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Recent developments have led to the possibility of embedding machine learning tools into experi-
mental platforms to address key problems, including the characterization of the properties of quantum
states. Leveraging on this, we implement a quantum extreme learning machine in a photonic platform
to achieve resource-efficient and accurate characterization of the polarization state of a photon. The
underlying reservoir dynamics through which such input state evolves is implemented using the
coined quantum walk of high-dimensional photonic orbital angular momentum, and performing
projective measurements over a fixed basis. We demonstrate how the reconstruction of an unknown
polarization state does not need a careful characterization of the measurement apparatus and is
robust to experimental imperfections, thus representing a promising route for resource-economic
state characterisation.

Context & Motivations — Accurate and resource-efficient
estimation of properties of quantum states is a pivotal
task in quantum information science, particularly in areas
such as quantum metrology [1–4]. In particular, estimation
strategies relying on single measurement settings have at-
tracted notable attention in the last years [5–8]. Significant
attention has also been devoted to the theoretical anal-
ysis of state estimation protocols based on randomized
measurements, in particular through shadow tomography
protocols [5, 9–12], which were later shown to be appli-
cable in generic measurement scenarios [13–15]. On the
other hand, several works have demonstrated the useful-
ness of integrating machine learning tools to implement
and enhance the efficiency of quantum state estimation
strategies [16–28]. In particular, Quantum Extreme Learn-
ing Machines (QELMs) [29, 30] have been proposed as a
particularly efficient medium to extract features from input
quantum states with a flexible architecture [14, 31, 32].

In this work, we leverage QELMs to efficiently recover
properties of photonic quantum states encoded in the po-
larization degree of freedom, exploiting orbital angular
momentum (OAM) as an ancillary degree of freedom to
enable reconstruction via a single measurement setting.
The interaction between polarization and OAM, which is
experimentally implemented via a quantum-walk-based
photonic apparatus [33, 34], allows to extract information
about the input polarization state by only measuring the
OAM of the final state. In the context of QELMs, the evo-
lution mapping input polarization to output OAM takes
the role of “reservoir dynamics”, and enables complete
reconstruction using a single measurement basis. Using
the framework of QELMs has the significant advantage
of enabling the retrieval of information about the input
state even without complete knowledge of the experimen-
tal apparatus itself. This makes for an extremely flexible
platform to extract features of input states, and is in stark
contrast with conventional reconstruction pipelines, which

crucially rely on accurate models of the evolution and
measurement undergone by the states. QELMs operate
effectively without this assumption, requiring only access
to a training dataset of known states —– a task that is
often less demanding in practice. While experimental
demonstrations of single-setting quantum state estimation
have been reported in a few different platforms [5–7], re-
constructions in all such protocols rely on accurate prior
knowledge of all parts of the experimental apparatus. By
contrast, our QELM-based strategy makes for a highly
flexible estimation strategy, resilient to many types of ex-
perimental noise and misalignment, by virtue of the train-
ing stage automatically adapting the post-processing to
enable accurate reconstruction. We benchmark our results
with the accuracies obtained using alternative estimation
strategies, finding our QELM-based approach to clearly
outperform the alternatives in the considered scenarios. It
is worth noting that the reported reconstruction strategy is
fully general and applicable to any experimental scenario
where the goal is reconstructing properties of input states,
even though only a partially characterized measurement
stage is available. Furthermore, as discussed in depth
in Refs. [14, 35], the statistics required for accurate recon-
struction mostly depend on the symmetry properties of the
effective measurement implemented by the setup, rather
than the dimension of the state one wishes to reconstruct.

QELM estimation framework — QELMs operate by exploit-
ing an uncharacterized time-independent dynamic to ex-
tract target properties from input states. To achieve this,
the scheme uses a training dataset of quantum states to
figure out the best way to extract the sought-after features
from the measurement data [14]. The use of a training
dataset allows one to forgo the need to characterize the
measurement apparatus itself: the training process auto-
matically adjusts to the complexities of the experimental
reality. Furthermore, training QELMs is a particularly
simple endeavor, amounting to solving a linear regres-
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sion problem, and is, therefore, less prone to overfitting
issues, especially when used to extract linear features
such as expectation values of observables [14]. More for-
mally, a QELM involves evolving input states ρ through
some quantum channel Φ — giving rise to what we will
refer to as reservoir dynamics hereafter — and then mea-
suring them with some Positive Operator-Valued Measure
(POVM) µ ≡ (µb)b. Using a training dataset of the form
{(ptr

