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A B S T R A C T

Technological advancements, urbanization, high energy demand, and global requirements to mitigate carbon
footprints have led to the adoption of innovative green technologies for energy production. The integration of
green technologies with traditional grids offers huge benefits. This amalgamation may bring a power mismatch
dilemma due to intermittent renewable energy production and nonlinear energy consumption patterns which can
affect the whole system’s reliability and operational efficiency. An efficient Energy Management System (EMS) is
essential to deal with uncertainties associated with renewable energy production and load demand while opti-
mizing the operation of distributed energy generation sources. This state-of-the-art review presents artificial
intelligence-based solutions to improve EMS, focusing on optimal scheduling of generation sources, forecasting
load and renewable energy production, and multi-agent-based decentralized control. The review’s finding sug-
gests that the advanced metaheuristic algorithms can overcome challenges of trapping in local optima and
premature convergence and due to this, they are now widely adopted and effectively utilized in scheduling
problems. To mitigate uncertainties of renewable energy production and load demand, the long short-term
memory and convolutional neural networks can manage spatiotemporal characteristics of renewable and load
datasets and forecast highly accurate results. The multi-agent-based system offers a distributed control to
complex problems that are computationally less expensive and outperforms centralized approaches. The
increased use of advanced metaheuristic optimization techniques and hybrid machine learning and deep learning
models is observed for optimization and forecasting applications. The advanced metaheuristic algorithms are a
good addition to the literature, they are still in emerging stages and their performance can further be improved.
This review also presents the decentralized and centralized EMS-based energy-sharing mechanism between
interconnected micro grids. The use of advanced forecasting and metaheuristic algorithms can potentially handle
the stochastic nature of renewable energy production and load demand.

1. Introduction

A report on population in a twenty-seventh edition of the United
Nations (UN) projected that the world’s population would rise to 8.5

billion in 2023 and 10.4 billion in 2100 [1]. This significant population
growth poses many challenges, including increased energy demand,
potential energy shortages, and continued reliance on traditional energy
production methods. These aspects will likely lead to soaring energy
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prices and heightened carbon footprints. Due to technological
advancement with regard to efficiency and low cost, it has been a
common practice in the current realm to integrate renewable-based
generation with traditional grids. Alongside this, the idea of Micro
Grid (MG) has emerged [2], which is the small-scale and low-voltage
electricity grid. The MG can effectively address issues like high energy
demand and reduce carbon emissions by controlling and managing its
Distributed Energy Resources (DERs). The DERs include distributed
generating units, distributed storage devices, and electrical load [3].
Considering its economic and environmental advantages, the MG has
the potential to lower the reliance on fossil fuel-based energy generation
by maximizing the amalgamation of highly renewable energy genera-
tion sources. A market analysis and forecasting report published by the
International Energy Agency claimed that renewable energies will pro-
vide nearly 80% of global energy demand by 2050 [4]. It is clearly
evident that renewable technologies such as solar Photovoltaic (PV), and
Wind Turbine (WT) will be widely adopted in traditional grids.
Acknowledging the advancements in power converters and storage de-
vices, replacing 100% fossil fuel-based energy generation with renew-
ables is now possible. Depending on such a significant amount of energy
portion from renewables brings some challenges such as a mismatch
between demand & supply due to intermittency and variability of
renewable energy production, which may lead to blackouts, grid insta-
bility, and lack of system reliability. The MG when operating in off-grid
mode, has the ability to overcome the mismatch dilemma by increasing
the generation capacity, which increases the system cost. The other
solution is adopting energy management strategies that utilize storage
devices such as battery storage and hydrogen-based storage [5] to store
energy during high generation periods and generate otherwise, provide
some stability. The power mismatch problem intensifies as the number
of households increases in the MG environment, creating a non-uniform
consumption pattern and the utilization of more Renewable Energy
Sources (RESs) further complicates the energy management strategies.

Although the integration of innovative green technologies with
traditional grids can revolutionize the energy landscape. The intricate
amalgamation is full of challenges and state-of-the-art approaches
possess inherent limitations, necessitating inventive solutions. By
leveraging the potential of Artificial Intelligence (AI), the Smart Grid
(SG) can monitor, control, and optimize the operation of MG, promoting
energy efficiency, and aiding the transition to sustainable energy solu-
tions [6]. The SG is characterized by features like Demand Response
Programs (DRPs), which employ AI algorithms to shift energy con-
sumption patterns from on-peak hours to off-peak hours or shifting
where the energy from renewables is high. These algorithms make
intelligent decisions by analyzing historical energy consumption pat-
terns or by forecasting future energy production. Several innovations
such as AI-based optimization techniques, AI-based forecasting
methods, and Multi-Agent System (MAS) have all been designed to
improve SG, aiding to improve energy efficiency and promote sustain-
ability [7]. This study intends to investigate the role of AI-based algo-
rithms in improving energy management strategies and provide
solutions using state-of-the-art approaches, laying the foundation for
affordable and sustainable energy solutions for end-users.

In literature, traditional mathematical optimization techniques have
significantly been used to optimize the operation of MG including linear
programming [8], Mixed Integer Linear Programming (MILP) [9], and
Quadratic Programming (QP) [10]. In [11], the authors developed an
optimization framework based on MILP for analyzing and optimizing
the energy sources of MG. The optimization framework supports the
integration of RESs, including Wind Energy (WE), PV systems, and En-
ergy Storage Systems (ESSs). The intended model is expected to mini-
mize grid’s operational costs. Another study employed MILP for optimal
scheduling of energy sources ensuring the Economic Load Dispatch
(ELD) [12]. Optimization with traditional mathematical approaches can
be cumbersome as energy demand, market prices, and weather condi-
tions change regularly, showing nonuniform or nonlinear trends that are

difficult to solve using these techniques [13]. Other traditional optimi-
zation techniques such as Iterative method [14], Gradient Descent [15],
Quasi-Newton [16], etc have the limitation of slow convergence, scal-
ability problem, and are computationally expensive. Some popular
classical metaheuristic algorithms including Genetic Algorithm (GA)
[17], Particle Swarm Optimization (PSO) [18], Ant Colony Optimization
(ACO) [19], Simulated Annealing (SA) [20], and Cuckoo Search Algo-
rithm (CSA) [21] can integrate RESs, and optimize the charging and
discharging of ESSs. The authors in Ref. [22] proposed a GA to maximize
energy utilization from renewables, aiming to minimize energy costs
and carbon footprints. In [23], PSO was proposed to optimize the
charging and discharging of ESS. Although classical methods have
shown superior performance in overcoming the challenges associated
with MG optimal operation. They confront the issues of premature
convergence and may easily fall into local optima. In the current realm,
advanced Metaheuristic Optimization Techniques (MOTs) with small
modifications are being used in literature for solving energy manage-
ment problems in MG and can address difficulties faced by classical
methods. Some of these algorithms are the Promoted Remora Optimi-
zation algorithm, Golden Jackal Optimization algorithm, Artificial
Gorilla Troops optimizer, Gradient Pelican Optimization algorithm,
improved Moth Flame Optimization algorithm with decreasing inertia
weight strategy, Gradient Pelican Optimization algorithm, and
improved Grey Wolf Optimization (GWO) algorithm. In Ref. [24], the
authors made small modifications in the Pelican Optimization algorithm
by introducing the local escaping operator and proposed a new version
called the Gradient Pelican Optimization algorithm which can resolve
the issue of premature convergence and local optima fall. Another study
introduced a local escaping operator in GWO and proposed an improved
version of GWO in Ref. [25]. The findings demonstrated 15% reduction
in operational cost. The newly proposedMOTs are a good addition to the
literature, they are still in emerging stages and their performance can
further be improved.

To ensure accurate and optimized scheduling of energy sources and
overcome the variability effect of renewable-based energy generation,
utility companies heavily rely on factors such as future load demand,
energy generation from RESs, and weather conditions. Traditional
forecasting methods such as statistical methods and physical methods
have been employed to predict future patterns [26]. Statistical methods
like Auto-Regressive Integrated Moving Average (ARIMA), Seasonal
ARIMA (SARIMA), and exponential smoothing have the limitations of
handling non-stationary and high dimensional renewable data and are
unable to capture complex patterns [27]. Physical methods, like the
Numerical Weather Prediction method take atmospheric data as input to
forecast wind speed, whereas the Solar Radiation method takes into
account cloud cover to predict solar irradiance. Both these methods are
used to forecast renewable energy. These methods fail to generate pre-
cise results due to uncertainty associated with weather prediction and
are computationally intensive. The AI-based forecasting algorithm,
including Machine Learning (ML) algorithms [28], and Deep Learning
(DL) [29] can be used to forecast with high precision and accuracy.
Some studies including regression techniques for day-ahead load fore-
casting [30], Random Forest (RF) for Short-Term Load Forecasting
(STLF) [31], and Multi-Layer Perceptron (MLP) for predicting grid sta-
bility [32], have shown excellent results in overcoming the uncertainties
and improving the system reliability. Other state-of-the-art techniques
such as Convolutional Neural Networks (CNNs), and Recurrent Neural
Networks (RNNs) particularly the Long Short-Term Memory (LSTM)
model can also mitigate uncertainties associated with renewable energy
production by capturing spatiotemporal characteristics of datasets [33].
These techniques are discussed in detail in later sections.

Dynamic changes in load & renewable energy production increase
the complexity of integrating RESs and storage devices. These challenges
can be resolved through distributed control approaches. The AI-based
MAS offers several advantages including scalability, robustness, adapt-
ability, and decentralized decision-making. In [34], the authors
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proposed MAS-based distributed control for regulating complex energy
management and controlling DERs. The findings demonstrated robust
and excellent control considering fluctuating renewable energy, grid
disturbances, and dynamic load behavior.

The integration of RESs into the grid faces challenges due to
randomness and variabile nature of renewable energy production. The
dynamic nature of load demand is another crucial factor, that creates
power mismatch problems. An efficient Energy Management System
(EMS) is essential which can handle uncertainties associated with load
demand and renewable energy production while optimizing the opera-
tion of DERs. The Ref. [35] presented the idea of integrated EMS to
overcome the issue of power mismatch through predictive or real-time
energy management. The authors focused only on PV energy fore-
casting while ignoring the aspect of load forecasting and little attention
was given to optimization. Another study in Ref. [36] tried to address
the power mismatch dilemma by proposing an idea of interconnected
MG. The proposed solution was solely based on optimization techniques
while disregarding the forecasting of energy consumption and renew-
able energy production. To improve the reliability and operational ef-
ficiency of home EMS, the authors in Ref. [37] proposed a solution
targeted only on load forecasting and load scheduling. In Ref. [38], the
authors focused on forecasting renewable energy production to ensure
efficient and reliable grid operation. A DL-based technique for load
forecasting was discussed in Ref. [39] to improve energy management,
infrastructure planning, and budgeting. The Table 1 demonstrates the
uniqueness of this review for improving EMS in comparison with other
recent reviews.

Addressing the uncertainties associated with load demand and
renewable energy production through the selection of efficient optimi-
zation and forecasting techniques produces a critical research gap. In
this review, an efficient EMS is discussed that employs advanced fore-
casting algorithms and optimization techniques to overcome the power
mismatch problem and optimize the operation of MG. Given the broad
applications of AI, the rapid advancements of RESs, and the growing
interest in incorporating new technologies into a grid, this review aims
to present the use of various AI-based approaches for different appli-
cations in MG, particularly in the contexts of optimization, forecasting
load demand and renewable energy production, and distributed control
operation. These approaches are comprehensively discussed, and their
significance in improving the reliability and efficiency of EMS is
reviewed.

1.1. Review methodology

To conduct a comprehensive review, the keyword ”energy manage-
ment” was searched on 01 August 2024 on the Scopus database. It was
found that 51,266 research studies have been published from 2015 to
2024. These papers include 23,384 research papers, 22,871 conference
proceedings, 1,611 review articles, and 1,942 book chapters. Other
documents are very limited in numbers. These documents can be found
in the Scopus database using comprehensive search criteria. The search
criteria include minor relative inclusions and reiterations. This research
utilizes the Scopus database to look at the AI-based methodologies uti-
lized in ”energy management,” primarily from 2015 to 2024. A search
methodology for determining the relevant literature is illustrated in
Fig. 1. It began with filtering search keywords using the title, abstract,
and keywords search bars. The search keywords and findings are given
below:

• The first search terms, (”heuristic” OR ”nature-inspired”) AND ”en-
ergy management” AND ” optimization” yielded 459 research arti-
cles, 246 conference papers, 20 review articles, and 52 book
chapters.

• The second search on ”machine learning” AND ”energy manage-
ment” returned 1,908 total papers, 902 of which are research

Table 1
The distinctiveness of the current work in comparison with other reviews pub-
lished in recent times.

Ref Year Techniques Objectives

[40] 2018 • Statistical forecasting
methods (Regression,
Exponential
Smoothing, ARMA).

• ANN, machine
learning-based SVM,
some hybrid methods.

Focused on PV
power forecasting to
ensure stable,
reliable, and
effective grid
operation &
planning.

[36] 2022 • ANN, MAS, DP, fuzzy
logic, MILP, and
others.

• PSO, ACO, CSA, GA,
DE, and others

Presented AI-based
approaches in
interconnected MGs
to handle power
mismatch problems.

[38] 2023 • ML algorithms such as
linear regression,
support vector
regression, SVM, and
RF.

• DL algorithms
including ANN, CNN,
RNN, auto-encoders,
and deep belief neural
network.

Focused on
forecasting
renewable energy
production to
ensure efficient and
reliable grid
operation.

[41] 2024 • Statistical forecasting
methods (Multiple
Regression,
Exponential
Smoothing, AR, MA,
ARMA, ARIMA) for
load forecasting.

• Optimization methods
(Linear Programming,
MILP, GA, PSO, SA,
ACO, Fuzzy logic) for
load scheduling.

Discussed two
important aspects of
home EMS such as
load forecasting and
load scheduling.
Comparison was
made between
various load
forecasting and
optimization
techniques.

[39] 2024 • RNN, LSTM, GRU,
CNN, autoencoders

Presented various
DL-based
techniques for STLF
to improve energy
management,
infrastructure
planning, and
budgeting.

[42] 2024 • ANN, SVM.
• Deep learning models
such as LSTM, CNN,
GRU, and some hybrid
methods.

• Other statistical
methods, ensemble
methods, probabilistic
approaches.

