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Abstract: The increasing interest in innovative solutions for health and physiological monitoring
has recently fostered the development of smaller biomedical devices. These devices are capable of
recording an increasingly large number of biosignals simultaneously, while maximizing the user’s
comfort. In this study, we have designed and realized a novel wearable multisensor ring-shaped
probe that enables synchronous, real-time acquisition of photoplethysmographic (PPG) and galvanic
skin response (GSR) signals. The device integrates both the PPG and GSR sensors onto a single probe
that can be easily placed on the finger, thereby minimizing the device footprint and overall size.
The system enables the extraction of various physiological indices, including heart rate (HR) and its
variability, oxygen saturation (SpO2), and GSR levels, as well as their dynamic changes over time,
to facilitate the detection of different physiological states, e.g., rest and stress. After a preliminary
SpO2 calibration procedure, measurements have been carried out in laboratory on healthy subjects
to demonstrate the feasibility of using our system to detect rapid changes in HR, skin conductance,
and SpO2 across various physiological conditions (i.e., rest, sudden stress-like situation and breath
holding). The early findings encourage the use of the device in daily-life conditions for real-time
monitoring of different physiological states.

Keywords: wearable health devices (WHD); photoplethysmography (PPG); galvanic skin response
(GSR); oxygen saturation (SpO2); biomedical devices

1. Introduction

In recent years, wearable health devices (WHDs) have gained increasing popularity
thanks to their ability to accurately monitor an ever-growing number of parameters. The
scientific community is nowadays pushing towards realizing wearable WHDs that integrate
smaller, more accurate, and less power-consuming sensors. Many worldwide companies in
the tech sector have, in fact, produced wristband-based devices that provide information in
real time about heart rate, oxygen saturation, and the quality of sleep (e.g., Apple Watch,
Galaxy Watch, Xiaomi Mi-band, etc.) [1–3]. The latest technological advancements in the
microelectronics sector have the potential to allow the production of devices even smaller
than watches that can be suitably located on different body districts. For example, rings [4]
can include small sensors based on the photoplethysmographic (PPG) technique to extract
physiological information on the cardiovascular system [5–10].

This non-invasive, comfortable and easy-to-use approach is preferred in place of the
classic and less comfortable techniques, such as electrocardiography (ECG), as it allows
researchers to measure cardiovascular parameters in a more practical way (e.g., heart rate
(HR), HR variability (HRV) [11–13]) that can provide useful information about the individ-
ual’s physiological state. In particular, it is widely known that short-term rhythms in HRV
measurements are generated through the interactions between autonomic neural activity,
blood pressure, and respiratory control systems, providing fundamental information about
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autonomic tone that reflects the appropriate dynamic change in nervous activity [14–16].
Therefore, small and lightweight PPG probes can be integrated within portable biosensing
devices to measure cardiovascular parameters, providing useful information to monitor an
individual’s heart health status. Furthermore, the concurrent utilization of dual-wavelength
PPG sensors and appropriate signal processing algorithms enables the extraction of oxygen
saturation level of hemoglobin in the arterial blood, providing valuable information for
monitoring individuals affected by respiratory-related pathologies, such as sleep apnea
or COVID-19 [17–21]. These conditions can lead to low oxygenation levels that pose a
potentially life-threatening risk. While oxygen saturation (SaO2) values can be extracted
invasively by means of arterial blood gas test, the method based on PPG relies on the
distinct response of oxygenated and deoxygenated hemoglobin to different wavelengths
and typically yields values only slightly different from SaO2 [10,22,23].

