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Featured Application: Based on results defined in this study, new investigations might propose
morpho-functional-based radiomics algorithms for risk stratification with possible impact on
treatment management in colorectal cancer.

Abstract: The aim of this study was to investigate the application of [18F]FDG PET/CT images-based
textural features analysis to propose radiomics models able to early predict disease progression (PD)
and survival outcome in metastatic colorectal cancer (MCC) patients after first adjuvant therapy.
For this purpose, 52 MCC patients who underwent [18F]FDGPET/CT during the disease restaging
process after the first adjuvant therapy were analyzed. Follow-up data were recorded for a minimum
of 12 months after PET/CT. Radiomics features from each avid lesion in PET and low-dose CT images
were extracted. A hybrid descriptive-inferential method and the discriminant analysis (DA) were
used for feature selection and for predictive model implementation, respectively. The performance
of the features in predicting PD was performed for per-lesion analysis, per-patient analysis, and
liver lesions analysis. All lesions were again considered to assess the diagnostic performance of the
features in discriminating liver lesions. In predicting PD in the whole group of patients, on PET
features radiomics analysis, among per-lesion analysis, only the GLZLM_GLNU feature was selected,
while three features were selected from PET/CT images data set. The same features resulted more
accurately by associating CT features with PET features (AUROC 65.22%). In per-patient analysis,
three features for stand-alone PET images and one feature (i.e., HUKurtosis) for the PET/CT data set
were selected. Focusing on liver metastasis, in per-lesion analysis, the same analysis recognized one
PET feature (GLZLM_GLNU) from PET images and three features from PET/CT data set. Similarly,
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in liver lesions per-patient analysis, we found three PET features and a PET/CT feature (HUKurtosis).
In discrimination of liver metastasis from the rest of the other lesions, optimal results of stand-alone
PET imaging were found for one feature (SUVbwmin; AUROC 88.91%) and two features for merged
PET/CT features analysis (AUROC 95.33%). In conclusion, our machine learning model on restaging
[18F]FDGPET/CT was demonstrated to be feasible and potentially useful in the predictive evaluation
of disease progression in MCC.

Keywords: colon; cancer; radiomics; artificial intelligence; positron emission tomography-computed
tomography; nuclear medicine

1. Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading cause
of death worldwide. Almost 20% of such patients will develop metastatic disease, about
one-third of patients already present with liver metastases at the time of diagnosis [1,2].
Alongside traditional imaging (e.g., ultrasonography, CT, MRI), [18F]FDG PET/CT is
routinely used as a tool for accurate staging and restaging after therapy in patients with
colorectal metastatic disease, and it represents a valuable ally for risk assessment, prognosis
evaluation, and treatment strategy decisions making.

Radiomics is that part of artificial intelligence (AI) that aims to provide quantitative
characteristics (features) from biomedical images of different nature that cannot be assessed
by the human eye, assuming that any smallest image’s constituent (i.e., voxel and/or
pixel) may encompass features of tumor’s phenotypes that may be potentially related
to tumor’s outcome and patients’ response to therapy, reflecting the pathophysiological
process and supporting medical decisions. The workflow of radiomics’ processes can be
simply resumed in five main steps starting with the acquisition of images, pre-processing
tasks (registration, deconvolution, denoizing, and so on) and VOI delineation, features
extraction, reduction, and selection, and finally, the selection of the predictive model
using AI-based classifiers [3]. In the last decade, the use of radiomics in the study of
medical images has aroused increasing interest [4,5]. Several studies have demonstrated
the correlation between the heterogeneity of the tissues and the radiomics features, which
would allow obtaining relevant information through the analysis of the images alone [6].

[18F]FDG PET/CT could be a useful modality for assessing tumor viability and dif-
ferential diagnosis also for colorectal metastatic cancer and may provide important data
regarding the appropriate treatment strategy [7,8]. The further integration of [18F]FDG
PET/CT data with radiomics features could reach the provision of new insightful informa-
tion also regarding tumor biology. In other words, the statistical analysis of the features
using methods of increasing complexity (first order, second order, or higher) can be useful
in the prognostic evaluation, in therapeutic management, and in characterizing tumor
phenotypes [9]. Radiomics’ literature in colorectal cancer is highly limited in PET imaging,
but it nonetheless holds promise for genetic mutation status assessment [10,11] and the
prediction of outcomes.

The present study aimed to investigate the potential application of texture analysis on
restaging [18F]FDG PET/CT images in metastatic colorectal patients, proposing a radiomics
model able to select PET and CT imaging features for global disease status prediction, liver
metastasis evaluation, and survival outcomes.

2. Materials and Methods

Sixty-three metastatic lesions from fifty-two colorectal patients were retrospectively
considered. Patients underwent restaging [18F]FDG PET/CT after first adjuvant therapy
between November 2008 and December 2018 following these inclusion criteria: (a) pathol-
ogy confirmed diagnosis of primary colorectal adenocarcinoma; (b) clinical-instrumental
(ceCT, MR, histopathology, and/or clinical report) confirmed metastatic disease status;
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(c) [18F]FDG PET/CT performed at restaging after first adjuvant therapy (at least 15 days
from the last cycle of chemotherapy and three months after RT); (d) [18F]FDG PET/CT
positive for lymph-nodal/metastatic disease; (e) minimum follow-up (FU) duration of
12 months after [18F]FDG PET/CT; (f) complete clinical (clinical case notes and multidis-
ciplinary meeting reports), laboratory, pathological and imaging data available (contrast-
enhanced CT, MRI); (g) [18F]FDG PET/CT findings retrospectively confirmed at clinical
follow-up with biopsy and/or through other imaging modalities. The study was approved
by the institutional review board. The internal procedures provide informed consent also
regarding the potential scientific use of all nuclear medicine examinations performed at
the Fondazione Istituto G.Giglio of Cefalù (Palermo, Italy). Therefore, written informed
consent was available for each patient.