The work targeted
to minimize the
variability effect of
renewable energy
production which
improves grid
integration and
power production.
Discussed various
forecasting models
including statistical
methods, machine
learning, and deep
learning methods.

[35] 2024 • Physical models such
as NWSP.

• DL and ML models
such as LSTM, RF,
SVM, ANN, and some
hybrid methods.

Aimed to improve
integrated EMS
through the
combination of solar
power forecasting,
demand-side
management, and
supply-side
management.

[37] 2024 • Statistical forecasting
methods (Multiple
Regression,
Exponential
Smoothing, AR, MA,
ARMA, ARIMA) for
load forecasting.
Other than this, SVM,

Enhanced peer-to-
peer energy trading
between various
components of
home EMS.
Compared various
load forecasting and
scheduling

(continued on next page)
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articles, 733 of them are conference papers, 89 are review articles
and 71 are book chapters.

• The keywords ”deep learning” AND ”energymanagement”were used
in our third search, which provided 790 research articles, 471 con-
ference papers, 48 review articles, and 32 book chapters.

• The fourth search term, ”multi-agent systems” AND ”energy man-
agement” provided 396 research articles, 336 conference papers, and
23 review articles, and 16 book chapters.

Based on the search and available data, AI approaches are grouped
into four major types: metaheuristic optimization techniques, machine
learning methods, deep learning approaches, and multi-agent systems.
During the keyword-based search, it was observed that research articles
and conference papers are published in large numbers in every keyword
search, indicating the significance of AI-based approaches in energy

management.
This paper is organized as follows. This review starts with Section 2

where it discusses the origin of AI and its brief introduction in energy
systems. Section 3 discusses the role of AI-driven nature-inspired algo-
rithms in energy management. Steps for dataset preparation before
applying ML or DL models and some important performance evaluation
metrics are presented in Section 4. Section 5 explores the role of ML and
DL approaches in forecasting applications, followed by a discussion on
MASs in Section 6. Recommendations, challenges, and open issues of all
reviewed AI approaches are addressed in Section 7, and Section 8 con-
cludes the work. The list of symbols & abbreviations of long terminol-
ogies is presented in Table 2.

2. Exploring the Background of AI: From Origins to
Advancements

In the 1950s, a young British mathematician, Alan Turing, initially
floated the idea of solving problems using machine intelligence in his
research article ”Computing Machinery and Intelligence” [43]. In 1956,
John McCarthy coined the term ”Artificial Intelligence” for the very first
time in a historic conference named ”Dartmouth Summer Research
Project on AI”. The conference was aimed to emulate human problem-
solving abilities [44]. By definition, an AI system simulates the func-
tioning of the human mind, making computers, robots, and software
think intelligently like humans [45]. It works by studying brain patterns
and examining cognitive processes. Two scientists Russell and Norving
defined AI as [46],

Definition: ”Any entity that perceives its environment from sensors and
acts in that environment from actuators can be described as an agent”.

Since the birth of AI in the 1950s, the development of intelligent
machines has been driven by a diverse array of approaches. Statistical
learning [47], knowledge-based systems [48], soft computing [49], and
symbolic reasoning [50] are among those approaches. In the field of
energy management, it can potentially manage energy by making the
system more intelligent and automatic without human participation.
Researchers and industry experts have explored various areas in which
AI contributes to enhancing the performance and efficiency of EMS. The
potential areas include integration of RESs, optimizing MG operation,
battery charging, and discharging management, forecasting applica-
tions, network security, anomaly detection, predictive maintenance,
system restoration, and energy-efficient operation, etc. The AI-based
optimization algorithms can optimize scheduling, regulate energy flow
among MG components, and select the optimal size of DERs [51]. When
considering the integration of RESs into the electrical grid, the AI-based
forecasting algorithms play a crucial role in optimizing the variables
including weather parameters, energy generation patterns, and demand
forecast, which ensures effective energy distribution. Accurate forecasts
guarantee utility companies to optimize energy production, prepare for
emergencies, and offer grid integration with renewable energy. The AI-
based algorithms can also identify anomalies and monitor grid compo-
nents’ operation through real-time data analysis [52]. This ensures a
more rapid reaction to grid disturbances, more compelling power dis-
tribution, and less downtime. This makes MG more dependable and
effective, supporting the transition towards a cleaner energy mix. By
analyzing real-time data like energy price, electricity demand, and
storage performance, AI methods are capable enough to optimize the
operation of ESSs, enhancing charging and discharging schedules [53].
This promotes MG stability, maximizes the use of stored energy, and can
effectively integrate the intermittency of RESs. Based on sensor data,
maintenance logs, and performance indicators, AI-based approaches are
utilized for predictive maintenance, and suggesting preventive proced-
ures [54].

Some notable international organizations and projects that have
already implemented AI in energy systems are General Electric, National
Renewable Energy Laboratory (NREL), Tesla, and IBM Watson. General
Electric utilizes AI algorithms that analyze sensor data to timely predict

Table 1 (continued )

Ref Year Techniques Objectives

ANN, expert systems,
adaptive demand, and
fuzzy logic are also
included.

• Optimization methods
(Linear Programming,
MILP, GA, PSO, SA,
ACO, Fuzzy logic) for
load scheduling.

techniques that are
most suitable for
home EMS.

This paper 2024 • Comprehensively
discussed five nature-
inspired optimization
approaches such as
GA, PSO, CSA, SA,
ACO, and some newly
proposed optimization
methods.

• ML algorithm
including supervised
learning.
unsupervised learning
and reinforcement
learning.

• DL methods such as
ANN, CNN, and LSTM.

• Multi-Agent System
featuring Cooperative
Game Theory and
Non-Cooperative
Game Theory.

Addresses
challenges of power
mismatch and
uncertainties
associated with load
demand and
renewable energy
production.

Comprehensively
discussed the AI-
based optimization
techniques in
resource scheduling.

  

Discussed advanced
ML and DL-based
forecasting
applications
including load
forecasting, weather
prediction, and
renewable energy
production
forecasting to
overcome
uncertainties in
energy system.

  

Explored the role of
MAS in solving
problems such as
scalability,
robustness,
adaptability, and
decentralized
decision-making.

  

   

M.A. Judge et al. Energy Conversion and Management: X 24 (2024) 100724 

4 



maintenance requirements of the machinery before faults occur [55].
The AI algorithms help improve the performance and reliability of
power-generating equipment. The NREL in the United States has made
forecasting tools using AI approaches to predict energy production from
renewables [56]. This helps the grid operator to optimize energy flow by
analyzing fluctuations in energy production. To perform intelligent
peer-to-peer energy trading, Tesla’s auto bidder employs advanced AI
algorithms, which can optimize the operation of DERs by continuously
monitoring weather conditions and energy consumption profile [57].
Another notable organization is IBM’s Watson detects anomalies to
prevent cyber threats in power generation and depends on AI algo-
rithms. These algorithms work based on finding suspicious activities by
analyzing network traffic and system behavior [58].

This paper focuses on the data-driven, non-symbolic, and soft
computing paradigms of AI. The four categories of AI approaches for
energy management and optimization including metaheuristic methods,
ML approaches, DL techniques, and MAS are discussed as illustrated in
Fig. 2. The following sections present a comprehensive analysis of these
approaches, describe their working process through textual and graph-
ical illustrations, and how they overcome the issues related to MG
operations.

3. AI-driven metaheuristic approaches for improving energy
management system

The advancement in optimization techniques has given power to
energy systems that can monitor and control energy generation, con-
sumption, and storage while keeping energy costs low, and balancing
energy demand and supply. The ultimate requirement for optimizing
MG’s operation is to make an efficient and reliable EMS. The AI-based
MOTs are a possible solution to complex energy management chal-
lenges and dynamic constraints. These techniques mimic the behavior of
natural processes, like swarm intelligence, genetic evolution, and
cognitive behavior of various animals. The MOTs utilize three types of
searches random, local, and global to identify optimal solutions [59].
These algorithms analyze the vast amount of data, identify intricate
patterns, and make intelligent decisions to optimize the energy system.
By motivating from diverse contributions of MOTs in energy system, this
study focuses on following techniques, including GA [17], PSO [18],
ACO [19], SA [20], CSA [21], and some latest approaches. The following
subsection will discuss the working process of each algorithm and their
applications in mitigating MG challenges in detail.

3.1. Evolutionary algorithms

3.1.1. Genetic algorithm
A GA is a nature-inspired approach that simulates Darwin’s natural

evolution theory [60]. A key characteristic of this algorithm is its ability
to solve difficult and complex problems. It enables the optimization by
selecting the fittest individuals through the fitness function and applies
simple crossover and mutation operators [61]. The optimization process
starts with randomly searching the solution space through strings of
integers called chromosomes. An integer within a chromosome/indi-
vidual is known as a gene and represents as a string of 0’s and 1’s. An
initial random population of chromosomes or individuals is created. A
fitness function applies to a randomly generated population, and the
best individuals are identified based on the fitness score. These in-
dividuals further go through crossover, mutation, and reproduction
processes. In reproduction, the most useful chromosomes are kept for
the following population, while others are replaced with new chromo-
somes through crossover and mutation. Crossover is a process in GA
where a few entities of parent chromosomes are interchanged depending
on the crossover point to form two new offspring chromosomes. The
mutation applies to newly formed offspring chromosomes, where spe-
cific gene values alter. For more clear depiction, a step-by-step evolution
process of GA is illustrated in Fig. 3.

Early in the 1990s, GA was employed for the first time to determine
optimal generation patterns of thermal generating units [62]. To deal
with Unit Commitment (UC) and ELD, Ponciroli et al. suggested an
enhanced GA-based strategy called EDGAR [17], in which authors
considered 65 units, including gas, coal, and nuclear plants. The authors
compared the results with previously developed reference codes from
the Argonne National Laboratory. The authors of [63] proposed a
combined sizing and energy management methodology using GA with
MILP to optimize the sizing of MG components and address energy
management problems. A GA with MILP was implemented to optimize
the sizing of MG components and address energy management prob-
lems. Borce et al. proposed a real GA (a variant of GA) to schedule 2
hydro and 4 thermal power units optimally [64], and estimated its
performance on 30 Bus Systems. The suggested method outperformed
two hybrid methodologies, the dragonfly algorithm/PSO and GWO/
PSO. In [65], authors employed GA for determining the optimal size and
location of battery storage and PV system with the aim of reducing the
system’s losses. For this purpose, GAwas simulated sequentially through
a multi-phase Optimal Power Flow (OPF) problem, considering dynamic

Fig. 1. A step-by-step methodology of keyword-based search using Scopus database for finding relevant literature.
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load and PV production curves. The study demonstrated the effective-
ness of GA in finding the optimal location of these distributed resources
despite the varying load and PV conditions. One study proposed a LSTM
model with hybrid parameter optimization approaches, including GA,

adaptive weight PSO, and a global attention mechanism for optimal MG
operation. This model can effectively manage the uncertainties associ-
ated with renewable energy production, electricity demand, and energy
prices [66].

The GA can be used for multi-objective optimization problems. In
one study [67], a multi-objective approach dealing with cost minimi-
zation, pollution reduction, and power losses was proposed. The authors
employed a modified GA named Non-dominated Sorting Genetic
Algorithm-II (NSGA-II). Due to various operational constraints, one-
point crossover and mutation are used to improve the convergence
and computing time. The proposed MG integrates RESs such as PV and
WTs with a diesel generator, and stores surplus energy using storage
options, aiming to power household loads. Ahmad et al. proposed a
multi-objective GA to take into account the maximum energy contri-
bution from MG consisting of PV and biomass, aiming to minimize en-
ergy cost and carbon footprints [22]. In another study [68], an NSGA-II
was presented for optimal scheduling of multiple generation sources
while minimizing the energy cost and power losses as a multi-objective
problem. The authors implemented the proposed approach on an IEEE
33-bus test network consisting of 10 PV units and 4 battery storage units.

The GA has been widely applied in energy systems to integrate RESs,
manage battery charging and discharging, and optimize energy man-
agement operations. It surpasses conventional techniques like Lambda
Iteration and can integrate with other mathematical and heuristics
methods to boost performance. The variant NSGA-II is particularly
effective in solving multi-objective optimization problems. It is
computationally efficient and capable of handling the non-linear dy-
namics of energy systems. Its convergence properties and computational
complexity can be further improved by carefully selecting crossover and
mutation values. Despite GA’s implementation in the energy system, it
has few inherent limitations. It does not always guarantee the global
minimum and provides a solution closer to the ideal, may fall into local
minima, and takes a longer time to converge to the final solution [69].
These challenges of GA can be addressed by other variants like NSGA-II
and other straightforward adjustments. In Ref. [70], the binary-real
coded GA with k-means clustering was proposed to optimize the
scheduling of generating units. The k-means clustering algorithm re-
solves the issue of local minima trapping by partitioning the population
size into dynamically sized sub-populations.

3.2. Swarm algorithms

3.2.1. Particle swarm optimization
Eberhart and Kennedy 1995 proposed PSO, inspired by the flocking

behavior of birds, and called it a swarm intelligent algorithm [71]. In
PSO, flying birds refer to particles; a group of birds/particles is called a
swarm. Each particle in the swarm is a candidate solution having a
fitness function and flies to search for the best solution (food) that is with
best fitness value by exploring the search area. Throughout the search
process, each particle records its local value and global best value from
other particles in a swarm for its fitness function and modifies its ve-
locity and position accordingly. The particles keep updating their ve-
locity and position in every iteration until reach to global solution and
stop changing the position [72]:

Vj(i+1) = wVj(i)+ c1r1(Pj(i) − Yj(I))+ c2r2(Pj(i) − Yj(i)) (1)

Yj(i+1) = Yj(i)+Vj(i+ 1) (2)

The velocity and current position of particle j at iteration i is repre-
sented in the above Eqs. 1 and 2 by V and Y. The hyperparameters c1 and
c2 stand for the respective social and cognitive rates whereas r1 and r2
are any random numbers in the range of 0 and 1. The inertia factor is
represented as w. The whole working process of the PSO algorithm is
illustrated in Fig. 4.

In [73], the authors used an adaptive binary PSO to solve and opti-
mize the generating unit, which is formulated using MILP. The authors

Table 2
Frequently used abbreviations and variables in the manuscript.

Nomenclature

Variables Description Variables Description
i Iteration x*n Minimum cost a MG

achieves (without energy
trading).

n A single MG Cn,g Energy purchasing price
from the electricity grid.