In addition to the blood pulsation activity, another important signal that can be ac-
quired from the finger where the PPG sensor is placed is the so-called galvanic skin response
(GSR); this signal measures conductance and reflects autonomic changes in the electrical
properties of the epidermal tissue due to the activity of the sweat glands, each one in-
nervated by several sudomotor fibers [24,25]. This signal reflects the fact that the human
organism reacts to a stressful event (either mental or physical) by activating the sympathetic
nervous system (SNS), which produces sweating in several body districts, including the
fingers. This defense mechanism is also known as general adaptation syndrome (GAS)
and produces sudden changes in different physiological parameters (e.g., increased HR,
blood pressure and sweating). Such changes are due to both sympathetic and parasym-
pathetic (PNS) branches of the autonomic nervous system (ANS), intervening to prepare
the individual to react and overcome the stressor [26]. While many literature works have
demonstrated that stress can be properly estimated using only HRV [12,27,28], recent stud-
ies evidenced that GSR can be considered an excellent real-time correlation of stress, being
linearly related to arousal [29–31]. Some researchers regard GSR as the foremost real-time
indicator of stress, even superseding HRV measures [29,30], or suggest combining GSR as
a measure of SNS activity and the high frequency HRV spectral component as a measure
of PNS activity [32]. Therefore, stress detection accuracy can be enhanced through a mul-
timodal approach that utilizes machine learning techniques to classify stress conditions
based on a combination of both HRV and GSR indices, instead of relying solely on HRV
measures [31,33,34].

In this study, we have exploited the aforementioned concepts to design and realize a
new wearable device that allows the simultaneous acquisition of data from a PPG and a
GSR sensor, both placed on the same body location (specifically, the finger). The prototype,
which takes the form of a ring-shaped probe, demonstrates the practicality of conducting
synchronous acquisition of PPG and GSR signals on the finger, as well as extracting SpO2
levels to enable the concurrent evaluation of an individual’s physiological stress state
and oxygen saturation. This approach obviates the need to utilize additional devices
positioned on other parts of the body, instead consolidating all sensors in one location, thus
reducing the device footprint and increasing the individual’s comfort during measurements.
The device is a noteworthy advancement if compared to the architecture of our previous
prototype of portable electronic system, which was not wearable and more bulky [35]. To
the best of our knowledge, this is the first-ever ring-shaped device capable of synchronously
acquiring PPG and GSR signals, allowing it not only to assess cardiovascular status and
characterize the SNS activity (through HRV and GSR analyses), but also to detect low
oxygenation levels potentially dangerous for the individual’s health (especially useful
during the pandemic emergency period). To verify the proper functioning of the ring-
shaped probe in monitoring the variations in the acquired signals, a multiparametric
acquisition was finally conducted on a cohort of healthy subjects during rest, a stress-
inducing task, and breath-holding exercises.
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2. Materials and Methods
2.1. Description of the Realized Wearable Biosensing System

The system realized in this study (shown in Figure 1a) was composed of two parts:
(1) a compact and lightweight ring-shaped sensor probe, which contained both PPG and
GSR sensors and consisted of an non-toxic and allergen-free elastic band appositely de-
signed to be comfortably worn on the finger; (2) a microcontroller-based system, which
managed the ring sensor and received, preprocessed and transferred the acquired data to a
personal computer (PC). The elastic band and the location of the sensors were appositely
chosen to be worn well tight to the finger to maximize the pressure contact with the skin
(and standardize it among subjects), but without creating discomfort for the user.
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Figure 1. (a) Block diagram of the acquisition system. Both PPG and GSR electrodes were placed
inside the elastic band (sensor ring) and transferred the data to the microcontroller unit (MCU).
(b) Front and side views of the design (top) and implementation (bottom) of the proposed ring-
shaped probe, including its dimensions.
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Figure 1b shows the front and side views of both the design sketch (top panel) and of
the implementation (bottom panel) of the ring probe. To make the probe suitable to be worn
on a finger, a cylindrical body comprising elastic fabric was exploited to wrap both the GSR
electrodes and the PPG sensor. The external dimensions of the probe were 33.2 × 24.3 mm,
as presented also in Figure 1b. Due to design requirements, the two electrodes, each one
having a diameter of 14.7 mm, were placed on two diametrically opposite points of the
cylindrical body to allow the integration of the PPG sensor, reducing space waste. The PPG
sensors, having a size of 3.3 × 5.6 mm, were positioned in the center of the probe to acquire
the PPG signal at the bottom side of the finger, this being the most suitable location on the
finger to achieve the best quality of the recorded waveform.