2.1. [18F]FDG PET/CT Imaging

According to the standard [18F]FDG PET/CT protocol in use at our institution, the
scans were performed following the international clinical recommendations [12]. After six
hours of fasting, patients underwent examination on Discovery STE GE Healthcare. The
clinical protocol included a full-body PET scan (6–8 beds, 2–3 min per bed position) after
60 min the i.v. administration of 3.7 MBq/kg of [18F]FDG and a co-registered low-dose CT
scan (120 kV, 80–120 mA) without contrast enhancement. PET images (256 × 256 voxel
size) were reconstructed with CT-based attenuation correction. The 3D reconstruction was
based on the ordered subset expectation maximization (OSEM) algorithm with the two
iterative processes. Two nuclear medicine physicians (over 5 years’ experience, PA and
RL) qualitatively analyze the examinations, being aware of the results of other imaging
modalities and clinical data. Following inclusion criteria, [18F]FDG PET/CT positivity
was confirmed by the raters after consensus reading if a non-physiological [18F]FDG
uptake was moderately (tracer uptake superior to the background at visual assessment)
or markedly (tracer uptake superior to physiological liver uptake at visual assessment)
increased to the background activity; in case of multiple [18F]FDG uptake foci, the higher
qualitative assessed uptake was selected among multiple lesions for each disease location
(N and/or M). CT imaging was used to assist the physician in delineating the tumor for
local recurrence or lymph node/metastatic disease. Following clinical, laboratory, and CT,
MRI, [18F]FDG PET/CT data were recorded. According to such information, the terms
disease progression (PD) and stable disease (SD) were used to define the disease status
during the follow-up.

2.2. Radiomics Analysis

The volumetric segmentations were performed with the freely available texture analy-
sis LIFEx platform [13] that is the most widely used IBSI (Image Biomarker Standardization
Initiative) compliant software in PET imaging to obtain reproducible and robust radiomics
features. Specifically, two board-certified nuclear physicians evaluated and segmented
PET/CT lesions by consensus and blinded to the purpose of the study and to the pathology
information. Signal intensity on PET images was judged as hyperintense when the signal
intensity of the tumor was higher than the signal intensity of non-tumoral tissue. SUVmax
was used as a PET parameter to select the most avid lesion for the global evaluation of
disease status and for the most avid liver lesion in every patient. The same volume was
transposed in the same region on CT images for extraction of morphological features.
Successively, 105 and 66 features were automatically extracted using LifeX starting from the
above-mentioned volumes of interest (VOI) from each lesion in PET and CT images, respec-
tively. The extracted features were classified into two categories based on their information
type: (I) shape features, which consider the geometric aspects of the VOI, such as shape
and volume, (II) statistical features including first-order statistic (histogram-based) features
describing intensity values within the target and higher-order statistics (texture) features
that are designed to quantify the perceived texture of an image and to provide spatial
information of intensities in a VOI. In the last case, five texture classes were considered:



Appl. Sci. 2022, 12, 2941 4 of 14

(i) gray-level cooccurrence matrix (GLCM), (ii) gray-level run-length matrix (GLRLM),
(iii) gray-level dependence matrix (GLDM), (iv) gray-level zone length matrix (GLZLM),
and (v) neigh-boring gray-level dependence matrix (NGLDM). Specifically, (i) GLCM eval-
uates the incidence of voxels with the same intensities at a predetermined distance along a
fixed direction; (ii) GLRLM assesses consecutive voxels with the same intensity along fixed
directions; (iii) GLDM counts the number of voxel segments having the same intensity in a
given direction; (iv) GLZLM is defined as the number of connected voxels that have equal
gray-level intensity; (v) NGTDM assesses the spatial interrelationships between 3 or more
voxels [14]. In the work of [13], there is an extensive description of each extracted feature.
Successively, the mixed descriptive-inferential sequential approach, as described in two
complementary studies [15,16], was used to identify a small set of radiomics features with
valuable association with patients’ outcomes for better predictive performance, leading to
the exclusion of non-reproducible, redundant, and nonrelevant features from the initial
feature data set.

After the selection and reduction process, the predictive model was implemented
using the discriminant analysis (DA) [17]. The training step was performed only once, and
when completed, the DA was capable of classifying new PET lesions. Using the k-fold cross-
validation strategy, data were divided into training and validation sets using a random
partition. Specifically, data were divided into k-folds: one-fold was used as the validation
set while the others folds were used as the training set. The folds were created in such a way
that the training and validation sets maintained the same percentage of patient status as
the original data set. After applying the trial-and-error methodology, k = 5 was determined
as the best value for our analyses (k range: 5–15, step size of 5). Consequently, this process
was repeated 5 times, and the mean error was calculated (i) to avoid the over-fitting and
asymmetrical sampling by increasing the accuracy of the final results, (ii) to test different
models, and (iii) to obtain more robust results [18–22].

The steps between the reduction and selection of features and the implementation of
the model were repeated ten times to evaluate different aspects, listed below:

• Four predictive models per-lesion and -patient analysis: Performances of radiomics
features extracted from PET and PET/CT, respectively, in assessing the treatment
response for each lesion (without considering the patient treatment response) and in
assessing the patient treatment response;

• Four models per-patient and -lesion analysis considering the only subset of liver lesions;
• Two models to evaluate the performances of PET and PET/CT radiomics features in

discriminating liver metastasis from the rest of the other lesions.