N Set of MG Ck
n,u The cost of user

discomfort.
w Inertia factor Cn,s The cost of operating

energy storage.
r1, r2 Random numbers Cn,e The payment cost to other

MG
j Particle δα

n Priority Factor
ν Total sample values Kn Set of users within a

Particular MG
ρi Actual values E Energy allocation
ρ̂i Predicted values Pj(i) Best position of particle j

at iteration i.
c1 Social rates Yj(i) Current position of a

particle j at iteration i.
c2 Cognitive rates Vj(i) Velocity of a particle j at

iteration i

  
Abbreviations   
Acronym Description Acronym Description
AI Artificial Intelligence ACO Ant Colony Optimization
ANNs Artificial Neural

Networks
CSA Cuckoo Search Algorithm

CNNs Convolutional Neural
Networks

CGT Cooperative Game Theory

DRPs Demand Response
Programs

DP Dynamic Programming

DG Distributed Generation DL Deep Learning
DERs Distributed Energy

Resources
DA Dragonfly Algorithm

DR Demand Response DWT Discrete Wavelet
Transform

ELD Economic Load Dispatch ESS Energy Storage System
EV Electric Vehicle ELF Electric Load Forecasting
EMS Energy Management

System
GA Genetic Algorithm

GWO Grey Wolf Optimization IoTs Internet of Things
LSTM Long Short Term

Memory
ML Machine Learning

MILP Mixed Integer Linear
Programming

MSE Mean Squared Error

MOTs Metaheuristic
Optimization
Techniques

MAS Multi-Agent System

MLP Multi-layer Perceptron MG Micro Grid
MAPE Mean Absolute

Percentage Error
MAE Mean Absolute Error

NSGA-II Non-dominated Sorting
Genetic Algorithm II

NCGT Non-Cooperative Game
Theory

OP Optimization Problem OPF Optimal Power Flow
PV Photovoltaic PSO Particle Swarm

Optimization
PEVs Plug-in Electric Vehicles QP Quadratic Programming
RMSE Root Mean Square Error RF Random Forest
RESs Renewable Energy

Sources
RNNs Recurrent Neural

Networks
RL Reinforcement Learning SVM Support Vector Machine
SA Simulated Annealing SSA Singular Spectrum

Analysis
STLF Short Term Load

Forecasting
SG Smart Grid

UNs United Nations UC Unit Commitment
WE Wind Energy WT Wind Turbine
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included constraints such as operating zone limits, spinning reserves
capacity, and ramp rates minimum up and down time limits. The pro-
posed technique was tested on various standard systems, including the
RTS system, and IEEE 118 bus system considering variable units. A
modified PSO with an equilibrium optimizer is presented in [18] for
solving UC problems. The authors considered deterministic and sto-
chastic loads to test the proposed hybrid approach. A trade-off was
observed between cost minimization and computational time. The
suggested method outperformed the Standard Equilibrium optimizer by
saving 309.95$ and 1951.5$ for the 10-unit and the 20-unit system
under deterministic load. It also performed better than the Standard
Equilibrium under the 10-unit system during a stochastic load and saved
40.93$. The proposed algorithm takes a considerably longer computa-
tional time to complete a desired task. Ibrahim et al. proposed a hybrid
Salp Swarm algorithm and PSO for MG that stabilizes the DC-bus voltage

and provides a constant power supply despite fluctuating load [74]. The
performance is highly dependent on DC-bus voltage. The PSO can be
utilized to find the optimal location of the battery, and its charging and
discharging cycles to ensure optimal and stable power supply. In [75],
the authors proposed a solution for battery location and selection type to
overcome the power mismatch problem through a master–slave meth-
odology that employs a Vortex Search algorithm. The PSO was used in
the slave stage to determine the operational scheme for the batteries,
recommended by the master stage. In [23], a cost analysis of the MG’s
optimal operation is discussed using PSO. The authors determined the
optimal size of battery storage to manage the charging/discharging
cycle and WE. In a recent study, a unique approach utilizing weight-
aggregated PSO was presented to improve the performance and reli-
ability of the distribution system for battery size and charging/dis-
charging scheduling [76]. To overcome the stochastic behavior of
renewable energy production and ensure optimal operation of MG, the

Fig. 2. The pictorial representation of four major AI-based approaches used in improving EMS.

Fig. 3. A step-by-step graphical illustrations of GA evolution process.

Fig. 4. Sequential process of PSO: A visual breakdown of each algorithmic step.
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authors proposed a day-ahead PV forecasting model together with
scheduling operation [77]. A variety of cost optimization techniques are
examined and compared, including PSO, GA, and Harmony Search
Algorithm.

In [78], the authors developed a Multi-stage EMS for smart MG that
integrates PV, ESS, and electrical grid. The Multi-stage EMS is structured
in two layers: the Anticipative Layer, and the Reactive Layer. The first
one utilizes Multi-objective PSO for optimizing power set points based
on predicted energy demand and PV power generation whereas the
latter one compensates for prediction uncertainties by employing real-
time data and Extremum-Seeking optimization. The proposed method
demonstrated significant improvements over existing energy manage-
ment strategies, including reductions in the energy bill, battery degra-
dation cost, and Peak-to-Average Ratio. Another similar study [79],
employed Multi-stage EMS that optimizes power distribution using a
combination of PSO and Extremum-Seeking Controller, resulting in a
10.8% increase in energy bill savings and a 56.1% reduction in Peak-to-
Average Ratio compared to traditional methods. One study proposed
binary social learning PSO (a variant of PSO) in conjunction with a
Parallelization framework to address the UC problem. It allows the
integration of PV & WE with new energy generation technologies, such
as Plug-in Electric Vehicles (PEVs) for charging & discharging [80]. The
proposed methodology improved intelligent PEV charging and dis-
charging management while optimizing resource allocation. To avoid
the local optima problem, an elitist-based PSO was employed with the
characteristics of SA in [81]. The objective was to solve the UC problem
in two layers. The authors employed elitist-based PSO and SA in the
upper layer to mitigate local optima issues, while the lower layer en-
hances search efficiency.

The literature review reveals that PSO integrates RESs and PEVs
efficiently, reduces the operation cost of the generation source, and
optimizes ESSs which reduces the power mismatch problem. It can
manage the charging and discharging mechanism of intelligent PEV at
the cost of high computational complexity, which can be mitigated
through parallelization. Other challenges in its implementation include
local minima trapping, premature convergence, and sub-optimal control
parameter selection that can lead to poor solutions [82].

3.2.2. Ant colony optimization
The ACO is a population-based metaheuristic approach that mimics

the behavior of ants when searching for food. This technique was pro-
posed in the 90’s by Marco Dorigo and was initially used to solve the
traveling salesman’s problem [83]. An ant is a social insect that interacts
with other ants to find food. Ants roam around their colonies looking for
food. When an ant finds food, it spits a liquid called pheromone on the
ground on its way home. Other ants communicate using this pheromone
by smelling it and following the same path to reach the final destination
(food). Every ant spits out a pheromone and as the pheromone amount
increases, it is more likely to get the food. Fig. 5 illustrates the algo-
rithmic step of ACO.

The ACO is effective in solving combinatorial optimization problems
by finding optimal solutions for the cost function. Lakshmi et al. pre-
sented an ACO approach in [19] for tackling the UC problem and
reducing the system’s cost. The authors implemented a 4-unit system
and determined the best combination of generating units in terms of cost
reduction. To check the efficacy of the presented algorithm, the results
are compared with Dynamic Programming (DP), and findings revealed
that ACO performs better than DP. In [84], the authors implemented
ACOwith GA named as evolving ACO, and the goal was to determine the
optimal mix of generating units. The GA was employed to optimize the
ACO parameters and then the later method identified the best schedule
for generating units. This approach was tested on 10 and 20-unit sys-
tems, showing it as a highly cost-effective solution. The proposed
methodology performed better, as it employed evolving parameters
rather than a fixed set. Another study proposed a modified version of
ACO for addressing the UC problem on two different systems [85]. One

with 10 generating units running for 24 h and the other with 4 gener-
ating units running for 8 h. The modified ACO showed better results than
the original version in optimizing the problem and improving the
convergence speed. A nodal ACO that eliminated the shortcomings of
ACO and addressed the UC problem in Ref. [86]. The proposed meth-
odology was tested on the 1996 IEEE Reliability Test System, charac-
terized by 26 generating units. and validation of results showed 0.08%
energy savings than SA and GA. Mengyi et al. proposed an economic
load dispatch strategy using niche ACO for building-integrated MG,
considering the variable generation pattern of RESs [87]. The proposed
method intends to maximize the use of renewable energy while keeping
the balance between demand and supply. The performance of the niche
ACO was compared with traditional methods, and demonstrated sig-
nificant improvements, leading to a decrease of 12.96% environmental
costs, and 14.25% operational costs. To overcome energy shortage risks
and provide energy balancing operation among MG components, the
authors in [88] proposed an ACO-tuned super-twisting sliding mode
controller. The proposed approach has the capability to handle non-
linearities and improves the system response under uncertainties and
variability of load conditions and renewables.

The ACO offers several advantages: it can tackle large-scale UC
problems to solve combinatorial optimization problems and out-
performs mathematical optimization methods like DP by avoiding local
minima traps.

3.2.3. Cuckoo search algorithm
Yang et al. proposed CSA, a nature-inspired algorithm [95], works

based on the parasitism strategy found in some species of cuckoos. The
Lévy flight is added to this algorithm, which enables it to perform better
than simple isotropic random walks [96]. Unlike other birds, the cuckoo
lays its eggs in other birds’ nests and controls the hatching rate by
choosing nests that hold newly laid eggs. The parasitic cuckoo bird lays
its eggs after eating the eggs of its host bird. Some hosts resist this
behavior and build a new nest somewhere else or toss out the foreign
eggs. This cuckoo breeding analogy is utilized for designing CSA, and
each step of this algorithm is described in Fig. 6. Yang divides cuckoo
reproduction into three parts, as described in [97]:

• Eggs act as solutions and are kept in nests.
• The cuckoo keeps its eggs (solution) in a suitable place with a higher
probability of survival. For instance, if the cuckoo’s eggs are more

Fig. 5. A stepwise process of ACO: Describing the behavior of ants for
searching food.
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familiar with the host bird’s eggs (best solution), there is a higher
chance of hatching (next generation).

• The number of host nests is fixed, indicating the population size. The
host birds may find alien eggs (worst case scenario), which they may
toss out of the nest. If not, the eggs mature and pass to the next
generation.

Zhao et al. solved the UC problem using an improved binary CSA to
reduce the fuel and start-up cost of generating units while balancing the
constraints such as minimum up and down time, generation limits,
power balance, and spinning reserve constraints [21]. The algorithm is
designed to choose the right search direction by following a binary
updating mechanism. A heuristic search methodology based on a novel
priority list prevented the algorithm from being stuck in local optima.
The authors validated the performance of the proposed algorithm on
four generating units, and it showed good performance in terms of cost
savings compared to numerical methods. One study solved heat and
power dispatch problems using an adaptive CSA with exponential evo-
lution mutation in [92] to minimize the cost. The authors used an
adaptive parameter approach to enhance its exploration and exploita-
tion capabilities. For this purpose, the authors used Gaussian sampling
during the global search phase and an exponential evolution mutation
approach during a local search. This small modification showed
outstanding performance when compared with simple CSA and expo-
nential evolution mutations on 7, 24, and 48 units.

The authors solved the congestion management problem by sched-
uling generating units using CSA [93]. This work aims to reduce line
overloading while keeping minimum scheduling costs. A study
addressed the UC problem considering vehicle-to-grid integration via
binary real-coded based CSA [94]. This algorithm offers several ad-
vantages, including ease of use and fewer tuning parameters. It can
easily fall into local optima and exhibits a slow convergence [98]. The
overview of AI-based MOTs for improving EMS is summarized in tabular
form in Table 3.

3.3. Stochastic algorithm

3.3.1. Simulated annealing
An SA algorithm is a method that stochastically improves global

searches as it uses randomness in its searching process [99]. This algo-
rithm is based on a metallurgical annealing process, which boosts
metal’s strength by rapidly heating it and then gently cooling it,
improving its flexibility [100]. The annealing process involves excita-
tion of the atoms at high temperatures, followed by gradual cooling of
excitation, which allows them to settle into a new, more stable structure.
It can solve nonlinear objective functions where other existing local
search algorithms are less efficient. Like the Hill Climbing algorithm, it
explores a relatively tiny portion of search space and updates single
solutions until local optima reaches. Unlike Hill Climbing, it can accept
poorer solutions as workable answers [101]. A visual representation of
each SA algorithmic step is presented in Fig. 7.

Zhuang et al. applied the SA method to the UC problem in [89]

Fig. 6. A pictorial representation of CSA: Describing the phenomena of
hatching cuckoo eggs.

Table 3
Overview of AI-based metaheuristic algorithm for optimal scheduling of gen-
eration sources in improving EMS. [Part-1].

Technique Ref Key idea Objective Simulation
tool

GA [17] Solved UC/ED
problem using a GA
variant called
”EDGAR”.

EDGAR findings are
compared with
other methods as
per total cost in the
summer and winter
periods.

Python,
CPLEX

GA [67] The NSGA-II is used
to solve a multi-
objective
optimization problem
where the reduction
of operational costs,
overall emissions,
and power losses are
all simultaneously
sought.

Minimize the
operational cost and
power losses and
improve the
convergence rate by
providing a solution
within 15 min.

GridLab-D

PSO [18] This study suggested
a hybrid approach
called MPSO-EO for
resolving the UC
problem, which
enhances the particle
position update
process to increase
population diversity.

Output power
generation, Cost of
generating units,
Optimal scheduling
operation of
generating units

MATLAB

PSO &
ACO

[81] The authors
combined the
attributes of PSO and
SA and proposed the
ISAPSO algorithm to
solve the UC
problem.

Cost comparison
with other
algorithms for 4 and
10 generating units

MATLAB

PSO [80] The proposed
approach named
SLPSO optimizes the
operation of
generating units
while taking into
account the
integration of energy
sectors

Cost comparison
between other
algorithms for 10
generating units,
Power generation
from renewables,
Optimal scheduling
operation of
generating units
with and without
renewables

NG

ACO [19] Implemented ACO on
four unit systems and
found the optimal
scheduling pattern

Reduced the overall
operational cost of
the system

NG

GA& ACO [84] GA and ACO were
combined to create
the hybrid
methodology known
as evolving ACO,
which was then
tested on systems
with 4 and 10 units.