k , ok)}k with ptr
k the probability vector resulting from

measuring ρtr
k , (ptr

k )b ≡ tr(µbρtr
k ), and ok ≡ tr(Oρtr

k ) for
some target observable O, one can find a linear transfor-
mation w ≡ (wb)b such that ∑b wb tr(µbρ) ≈ tr(Oρ) for
all ρ. In words, finding this w allows to read the tar-
get expectation values of input states directly from the
measurement data, without requiring knowledge on the
dynamic Φ and on the POVM µ themselves (see Supple-
mental Material for more details). This protocol can be
seamlessly adapted to the case of multiple target observ-
ables. The expressivity of a QELM — that is, the space
of observables that can be accurately retrieved for a given
choice of Φ and µ — was proven to depend exclusively
on the properties of the “effective POVM”, that is, the
POVM with elements µ̃b ≡ Φ†(µb), where Φ† denotes the
adjoint of Φ [36]. In particular, a necessary condition for
enabling the reconstruction of arbitrary observables is that
the reservoir dynamic Φ must enlarge the dimension of
the input space in order to guarantee a sufficiently large
number of measurement outcomes [14].

Experimental estimation strategy — We implement experi-
mentally the QELM-based quantum state estimation strat-
egy using as reservoir dynamic a coined quantum walk
(QW) in polarization and orbital angular momentum
(OAM) of single photons [33, 34]. The goal of the pro-
tocol is to extract expectation values of observables on the
input polarization states, using the reservoir dynamics to
transfer this information into the larger OAM space that is
then measured (see fig. 1a). More specifically, we use states
of the form |Ψ f ⟩ = (∏s

k=1 SCk) |0, ψ⟩, with Ck ≡ I ⊗ Uk
the unitary coin operation, acting nontrivially only on the
coin space, and with S ≡ √

p(I ⊗ |↓⟩ ⟨↓|+ I ⊗ |↑⟩ ⟨↑|) +√
1 − p(E− ⊗ |↓⟩ ⟨↑| + E+ ⊗ |↑⟩ ⟨↓|) a partial controlled-

shift operation, which differs from the standard control-
shift gate by also allowing the walker state to not change
with some probability. Here {|↑⟩ , |↓⟩} is the computa-
tional basis for the coin space, I is the identity operator on
the walker space, E±|j⟩ ≡ |j± 1⟩, with {|j⟩}, j = −N, ..., N
the position states of the walker, living in a (2N + 1)-
dimensional Hilbert space, and E− |−N⟩ = E+ |N⟩ = 0.
Finally, |ψ⟩ is the input polarization state we seek to char-
acterize.

After the QW evolution, the polarization is projected
on some state |ψpol⟩, and the OAM is measured in its
computational basis. To connect this with the general
formalism introduced above, denote with U the unitary
corresponding to the quantum walk dynamics, |0OAM⟩ the
initial reference OAM state. The map describing the reser-
voir is Φ(ρ) = AρA†, where A ≡ (⟨ψpol| ⊗ IOAM)U(Ipol ⊗
|0OAM⟩). The final measurement on the OAM is then a

standard projective measurement in the computational ba-
sis µb = |b⟩⟨b|, with a number of outcomes that depends
on the number of QW steps.
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Figure 1. Experimental QELM. (a) Schematic overview of the
experimental QELM. Initial quantum states |ψ1⟩, |ψ2⟩, · · · , |ψn⟩
encoded in the polarization degree of freedom of single photons
evolve through a reservoir dynamic, in which the information en-
coded in the initial two-dimensional space is transferred into the
larger Hilbert space of the OAM. By performing only projective
measurements on the OAM computational basis, the QELM is
trained to reconstruct a set of target values y1, y2, · · · , yn. (b) Ex-
perimental implementation. Single photons, generated at 808 nm
via spontaneous parametric down-conversion, are sent through
the state-preparation stage (input layer) made by a Polarizing-
Beam Splitter (PBS), a Half-Wave Plate (HWP) and a Quarter-
Wave Plate (QWP) to encode the initial state in the polarization
degree of freedom. Subsequently, the input states evolve through
the hidden layer following the quantum walk dynamics imple-
mented by HWPs, QWPs, and Q-Plates (QPs). After projecting
onto the polarization state |ψpol⟩ with a sequence of HWP, QWP,
and PBS, projective measurements in the OAM computational
basis, B = {|n⟩} with n = {−2, .., 2}, are performed through a
Spatial Light Modulator (SLM) followed by the coupling into a
single-mode fiber. From the counts measured by an Avalanche
Photodiode (APD), the output layer of the QELM is trained to
retrieve the expectation values of the observables {σx, σy, σz}.