2.3. Diagnostic Performance Evaluation

Sensitivity, specificity, positive predictive value (PPV), accuracy, and receiver operating
characteristics (ROC) with 95% confidence intervals (C.I.) and areas under the ROC curve
(AUROC; 95% C.I.) were calculated to assess the diagnostic performance on prediction of
disease progression (dichotomized evaluation = 1) versus stable disease or partial response
or complete response (dichotomized evaluation = 0).

3. Results

Fifty-two patients (mean age 62,28 years ± 11.23) who underwent [18F]FDG PET/CT
between November 2008 and December 2018 met the inclusions criteria. The main charac-
teristics are summarized in Table 1. Tumor grading was distributed as follows: G1 in 2/52
(3.85%); G2 in 23/52 (44.23%); G2-3 in 2/52 (3.85%); G3 in 10/52 (19.23%); unknown in
15/52 (28.84%). TNM staging was distributed as follows: Stage I in 4/52 patients (7.69%);
Stage II in 9/52 (17.03%); Stage III in 13/52 (25%); Stage IV in 10/52 (19.23%), unknown in
16/52 (30.76%). As first adjuvant therapy, 1 patient (1.92%) was treated by radiotherapy,
49 patients (94.2%) by chemotherapy, and 2 patients (3.85%) by chemotherapy associated
with radiotherapy.
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Table 1. Patients’ main characteristics.

All Patients (n = 52)

Age (Mean ± SD) 62.28 ± 11.23 y

Sex

Male 41 (77.35%)

Female 11 (22.65%)

Grading

G1 2 (3.85%)

G2 23 (44.23%)

G2–G3 2 (3.85%)

G3 10 (19.23%)

Unknown 15 (28.84%)

First Adjuvant Therapy

Radiotherapy 1 (1.92%)

Chemotherapy 49 (94.2%)

Cht+RT 2 (3.85%)

PET Lesions

Liver 23 (36.51%)

Lymph nodes 13 (19.05%)

Lungs 8 (12.7%)

Presacral 7 (11.11%)

Peritoneum 4 (6.35%)

Rectum 3 (4.76%)

Spleen 2 (3.17%)

Bones 2 (3.17%)

Thorax 1 (1.59%)

Stages At Diagnosis

Stage I 4 (7.69%)

Stage II 9 (17.30%)

Stage III 13 (25%)

Stage IV 10 (19.23%)

Unknown 16 (30.76%)

3.1. [18F]FDG PET/CT Findings

At the first [18F]FDG PET/CT scan, 43 patients (82.7%) were PET-positive for a single
lesion and 9 (17.3%) for 2 or more lesions. Sites of metastasis were distributed as follows:
23 liver (36.51%), 12 lymph nodes (19.05%), 8 lungs (12.7%), 7 presacral lymph nodes
(11.11%), 4 peritoneum (6.35%), 3 rectum (4.76%), 2 spleen (3.17%), 2 bones (3.17%), 1 thorax
(1.59%), and 1 anastomosis tissue (1.59%).

3.2. Follow-Up

FU lasted a mean of 22 months (range 13–48 months). We calculated a median
progression-free survival (PFS) of 17 months (range 1–105) and a median overall survival
of 45 months (range 4–117). At the last FU, 32 (62%) patients showed progression of the
disease, 9 (17%) stable disease, and 11 (21%) responded to therapy with a regression of
the disease.
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3.3. Radiomics Features Analysis

A total of 63 lesions out of 52 patients included in the study were selected. The
analysis of the classification model has been divided into three parts, as explained in the
“Radiomics features extraction and Machine-learning features classification” section, for a total of
10 different radiomics models (Figure 1). In the first case, the prediction disease outcome for
each lesion was analyzed (per-lesion analysis) considering the features extracted from PET
and PET/CT images, respectively; then, the same analysis was developed of considering
each patient (per-patient analysis) considering all the features extracted from the same
images for a total of four different radiomics models.
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Figure 1. Radiomics flow chart applied in this study.

The results were as follow:

• For lesion analysis, GLRLM-based feature gray-level non-uniformity (GLZLM_GLNU)
was selected [15,16] considering the only PET data set obtaining a Sensitivity 90.11%,
Specificity 36.78%, Accuracy 66.72%, and AUROC 56.52% for the predictive DA classi-
fier, while three features (GLZLM_ Zone Length Non-Uniformity—GLZLM_ ZLNU,
and GLRLM_Short Run High Gray-Level Emphasis—GLRLM_SRHGE—between the
CT features and GLZLM_GLNU between the PET features) were selected considering
the PET/CT data set with Sensitivity 78.22%, Specificity 51.75%, Accuracy 66.63%, and
AUROC 65.22%;

• For patient analysis, three features (GLZLM_ZLNU, GLZLM_High Gray-level Zone
-GLZLM_HGZ-, Conventional Radial Intensity Mean Standardized Uptake Value body
weight standard deviation squared -CONVENTIONAL_RIM_SUVbwstdev2-) were
selected considering the PET-only data set with Sensitivity 32.07%, Specificity 92.11%,
Accuracy 73.95% and AUROC 47.97%, and one feature (Conventional Hounsfield Unit
Kurtosis -CONVENTIONAL_HUKurtosis-) was selected considering the PET/CT data
set with Sensitivity 33.81%, Specificity 83.76%, Accuracy 68.70%, and AUROC 61%.

Figure 2 shows the ROCs for the four implemented models, while Table 2 shows all
obtained performances.
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Table 2. Performances of radiomics features in prediction of progression of disease in all lesions,
per-patient, and per-lesion analysis.

