 12C panel.
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Fig. 9 Reproduction of the experimental deformed shapes obtained by Portioli and Cascini
[31] for the 8C panel, at vertical settlement equal to (a) 20 mm and (b) 50 mm. Numerical
results at (c) 20 mm and (v) 50 mm.



30 Antonino Spada

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

 

     

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

Fig. 10 Reproduction of the experimental deformed shapes obtained by Portioli and Cascini
[31] for the 12C panel, at vertical settlement equal to (a) 20 mm and (b) 50 mm. Numerical
results at (c) 20 mm and (v) 50 mm.
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Fig. 11 Base reaction vs imposed displacement curves.
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(a) 
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(c) 

Fig. 12 ’Baglio Granatelli’ - Mazara del Vallo (Sicily, Italy). (a) Axonometric view, (b) frontal
projection and (c) map [8] with location of the analyzed wall.
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(a) 
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(c) 

Fig. 13 ’Baglio Granatelli’ - Mazara del Vallo (Sicily, Italy). (a) A picture of the actual state,
(b) detailed survey of the wall, (c) idealization of the best regular configuration.
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Fig. 14 Case-study: FE discretization of the wall with indication of boundary conditions
(thicker lines are interphases).
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(c) 

Fig. 15 Case-study: comparisons between (a) real state and (b-c) numerical outcomes (De-
formed shape in (b) amplified by a factor of 2000).
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E ν hp+ = hp− ϕ+ = ϕ− c+0 = c−0 σ+
0 = σ−

0

[MPa] [MPa]−1 [◦] [MPa] [MPa]

0
30000 0.15 -10 30 20 5

-20

Table 1 Material mechanical parameters adopted for the single interphase element response.
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Eb νb ρb Em νm ϕ+ = ϕ− hp+ = hp− c+0 = c−0 σ+
0 = σ−

0 joint

[MPa] [kg/m3] [MPa] [◦] [MPa]−1 [MPa] [MPa]

10142 0.2 1.6·103 8000 0.15 35 -1000 1.8·10−2 0.4·10−2 bed

-10000 0.3·10−2 0.1·10−2 head

Table 2 Material mechanical parameters adopted for the ’Baglio Granatelli’ wall.