Optical setup — In the experimental setup, reported
in fig. 1(b), a set of optical elements composed of a po-
larizing beam-splitter, a half-wave plate [HWP(ζ1)] and a
quarter-wave plate [QWP(θ1)] produces an input polariza-
tion state parametrized as:

|ψ⟩ = 1√
2
[eiθ1(cos (2ζ1 − θ1)− sin (2ζ1 − θ1)) |L⟩

+e−iθ1(cos (2ζ1 − θ1) + sin (2ζ1 − θ1)) |R⟩],
(1)

where |L⟩ and |R⟩ stand for left- and right-circular polar-
ization, θ1 and ζ1 are the rotationx angles of the waveplates
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Figure 2. Experimental results. Estimation MSE obtained by training and testing the QELM with experimental data. The target is
estimating the expectation values of the Pauli matrices, σx, σy, σz on the input polarization state. We study the MSE as a function
of the number of training states Ntrain, at fixed statistics N. To test the protocol, we generated 300 random input states, and tested
the estimation when the first 1 ≤ Ntrain ≤ 150 are used to train the QELM. The set of 300 states remains unchanged throughout all
experiments. The last 150 of these 300 states are always used for testing, to compute the MSE. All the points in the saturated regions
of these figures decrease as 1/N when increasing the statistics with which each training and test state is measured. (a) Average of the
MSE estimated for all three target observables: {σx, σy, σz}. We show the results for both optimized and random setups. (b) MSE for
each individual target observable for the optimized setup. (c) MSE for each individual target observable for the random setup. The
reported results are obtained with average experimental statistics of ∼ 3000 counts.

optical axis. The input state then evolves through a se-
ries of half-wave plates [HWP(ζ)], quarter-wave plates
[QWP(θ))], and an inhomogeneous birefringent device,
known as q-plate [QP(α, δ)], which couples polarization
and OAM conditionally on the parameters δ, the tun-
able phase retardance that allows the optimal tuning of
the device when δ = π, and α which is a characteristic
angle associated to the initial orientation of the optical
axis with respect to the horizontal direction. QPs have
been used as a building block in a significant number of
demonstrations of controlled quantum dynamics [37, 38],
and are in particular often used as controlled-shift gate
to implement QW dynamics [17, 34, 39–43]. The coin
operation is implemented via a sequence of waveplates
as C(ζ, θ, ϕ) = QWP(ζ)HWP(θ)QWP(ϕ), with ζ, θ, ϕ tun-
able angles. Each q-plate implements a controlled-shift
operation S(α, δ) with characteristic parameters α, δ. More
explicitly, these operations take the form

C(ζ, θ, ϕ) =

(
e−i(ζ−ϕ) cos η ei(ζ+ϕ) sin η

−e−i(ζ+ϕ) sin η ei(ζ−ϕ) cos η

)
, (2)

S(α, δ) =
N−1

∑
n=−N+1

cos
δ

2
(|L, n⟩ ⟨L, n|+ |R, n⟩ ⟨R, n|)

+i sin
δ

2
(e2iα |L, n⟩ ⟨R, n+1|+ e−2iα |R, n⟩ ⟨L, n−1|),

(3)

with η = ζ+ϕ−2θ.

Here |L, n⟩ (|R, n⟩) denote left- (right-) circular polar-
ization, and OAM with azimuthal quantum number n.
The overall evolution U implemented by our apparatus is
obtained by combining two controlled-shift and one coin
operation:

U = S(α2, π)C(ζ, θ, ϕ)S(α1, π/2), (4)

where α1, α2 are fixed by the fabrication process, and in
our case equal 105◦ and 336◦, respectively. Another coin
operation is used at the beginning to prepare the input

state (see eq. (1)), and is thus not considered as part of
the reservoir dynamics. Fixing the parameters δ of the q-
plates to π and π/2, respectively, allows us to enlarge the
space of reachable output OAM states without adding QW
steps, thanks to the stationary component of the dynamics.
After evolution through U, a combination of waveplates
and a polarizing beamsplitter are used to project the po-
larization, while a Spatial Light Modulator (SLM) and a
single-mode fiber are employed to measure the final OAM
states, obtaining the occupation probabilities for the basis
states |n⟩, n = −2,−1, 0, 1, 2. The single-photon counts
are then collected and fed to the computer, where post-
processing and training of the QELM take place, and the
target expectation values are estimated.