Sensitivity Specificity Accuracy AUROC Features Selected

PET
per-lesion 90.11% 36.78% 66.72% 56.52% GLZLM_G

LNU

PET/CT
per-lesion 78.22% 51.75% 66.63% 65.22% GLZLM_ZL

NU (CT)

GLRLM_
SRHGE

(CT)

GLZLM_G
LNU
(PET)

PET
per-patient 32.07% 92.11% 73.95% 47.97% GLZLM_ZL

NU
GLZLM_

HGZ

CONVEN
TIONAL_
RIM_SUV
bwstdev2

PET/CT
per-patient 33.81% 83.76% 68.70% 61.00%

CONVENT
IONAL_H
UKurtosis
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In addition, the study was similarly repeated, focusing only on liver lesions, for a total
of two different radiomics models, with the following results:

• For lesion analysis, one PET feature (GLZLM_GLNU) with Sensitivity 70.15%, Speci-
ficity 23.48%, Accuracy 54.21%, and AUROC 39.94%, and three PET/CT features
(GLZLM_ZLNU, and GLRLM_SRHGE between the CT features and GLZLM_GLNU
between the PET features) with Sensitivity 64.39%, Specificity 76.71%, Accuracy 68.69%,
and AUROC 55.26%;

• For patient analysis, three PET features (GLZLM_ZLNU, GLZLM_HGZ, CONVEN-
TIONAL_RIM_SUVbwstdev2) with Sensitivity 44.42%, Specificity 84.37%, Accuracy
59.03%, and AUROC 60.11%, and one PET/CT feature (CONVENTIONAL_HUKurtosis)
with Sensitivity 33.12%, Specificity 73.74%, Accuracy 47.88%, and AUROC 43.48%.

Figure 3 shows the ROCs for the four implemented models, while Table 3 shows all
obtained performances.
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Table 3. Radiomics features performance for liver lesions in prediction of disease progression per-
patient and per-lesion analysis.

Sensitivity Specificity Accuracy AUROC Features Selected

PET
per-lesion 70.15% 23.48% 54.21% 39.94% GLZLM_G

LNU

PET/CT
per-lesion 64.39% 76.71% 68.69% 55.26% GLZLM_Z

LNU (CT)

GLRLM
_SRHGE

(CT)

GLZLM_G
LNU
(PET)

PET
per-patient 44.42% 84.37% 59.03% 60.11% GLZLM_ZL

NU
GLZLM_

HGZ

CONVEN
TIONAL_
RIM_SUV
bwstdev2

PET/CT
per-patient 33.12% 73.74% 47.88% 43.48%

CONVENT
IONAL_H
UKurtosis

Finally, all lesions were again considered to assess the diagnostic performance of the
features in discriminating liver metastasis:

• For PET images, one feature (Discretized SUVbw minimum—DISCRETIZED_SUV
bwmin-) was extracted with Sensitivity 73.78%, Specificity 83.02%, Accuracy 76.91%,
and AUROC 88.91%;

• For PET/CT images, two features (Discretized histogram energy—DISCRETIZED_
HISTO_Energy—between the CT features and DISCRETIZED_SUVbwmin between
the PET features) were extracted with Sensitivity 89.46%, Specificity 93.63%, Accuracy
91.02%, and AUROC 95.33%.

Figure 4 shows the ROCs for the two implemented models, while Table 4 shows all
obtained performances.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 14 
 

 

Figure 4. ROCs for the radiomics models implemented for discrimination of liver metastasis using 

PET and PET/CT images with an AUROC of 88.91% and 95.33%, respectively. 

Table 4. Radiomics features performance for liver metastasis discrimination. 

 Sensitivity Specificity Accuracy AUROC Features Selected 

PET liver 73.38% 83.02% 76.91% 88.91% 
DISCRETIZED_

SUVbwmin 
 

PET/CT 

liver 
89.46% 93.63% 91.02% 95.33% 

DISCRETIZED_

HISTO_Energy 

(CT) 

DISCRETIZED_

SUVbwmin 

(PET) 

4. Discussion 

To the best of our knowledge, the present study is one of the first to explore [18F]FDG 

PET/CT textural features analysis after first adjuvant therapy to potentially predict dis-

ease progression and survival outcome as an indirect predictive parameter of second-line 

therapy responses in metastatic colon cancer patients, using an innovative mixed de-

scriptive-inferential sequential approach for features reduction and selection, and by 

using DA as a predictive model [17]. 

Radiomics literature in CRC is highly heterogeneous, but it holds promise for the 

prediction of outcomes. Most evidence is available for MRI-based radiomics in rectal 

cancer [23]. A few studies on textural features derived from [18F]FDG PET images at 

baseline for locally advanced colorectal cancer and before or after starting any neoadju-

vant treatments may enable detailed stratification of prognosis in patients with CRC [24–

27]. 

Our study focused on the potential usefulness to extract PET radiomics features and 

also low-dose CT radiomic features for a “hybrid” textural PET/CT analysis mimicking 

the qualitative assessment in the clinical routine evaluation of PET/CT images. The scope 

of this design study was to confirm the feasibility of our ML methods and to analyze how 

all the information related to restaging PET/CT imaging after first-line treatments might 

be able to predict the disease status outcomes after further treatments. Radiomics fea-

tures were extracted from each lesion (including all the sites of metastasis), divided into 

three feature subsets: 105 features from PET images, 66 features from CT, and 171 fea-

tures from both PET and CT. Features were automatically extracted using the 

well-known IBSI compliant LifeX software to perform a totally objective and reproduci-

ble study. Prediction of outcome in patients with CRC is challenging because of the lack 

of a robust biomarker and heterogeneity between and within tumors to modulate treat-

Figure 4. ROCs for the radiomics models implemented for discrimination of liver metastasis using
PET and PET/CT images with an AUROC of 88.91% and 95.33%, respectively.