Minimize the cost
compared to other
algorithms
considering 10 and
20-unit systems.

MATLAB

ACO [85] Modified ACO was
used to address the
UC problem for two
systems—one with 10
generating units
running for 24hrs and
another with 4
generating units
running for 8 h.

Cost comparison
with state-of-the-art
methods, Achieving
optimal generating
scheduling pattern.

MATLAB

ACO [86] To solve the UC issue
and eliminate ACO’s
drawbacks, nodal
ACO is adopted. The
authors investigated
the effectiveness of
the recommended
methodology using

Compare generating
unit cost to various
approaches and
perform better than
GA and SA.

MATLAB

(continued on next page)
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considering 100 units of the test system. The authors considered 100
units as test systems. The approach did not presume any particular issue
structure and is quite flexible in handling UC. The suggested method
produced near-ideal results and demonstrated faster convergence than
DP. In [20], the SA approach integrated RESs and optimized generating
unit operations, aiming to reduce system costs and significantly cut
execution time compared to the DP method, while maintaining

generation plans. A hybrid approach proposed in [90], employed SA and
a mathematical technique named QP to address the generating unit
scheduling problem. In [91], the authors combined SA with an adaptive
schedule to address the UC problem. Adjusting the temperature level
according to the cost enhanced the solution quality and improved the
convergence speed. Test results demonstrated significant improvements
with adaptive schedules as compared to algorithms with static schedules
such as SA and GA.

The intermittent nature of renewable energy production and the
variability of the EV’s load could disrupt the stable power supply
operation of MG. Mei et al. proposed a multi-objective optimization
model for MG design to minimize the economical and environmental
problem using adaptive SA & PSO, considering the stochastic
renewables-based energy production and EV’s load [102]. The sug-
gested methodology used the linear weighting method to utilize the full
potential of renewables and fulfill the energy demand. This approach
employed a two-person zero-sum game, providing better balance in both
objectives. The outcomes of the simulation demonstrated that the multi-
objective linear weighting method approach can reduce the impact of
uncertainties, encouraging full absorption of renewable energy with full
load. A stochastic model considering the regulatory capacity of hydro-
power plants and the stochastic behavior of WE and PV units was pre-
sented in [103]. Hydro-power plants are characterized by nonlinear
behavior and use linearization methods to transform an original model
into a MILP formulation. Then, a two-stage approach was implemented
to solve the UC problem using a heuristic approach. Peddakapu et al.
addressed similar issues of fluctuating power production from renew-
ables, leading to inconsistent power supply and power shortages in
[104].

3.4. Advanced metaheuristic approaches

Some newly proposed metaheuristic optimization algorithms can
effectively handle the power mismatch problem. Most of these algo-
rithms follow swarm behavior in finding the optimal solution.

Hua et al. proposed an energy management strategy for grid-
connected and independent systems using swarm intelligence-based
Promoted Remora Optimization algorithm [105]. The proposed algo-
rithm is the advanced version of the Remora Optimization algorithm
(introduced in 2021), addressing the limitations of local minimum
entrapment and slow convergence. Another swarm intelligence-based
algorithm called the Golden Jackal Optimization algorithm was pro-
posed in [106] to solve multi-objective optimization problems for
optimal scheduling of DERs, aiming to minimize the system cost. The
proposed algorithm resolved the issues of being trapped in local optima
and ensured faster convergence compared to traditional algorithms. The
algorithm depicted satisfactory results in terms of achieving less cost

Table 3 (continued )

Technique Ref Key idea Objective Simulation
tool

26 producing units
and found a 0.08
percent energy
savings over SA and
GA.

SA [20] The scheduling of
generating units
while integrating
RESs and optimized
by the SA approach.

Determine the best-
generating unit
scheduling strategy,
taking RESs into
account.

Not Given

SA [89] The SA was suggested
to solve the UC
problem, where the
authors used 100
generating units as
test systems.

Regarding cost
savings, the
proposed method
outperformed
existing algorithms
and was more
effective at meeting
the challenging
constraint.

FORTRAN

SA [90] Presented a hybrid
approach for
determining the best
scheduling scheme
for producing units
based on QP and
simulated annealing.

Maximum cost
saving as compared
to other approaches

Expert
Systems

SA [91] Applied simulated
annealing and an
adaptive schedule on
10 generating units to
solve the UC
problem.

Minimize the cost
level while
satisfying the
constraints

MATLAB

CSA [21] The UC problem is
addressed by a
suggested enhanced
binary CSA. The
algorithm is given a
binary update
mechanism to assist
in selecting the
proper search
direction, and a
heuristic search
technique can keep it
from getting stuck in
local optima.

Outclass the
conventional state-
of-the-art methods
while lowering the
network’s overall
cost.

MATLAB

CSA [92] A combined adaptive
CSA and Differential
Evolution (DE)
method is proposed
for solving heat and
power dispatch
problems.

Compared to other
CSA-based
variations, lessen
the cost and time
complexity.

MATLAB

CSA [93] Congestion
management
problem was resolved
using CSA through
rescheduling
generating units

Reducing the
congestion cost

MATLAB

CSA [94] Addressed the UC
problem considering
vehicle-to-grid
integration using
binary real coded
based CSA.

Reduce the
operating costs and
compare the
performance with
other algorithms.

MATLAB

Fig. 7. A visual representation of each SA algorithmic step.
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than PSO, Artificial Bee Colony, and Tabu Search algorithm. One study
proposed an Artificial Gorilla Troops optimizer for finding the optimal
sizing of MG’s components [107]. The study aimed to minimize the
energy cost while estimating the probability of loss of power supply.

The Pelican Optimization Algorithm, a newly proposed method
presented in Ref. [108], suffers premature convergence and has the issue
of imbalance between exploitation and exploration capabilities. These
challenges were addressed using the local escaping operator in another
swarm-based algorithm called the Gradient Pelican Optimization Algo-
rithm. The proposed algorithm is implemented in Ref. [24], aiming to
determine capacity planning and optimize the operation of energy units
in order to meet the energy demand of isolated areas. One study inte-
grated emerging technologies including RESs, ESS, EVs, and DRP within
the traditional grid using an improved version of GWO [25], which
utilizes the power of the local escaping operator. The incorporation of
these technologies illustrated the reduction of 15% operational cost. A
recent study applied the GWO [109] demonstrating that it is highly
effective in MG operations. The findings indicate significant achieve-
ments in reducing system costs and carbon footprints, enhancing system
stability, and maximizing the use of renewable energy. An evolutionary
approach named the QRUN algorithm was proposed in Ref. [110] for
energy trading and finding the optimal capacity of distributed genera-
tion components including PV, biomass, and battery storage.

A swarm-based ImprovedMoth Flame Optimization algorithmwith a
decreasing inertia weight strategy was implemented in Ref. [111],
aiming to determine the optimal size of PV, WT, and battery storage
systems. The results showed the supremacy of the proposed algorithm as
it can effectively reduce the net present cost and carbon emission in
comparison with PSO and the original version of the Moth Flame
Optimization algorithm. A Grasshopper Optimization algorithm with
rule-based energy management strategies was proposed in [112], to
determine the optimal size of MG located in Nigeria and to ensure OPF
among its components. To find the optimal economic operation of
interconnected MGs, an Archimedes Optimization algorithm was pro-
posed by Kamel et al. in [113]. The novel feature of the study is the
ability of interconnected MGs to exchange power with each other and
with utility.

To overcome the mismatch problem in MG, authors in Ref. [114]
proposed a dual approach that first forecasts day-ahead PV power and
energy demand using a hybrid approach stationary wavelet transform
and GWO-based least-square Support Vector Machine (SVM). Then
scheduling of MG’s components was performed using the Salp Swarm
algorithm, aiming to minimize the operational cost. The approach can
effectively manage the intermittency of renewable-based energy pro-
duction. A hybrid methodology called Whale Optimization algorithm
and Pattern Search was proposed in Ref. [115] to optimize the MG
operation while considering the stochastic effect of PEVs and RESs. A
multi-objective optimization problem was solved using the Sparrow
Search algorithm proposed in Ref. [116], that aims to minimize the
carbon emission and operating cost of MG to optimize the operation of
MG. The overview of AI-based advanced metaheuristic algorithm for
optimal scheduling of generation sources is presented in Table 4.

In [117], the authors developed a smart energy management unit to
control the energy coming from a multi-energy system, intending to
minimize the operation cost. The control unit employed the Harris Hawk
optimization algorithm that made intelligent decisions based on the
energy demand, electricity price, and generation capacities. One study
proposed the idea of clustering and interconnecting MG in Ref. [118],
where the authors optimize the operation of MG using the Marine
Predator algorithm. The clustering and interconnected feature of the
proposed study allows MG to exchange energy with each other or within
the MG components, enhancing the system’s reliability and stability.

By reviewing the above-mentioned literature, several insights can be
drawn and are listed below:

Table 4
Overview of AI-based advanced MOT for optimal scheduling of generation
sources in improving EMS. [Part-2].

Ref. Technique Objective Features

[105] Promoted
Remora
Optimization

Provide energy
supply at
minimum cost.



Maintain constant
DC bus voltage.

  

Protect batteries
from overcharging
and depletion.

Components
included in the
study are PV,
battery, Fuel
cells, and load.

 

Maximize the
utilization of
renewable
energies.

  

Reduce carbon
emissions.

  

Fast convergence
towards an
optimal solution.

  

The incorporation of
a Levy flight
operator helps
avoid local
minima falling.

  

[106] Golden Jackal
Optimization

Resolve the issues
of MG energy
management
problem.



Minimize the
operating cost.

Components
included in the
study are PV,WT,
battery, PEVs,
diesel generator,
Fuel cells, and
load.

 

Effective manages
non-linear and
non-convex
optimization
functions.

  

Proposed approach
generates 96%
accurate results.

  

Fast convergence
speed.

  

[24] Gradient Pelican
Optimization
Algorithm

Determine the
optimal size of
MG components.

Components
included in the
study are PV,
battery, diesel
generator,
biomass, and
load.

Incorporate local
escaping operator
which helps the
algorithm to avoid
optima problem.

  

The proposed
algorithm
outperformed
other
metaheuristic
optimization
techniques in
terms of accuracy
and computational
efficiency.

  

[25] GWO Optimal
scheduling of
multi-energy
MGs, considering
maximum energy
from RESs



(continued on next page)
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• The swarm-based MOTs are significantly employed in energy man-
agement strategies in order to optimize the operation of MG and
showed excellent results while effectively resolving the issue of
premature convergence and local minima entrapment.

• Considering the outstanding capabilities of classical metaheuristic
algorithms such as GA and PSO, they are commonly used as bench-
marks in various studies.

• Small modifications or improved versions of metaheuristic algo-
rithms have shown considerable results and can be used in energy
management strategies.

• In energy management, along with determining the optimal size of
DERs, finding an optimal location of DERs is also a crucial element to
guarantee the cost-optimized energy operation.

3.5. Discussion

MOTs are advanced search methods crafted to discover optimal or
near-optimal solutions for intricate optimization challenges, even when
faced with incomplete information and resource constraints. Extensive
literature reviewed in the preceding section demonstrates their effec-
tiveness in tackling complex optimization problems such as RES inte-
gration, hybridization and resource allocation, energy efficiency and
stability, cost optimization, constraint management, and multi-objective
optimization.

3.5.1. Integration of technologies
MOTs can effectively optimize the operation of MGs enabling

Table 4 (continued )

Ref. Technique Objective Features

Minimize the
operational cost of
multi-energy MGs.

Components
included in this
study are
combined heat
and power
systems, WTs,
boilers, EVs, and
ESSs.

 

The proposed
algorithm
integrated with
the local escaping
operator, helping
the algorithm to
not fall in local
optima.

  

The proposed study
effectively
incorporates
uncertainties
associated with
stochastic wind
energy
production,
energy price, and
load demand.

  

[110] QRUN
Optimization

Determine the
optimal size of
the energy system
while meeting the
electricity
demand of
Alrashda village.

Components
included in this
study are PV,
biomass, and
batteries.

The proposed study
integrated the
RUN algorithm
with quantum
mechanics to
enhance the
exploration and
exploitation
capabilities.

  

The algorithm
provides faster
convergences
towards the
desired goal.

  

[111] Improved Moth
Flame
Optimization

Determine the
optimal size of
generation
sources while
minimizing net
present cost, loss
of load, and
carbon emission.

Components
included in this
study are PV,
WTs, and
batteries.

The proposed study
integrated the
RUN algorithm
with quantum
mechanics to
enhance the
exploration and
exploitation
capabilities.

  

The proposed
algorithm
considers
decreasing inertia
weight strategy
which avoids the
problem of
premature
convergence.

  

[112] Grasshopper
Optimization
Algorithm

The proposed
algorithm aims to
find the optimal

Components
included in this
study are PV,

Table 4 (continued )

Ref. Technique Objective Features

configuration of
MG components.

WTs, diesel
generators, and
batteries.

The proposed
algorithm
outperforms other
optimization
techniques by
significantly
reducing the
capital cost of the
designed system.

  

[114] Salp Swarm
Algorithm

To reduce overall
energy cost, the
proposed study
ensures the
optimal operation
of MG
components by
handling the
intermittency of
renewable energy
production and
scheduling
generating units.

Components
included in this
study are PV,
WTs, diesel
generators, grid,
and ESSs.

Forecasts day-ahead
PV power and
energy demand
using a hybrid
approach
stationary wavelet
transform and
GWO-based least-
square SWM.

  

The proposed
algorithm is
compared with
PSO which
determines the
optimal
scheduling
pattern.
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seamless integration of cutting-edge technologies such as PV, WT, ESSs,
and PEVs. This integration and optimized operation ensure cost-
effective energy production, enhance efficiency, and boost system reli-
ability. In [110], the authors utilized battery storage to store surplus
energy during off-peak periods for later discharge during peak demand.
One notable study incorporated PEVs and optimized their charging and
discharging strategies using PSO [80]. Despite their ability to generate
clean and cost-efficient energy, RESs are constrained by intermittent
power supply due to weather dependency. Solar energy stands out for its
low maintenance, stable operation, and high irradiance during peak
times, yet faces challenges such as year-round sunlight availability and
insufficient grid infrastructure for bidirectional power flow. In [5], the
authors explored the integration of AI with smart grids to optimize
hydrogen energy usage, highlighting advancements, challenges, and
potential breakthroughs in generating, distributing, and utilizing
energy.