As regards the acquisition of the GSR signal, we used two Ag/AgCl (silver-chloride)
electrodes placed on the ring probe and connected to the Mikroe-2860 GSR-Click sensor
(manufactured by MikroElektronika), which exploited an analog front-end circuit based
on the volt-amperometric method for the detection of the skin resistance measurements.
In particular, a DC voltage was applied to the first electrode, while the second one was
connected to a R = 100 kΩ resistor which, together with the resistance offered by the
epidermal tissue, formed a voltage divider circuit. By measuring the voltage across the
resistor, it was possible to derive the current flowing through both resistances and, as a
result, determine the skin resistance. For this reason, once the raw signal was filtered
through a passive low-pass filter with a cut-off frequency of f = 15.9 Hz, the residual
potential of the second electrode was sampled by a low-noise 12-bit analog-to-digital
converter (ADC) and, finally, sent to the microcontroller via the serial peripheral interface
(SPI) communication protocol [36]. Finally, the skin resistance was obtained by computing
the voltage difference between the electrodes, divided by the current flowing on the resistor.

A MAX30102 chip (produced by Maxim Integrated) was employed for the acquisition
of the PPG waveform in reflection mode. This choice was carried out to put the photode-
tector and the LEDs on the same side, thus leaving more room on the opposite side for
further sensors in future upgrades of the device. Moreover, reflectance PPG allowed us to
noticeably reduce the dependence of the acquired signal on the tissue volume [37]. The
LEDs integrated within MAX30102 were dual-wavelength, i.e., emitted light at both 660 nm
(red) with 6.5 mW of radiant power and 880 nm (infrared) with 9.8 mW of radiant power.
The MAX30102 also integrated an analog front-end for the ambient light cancellation and a
high-resolution (up to 18-bit) ultra-low noise ADC, with typical dark current in the built-in
photodiode of 0.01% of full-scale and power consumption of about 1 mW (which can be
further reduced using the ultra-low power modality) [38]. The immunity of the front-end
to the ambient light was checked through preliminary measurements carried out, firstly,
in dark ambient conditions and then by simulating the sunlight with an Oriel Sol3A solar
simulator (manufactured by Newport), with the output set at 0.8 sun, i.e., a typical value
in a sunny day condition. The measurement results showed the excellent behavior of
the ring probe, detecting only a slight percentage increase in the DC components of the
PPG red (0.17%) and infrared (0.5%) waveforms. No changes were reported for the AC
components, thus validating our probe for acquiring PPG signals even in the presence of a
strong ambient light.

Finally, the STM32F446RE Nucleo-64 development board (manufactured by STMicro-
electronics, Geneva, Switzerland) was used for the management of the sensors. GSR data
were acquired by connecting the analog output of the Mikroe-2860 sensor directly to the
STM32-F446RE 12-bit ADC and operating in continuous sampling mode. The MAX30102
sensor was configured to acquire both the 660 and 880 nm PPG waveforms sampled with
the internal ADC every 1.25 ms, exchanging data with the microcontroller through the inter-
integrated circuit (I2C) communication protocol. To ensure the synchronous acquisition of
both signals, the STM32F446RE was programmed to acquire data whenever MAX30102
ended the analog-to-digital conversion. The proper synchronization was guaranteed by the
MAX30102 external interrupt occurring every sampling period when the sensors data were
already available on the register.
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The system was designed to be low-power, with the estimated total power consump-
tion for all the embedded devices and conditioning circuitry being around 205 mW. Al-
though our system supports sampling frequencies up to 1.6 kHz, for the preliminary
measurements herein carried out a sampling frequency of f = 800 Hz was set, with 17-bit
ADC resolution; this frequency is considered appropriate for heart rate variability analy-
ses [39].