Table 4. Radiomics features performance for liver metastasis discrimination.

Sensitivity Specificity Accuracy AUROC Features Selected
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liver 89.46% 93.63% 91.02% 95.33%
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4. Discussion

To the best of our knowledge, the present study is one of the first to explore [18F]FDG
PET/CT textural features analysis after first adjuvant therapy to potentially predict disease
progression and survival outcome as an indirect predictive parameter of second-line therapy
responses in metastatic colon cancer patients, using an innovative mixed descriptive-
inferential sequential approach for features reduction and selection, and by using DA as a
predictive model [17].

Radiomics literature in CRC is highly heterogeneous, but it holds promise for the
prediction of outcomes. Most evidence is available for MRI-based radiomics in rectal
cancer [23]. A few studies on textural features derived from [18F]FDG PET images at
baseline for locally advanced colorectal cancer and before or after starting any neoadjuvant
treatments may enable detailed stratification of prognosis in patients with CRC [24–27].

Our study focused on the potential usefulness to extract PET radiomics features and
also low-dose CT radiomic features for a “hybrid” textural PET/CT analysis mimicking
the qualitative assessment in the clinical routine evaluation of PET/CT images. The scope
of this design study was to confirm the feasibility of our ML methods and to analyze
how all the information related to restaging PET/CT imaging after first-line treatments
might be able to predict the disease status outcomes after further treatments. Radiomics
features were extracted from each lesion (including all the sites of metastasis), divided into
three feature subsets: 105 features from PET images, 66 features from CT, and 171 features
from both PET and CT. Features were automatically extracted using the well-known IBSI
compliant LifeX software to perform a totally objective and reproducible study. Prediction
of outcome in patients with CRC is challenging because of the lack of a robust biomarker
and heterogeneity between and within tumors to modulate treatment strategies. In this
scenario, a study conducted on third-line treatment patients with metastatic colorectal
cancer showed that high tumor heterogeneity, volume, and low sphericity on baseline
[18F]FDG PET were related to reduced survival [28]. Similarly, textural parameters as the
coefficient of variation, kurtosis of the absolute gradient (GrKurtosis), and other features
on [18F]FDG PET images have been proposed in other papers as predictive and prognostic
factors in the assessment of therapy response and survival outcomes in patients with rectal
cancer [29,30].

Our study results, differently from others studies for study design and ML models
adopted, demonstrate the potential predictive value of radiomics features derived from an
innovative machine learning model adapted by using the disease status at follow-up as
the gold standard for the performances analysis. This approach was proposed, as in other
studies conducted by our group [31,32], to define the real value of PET/CT as a predictive
tool for the stratification of patients with different diseases (prostate and primary brain
tumors) that for specific characteristics are more susceptible to have a scarce sensitivity to
therapies and a poor disease outcome. For this reason, the apparent sub-optimal results
obtained in the present study need to be interpreted with caution because we are not
presenting the performance on the identification of disease but the capability of some
radiomics features to predict the disease status outcome of the patients with metastatic
colon cancer after the standard first adjuvant therapy.

Underlining the results on the PET radiomics analysis in the whole patient group,
among per-lesion analysis, the feature selected as the most accurate for the DA classifier
was GLZLM_GLNU, while three features (GLZLM_ZLNU and GLRLM_SRHGE between
CT features and GLZLM_GLNU between PET features) were selected from PET/CT im-
ages obtaining slight enhancement of accuracy when CT analysis was merged with PET
performances (AUROC 65.22%).

In per-patient analysis, 3 PET features (GLZLM_ZLNU, GLZLM_HGZ, RIM_SUV
bwstdev2), and 1 PET/CT feature (HUKurtosis) were selected by DA classifier (AUROC
61%). Considering these first two analysis groups, three features belonging to the GLZLM
class were identified as the most accurate for the DA classifier. The GLZLM, also called
gray-level size-zone matrix (GLSZM), is the texture class that provides information on the
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size of homogeneous zones for each gray-level. Consequently, it is indirectly linked to
the heterogeneity of the lesions, which, reflecting biological characteristics, has a potential
value in predicting the progression of the disease [9].

In regard to colorectal liver metastasis, the presence of metastasis in this site is widely
considered as one of the unfavorable prognosis parameters. However, commonly employed
SUV metrics (SUVmax, SUVpeak, SUVmean) from [18F]FDG PET images perform relatively
poorly in outcome prediction tasks (OS, PFS, EFS). In contrast, the use of liver metastasis
number and volumetric measurements of MTV and TLG appears to be capable of providing
significant performance [33]. Our radiomics model results, similarly, showed sub-optimal
performances in the prediction of disease outcome by defining, at per-lesion analysis,
one PET feature (GLZLM_GLNU with AUROC 39.94%) and three PET/CT features (GL-
ZLM_ZLNU and GLRLM_SRHGE between CT features and GLZLM_GLNU between PET
features with AUROC 55.26%). Similarly, in liver lesions per-patient analysis, we found
3 PET features (GLZLM_ZLNU, GLZLM_HGZ, RIM_SUVbwstdev2 with AUROC 60.11%)
and one PET/CT feature (HUKurtosis with AUROC 43.48%).