3.5.2. Hybridization and resource allocation
Hybridization involves blending multiple techniques to harness the

strengths of each while mitigating their weaknesses. Numerous studies
have applied hybrid methodologies, such as combining GA with MILP to
optimize MG component sizes and devise energy management strategies
[63]. Another approach utilized a binary social learning PSO with a
Parallelization framework to optimize generation patterns and integrate
technologies like PV, WE, and PEV charging/discharging [80]. In [92],
proposed an adaptive CSA with exponential evolution mutation to
minimize costs in heat and power dispatch, enhancing both exploration
and exploitation capabilities. In the reviewed literature, it is observed
that hybrid methods provide better results than individual techniques by
taking advantage of the novel features of each technique and over-
coming the challenges. They optimize the MG operation by selecting the
appropriate source size and their optimal location. It also includes en-
ergy storage optimization to balance demand and supply, lower reliance
on costly energy sources, and minimize carbon emissions by choosing
the optimal size and position of storage devices.

3.5.3. Energy efficiency and stability
Based on the literature reviewed, combining a traditional grid with

RESs is proposed to enhance overall efficiency and could prove
economically viable at a large scale. The integration of RESs brings the
dilemma of variability and intermittent nature of energy production in
different weather conditions. ESSs, act as reliable backup options by
storing excess energy during periods of high generation and providing
energy in low generation period [110], countering the intermittency of
RESs. The energy storage optimization plays a crucial role in balancing
energy supply and demand. The key considerations in optimizing ESSs
include cost, lifespan, and matching energy demand with supply. Opti-
mizing the utilization of these energy sources can address the challenges
associated with high penetration of renewables, potentially improving
grid reliability, flexibility, and stability issues [119]. Additional benefits
include reduced power losses [120], lower carbon footprints [121],
minimized upfront costs [122], and prevention of feeder overloads
[123]. Meanwhile, diesel engines offer low initial investment costs but
are burdened with high operational expenses and substantial carbon
emissions.

3.5.4. Cost optimization
Many reviewed studies considered it as a primary objective function

aiming to save money by reducing energy costs with the incorporation of
DERs in traditional grid. It helps the utilities by lowering the burden on
generating sources. Cost optimization refers to identifying the optimal
operational cost of energy-generating sources, including traditional
energy sources, RESs, and ESSs, while satisfying the constraints and
fulfilling the consumer’s energy demand. Better EMS and resource
allocation are required to get the full economic advantage.

3.5.5. Constraints management
MOTs can effectively solve complex optimization problems consid-

ering some diverse real-world constraints. These algorithms can opti-
mize problems with equality & inequality constraints, as well as non-
linear & non-convex constraints, making them excellent for practical
applications. In the MG domain, one study employed PSO to determine
optimal generation patterns while satisfying constraints including
spinning reserves capacity, operating zone limits, and ramp rates min-
imum up and down time limits [73]. In [21], the authors addressed the
generating unit’s scheduling problem while respecting the constraints of
minimum up and down time, generation limits, power balance, and
spinning reserve. The advantages and disadvantages of AI-based nature-
inspired optimization techniques and suitable tools for solving optimi-
zation problems are discussed in Table 5.

3.5.6. Multi-objective optimization
According to the studied literature, the improved or modified ver-

sions of MOTs are significantly being used for addressing multi-objective
optimization problems. These objectives involve the minimization of
power loss, and carbon emissions along with the primary objectives of
grid efficiency and stability. A variant of GA called NSGA-II has been
extensively employed in literature for solving various optimization
problems [68]. The enhanced version of the GA improves issues related
to premature convergence and computing complexity.

The upcoming section thoroughly discusses the role of ML and DL
approaches in improving energy management strategies through load
forecasting, renewable energy prediction, and weather forecasting. It
starts with an explanation of essential prerequisites such as dataset
preparation and a discussion of performance evaluation metrics.

4. Data Collection and Preparation

ML and DL models are predominantly being utilized in energy sys-
tems for forecasting applications. These include predicting energy de-
mand, energy generation from RESs, electricity prices, and weather-
related parameters such as wind speed and solar irradiance. Before
delving into the discussion of each application, it is essential to address
several key steps and terminologies necessary for ML and DL models.
These involve dataset collection, pre-processing, feature engineering,
and some performance metrics for model evaluation.

4.1. Dataset collection

Data collection is a fundamental and costly task in ML and DL ap-
plications. The quality and quantity of data significantly impact the
model’s performance. As data quality and quantity increase, the model
produces fewer erroneous results and improves accuracy. In forecasting
applications, data can be collected directly through specific devices or
from publicly accessible historical datasets, such as meteorological and
past energy consumption data. In many cities, weather stations are built
to measure and monitor various weather-related parameters using Su-
pervisory Control and Data Acquisition systems [124]. The collected
data at this stage is in raw form, often containing missing values, out-
liers, and duplicates. It must undergo a pre-processing step to be con-
verted into a suitable form for model training, which will be discussed in
the next section.

4.2. Dataset pre-processing

After data collection, data pre-processing transforms raw data into a
usable format. This process encompasses several steps, including data
normalization, filling in the missing values, removing outliers and du-
plicates, adjusting data resolution, and data decomposition.

4.2.1. Data normalization
Data normalization is converting all the features of a dataset to a
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common range, typically between 0 and 1, to ensure uniformity. This
involves adjusting the mean to 0 and the standard deviation to 1. In ML,
unnormalized data can negatively impact the model’s learning, poten-
tially causing issues such as overshooting. The model may require more
time to converge to a local minimum or may exhibit unstable conver-
gence [125].

4.2.2. Filling the missing values
There are essentially two strategies for handling missing values in a

dataset. One approach is to ignore the missing values if their proportion
is relatively small. The other strategy involves imputing the missing
values of each input feature with its mean value.

4.2.3. Changing data resolution
The term ”data resolution” refers to the frequency at which data is

collected such as per second or minute. Adjusting data resolution is often
necessary when a learningmodel needs to be trained for predictions over
longer time horizons. The literature commonly discusses the averaging
method for this purpose [125]. The authors in [126] utilized the aver-
aging technique to transform data resolution from 15 min to 1 h,
enhancing the model’s performance.

4.2.4. Data decomposition
Data decomposition is primarily used for time series data, involving

the breakdown of this data into various components to capture sea-
sonality and trends [125]. Many methods for decomposing time series
data have been proposed in the literature, with the Discrete Wavelet
Transform (DWT) being the most efficient and widely applicable. For
example, Mishra [127] and Memarzadeh [128] successfully utilized
DWT to decompose PV power and wind speed data into additional sub-
categories.

4.3. Feature engineering

Feature engineering is a critical phase in developing predictive ap-
plications with ML algorithms. This process entails transforming raw
data features into representations that optimize the performance of the
model [129]. It addresses challenges such as data sparsity, feature
redundancy, and high dimensionality. Feature engineering is catego-
rized into feature extraction and feature selection, which are explained
in the subsequent section.

4.3.1. Feature extraction
Feature extraction is the process of extracting relevant information

or features from the raw data and transforming them into a supported
format for ML or DL algorithms. It aims to keep the most important
information intact, offering computational advantages. It may involve
manipulating the dataset by adding new features or separating irrele-
vant information.

4.3.2. Feature selection
This step represents the final stage, crucially involving the selection

of a compact subset of features from high-dimensional datasets and the
elimination of extraneous and irrelevant features. Three principal ap-
proaches for feature selection exist: filter, wrapper, and embedded
[130]. The filter method assesses and categorizes features based on their
correlation with the target value. The wrapper method also called the
closed-loop approach, selects random features, evaluating their perfor-
mance based on the predictive accuracy. The iterative process continues
until the optimal features are identified. The embedded approach is
seamlessly integrated within the ML algorithm, exclusively selecting
features that significantly contribute to the model’s performance.
Recent literature has proposed various methods for performing dimen-
sionality reduction, including Principal Component Analysis [33] and
the Fourier Transform Frequency Spectrum [131].

4.4. Performance metrics

Performance metrics evaluate the effectiveness of ML/DL models.
They provide insights into how well a model performs on a specific task.
ML tasks are typically divided into two categories: regression and clas-
sification. Regression models are utilized in forecasting applications,
where the output consists of continuous values. The primary evaluation
metrics for regression include Mean Squared Error (MSE), Root Mean
Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean
Absolute Error (MAE), and R-squared error [132]. The subsequent sec-
tion discusses these metrics and their respective formulations.

4.4.1. Mean squared error
The MSE computes the average of the squared differences between

the actual and predicted values, as represented by the following formula.
The primary drawback of MSE is that its squaring component dispro-
portionately amplifies small errors.

Table 5
Advantages, and disadvantages, of AI-based nature-inspired optimization techniques and suitable tools for solving optimization problems.

Aspect Detail

Advantages
Robustness & Flexibility Address complex constraints and minimize objectives, considering the dynamic nature of RESs.
Scalability They can be used in both small residential and large grid-connected renewable energy systems.
Multi-Objective Optimization Many HOTs can solve multi-objective optimization problems, optimizing criteria like cost, power losses, and environmental impact

simultaneously.
Parallel Processing Capability Combining optimization techniques can accelerate the optimization process.
Ease of Implementation These techniques are easy to implement which can reduce both time and cost.
Disadvantages & Limitations
Computationally Intensive Can be computationally expensive for high dimensional problem size.
Convergence Speed Many techniques converge slowly, reaching to the ideal solution.
Parameter Sensitivity Performance depends on carefully selecting parameters.
Stochastic Nature These techniques yield stochastic results that may be incorrect, necessitating multiple runs for accuracy.
Type of Optimization Problem
(OP)

Tools

MATLAB R APOPT MOEA
Framework

Microsoft
Excel

Python GAMS AMPL IBM ILOG
CPLEX

Gurobi

Nonlinear OP ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ×

Linear OP ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
Single Objective OP ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ×

Multi Objective OP ✓ ✓ × ✓ × ✓ ✓ ✓ ✓ ×

OP with Non-linear/Linear
Constraints

✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ×

OP with Large Decision Variables ✓ × × × × ✓ ✓ ✓ ✓ ✓
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MSE =
1
ν
∑ν

i=1
(ρi − ρ̂i)

2 (3)

In the given equation, ν represents the total sample values. The actual
values are denoted by ρi, while the predicted values are denoted by ρ̂i.

4.4.2. Root mean square error
The RMSE is obtained by taking the square root of the MSE. This

error metric mitigates the effect of the squaring factor in MSE, providing
a more interpretable measure of error. Mathematically, it is represented
as follows:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
ν
∑ν

i=1
(ρi − ρ̂i)

2

√

(4)

4.4.3. Mean absolute error
This evaluation metric measures the average absolute difference

between the actual and predicted values and is represented by the for-
mula below. It is more robust toward outliers, providing a more accurate
representation of the degree of error.

MAE =
1
ν
∑ν

i=1
|ρi − ρ̂i| (5)

4.4.4. Mean absolute percentage error
It is also an important measurement of error and is calculated by

taking the percentage of MAE.

MAPE =
1
ν
∑ν

i=1
|
ρi − ρ̂i

ρi
| × 100 (6)

4.4.5. R squared error
It describes the proportion of total variation in dependent variables

and can be explained by the independent variables. It is calculated using
the following equation.

R2 = 1 −

∑ν

i=1
(ρi − ρ̂i)

2

∑ν

i=1
(ρi − ρi)

2
× 100% (7)

ρ is the mean of total sample values.

5. Machine Learning and Deep Learning Approaches for
Improving Energy Management System

ML is a sub-field of AI focused on developing algorithms that enable
computers to learn autonomously from historical data and experiences.
”Machine learning” was coined in 1959 by an American scientist Arthur
Samuel [28]. The primary goal of ML is to simplify human tasks, espe-
cially those that are challenging for humans to accomplish accurately
and promptly. Whereas DL is another subfield of AI that is based on
Artificial Neural Networks (ANNs) where higher-level features are
automatically extracted from data using multiple layers. In literature,
the ML and DL techniques have been widely applied in smart grids,
aiming to provide stable power operation, maximize the utilization of
renewable energy, and reduce energy costs. The ML and DL models
improve energy management strategies by contributing to load demand
forecasting, UC, scheduling energy resources, and forecasting renewable
energy generation.

In order to predict accurate results using ML or DL models, it is
required to train the models with enough data. The dataset character-
ized by weather-related parameters and energy demand values is par-
titioned into three sub-datasets for model training, validating, and
testing. This partitioning can be in different ratios. In most cases, 70%
data is allocated for model training, whereas the remaining 30% data is

further divided into 15% for model validation and 15% for model testing
[133]. Model deployment is performed in the last stage that renders the
predicted estimated renewable energy production, and energy demand.
The complete workflow process from data acquisition to model
deployment is elucidated in Fig. 8.

5.1. Load forecasting

To ensure accurate scheduling of energy sources, utility companies
heavily rely on factors such as STLF (hourly and day ahead prediction),
the minimum and maximum up and down times of generating units, and
capacity. In load demand forecasting, utilizing input data from the
preceding year or several days before the energy consumption data is
common. A fuzzy linear regression model was proposed in [134] for
STLF during summer and winter weekdays and weekends. Model results
indicated variations of 5% for weekdays and 20% for weekends between
forecasted and actual values. In [30], the authors utilized polynomial
regression techniques to forecast a day ahead hourly load demand,
comparing the results with those obtained through linear regression.
Statistical parameters were employed to identify anomalies within the
dataset based on forecasted errors. Moshoko et al. introduced a super-
vised learning-based linear regression methodology for STLF [135].
Leveraging forecasted results, the authors employed MILP to optimize
scheduling patterns for power-generating units. Such ML techniques
exhibit the potential for computational time reduction. The authors in
Ref. [136] proposed a DL-based load forecasting method to optimize
energy production planning during the years 2020 to 2040. This model
was designed for Mexico’s electrical system. Through accurate load
forecasting, the proposed study achieved multiple targets such as cost
reduction of up to 11.02%, 28.27% of emission reduction, and 20.23%
of low water usage.