Results — We considered two different configurations for
the QELM. In the first, we exploited the knowledge of the
QW dynamics to extract optimal values for the angles of
the coin {ζ, θ, ϕ} and for the projection of the hidden layer
which result in an almost uniform cover of the OAM space
(see Supplemental Material). In the second one instead,
we made a random choice of the waveplate angles, focus-
ing on training the accessible output layer to optimize the
performance of the characterization protocol. The cho-
sen figure of merit for the quantification of performances
is the mean square error (MSE) between the expectation
values of the Pauli operators. The experimental results
are reported in fig. 2 for both implementations. We show
the performance of QELM, trained using experimental
data, in retrieving the features of the polarization state.
In particular, we collected 300 experimental states and
split them into a training set and a test set, each one com-
posed of 150 elements. The MSE of the expectation values
over the test set is studied against the number Ntrain of
states used in the training set. A large enough training
set clearly results in a decrease of the MSE, and thus in
significantly enhanced reconstruction accuracies for all
considered target observables. The amount of statistics
collected for each state also crucially affects the reconstruc-
tion accuracies [14]. We analyze this aspect explicitly in
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the Supplemental Material.
Let us remark here other two significant aspects that

transpire from our experimental results. Firstly, our re-
construction protocol is highly resource-efficient indeed
roughly 20 states are already sufficient to train the QELM,
as seen in fig. 2. Secondly, as shown in fig. 2-(a), the
optimal configuration results in MSEs only marginally
better than those obtained with the random configuration,
highlighting that a full characterization and fine-tuning of
the experimental setup is not essential to achieve accurate
reconstruction accuracies (see details in the Supplemental
Material).

Finally, to compare the quality of the results obtained
via the QELM with non-machine-learning-based alterna-
tive approaches, we consider the reconstruction MSEs that
would have been obtained with the same experimental
apparatus via the generalized shadow tomography recon-
struction scheme, which has been shown to be optimal
for reconstruction under relatively mild assumptions [35].
As discussed in detail in the Supplemental Materials, we
find that the QELM provides performances between 5
and 10 times better than the alternative methods for the
considered target observables, in the case of the optimal
experimental setup. A main underlying reason for this
disparity is that the non-QELM-based methods rely on
accurate modelling of the experimental apparatus, which
can be quite costly to achieve in practice, whereas QELM
can easily adapt to experimental fluctuations without sig-
nificantly impacting the reconstruction accuracies.
Conclusions — We have experimentally demonstrated
a robust and resource-efficient QELM-based property-
reconstruction protocol. Our implementation, which lever-
ages the controlled QW dynamics in a photonic platform
intertwining the polarization and OAM degrees of free-
dom of a photon, demonstrates the excellent performance
of property reconstruction without the need for the accu-
rate and careful characterization of the platform. Only
training sets with moderate size are needed to achieve low
values of the MSE of the reconstruction, while the effects
of finite statistics of the dataset can be fully accounted
for. Our experimental QELM-based reconstruction demon-
strates the viability of photonic platforms for non-standard
approaches to quantum property retrieval, with the expec-
tation of significantly reducing the burden – in terms of
resources – of resource-characterization in a computational
register.
Acknowledgements — LI acknowledges support from MUR
and AWS under project PON Ricerca e Innovazione 2014-
2020, “Calcolo quantistico in dispositivi quantistici ru-
morosi nel regime di scala intermedia” (NISQ - Noisy,
Intermediate-Scale Quantum). IP is grateful to the MSCA
COFUND project CITI-GENS (Grant nr. 945231). MP ac-
knowledges the support by the European Union’s Horizon
2020 FET-Open project TEQ (Grant Agreement No. 766900),
the Horizon Europe EIC Pathfinder project QuCoM (Grant
Agreement No. 101046973), the Leverhulme Trust Research
Project Grant UltraQuTe (grant RPG-2018-266), the Royal
Society Wolfson Fellowship (RSWF/R3/183013), the UK
EPSRC (EP/T028424/1), and the Department for the Econ-

omy Northern Ireland under the US-Ireland R&D Partner-
ship Programme (USI 175 and USI 194). We acknowledge
support from the ERC Advanced Grant QU-BOSS (QUan-
tum advantage via nonlinear BOSon Sampling, grant
agreement no. 884676) and from PNRR MUR project
PE0000023-NQSTI (Spoke 4).

∗ These authors contributed equally to this work
[1] E. Polino, M. Valeri, N. Spagnolo, and F. Sciarrino,

Photonic quantum metrology, AVS Quantum Science 2,
10.1116/5.0007577 (2020).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quan-
tum metrology, Nature photonics 5, 222 (2011).

[3] A. Czerwinski, Selected concepts of quantum state tomog-
raphy, Optics 3, 268 (2022).

[4] V. Gebhart, R. Santagati, A. A. Gentile, E. M. Gauger,
D. Craig, N. Ares, L. Banchi, F. Marquardt, L. Pezzè, and
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