Furthermore, to quantify the influence of liver metastasis over all PET/CT findings,
one only feature considering PET imaging (i.e., DISCRETIZED_SUVbwmin) and two
features considering PET/CT imaging (DISCRETIZED_HISTO_Energy between the CT
features and DISCRETIZED_SUVbwmin between the PET features) was able to discrim-
inate liver metastasis from the rest of the other lesions (AUROC = 88.91% and 95.33%,
respectively). These results, confirmed after further investigations, may be interpreted
as crucial in the diagnostic and prognostic impact of liver lesions in patients affected by
metastatic colorectal cancer.

Potential limitations of the study must be considered. First, some intrinsic biases as the
well-known sub-optimal accuracy of PET in some conditions due to FDG uptake variability,
depending on the histology, size, location (particularly relevant for primary lesion in terms
of prognosis: right vs. left colorectal cancer), pH, and possible overestimation of metabolic
activity due to associate inflammation, could have affected the results. Furthermore, this is
a retrospective single-center study, with a relatively small number of patients and a design
study limited by data available. All patients who underwent [18F]FDG PET/CT after the
first adjuvant therapy were at different disease stages, treated with different chemotherapy
combinations following Italian oncological guidelines (5FU or oral capecitabine in combi-
nation with either oxaliplatin or irinotecan in various schedules) and a different number of
cycles based on patients clinical conditions. All these variables might affect the patient’s
outcome. In addition, radiomics features were extracted only from the [18F]FDG-positive
tumor to construct the model, and the remaining normal tissue in the image may still
contain invisible but useful data. To properly analyze the entire images, 3D deep learning
methods will be necessary.

Our study results could benefit from validation in a prospective multi-center study.
Nevertheless, our preliminary experience suggests that PET texture analysis is feasible and
could carefully be used as an independent indicator for the prognosis of patients with a
high risk of disease progression and supporting clinicians for a more accurate selection of
patients that may benefit from tailored therapies.

As future research direction of our study, radiomics analyses based on wavelet and
Laplacian of Gaussian features will also be considered (e.g., using Pyradiomics) [34]. Fur-
thermore, machine learning investigation could be conducted in the staging preoperative
scan, aiming to identify patients with an increased risk of liver metastases susceptible to
liver-directed therapies, as previously reported in CT textural analysis by Creasy et al. [35].

5. Conclusions

Our machine learning model on restaging [18F]FDG PET/CT demonstrated to be
feasible and potentially useful in the predictive evaluation of disease progression in
metastatic colon cancer after first-line therapies. New investigations might propose morpho-
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functional-based radiomics algorithms for risk stratification and impact on treatment man-
agement in colorectal cancer.
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Med. 2020, 61, 488–495. [CrossRef]

7. Alongi, P.; Laudicella, R.; Gentile, R.; Scalisi, S.; Stefano, A.; Russo, G.; Emanuele, G.; Domenico, A.; Giancarlo, P.; Sinagra, E.; et al.
Potential clinical value of quantitative fluorine-18-fluorodeoxyglucose-PET/computed tomography using a graph-based method
analysis in evaluation of incidental lesions of gastrointestinal tract: Correlation with endoscopic and histopathological findings.
Nucl. Med. Commun. 2019, 40, 1060–1065. [CrossRef]

8. Watanabe, A.; Harimoto, N.; Yokobori, T.; Araki, K.; Kubo, N.; Igarashi, T.; Tsukagoshi, M.; Ishii, N.; Yamanaka, T.; Handa, T.; et al.
FDG-PET reflects tumor viability on SUV in colorectal cancer liver metastasis. Int. J. Clin. Oncol. 2019, 25, 322–329. [CrossRef]

9. Chowdhury, R.; Ganeshan, B.; Irshad, S.; Lawler, K.; Eisenblätter, M.; Milewicz, H.; Rodriguez-Justo, M.; Miles, K.; Ellis, P.; Ng, T.;
et al. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br.
J. Radiol. 2014, 87, 20140065. [CrossRef]

10. Chen, S.-W.; Shen, W.-C.; Chen, W.T.-L.; Hsieh, T.-C.; Yen, K.-Y.; Chang, J.-G.; Kao, C.-H. Metabolic Imaging Phenotype Using
Radiomics of [18F]FDG PET/CT Associated with Genetic Alterations of Colorectal Cancer. Mol. Imaging Biol. 2019, 21, 183–190.
[CrossRef]

11. Li, J.; Yang, Z.; Xin, B.; Hao, Y.; Wang, L.; Song, S.; Xu, J.; Wang, X. Quantitative Prediction of Microsatellite Instability in Colorectal
Cancer with Preoperative PET/CT-Based Radiomics. Front. Oncol. 2021, 11, 702055. [CrossRef] [PubMed]

12. Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike,
L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2. Eur. J. Nucl. Med. Mol.
Imaging 2015, 42, 328–354. [CrossRef] [PubMed]

13. Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I.
LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Ac-celerate Advances in the Characterization
of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [CrossRef] [PubMed]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/31392079
http://doi.org/10.2174/1874471013666200621191259
http://www.ncbi.nlm.nih.gov/pubmed/32564769
http://doi.org/10.1016/j.ijrobp.2017.12.268
http://www.ncbi.nlm.nih.gov/pubmed/29395627
http://doi.org/10.3390/molecules26082201
http://doi.org/10.2967/jnumed.118.222893
http://doi.org/10.1097/MNM.0000000000001062
http://doi.org/10.1007/s10147-019-01557-0
http://doi.org/10.1259/bjr.20140065
http://doi.org/10.1007/s11307-018-1225-8
http://doi.org/10.3389/fonc.2021.702055
http://www.ncbi.nlm.nih.gov/pubmed/34367985
http://doi.org/10.1007/s00259-014-2961-x
http://www.ncbi.nlm.nih.gov/pubmed/25452219
http://doi.org/10.1158/0008-5472.CAN-18-0125
http://www.ncbi.nlm.nih.gov/pubmed/29959149