2.2. Experimental Protocol

Measurements were carried out on the middle finger of the left hand of five normoten-
sive, healthy volunteers (3 males; age 25 ± 2.3 years) monitored in a sitting position while
undergoing an experimental protocol specifically aimed at evoking sympathetic activation
and, thus, producing changes in both heart rate and sweat glands activity, as occurring
during stress-like situations. During the protocol, the subjects were kept still, with the
hands on the table to reduce motion artifacts. The experimental protocol performed by the
subjects consisted of the following five phases:

• Rest 1 (R1): the subject under test watched relaxing videos (nature, sea, sunset). The
duration of this phase was 180 s;

• Sudden fright (SF): the subject experienced a sudden vision of a jump scare video
(with the aim of arousing fright). The duration of this phase was 10 s;

• Rest 2 (R2): the subject watched another relaxing video to re-establish a resting condi-
tion and allow the complete recovery of the physiological parameters. The duration of
this phase was 180 s;

• Breath holding (BH): the subject was asked to hold his breath for 40 s;
• Rest 3 (R3): the subject started to breathe again normally to allow the complete recovery

of the physiological parameters. The duration of this phase was 180 s.

2.3. Data Processing

An appositely developed graphical user interface was implemented using MATLAB
R2021b© (The MathWorks, Inc., Natick, MA, USA) to show and pre-process in real time
the acquired signals, while also computing the average HR and SpO2 values. After a
visual inspection for motion artifacts, the acquired data were stored for further off-line
post-processing.

The PPG waveforms were first filtered using a zero-phase 4th order lowpass But-
terworth digital filter (cut-off frequency: 8 Hz), while a 100-point moving average filter
was employed to smooth the GSR signal. The PPG maxima peaks were extracted using
a MATLAB threshold-based peak detection algorithm to obtain the pulse–pulse interval
(PPI) time series. The PPG minima were also extracted to be used for HRV indices and
SpO2 computation alongside with maxima. The instantaneous HR was calculated from the
PPI minima time series as HR = 60/PPI [bpm]. Time–domain HRV analysis was performed
computing the average (MEAN) and the standard deviation of the normal-to-normal beats
(SDNN) of the PPI minima series values [12]. Since the indices were extracted from PPG
signals, hereinafter we will refer to pulse rate variability (PRV), which has been widely rec-
ognized in the literature as a surrogate of HRV with good agreement in most physiological
states [13,40]. MEAN and SDNN indices were computed on the whole durations of each
phase of the experimental protocol (R1, SF, R2, BH, R3) to assess variations among different
physiological conditions.

The SpO2 values were computed exploiting the fact that the absorbance of a red blood
cell coincides with that of a hemoglobin solution [41]. This “transparency” of erythrocytes
allowed measurements of oxygen saturation, expressed as the percentage of hemoglobin
that is saturated by oxygen (typically included between 95% and 100% at sea level) [42].
For this purpose, it is possible to take advantage of the knowledge of the variation in the
absorption spectrum of hemoglobin in relation to its degree of saturation by oxygen, shown
in Figure 2a [43].
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Since the isosbestic point of the hemoglobin spectrum is located at 805 nm (see Figure 2a,
crossing of the blue and red curves) a pulse oximeter usually exploits two light emitting
diodes (LEDs) emitting both a red light (typically with wavelength λ = 650–670 nm) and an
infrared light (with λ = 870–890 nm), used in combination with a receiving photodiode.

After acquiring the two optical pulse waves from both the red and the infrared LEDs,
it was possible to express the so-called ratio of ratios “R” as [45]:

R =

ACRED
DCRED
ACIR
DCIR

. (1)

R is a ratio of ratios of the pulsatile and non-pulsatile components of red-to-IR light
absorption; the light absorption of two wavelengths is thus derived from the pulsatile-
added volume of oxygenated arterial blood [46,47].

The two components of the PPG signal (i.e., AC and DC) were evaluated starting from
the extraction of the minimum and maximum peaks of the red (RED) and infrared (IR)
waveforms. In particular, the DC component was evaluated as the mean value between the
maximum and minimum peaks of the pulse wave signal, while the AC component was
evaluated as the difference between the two peaks. A widely employed linear empirical
equation for computing SpO2 is the following [48]:

SpO2 = a + b ∗ R , (2)

where a and b are two constants to be determined through calibration according to the
optical characteristics of the adopted device. In this work, calibration was carried out using
a commercial pulse oximeter, the SpO2 Pulse Oxygen in Blood Sensor PRO for MySignals
(eHealth Medical Development Platform, manufactured by Libelium [44]; see Figure 2b).
This device allowed us to acquire heart rate from 25 to 250 bpm and SpO2 from 35% to
100%. The device had an accuracy of 2% and a resolution of 1% within the SpO2 range of
interest (i.e., between 80 and 100%) [49].