The authors in Ref. [31] presented a hybrid approach to amalgamate
RF with kernel density estimation for short-term hourly load demand
forecasting. An RF-based model is trained on historical data, followed by
probability prediction using kernel density estimation, leveraging indi-
vidual tree outputs from the forest. To manage the charging and dis-
charging of EV loads, Zafeirios et al. forecasted EV load curves using a
range of methodologies, including statistical, ML, and DL approaches,
implemented on various datasets [137]. The authors evaluated the
performance of each approach and the findings revealed that the ML
approaches are better suited for this task. Fig. 9 illustrates the perfor-
mance trend of each approach using the performance metrics MAE and
RMSE across two different datasets. XGBoost and the MLP are efficient
and reliable methods, producing lower error rates.

Zulfiqar et al. proposed a hybrid approach that combines deep re-
sidual CNN and LSTM networks to forecast the short-term electricity
load of individual households [33]. The deep residual CNN extracts
spatial features while the LSTM learns through temporal information
presented in the electricity dataset. The authors evaluated the proposed
approach using two datasets and compared its performance with several
state-of-the-art ML and DL models. The error rates of the forecasted
results are illustrated in Fig. 10, demonstrating that the proposed
approach achieved significantly lower error rates in load forecasting.
High penetration of renewable energy causes the power instability
problem in the traditional grid. A study proposed a novel intelligent wild
geese algorithm optimized DL approach (IWGADL-STLF) for STLF in
MGs [138]. This approach used an attention-based Bi-directional LSTM
model and achieved RMSE of 0.307, MSE of 0.094, MAPE of 1.198, MAE
of 0.082, and R-squared score of 0.988.

5.2. Renewable energy forecasting

The uncertainty associated with predicting RESs accurate output can
significantly impact the UC problem, posing a significant challenge to
MG planning and operation. RESs provide significant environmental and
economic benefits. Their integration into smart grids is hindered by the
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data’s volatility and randomness. In [139], a hybrid approach
combining the features of Singular Spectrum Analysis (SSA), CNN, and
LSTM was proposed to forecast solar power generation for 1-h, 2-h, and
24-h ahead intervals. This approach aimed to leverage the spa-
tial–temporal dependencies present in the solar power generation
dataset. The proposed approach demonstrated excellent results by
effectively utilizing three distinct methods. The SSA was employed in
multiple stages, embedding the data into a higher-dimensional space,
extracting salient components through singular value decomposition,
and reconstructing the data using those extracted elements. The data
was processed through a 1D convolutional layer (secondmethod), which
extracts sub-sequences from sequences using filters or kernels, identi-
fying local trends and enhancing the network’s ability to recognize
temporal characteristics. The authors implemented an LSTM architec-
ture (third method), which learns long-term dependencies in the data
and predicts solar power generation using three gating mechanisms. To

ensure the efficacy of the proposed method, it was compared with three
other hybrid methodologies: CNN-LSTM, SSA-LSTM, and SSA-CNN. The
forecasting error rates of the SSA-CNN-LSTM model, illustrated in
Fig. 11, demonstrate the excellent performance of the proposed
approach. A fundamental LSTM architecture is illustrated in Fig. 12. The
LSTM network is a variant of RNN designed to mitigate the vanishing
gradient problem inherent in traditional RNNs. This is achieved through
the use of three gates: the input gate, the forget gate, and the output
gate, which collectively regulate the flow of information within the
network. The input gate ensures which information should be kept in the
memory cell. The forget gate decides which information is less relevant
and should not be added to the memory cell. The output gate controls
the memory cell by only giving the relevant information. These gates
enable the LSTM to determine the extent of information to retain or
discard from the input sequence, making it particularly effective for
capturing long-term dependencies.

An accurate renewable energy prediction is essential for effective
planning and management. The authors in the study [140] combined
Echo State Networks for nonlinear mapping with CNNs (ESNCNN) for
accurate renewable energy prediction. The model outperformed existing
methods and reduced the MAE by 5.49%, MSE by 5.01%, and RMSE by
3.76%. A day-ahead forecasting is crucial for autonomous control of
energy systems. The study [141] proposed an ensemble model with
CNN, gated recurrent unit, and BiLSTM for day-ahead forecasting of
multi-energy systems. These models were evaluated using real-world
data from Arizona, USA and the ensemble approach achieved the
lowest RMSE of 1.98 and MAE of 4.12. Recent research emphasizes
deploying ramping products to mitigate uncertainties in energy demand
and RESs. A study by Yurucsen et al. [142] proposed a methodology for
grid development arrangements and formulating grid balancing strate-
gies, considering PV power integration. The authors devised association
rules by employing an apriori algorithm for PV ramp power direction
maps to analyze spatiotemporal patterns.

Fig. 8. The flow process of machine learning life cycle from data acquisition to model deployment.

Fig. 9. Performance analysis of various forecasting approaches to forecasting
EV load curve using Palo Alto and Crowdcharge datasets [137].

Fig. 10. Performance analysis of various forecasting approaches to forecasting
energy consumption evaluating on hourly and daily datasets [33].

Fig. 11. Performance analysis of various DL approaches to forecasting solar
power, employing different metrics [139].
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In Ref. [143], the authors addressed the variable and intermittent
nature of the energy production by developing a short-term WE fore-
casting model for a 400-MW offshore wind farm. This study showed the
effective integration of multiple DL techniques utilizing the Laser Im-
aging Detection and Ranging (LiDAR) and SCADA data, achieving a
prediction accuracy loss of 6.8% and an error ranging from 2.11 to
10.95%. The study demonstrated that the integrated approaches
enhance the robustness and generalization of the prediction model by
considering the environmental factors and mechanical data of Wind
WTs. The UC problem was addressed in Ref. [144] to minimize pro-
duction costs while incorporating renewable energy and storage units
with traditional grid. The authors developed forecasting models to
predict renewable energy such as a Markov-based model for solar ra-
diation prediction and a statistical method named auto-regressive inte-
grated moving average model for wind speed forecasting. Based on the
forecasted results the DP optimization technique with ANN was used to
optimally schedule the generating units.

5.3. Weather forecasting

Weather resources such as solar irradiance, ambient temperature,
and wind speed vary from location to location at different times of the
day. An accurate weather forecast is essential for energy management
applications to take into account spatiotemporal dependencies in
weather data. In Ref. [145], the authors forecasted solar irradiance and
wind speed through a multi-headed Convolutional LSTM (CLSTM) that
uses three CNNs combined with PSO, referred to as MHCLSTM-PSO,
which supports solar and wind energy generation prediction. The
dataset used in this study consisted of temperature, pressure, wind
speed, wind direction, solar irradiance, and other periodic measure-
ments such as day of the year, month of the year, and season of the year.
Each of the three CNNs extracts features from the data and learns

complex patterns. The output of each CNN is then separately fed into
three LSTM networks, which learn long-term dependencies in the data
and forecast solar irradiance and wind speed. The temporal data are
trained using the MHCLSTM layer. The outputs of all LSTM networks are
concatenated and optimized using PSO. The proposed approach ach-
ieved a significant accuracy of 93.54%, which is considerably high as
compared to the 72.52% of CNN, 78.16% of LSTM, and 85.56% of
CLSTM. The comparative analysis of each approach with the proposed
MHCLSTM-PSO in terms of lower error rates is presented in Fig. 13.

Feng et al. proposed a hybrid PSO and extreme learning machine
algorithm to predict the global solar radiation in China [146]. After
rigorous training and testing of the model, the findings demonstrated
that the northwestern region has more potential for solar energy pro-
duction, having abundant solar radiation. One study employed a hybrid
K-nearest neighbors and ANNs approach for short-term hourly solar
irradiance prediction [147], focusing on optimizing MG operation while
integrating PV energy. The proposed methodology achieved MAE of 42
W/m2 and RMSE of 242 W/m2. Jasmin et al. addressed the stochastic
variability inherent in solar irradiance and its impact on power gener-
ation [148], proposing a Reinforcement Learning (RL) based ANNs
approach to optimize day-ahead schedules for generating units. This
methodology adeptly manages the intermittent nature of PV energy
production.

5.4. Scheduling energy sources

Unit scheduling problem often faces computational burdens when
integrating large number of energy resources. A logistic regression
model was proposed in Ref. [149] to mitigate computational burdens.
This model was trained on past energy demand data and UC scheduling
patterns and demonstrated efficacy across various power system stan-
dard test cases, including IEEE 24, 73, and 118 bus systems, notably

Fig. 12. An internal fundamental structure of LSTM model.

Fig. 13. Performance analysis of various DL and hybrid approaches to forecasting solar irradiance and wind speed, using different metrics [145].
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excelling in computational efficiency. In Ref. [150], the authors utilized
RL for real-time scheduling optimization in EMS. They employed deep
Q-learning and deep policy gradient methods to execute multiple actions
simultaneously. The proposed approach incrementally updates the Q-
value to mitigate the computational cost. The findings indicated that
real-time feedback mechanisms can promote efficient energy usage be-
haviors among consumers. A multi-step strategy employing deep Q-
learning and MILP techniques for solving the UC problem was proposed
in [151]. Despite the advancements, it is important to acknowledge that
Q-learning approaches encounter scalability issues when used with
more than 10 generating units.

In Ref. [152], a deep RL algorithm was proposed for scalable power
scheduling optimization. The problem was modeled as a Markov deci-
sion process in a multi-agent simulation and achieved superior

performance across various test systems with up to 100 generating units.
Another study in [153] also applied a deep RL algorithm using MILP and
deep Q-networks for optimal energy scheduling to enforce strict oper-
ational constraints like power balances. Navin et al. introduced a novel
solution to the UC problem leveraging fuzzy RL technique [154], termed
as a multi-agent fuzzy RL. This framework empowers individual
generating units to optimize their operations over 24 h to fulfill load
demands. This approach eliminates the need for prior system knowl-
edge. The methodology involves fuzzification of the UC problem fol-
lowed by RL-based optimization. Experimental validation across 10
generating units demonstrated the superiority of this approach over
existing methodologies.

Several studies have suggested RL-based tree search techniques for
the UC problem. Patrick et al. proposed a guided tree search RL-based

Table 6
Overview of DL approaches in forecasting applications.

Ref. Model(s) Architecture Data
resolution

Outcome Application area

[158] ANN ☆Three-layer architecture Levenberg–Marquardt
approach Hyperbolic tangent Number of neurons in
the hidden layer is determined using heuristic
simulation. Input layer size depends on the number
of input parameters. Output layer had one node.

10 min The model topology with only one
measurement of wind speed and the latest
wind power showed excellent results in
comparison with other topologies. The
calculated MAPE are 3.6502%, 3.0706%,
and 5.7557% in August 2002, November
2002, and January 2003.

Wind energy forecasting and
incorporated forecasting results
into UC scheduling.

[159] ANN & GA ☆Three-layer fully connected network Sigmoid
activation function The number of neurons in the
input layer depends on the number of hours. Output
layer neurons are determined by the total number
of generators and hours. Model trained by
backpropagation using gradient descent.

3 h This hybrid approach can significantly
reduce the processing time and cost in
comparison with SA. Provides a near-optimal
solution.

Provides optimal schedules of
generating units.

[160] ANN ☆Six-layer architecture 4 hidden layers are used.
The sigmoid activation function is employed to
smoothen the input of the first hidden layer.
Weights are updated by back-propagation using
gradient descent. Swish activation function is used
at the end of the last hidden layer to classify the
output.

1 h In comparison to the scenario-based
stochastic approach, the simulation findings
indicate that using the forecasting method
reduced operational expenses by 10.84%.

Predict wind speed. Forecast solar
irradiance. Forecast energy
demand.

[161] ANN ☆Single-layer architecture An input layer includes
a unit for each element of the data set. The hidden
layer contains 30 neurons, and the output layer has
one neuron. Sigmoid activation function. The
model is trained by the decomposition algorithm
DEC.

1 h The suggested method performs better than
other techniques. For instance, in one
situation, the error of the suggested method
is 6.63%, which is lower than ARIMA’s error
of 10.18%, support vector regression’s error
of 9.66%, and long short-term memory
networks’ error of 12.51%.

Forecast short-term hourly energy
consumption of the hospital
building, and the whole campus of
Politecnico di Milano.

[162] ANN ☆Three-layer architecture Levenberg–Marquardt
approach Haar and Daubechies wavelet
time–frequency analysis is used to fix the neurons.

10 min In 90.60% of the analyzed sample days, the
recommended forecaster’s deviation was
under 4%. The final forecaster’s RMSE was
35.77 W/m2, which was a 37.52%
improvement in accuracy over the persistent
benchmark model.

Forecasted solar irradiance and
solar energy for various day
conditions including sunny days,
partially cloudy days, and cloudy
days.

[163] RNN-LSTM ☆Three-layer architecture One input layer, one
hidden layer with a feedback loop, and one output
layer. Hyperbolic tangent activation function.

1 h The RNN outperforms the SVM method by
providing more reliable and safe results with
an average error of less than 5%.

Forecast the wind power
generation.

[164]
LSTM ☆Long short term memory The learning rate of

0.005. The look-ahead horizon and batch size are 6
and 64. Confidence level of 0.95. Time step of 1.

15 min Make a comparison between deep learning
methods and ARMA (conventional time
series method). ARMA provides less
satisfying results. LSTM gives a minimal
average cost (4.56 × 106$) than RNN and
GRU

Forecasts the future energy
consumption and wind power
generation.

[165]
LSTM &
SARIMAX

☆Long short term memory The number of hidden
layers is 3. The number of neurons per hidden layer
is 60. Batch size = [1, 32, 64] Optimizer types=
[Adam, RMSprop] Activation function is Sigmoid.

1 h The suggested hybrid model (LSTM-
SARIMAZ) could forecast both the load and
wind speed more precisely than existing
models. It could lower the RMSE for both
wind speed prediction and load forecasting
by 10.5% to 16.6% and by 22% to 44%.

Forecast the 3 days ahead energy
demand and wind speed.

[33] Deep
Residual
CNN& LSTM

☆Deep Residual CNN & LSTM The architecture
contains 9 Conv layers, 2 LSTM layers, and 2 Dense
layers.

1 h The proposed approach showed excellent
forecasted results with an MAE of 15.65%,
MSE of 8.77%, and RMSE of 14.85%.

Short-term load forecasting.

[139] CNN& LSTM ☆CNN & LSTM The architecture consists of
Conv1D, MaxPooling1D, LSTM, dropout, and Dense
layer.

1 h The proposed approach showed excellent
forecasted results with 1 h ahead prediction
and MAE of 0.1202, with 2 h ahead
prediction and MAE of 0.1400, and with a
day ahead prediction and MAE of 0.1774.