Appl. Sci. 2022, 12, 2941 13 of 14

14. Stefano, A.; Leal, A.; Richiusa, S.; Trang, P.; Comelli, A.; Benfante, V.; Cosentino, S.; Sabini, M.G.; Tuttolomondo, A.; Altieri, R.;
et al. Robustness of PET Radiomics Features: Impact of Co-Registration with MRI. Appl. Sci. 2021, 11, 10170. [CrossRef]

15. Comelli, A.; Stefano, A.; Coronnello, C.; Russo, G.; Vernuccio, F.; Cannella, R.; Salvaggio, G.; Lagalla, R.; Barone, S. Radiomics:
A New Biomedical Workflow to Create a Predictive Model. In Annual Conference on Medical Image Understanding and Analysis;
Communications in Computer and Information Science; Springer: Cham, Switzerland, 2020; pp. 280–293, Volume 1248 CCIS,
ISBN 9783030527907. [CrossRef]

16. Barone, S.; Cannella, R.; Comelli, A.; Pellegrino, A.; Salvaggio, G.; Stefano, A.; Vernuccio, F. Hybrid descriptive-inferential method
for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 2021, 37, 961–972. [CrossRef]

17. Stefano, A.; Comelli, A.; Bravatà, V.; Barone, S.; Daskalovski, I.; Savoca, G.; Sabini, M.G.; Ippolito, M.; Russo, G. A preliminary
PET ra-diomics study of brain metastases using a fully automatic segmentation method. BMC Bioinform. 2020, 21, 325. [CrossRef]

18. Russo, G.; Stefano, A.; Alongi, P.; Comelli, A.; Catalfamo, B.; Mantarro, C.; Longo, C.; Altieri, R.; Certo, F.; Cosentino, S.; et al.
Feasibility on the Use of Radiomics Features of 11[C]-MET PET/CT in Central Nervous System Tumours: Preliminary Results on
Potential Grading Discrimination Using a Machine Learning Model. Curr. Oncol. 2021, 28, 5318–5331. [CrossRef]

19. Comelli, A.; Stefano, A.; Bignardi, S.; Coronnello, C.; Russo, G.; Sabini, M.G.; Ippolito, M.; Yezzi, A. Tissue Classification to Support
Local Active Delineation of Brain Tumors. In Annual Conference on Medical Image UnderStanding and Analysis; Communications
in Computer and Information Science; Springer: Cham, Switzerland, 2020; pp. 3–14, Volume 1065 CCIS, ISBN 9783030393427.
[CrossRef]

20. Cuocolo, R.; Comelli, A.; Stefano, A.; Benfante, V.; Dahiya, N.; Stanzione, A.; Castaldo, A.; De Lucia, D.R.; Yezzi, A.; Imbriaco,
M. Deep Learning Whole-Gland and Zonal Prostate Segmentation on a Public MRI Dataset. J. Magn. Reson. Imaging 2021, 54,
452–459. [CrossRef]

21. Comelli, A.; Coronnello, C.; Dahiya, N.; Benfante, V.; Palmucci, S.; Basile, A.; Vancheri, C.; Russo, G.; Yezzi, A.; Stefano, A. Lung
Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics
Studies. J. Imaging 2020, 6, 125. [CrossRef]

22. Stefano, A.; Comelli, A. Customized Efficient Neural Network for COVID-19 Infected Region Identification in CT Images. J.
Imaging 2021, 7, 131. [CrossRef]

23. Staal, F.C.; van der Reijd, D.J.; Taghavi, M.; Lambregts, D.M.; Beets-Tan, R.G.; Maas, M. Radiomics for the Prediction of Treatment
Outcome and Survival in Patients with Colorectal Cancer: A Systematic Review. Clin. Color. Cancer 2020, 20, 52–71. [CrossRef]
[PubMed]

24. Kang, J.; Lee, J.H.; Lee, H.S.; Cho, E.S.; Park, E.J.; Baik, S.H.; Lee, K.Y.; Park, C.; Yeu, Y.; Clemenceau, J.R.; et al. Radiomics Features
of 18F-Fluorodeoxyglucose Positron-Emission Tomography as a Novel Prog-nostic Signature in Colorectal Cancer. Cancers 2021,
13, 392. [CrossRef] [PubMed]

25. Shen, W.-C.; Chen, S.-W.; Wu, K.-C.; Lee, P.-Y.; Feng, C.-L.; Hsieh, T.-C.; Yen, K.-Y.; Kao, C.-H. Predicting pathological complete
response in rectal cancer after chemoradiotherapy with a random forest using 18F-fluorodeoxyglucose positron emission
tomography and computed tomography radiomics. Ann. Transl. Med. 2020, 8, 207. [CrossRef] [PubMed]

26. Lovinfosse, P.; Polus, M.; Van Daele, D.; Martinive, P.; Daenen, F.; Hatt, M.; Visvikis, D.; Koopmansch, B.; Lambert, F.; Coimbra,
C.; et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur. J. Pediatr. 2018, 45, 365–375.
[CrossRef]

27. Giannini, V.; Mazzetti, S.; Bertotto, I.; Chiarenza, C.; Cauda, S.; Delmastro, E.; Bracco, C.; Di Dia, A.; Leone, F.; Medico, E.; et al.
Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features. Eur. J.
Pediatr. 2019, 46, 878–888. [CrossRef]