The calibration procedure of our device was carried out on preliminary measurements
from the volunteers to extract the a and b constants of Equation (2) from a calibration curve
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obtained by curve fitting. During the breath holding protocol, simultaneous measurements
of the red and infrared PPG waveforms were carried out with the ring-shaped probe and
the commercial pulse oximeter, respectively. The R values for SpO2 percentages ranging
from 94 to 99% (i.e., maximum and minimum SpO2 values detected during the whole
measurement protocol) were calculated and depicted in Figure 3. Finally, the regression
line between the R and SpO2 values was computed using the least squares approximation
method by curve fitting the data from volunteers [48,50]. The obtained regression line was:

SpO2 = 112.07 − 31.44R (3)
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After calibration, we compared the average values of the SpO2 samples acquired using
our system to those recorded using the pulse oximeter. We discovered that our device
accuracy falls within the range (2%) of the commercial device used as the reference. The
goodness of fit was evaluated computing the widely employed root mean square error
(RMSE) metric, obtaining RMSE = 1.11.

As previously mentioned, in this work we have also acquired the GSR signal, which
varies during a stressful event due to the GAS, which is the activity of the sweat glands
directly proportional to the SNS activation level. The GSR signal can be divided into two
components: the skin conductance level (SCL) and the skin conductance response (SCR).
SCL is the measure of the basal level of the sweat glands activity (i.e., the sweating without
stressors), which depends on the individual’s physical characteristics, and is considered
as a reference level to evaluate sweating variations. SCR (i.e., the phasic activity) is a
highly variable signal that detects sudden changes of sweating following stressful events,
reflecting a fast variation in the autonomic arousal. Acquiring both components is therefore
essential to obtain a high-quality GSR signal for which a correct detection of the SNS
activity is guaranteed. In our analysis, once the GSR signal was correctly acquired using the
sensor and ADC front-end described in Section 2.1, both SCL and SCR components were
extracted employing the MATLAB-based toolbox LEDALAB; this software allowed us to
separate the two components, exploiting the continuous decomposition analysis based on
a standard deconvolution method [51]. According to this approach, the extraction of tonic
and phasic activity was carried out through deconvolution of GSR data. The phasic activity
was assumed to superimpose a slowly varying tonic activity (SCL). Sudomotor nerve
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activity results in sweat secretion, thus triggering a specific variation in skin conductance.
In mathematical terms, the sudomotor nerve activity is considered as a driver, which
generates a sequence of mostly distinct impulses that are the sudomotor nerve bursts
(i.e., the SCR peaks). The phasic driver component exhibited a virtual-zero baseline and
distinct phasic responses. Further details and the mathematical formulation of this method
are reported in Benedek and Kaernbach [51].

In this work, to assess variations among different physiological conditions, we eval-
uated the mean values of the GSR level and SCL component computed on the whole
durations of each phase of the experimental protocol (R1, SF, R2, BH, R3) [52]. Finally, the
number of peaks of the SCR component was also computed considering 10-s windows
before and after each phase transition [52]. This choice considered the number of generated
peaks in relation to the level of cognitive and emotional stress [53].

3. Results

Herein, we present the preliminary results demonstrating the effectiveness of our
system for acquiring physiological signals of interest (i.e., PPG, GSR) as well as extracting
cardiovascular markers that vary according to an individual’s stress level.