1 h, 2 h, and day ahead prediction
of solar power.
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approach to mitigate the exponential explosion resulting from the
escalating number of generators [155]. The authors accounted for the
unpredictable nature of the load and tested the method on 30 genera-
tors. According to the findings, the guided tree search consumes less
computational time while yielding optimal solutions regarding oper-
ating expenses. This approach faces challenges such as shallow search
depth and run-time variability, which was addressed in [156]. The au-
thors employed guided A* and guided IDA* to tackle these challenges.
Guided A* utilizes a unique heuristic function and a priority list,
resulting in a 94% reduction in runtime. Guided IDA* addressed run-
time variability by replacing the fixed parameter depth with a time
budget constraint, leading to 1% cost savings over Guided UCS despite
similar computational costs. In [157], two RL-based algorithms, namely
tree search and approximate policy iteration methods were presented to
solve the day-ahead UC problem while considering 12 generating units.
The UC problem is formulated as a Markov decision process to find a
low-cost solution for generation scheduling. The proposed methodology
demonstrated promising results by significantly reducing the runtime
(2.5 min) compared to SA, achieving a 27% cost reduction. An overview
of discussed studies of ML and DL in the context of energy management
is presented in Table 6.

By reviewing the above literature in the context of forecasting and
optimal scheduling of generation sources, several useful insights are
deduced and described below:

• STLF instead of long-term forecasting is the widely adopted type of
forecasting in the context of achieving optimal scheduling operation.

• Forecasting renewable generation such as solar and wind energy
significantly depends on the spatiotemporal characteristics of the
dataset which can affect the prediction accuracy of renewable energy
production. The hybrid DL methods such as CNN for local temporal
patterns and LSTM which remembers long-term dependencies, can
effectively address this challenge to support the optimized energy
production.

• In order to improve DL model’s performance, metaheuristic algo-
rithms are now being used for hyperparameter tuning.

• Reinforcement learning can address the exponentially increasing
computational cost associated with an increasing number of gener-
ation sources through continuous Q quality value.

5.5. Discussion

The reviewed literature demonstrates that DL architectures exhibit
exceptional performance owing to their ability to identify highly com-
plex and nonlinear relationships between inputs and outputs. Several
technical aspects must be considered when implementing a DL archi-
tecture, which are discussed in the subsequent sections.

5.5.1. Data quality and security
In forecasting applications, data quality, and quantity play crucial

roles in training ML or DL models, with their performance significantly
depending on these attributes. Data availability is often limited in real-
world environments due to security and privacy concerns. When
building a forecasting model, access to a large volume of high-quality
data is essential, as poorly measured or incomplete data can lead to
inaccurate predictions. Data is typically gathered using sensors, which
may generate duplicate values and can experience interruptions due to
sensor blockages. Incorporating advanced technologies such as IoT and
blockchain into MG can enhance the data collection process and provide
robust data security.

5.5.2. Feature engineering
Feature engineering is a crucial concept that enhances model pre-

diction accuracy. It involves incorporating additional features into
datasets beyond the primary ones, which significantly influence the
prediction. Weather parameters such as solar irradiance and wind speed

are primary factors when considering energy generation from PV and
WE. Additional parameters like humidity, air temperature, atmospheric
pressure, wind direction, and other weather conditions can significantly
impact forecasting results and should be considered in the forecasting
model.

5.5.3. Computational cost
Most of the literature employed DL-based approaches, especially

ANNs for energy system applications. Other popular architectures in the
literature are RNNs [163] such as LSTM [166]. In forecasting applica-
tions, many RNNs suffer a vanishing gradient problem. The LSTM net-
works can overcome vanishing and exploding gradient problems, by
capturing long-term dependencies, and retaining important information
despite gaps between relevant data points. These characteristics make
LSTM an ideal choice for time series forecasting. Its complex structure
leads to computationally expensive forecasting and makes the training
process time-consuming. This problem can be attributed to redundant or
unnecessary dataset features and duplicate values. To mitigate these
issues, various computing techniques, such as parallel processing and in-
database processing, can be employed to reduce computational
complexity. Data reduction techniques, such as principal component
analysis, can further accelerate the training process.

5.5.4. Hybridization
It is observed in the literature that hybrid methodologies are exten-

sively employed in forecasting applications, leveraging the strengths of
each approach to improve prediction accuracy. In [33], LSTM and deep
residual networks were used to forecast electricity load. The forecasting
errors of hybrid approaches were significantly lower compared to their
original methods and other ML approaches. Figs. 11 and 13 also validate
this observation where the forecasting errors of the hybrid approaches
are much lower than their original versions.

The following section discusses the role of MAS for distributed con-
trol for effective energy distribution and management in decentralized
networks.

6. AI-based Multi-Agent Systems for Improving Energy
Management System

When designing hybrid energy systems, it is crucial to carefully
determine an appropriate control strategy to fully leverage the system’s
inherent adaptability and resilience. The control strategy of these sys-
tems becomes more complex as the number of different sources in-
creases significantly. Distributed control, which allows decisions to be
made locally within each power source, facilitates coordination among
sources competing for the same power. In this context, the MASs offer a
suitable solution for the autonomous control of various elements in the
hybrid energy system, enhancing scalability and robustness [167]. This
technology has been successfully applied in many fields such as traffic
and transportation [168], business process management [169], and
various industrial applications [170]. The same principle can be utilized
to regulate power sharing among multiple sources in a hybrid energy
system. One study proposed an intelligent energy management strategy
for multiple MGs connected with a grid using MAS to provide cost-
effective scheduling for connected MGs [171]. In a recent study, the
authors compared the performance of centralized and decentralized
energy storage for achieving optimal energy management operation of
MG [172]. The decentralized approach demonstrated excellent cost
saving by approximately 72.78% compared to the centralized approach
in terms of cost. Agents, which may be physical or virtual entities, can
interact with each other and respond to environmental changes, making
decisions autonomously without external control. Agents can directly
manage each energy source in energy systems based on available re-
sources and requirements. The surplus energy can charge batteries
during low energy demand. The MAS determines the optimal time for
charging through each resource based on its criteria and objectives,
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rather than relying on external instructions. Agents also communicate
and cooperate with each other to accomplish tasks efficiently. Consider a
system where the PV system charges the battery when sunlight is
available, and the battery discharges to provide power when sunlight is
not available. Two approaches such as Cooperative Game Theory (CGT)
and Non-Cooperative Game Theory (NCGT) have been employed to
optimize these tasks. The overall strategy for power sharing among
various energy sources using MAS is illustrated in Fig. 14. In the
following subsection, two approaches of MAS are discussed such as CGT
and NCGT to study coalitions and non-binding relationships between
participants. The Tables 7 and 8 show the applications, advantages, and
disadvantages of MAS.

6.1. Cooperative game theory

The CGT allows each MG component to benefit more from cooper-
atively running under effective controlling techniques, as opposed to
operating separately. In [173], the authors used a coalitional game
theory approach to provide an optimal share of renewable energy to
households and minimize MG’s overall costs. The success of a coalition
is determined by how much cost is saved, which is distributed among its
members depending on a fairness principle. The authors utilized the
Shapley value as a fairness measure to determine each coalition mem-
ber’s contribution and cost savings. Also, MAS can be used for energy
trading between multiple interconnected MGs. Various coalitional game
theory-based algorithms have been used in the literature to enhance the
benefits of MGs with cooperative structures [174]. The authors proposed
an incentive mechanism based on Nash bargaining to facilitate fair and
efficient energy trading between MGs. The Nash bargaining formula
involves multiplying the improved performance of all MGs to distribute
the benefits of a cooperative structure equally. This can be done under
the constraints of exchanging energy with the electricity grid and other
MGs. The objective function involving this strategy can be written as
[175]:

max : Πn∊N

[

x*n −

(

cn,g +
∑

k∊kn

ckn,u + cn,s + cn,e

)]

(8)

The above equation represents the additional benefits of cooperation,
divided into twomain components. The term, x*n, indicates the minimum
cost an MG can achieve without engaging in energy trading with other
MG. The second term encompasses the cost incurred by a MG when
exchanging energy with another MG. In the equation, terms such as Cn,g

denotes the energy purchasing price from the electricity grid, Ck
n,u is user

discomfort cost, Cn,s is the cost of operating energy storage, and Cn,e

represents the payment costs to other MG. Here, N represents the set of
MG, and Kn denotes the set of users within a particular MG, denoted by
n. The Nash product ensures equitable treatment of each MG regarding
sharing the benefits of collaboration. The difference between the two
terms reflects the cost reduction achieved by a MG.

6.2. Non-cooperative game theory

In NCGT, participants are not required to make binding agreements
with each other. This strategy involves various decision-making bodies
that aim solely to maximize their profits [176]. The authors in [34]
proposed a decentralized controller, based on NCGT to manage the en-
ergy consumption of a MGwhile taking into account intermittent energy
production from RESs, seasonal demand changes, and grid in-
terruptions. Similarly, MAS-based NCGT can be employed for energy
trading between various MGs. In an interconnected system of multiple
MGs, the Nash equilibrium is utilized to address competition among
buyer MGs [177]. The Nash equilibrium applies to systems in which all
MGs are interconnected in such a way that they share energy equally and
simultaneously. Each buyer MG adopts the Nash equilibrium strategy
based on its priority factor, enabling fair energy sharing among multiple
MGs. The overall satisfaction level of each MG is measured using a
logarithmic function, as presented below:

Sn = δα
n .log

(

1+
En

Tn

)

, n∊N (9)

As a result, the utility function which is utilized to identify the best
strategies for each buyer MG is provided below.

U(S) = argmax
E

[
∑

n∊N
δα
n.log

(

1+
En

Tn

)]

(10)

∑

n∊N
En⩽E (11)

E is the vector representing the energy allocation, with elements En. The
energy allocation to MG n must always be less than the total available
energy. As described below, a non-cooperative strategy is employed to
formulate competition for energy among multiple MGs.

In [178], the authors considered the priority factor for energy allo-
cation to buyer MGs, denoted as δα

n. Priority factors include each buyer
MG’s past efforts to sell surplus energy to nearby MGs and their load
demand. This mechanism encourages MGs to engage in energy trading
with each other proportionally to the energy they have contributed in
the past, along with their local energy demands. This strategy can reduce
reliance on grid energy, reducing the grid’s burden. The Stackelberg
game is another well-known NCGT approach used to regulate energy
trading between interconnected MGs. A seller MG is seen as the leader in
the competition, while buyer MG is regarded as the follower [179].
Buyers are allocated energy based on their bids. In [180], the regional
control unit is depicted as the leader, whereas the village MG is depicted
as the follower.

7. Recommendation, Challenges and Open Issues of AI in Energy
Management

Based on the literature on AI-driven methodologies, this section

Fig. 14. A multi-agent system for sharing energy among multiple agents.
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Table 8
Advantages, and disadvantages, of machine learning, deep learning, and multi-
agent systems.

Methods Advantages Disadvantages/
Limitations

Fuzzy Linear Regression Can handle imprecise and
uncertain data.



More robust against
outliers and easy to
interpret.

Complex interpretation
than simple linear
regression.



More computationally
intensive than linear
regression.

 

SVM Has the ability to process
high-dimensional
datasets, dealing with
non-linear relationships.



Not prone to overfitting. Limited effectiveness in
dealing with multi-class
problems.



High computational cost
and precise adjustment
of parameters.

 

K-Means Clustering Straightforward and
quick.



Suitable for data
exploration and
classification.

Requires specifying the
number of clusters in
advance and can be
sensitive to the starting
conditions.



RF High precision, less
susceptible to overfitting.

More computationally
intensive than DT and
harder to interpret.

ANN Handle complex patterns,
adaptable to various data
types, and highly
accurate.

Overfitting due to limited
data and Black-box
nature.

RNN Can manage sequential
and time series data as
well as long-term
dependencies.

It may be susceptible to
overfitting and slow
training and can
experience issues like
vanishing or exploding
gradients.

LSTM Capable of managing
long-term dependencies,
making it valuable for
time series data.

Susceptible to
overfitting, requiring
diligent tuning.

CGT-based Multi-Agent
System

Enhance the system’s
stability and reliability by
dividing the task among
multiple agents.



This approach can be
extended to include
multiple agents,
making it suitable for
large-scale
applications.

Complex formationmakes
the system
computationally
intensive.



Necessitates robust
communication and
coordination among
multiple agents which
is resource intensive.

 

NCGT-based Multi-Agent
System

Lowers the possibility of
single-point failure, as
agents operate
autonomously.



Has the ability to adapt to
changing environments
and varying tactics of
other agents.

The non-cooperative
behavior provides sub-
optimal outcomes.



It offers multiple
equilibria, making it
difficult to predict
which one will be
selected.
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presents the fundamental challenges and potential opportunities asso-
ciated with each approach in the context of energy management. The
advantages and disadvantages of all MOTs, ML approaches, DL archi-
tectures, and MAS are summarized in Tables 7–9. These state-of-the-art
techniques have the potential to revolutionize the development of an
optimized EMS. Due to the rising world population, energy demand and
cost have increased considerably, and to deal with these issues, the local
communities are shifting their priorities of energy usage towards local
DERS. The amalgamation of DERs into electrical grid systems is bene-
ficial in terms of reducing energy costs and minimizing carbon foot-
prints. This integration has few inherent limitations as energy
generation from renewables is highly stochastic and depends on favor-
able weather conditions which generates non-linear energy production

patterns. This may cause a power mismatch dilemma as the individual
households or whole communities always follow an irregular con-
sumption pattern and can lead to blackouts or instability of the whole
system. The inappropriate behavior necessitates energy management
strategies that can manage the stochastic nature of renewable energy
production while optimizing the operation of DERs. The current elec-
trical grid system is an old-age infrastructure and in the past few de-
cades, it has shown very little progress. There is a need to upgrade
outdated grid infrastructure with a modern power system that takes the
leverage of advanced green technologies and techniques to satisfy the
energy demand locally at the lowest cost while taking into account the
uncertainties.

The challenges of power mismatch, and uncertainties of renewable

Table 9
Advantages and disadvantages of AI-based techniques used for energy management applications.

Ref. Methods Disadvantages Advantages

[17,67,84,181,69] GA The initial population’s
initialization is a complex and time-
consuming task.



Computation time is a critical issue for GA.   
Less certain convergence.   
Possibility that the final solution is not what is expected
from it as it generates heuristic solutions.

Versatile when simulating constraints.  