28. Van Helden, E.J.; Vacher, Y.J.L.; van Wieringen, W.N.; van Velden, F.H.P.; Verheul, H.M.W.; Hoekstra, O.S.; Boellaard, R.; Menke-
van der Houven van Oordt, C.W. Radiomics analysis of pre-treatment [18F]FDG PET/CT for patients with metastatic colorectal
cancer undergoing palliative systemic treatment. Eur. J. Nucl. Med. Mol. Imaging. 2018, 45, 2307–2317. [CrossRef]

29. Bundschuh, R.A.; Dinges, J.; Neumann, L.; Seyfried, M.; Zsótér, N.; Papp, L.; Rosenberg, R.; Becker, K.; Astner, S.T.; Essler, M.;
et al. Textural Parameters of Tumor Heterogeneity in 18F-FDG PET/CT for Therapy Response Assessment and Prognosis in
Patients with Locally Advanced Rectal Cancer. J. Nucl. Med. 2014, 55, 891–897. [CrossRef]

30. Bang, J.-I.; Ha, S.; Kang, S.-B.; Lee, K.-W.; Lee, H.S.; Kim, J.-S.; Oh, H.-K.; Lee, H.-Y.; Kim, S.E. Prediction of neoadjuvant radiation
chemotherapy response and survival using pretreatment [18F]FDG PET/CT scans in locally advanced rectal cancer. Eur. J. Pediatr.
2015, 43, 422–431. [CrossRef]

31. Alongi, P.; Laudicella, R.; Stefano, A.; Caobelli, F.; Comelli, A.; Vento, A.; Sardina, D.; Ganduscio, G.; Toia, P.; Ceci, F.; et al. Choline
PET/CT features to predict survival outcome in high risk prostate cancer restaging: A preliminary machine-learning radiomics
study. Q. J. Nucl. Med. Mol. Imaging 2020. [CrossRef] [PubMed]

32. Alongi, P.; Stefano, A.; Comelli, A.; Laudicella, R.; Scalisi, S.; Arnone, G.; Barone, S.; Spada, M.; Purpura, P.; Bartolotta, T.V.; et al.
Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: An explorative
study on machine learning feature classification in 94 patients. Eur. Radiol. 2021, 31, 4595–4605. [CrossRef]

33. Rahmim, A.; Bak-Fredslund, K.P.; Ashrafinia, S.; Lu, L.; Schmidtlein, C.; Subramaniam, R.M.; Morsing, A.; Keiding, S.; Horsager,
J.; Munk, O.L. Prognostic modeling for patients with colorectal liver metastases incorporating FDG PET radiomic features. Eur. J.
Radiol. 2019, 113, 101–109. [CrossRef] [PubMed]

http://doi.org/10.3390/app112110170
http://doi.org/10.1007/978-3-030-52791-4_22
http://doi.org/10.1002/asmb.2642
http://doi.org/10.1186/s12859-020-03647-7
http://doi.org/10.3390/curroncol28060444
http://doi.org/10.1007/978-3-030-39343-4_1
http://doi.org/10.1002/jmri.27585
http://doi.org/10.3390/jimaging6110125
http://doi.org/10.3390/jimaging7080131
http://doi.org/10.1016/j.clcc.2020.11.001
http://www.ncbi.nlm.nih.gov/pubmed/33349519
http://doi.org/10.3390/cancers13030392
http://www.ncbi.nlm.nih.gov/pubmed/33494345
http://doi.org/10.21037/atm.2020.01.107
http://www.ncbi.nlm.nih.gov/pubmed/32309354
http://doi.org/10.1007/s00259-017-3855-5
http://doi.org/10.1007/s00259-018-4250-6
http://doi.org/10.1007/s00259-018-4100-6
http://doi.org/10.2967/jnumed.113.127340
http://doi.org/10.1007/s00259-015-3180-9
http://doi.org/10.23736/S1824-4785.20.03227-6
http://www.ncbi.nlm.nih.gov/pubmed/32543166
http://doi.org/10.1007/s00330-020-07617-8
http://doi.org/10.1016/j.ejrad.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/30927933


Appl. Sci. 2022, 12, 2941 14 of 14

34. Jha, A.K.; Mithun, S.; Jaiswar, V.; Sherkhane, U.B.; Purandare, N.C.; Prabhash, K.; Rangarajan, V.; Dekker, A.; Wee, L.; Traverso, A.
Repeatability and reproducibility study of radiomic features on a phantom and human cohort. Sci. Rep. 2021, 11, 2055. [CrossRef]
[PubMed]

35. Creasy, J.M.; Cunanan, K.M.; Chakraborty, J.; McAuliffe, J.C.; Chou, J.; Gonen, M.; Ba, V.S.K.; Weiser, M.R.; Balachandran, V.P.;
Drebin, J.A.; et al. Differences in Liver Parenchyma are Measurable with CT Radiomics at Initial Colon Resection in Patients that
Develop Hepatic Metastases from Stage II/III Colon Cancer. Ann. Surg. Oncol. 2020, 28, 1982–1989. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-021-81526-8
http://www.ncbi.nlm.nih.gov/pubmed/33479392
http://doi.org/10.1245/s10434-020-09134-w
http://www.ncbi.nlm.nih.gov/pubmed/32954446

	Introduction 
	Materials and Methods 
	[18F]FDG PET/CT Imaging 
	Radiomics Analysis 
	Diagnostic Performance Evaluation 

	Results 
	[18F]FDG PET/CT Findings 
	Follow-Up 
	Radiomics Features Analysis 

	Discussion 
	Conclusions 
	References