Figure 4 shows the two PPG waveforms (i.e., using red and infrared wavelengths)
during a 25-s window ranging from second 170 to 195 of one acquisition on a subject,
corresponding to the transition from the R1 phase to the SF phase. No movement arti-
facts were reported during the acquisitions as the experimental protocol was appositely
implemented to avoid any movements of the subjects. In the inset, a zoom of an exemplary
PPG waveform acquired with our device is shown. As reported, the waveform clearly
exhibits all the main fiducial points of a PPG signal, i.e., the systolic foot (representing
the beginning of the systolic heart phase), the systolic peak (representing the maximum
blood volume during the systolic phase), the dicrotic notch (corresponding to the closure
of the aortic valve prevalently seen in the descending phase of young subjects with healthy
compliant arteries [54]), and the diastolic peak (corresponding to both the diastolic heart
phase and the peripheral wave reflection). Given that all the fiducial points are visible, the
acquired signal can be considered as having a “diagnostic quality” according to Moscato
et al. [55], thus allowing a more in-depth morphological analysis if compared to “basic”
quality signals.

The instantaneous HR (shown in Figure 5) was extracted from the minimum values of
the red PPG signal during each period. At the beginning of the SF condition, a noticeable
HR increase can be observed, which continues for the whole duration of the phase.

Figure 6a depicts the GSR waveform in the same 25-s window. A sudden change
in the GSR signal occurs at the start of the SF phase, indicating an increase in the skin
conductance (i.e., decrease in skin resistance). The decomposition analysis carried out by
LEDALAB (shown in Figure 6b) highlights both a general increase in tonic activity (SCL in
Figure 6a), with especially intense phasic activity of the GSR signal that begins precisely
in correspondence of the visualization of the jump scare video (Figure 6b). The increased
number of SCR peaks (also larger in amplitude) in Figure 6b is indicative of the sudomotor
nerve bursts generating sweat secretion, which can be attributed to the visualization of the
frightening video.

Figure 7 shows the values of oxygen saturation during a 160-s window including the
40-s BH phase of the experimental protocol. A 3-point average (i.e., smoothing) digital
filter was applied to the SpO2 waveform to better visualize the trend of this parameter over
the recorded time. As reported, a few seconds after the subject starts holding their breath,
oxygen saturation begins to decrease; such reduction persists a few seconds after the restart
of normal breathing, evidencing a delay in the physiological response of the organism.

Table 1 reports the results of time domain PRV and GSR parameters (expressed as mean
value ± standard deviation) computed on all the subjects involved in the measurement
campaign, for each phase of the experimental protocol. To allow a direct comparison of the
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skin conductance indices (i.e., GSR and SCL) among subjects, the minimum value reached
for each subject during the entire acquisition has been subtracted.
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Figure 4. (a) 25-s excerpt of the PPG signals acquired on a subject during the experimental protocol.
Signals are represented as raw ADC values. Please also note that for visualization purposes the
signals were inverted during post-processing to reflect a typical PPG waveform. The red- and blue-
colored curves indicate the PPG signals acquired using red and infrared light, respectively. Black dots
represent the minimum value of each PPG waveform, detected for each cardiac cycle to measure the
PPI intervals. The vertical red line denotes the transition between the R1 and SF phase. (b) The inset
shows a zoom of an exemplary PPG waveform acquired with our device. In the inset: systolic foot
(black dots), systolic peak (red dot), diastolic notch (yellow dot), and diastolic peak (green dot).
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Figure 6. 25-s window of the GSR signal acquired during the experimental protocol and extraction
of its components through LEDALAB toolbox. (a) GSR signal (blue area and black line) and SCL
component (grey area); (b) SCR component in terms of phasic driver. The vertical red line denotes
the transition between the R1 phase and the SF phase.
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The results reported in Table 1 confirm a decrease in mean PPI (i.e., increased HR)
and an increase in GSR and SCL mean values during SF. Opposite trends are observed
during the transition from R2 to BH; this transition was characterized by an increased
PPI mean, reflecting a slightly reduced heart rate due to respiratory sinus arrhythmia.
Conversely, GSR and SCL mean values show a tendency to rise again, albeit to a lesser extent
compared to the SF phase. The number of peaks of the SCR component were also computed,
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taking into account 10-s windows before and after each physiological condition transition,
i.e., window W1: last 10 s in R1 phase, W2: first 10 s during SF phase; W3: first 10 s in R2
phase; W4: last 10 s in R2 phase; W5: first 10 s in BH phase. The results reported in Table 2
highlight an increased number of peaks (i.e., increase in the phasic activity) during SF and
(to a smaller extent) during BH compared to the preceding resting conditions.

Table 1. Results of time domain PRV and GSR parameters (expressed as mean value ± standard deviation).

Measure/Phase R1 SF R2 BH R3

PPI mean [ms]
PPI SDNN [ms]

815 ± 61
61 ± 19

778 ± 65
65 ± 38

806 ± 60
60 ± 16

876 ± 104
104 ± 81

817 ± 58
58 ± 5

GSR mean [µS]
SCL mean [µS]

0.07 ± 0.05
0.06 ± 0.04

0.17 ± 0.09
0.10 ± 0.08

0.12 ± 0.10
0.10 ± 0.09

0.13 ± 0.10
0.11 ± 0.09

0.14 ± 0.11
0.12 ± 0.11

Table 2. Mean number of peaks of the SCR component during the five considered time windows
averaged on all the subjects.

Time Window W1
(R1 End)

W2
(SF Start)

W3
(R2 Start)

W4
(R2 End)

W5
(BH Start)

No of SCR peaks 1.3 5.3 2.7 1.3 3.8

4. Discussion

The results of the experiment carried out with the novel ring-shaped probe confirm the
proper working of the device and the feasibility of the proposed multiparametric acquisition
for the characterization of different physiological responses. The lower values of the heart
rate (Figure 5) and the GSR signal (Figure 6) during the R1 phase confirm that the subject
was relaxed; lower values are also evidence of the dominance of the parasympathetic
activity typical of resting conditions. After the vision of the scary video, an increase of 32%
(from 72 bpm to 95 bpm) for the instantaneous values of the heart rate (Figure 5) and of
67% (from 1.45 µS to 2.42 µS) for the GSR (Figure 6) immediately after the phase transition
suggests a shift in the sympathovagal balance towards dominance of the SNS; this trend is
typical of stress conditions [56,57].

These trends are also confirmed by observing the time–domain PRV measures and the
skin conductance indices averaged on all the subjects, computed on each of the five phases
(Tables 1 and 2); the decrease in mean PPI and the increase in the number of SCR peaks
during SF are reported on all the subjects, thus evidencing a strong sympathetic activation.
The same observation applies to the GSR and SCL indices during the transition from R1
to SF phase. The irregular trend of the heart rate reported in Figure 5 suggests a strong
variability in the time distance between two successive PPG peaks, which becomes even
more marked during the SF phase, as also evidenced by the SDNN index in Table 1.

On the other hand, opposite trends are reported when moving from R2 to BH: the
increased PPI mean, i.e., a slightly reduced heart rate, is related to respiratory sinus
arrhythmia [58,59]. The GSR and SCL mean values again tend to rise, even if not as
much as during SF, thus suggesting that breath holding protocol may elicit increased
sweating. Nonetheless, in contrast to the transition from R1 to SF phase, this trend is
not observed in all subjects under consideration. These findings suggest that the breath-
holding phase elicits heterogeneous responses among subjects and does not induce a
strong sympathetic activation; this trend is also evidenced by the slightly lower heart rate
recorded. This contrasts with the previous case and suggests a more complex interplay
between physiological mechanisms underlying the response to BH phase.

The decreasing trend in SpO2 values during and up to a few seconds after the end of
the BH phase (Figure 7) highlights that the experimental protocol is influencing the oxygen
saturation of the subjects and, at the same time, confirms that the device and the SpO2
extraction algorithm correctly allow the monitoring of SpO2 values. From a physiological
point of view, the delay observed at the phase transitions with regard to SpO2 trends
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is evidence that the variations in oxygen saturation are a slow phenomenon, as already
reported in Scully et al. [60]. Conversely, the declining trend observed before the start
of the protocol and the rising trend within the initial seconds of the BH phase suggest
that the phenomena underlying the variations of SpO2 are not only very complex from a
physiological point of view, but also subject-specific.

Overall, the reported results confirm the feasibility of employing our ring-shaped wear-
able device to synchronously acquire different biosignals. The use of a high-performance
microcontroller together with lightweight and compact commercial sensors makes our
device comfortable, cost-effective and easy to implement as a scalable but fully wearable so-
lution. The compact design of the device (in terms of its shape, size, and weight) minimizes
the space occupied on the body, thus significantly reducing any discomfort experienced
by the user. Moreover, the measurements carried out highlighted the high-quality of the
acquired signals, with particular regard to the PPG waveform that exhibits all the main
fiducial points used in literature, thus paving the way for the exploitation of our system for
further morphological analyses [55].

The aforementioned features make our system suitable for a wide range of scenarios,
encompassing not only home monitoring of frail individuals and fitness applications but
also clinical settings. Additionally, the combined utilization of our prototype alongside
with other medical devices has the potential to prove beneficial for the early diagnosis
of cardiovascular diseases. In this regard, the synchronous acquisition of ECG and pulse
waves may enable the timely detection of pathological changes, including microcirculatory
dysfunction at both coronary [61,62] and peripheral arteries [63,64]. The simultaneous
measurement of HR and SpO2 indices is crucial for detecting cardiovascular parameters and
blood oxygenation levels in physical activity scenarios—namely, pre-, during-, and post-
exercise stages. Within this context, the concomitant measurement of post-exercise heart
rate and oxygen consumption could enable the detection of exercise-induced arrhythmia
due to heart rate and protein kinase level alterations [65].

Nonetheless, a major limitation of our system is that the preliminary version does not
implement robust motion–artifact detection or removal algorithms. Even though in this
study an experimental protocol that avoids the movements of subjects has been used, future
activity should focus on the onboard implementation of algorithms to exploit the already
embedded gyroscope/accelerometer modules for detecting or, even better, removing the
motion artifacts occurring when using the device during daily-life activities [66]. Another
limitation may reside in the peak detection and filtering procedures employed in this study;
filtering can induce shifts of the location of PPG feature points and lead to inaccuracy in the
computed PRV indices, especially when using PPG peaks [67,68]. For this reason, in future
work feature points that are more robust against the filtering-induced time shift effects
should be extracted (e.g., maximal first derivative, inflection points) to increase accuracy;
this has previously been suggested in several studies [9,67]. Finally, another limitation
is that the time–domain indicators for PPG waveforms used in this work have not been
validated through the extraction of HRV indicators from synchronous measurements of
ECG signals.

5. Conclusions

In this study, a prototype of a wearable biomedical device capable of performing
synchronous acquisition of PPG and GSR signals has been realized and tested. Moreover,
an algorithm for the instantaneous measurement of SpO2 values has been developed and
calibrated. Preliminary results carried out in a laboratory environment indicate that the
developed system can be suitably employed for monitoring physiological states and assess-
ing both the emotional arousal and the oxygen saturation. These encouraging preliminary
results pave the way for testing our system in larger measurement campaigns, specifi-
cally during daily-life activities. Such campaigns will also encompass the simultaneous
acquisition of ECG signals through a previously realized portable multisensor device,
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aimed to further validate the PRV indices with HRV measures and assess cardiorespiratory
interactions [35,69].

The implementation of more standardized measurement protocols capable of eliciting
different stress types (e.g., orthostatic stress, mental stress, fatigue) and levels are envisaged
as a future activity to better assess the reliability and the limitations of the system; these
protocols will also allow for a more comprehensive characterization of ANS in various
physiological states. To achieve this objective, well-established HRV/PRV measures in
the time domain, as well as in the frequency and information-theoretic domains [12,13,70],
should be leveraged and computed in real time directly within the firmware of our device.
The real-time assessment of stress levels conducted through a wearable device can pave the
way to improve anxiety management through the so-called HRV biofeedback [71]. Finally,
a further upgrade of the prototype should also foresee the integration within a single
compact board of both the sensors and the microcontroller, together with other wearable
sensors (e.g., body temperature sensor) potentially useful for a more complete health status
assessment or for motion artifact removal [66,72–74].
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