Provide smooth and simple convergence for finding
optimal solutions.

  

Can easily be implemented.   
[82,18,182] PSO Premature convergence and high

computational time are major
failures of PSO.



The final solution may not meet your expectations as it
holds heuristic characteristics.

  

The high tendency of being stuck into local optima
limits its application.

Simpler implementation with minor
tuning.

 

More stable convergence compared with other methods.   
[84,85,183] ACO Slow convergence. 
Solution accuracy decreases as data size increases. Can apply to large-scale UC problems.  
[101,20] [89,91] SA Temperature parameter is difficult

to control. Because the cooling
process is so slow, it takes ten times
as many iterations.

More computationally efficient
than DP.

It can accept the worst solution to find the optimal
global solution.

  

[21,92,93,98] CSA Slow convergence. 
Required some modification to get full advantage of it. Easy implementation.  
Provide global optima solution as cuckoo lays eggs to
other bird’s nest.

  

Less tuning parameters.   
[105,107,108,24,109] Advanced metaheuristic algorithm Can effectively overcome

challenges like premature
convergence, and fall into local
minima.

Support the integration of a large
number of MG’s components while
reducing the system’s operational
cost.

[184,149,185,151,155,157] ML RL based Q-learning method has
dimension problem. Simple RL-
based methods can not be applied to
a large number of generators.

SVM and k-means clustering avoid
the problem of being stuck in local
optima.

Logistic regression and nearest neighbor reduce
computational time in UC. RL-based guided tree
search does not suffer exponential explosion problem
while considering 30 generators in solving UC
problem [155].

  

[158,186] ANN A network that is too small or too
large may experience precise
mapping and over-fitting problems.



Capable of extracting correlation b/w variables without
describing system equations.

Require less computational resources.  

[139,33] CNN & LSTM CNN requires large labeled datasets. 
Because of complex architecture, LSTM needs large
datasets for model training.

The hybrid DL methods such as CNN for
local temporal patterns and LSTM which
remembers long-term dependencies, can
be employed in forecasting applications.

 

[34] Multi-Agent System Provides limited control and error-
prone system.

Offers a distributed control
strategy to multiple energy
sources, reducing computational
and communication burden.
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energy production can be resolved by adopting multiple technologies
together and the system can be recognized as a futuristic model as
presented in Fig. 15. The idea of interconnected MGs comes to light in
which each MG can optimize the operation of the local home through
decentralized-based multi-agent control and can share information and
energy with nearby MGs and with centralized EMS. To mitigate un-
certainties associated with load demand and renewable energy pro-
duction, the EMS which is installed inside each home can leverage of
advanced forecasting algorithms to predict future load demand &
renewable energy generation. Based on predicted values, the multi-
agent control can optimize the operation of generation sources. This
system fulfills the local demand of each MG by utilizing local RESs and
ESSs in a decentralized way. The excess energy is traded off to other
directly connected MGs using a peer-to-peer energy-sharing approach to
fulfill their energy demand. The extra energy after fulfilling the
requirement of directly connected MG is shared with centralized EMS to
fulfill the demand of those MGs that are not directly connected. The
centralized EMS system is also connected to the grid to manage the
energy demand of any MG in case of more energy requirements. This
trading mechanism can use different priority scheduling algorithms for
energy sharing, some of which are described in the review. This system
utilizing decentralized-based multi-agent control, forecasting tech-
niques, and optimization techniques can handle the uncertainties,
overcome the power mismatch problem, and optimize the generation
source while meeting the high energy demand. There are still some
challenges present in this hybrid centralized and decentralized
approach. A detailed description of these challenges is given below.

7.1. Challenges of AI-based metaheuristic algorithms

• Renewable Integration: In recent years, power systems have been
enhanced with modern technologies and infrastructure, leading to
improvements in transportation systems, environmental pollution
reduction, and the efficient management of energy resources. This
innovative power infrastructure encompasses emerging technologies
such as PEVs, RESs, ESSs, and demand-side management. Some
studies have addressed these innovative technologies, but consider-
able work remains.

• High Dimensionality: In the power systems, numerous decision
variables and constraints generate a high-dimensional search space,
complicating the task for metaheuristic approaches to explore and
exploit the entire space effectively. This complexity often results in
slow convergence, causing algorithms to require numerous iterations
before arriving at a satisfactory or optimal solution.

• Premature Convergence: This phenomenon occurs when meta-
heuristic algorithms become trapped in sub-optimal solutions and
fail to explore better solutions in other regions of the search space.
This issue arises due to insufficient exploration or the algorithm’s
inability to escape local optima, resulting in sub-optimal decision-
making.

• Black-box Solution: Metaheuristic algorithms often provide chal-
lenging black-box solutions to interpret and explain. Understanding
the rationale behind optimization decisions is crucial for energy
management applications. This lack of interpretability can pose
significant challenges for various stakeholders in accepting the out-
comes of metaheuristic algorithms.

• Dynamic Environments: EMS operates in dynamic and uncertain
environments where various parameters such as load demand, en-
ergy prices, and the availability of renewable energy fluctuate
continuously. Metaheuristic algorithms face challenges in swiftly
adapting to these dynamic conditions, necessitating careful modifi-
cations to enhance their responsiveness and effectiveness.

• Computational Complexity: The optimal solution for the integra-
tion of hybrid energy sources with minimal computational effort
remains a critical challenge. Researchers and policymakers are
continually seeking methods to address the complexities inherent in
non-linear systems. This review discusses several emerging optimi-
zation algorithms aimed at identifying optimal solutions for energy
management problems. The variation in case studies and computa-
tional systems complicates selecting a single superior approach for
efficient energy management.

7.2. Challenges of ML and DL

• Interpretability: ML algorithms often result in a ”black box” phe-
nomenon, where the inner workings of the models are difficult to
interpret or comprehend. Understanding the outcomes or predictions

Fig. 15. Optimized EMS with hybrid centralized and decentralized energy sharing mechanism.
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generated by these models can be a challenging task. This lack of
interpretability poses significant challenges when justifying pre-
dictions to regulatory authorities or other stakeholders.

• Data Quality and Availability: Ensuring data quality and avail-
ability is one of the most challenging tasks in ML. ML models
generate accurate predictions when trained on extensive, and high-
quality datasets. Obtaining reliable and meaningful data for predic-
tive applications can be difficult. Data may suffer from missing
values, inconsistencies, or biases, which can result in erroneous
outcomes.

• Overfitting: Overfitting represents a prevalent challenge encoun-
tered in ML algorithms, particularly in deep neural networks,
wherein models tend to capture intricate patterns specific to the
training data rather than discerning generalized patterns. While
exhibiting satisfactory performance on the training set, such models
fail when presented with unseen data during testing, leading to
erroneous predictions and diminished generalization capabilities.
Mitigating the overfitting phenomenon necessitates striking a judi-
cious equilibrium between model complexity and its generalization
ability across diverse datasets.

• Scalability: In forecasting applications, scalability emerges as a
significant challenge, particularly when dealing with vast datasets.
Certain ML techniques may incur considerable computational over-
head or prove ineffective when confronted with intricate forecasting
tasks. The imperative of employing efficient feature selection and
dimension reduction methodologies and strategies arises to address
scalability concerns.

• Concept Drift: This phenomenon occurs when the statistical char-
acteristics of data change over time, thereby diminishing the preci-
sion of predictive models. The underlying correlations and patterns
in forecasting applications may change due to various variables, such
as shifting customer preferences or altering market conditions. To
ensure the accuracy of projections, it is imperative to address concept
drift in ML models through continuous monitoring, retraining, and
updating.

• Model Selection and Hyperparameter Tuning: Choosing the
appropriate model and tuning hyperparameters in ML can be chal-
lenging and often requires extensive testing and validation. It is
crucial to carefully select the most suitable algorithms and optimize
their hyperparameters to ensure reliable forecasting. In time series
forecasting, the target variable often strongly correlates with various
factors, including trends, periodic measurements, and seasonality.
Traditional ML algorithms typically fail to capture these patterns
effectively. Advanced DL architectures, such as LSTM and CNN, are
used to efficiently model these trends by managing spatiotemporal
features.

7.3. Challenges of MAS

• Communication Infrastructure: Various agents communicate with
each other, thereby generating large volumes of data. A fast and
efficient communication network is required to support real-time
data exchange between agents. Data security is a significant
concern. The data may include information about end-user behavior,
the condition of the MG, and the generation status of energy sources,
all of which must be kept confidential. Adopting advanced technol-
ogies, such as creating an IoT environment and implementing
blockchain, can address these challenges effectively.

• End-user Preferences: The demands and interests of users signifi-
cantly differ from those of power utilities. It is essential to consider
these differences when managing energy in multiple interconnected
MGs while ensuring the privacy of both users and power utilities.
Optimal techniques must be developed to achieve fair energy allo-
cation within the system.

• Adaptability: Elements within MG are inherently dynamic. Load
demand fluctuates at different intervals throughout the day, and

energy production from RESs varies correspondingly. Agents must
effectively respond to these changing behaviors to enhance energy
sharing among the various components of the MG.

• Compliance: Effective energy management and privacy concerns
are significant issues when providing cost-effective solutions for both
utilities and end-users. MASs should meet the energy management
and cyber-security requirements in compliance with local and in-
ternational standards.

8. Conclusion

The increasing energy demand with nonlinear behavior and the
stochastic nature of renewable energy production create the power
mismatch problem. Efficient EMS is essential that consider these factors
while optimizing the operation of DERs. This review suggests that the
integration of forecasting techniques with optimization techniques can
significantly enhance the performance of EMS. Generally, the EMS le-
verages forecasting algorithms to predict renewable energy production
and load demand which helps to overcome the powermismatch problem
and optimally regulate the power flow to satisfy peak demand at mini-
mum possible cost. The reliability and efficiency of EMS heavily depend
on the accuracy of forecasting algorithms and scheduling techniques.
The selection of both forecasting and scheduling techniques depends on
several factors including the complexity of the problem, type of energy
sources, accuracy, and adaptability which together can achieve the goal
of high operational efficiency and reliability. For optimal scheduling of
generating units, the classical metaheuristic algorithms often face pre-
mature convergence and can trap in local optimal which may cause
erroneous results. The finding of this review suggests that these chal-
lenges can be mitigated through careful parameter selection, algo-
rithmic modifications, and hybridization of techniques. It is also
observed that the advanced metaheuristic algorithms are now widely
being adopted and can be employed for optimal energy scheduling ap-
plications that offer cost-effective energy management solutions while
effectively utilizing the DERs. The review of forecasting approaches
reveals that combined DL-based architectures such as CNN and LSTM
are being employed in a large number of studies due to their ability to
manage spatiotemporal characteristics of renewable energy sources and
load datasets and forecast highly accurate results. Except to centralized
control energy management approaches that manage energy in a
centralized manner and are vulnerable to single-point failure, there exist
some decentralized energy control approaches.

The review of state-of-the-art studies suggested that MAS provides a
distributed control strategy in complex problems to manage and control
energy sources in a decentralized way, ensuring affordable and sus-
tainable energy solutions to end-users. A recent study utilizing a
distributed approach for energy storage in Ref. [172] demonstrates
excellent cost saving by approximately 72.78% compared to the
centralized approach. The MAS-based distributed control approaches
are computationally less expensive, support the integration of inter-
mittent renewable sources, handle dynamic changes in load and
renewable energy production, and enhance scalability. In the end, a
hybrid decentralized and centralized EMS is presented in interconnected
MGs network that can optimize the operation of local DERs while
dynamically managing the intermittent renewable energy production
and load demand. The interconnected MGs are intended to overcome
challenges such as power mismatch, and high energy demand. They
provide affordable electricity to end users by leveraging the potential of
advanced forecasting algorithms, scheduling algorithms, and multi-
agent-based decentralized control. This review can significantly help
researchers and EMS development authorities in the selection of best
optimization and forecasting techniques with hybrid centralized and
decentralized control.
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Villa Daniel, Gil-González Walter. Integration of bess in grid connected networks
for reducing the power losses and co2 emissions: A parallel master-stage
methodology based on pdvsa and pso. Journal of Energy Storage 2024;87:
111355.

[76] Samantaray Soumyakanta, Kayal Partha. Capacity assessment and scheduling of
battery storage systems for performance and reliability improvement of solar
energy enhanced distribution systems. Journal of Energy Storage 2023;66:
107479.

[77] Eniko Szilagyi, Dorin Petreus, Marius Paulescu, Toma Patarau, Sergiu-Mihai
Hategan, and Nicolae Alexandru Sarbu. Cost-effective energy management of an
islanded microgrid. Energy Reports, 10:4516–4537, 2023.

[78] Gheouany Saad, Ouadi Hamid, Giri Fouad, El Bakali Saida. Experimental
validation of multi-stage optimal energy management for a smart microgrid
system under forecasting uncertainties. Energy Convers. Manage. 2023;291:
117309.

[79] Gheouany S, Ouadi H, Berrahal C, Giri F, et al. Multi-stage energy management
system based on stochastic optimization and extremum-seeking adaptation. IFAC-
PapersOnLine 2023;56(2):5457–62.

[80] Zhu Xiaodong, Zhao Shihao, Yang Zhile, Zhang Ning, Xinzhi Xu. A parallel meta-
heuristic method for solving large scale unit commitment considering the
integration of new energy sectors. Energy 2022;238:121829.

[81] Zhai Yu, Liao Xiaofeng, Nankun Mu, Le Junqing. A two-layer algorithm based on
pso for solving unit commitment problem. Soft. Comput. 2020;24(12):9161–78.

[82] Xi Maolong, Xiaojun Wu, Sheng Xinyi, Sun Jun, Wenbo Xu. Improved quantum-
behaved particle swarm optimization with local search strategy. Journal of
Algorithms & Computational Technology 2017;11(1):3–12.

[83] Marco Dorigo and Gianni Di Caro. Ant colony optimization: a new meta-heuristic.
In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat.
No. 99TH8406), volume 2, pages 1470–1477. IEEE, 1999.

[84] Vaisakh K, Srinivas LR. Evolving ant colony optimization based unit commitment.
Applied soft computing 2011;11(2):2863–70.

[85] Ahmad Zand, Mehdi Bigdeli, and Davood Azizian. A modified ant colony
algorithm for solving the unit commitment problem. Adv Energy: Int J (AEIJ), 3,
2016.

[86] Afifi Alan Abdu Robbi, Sarjiya Sarjiya, Wijoyo Yusuf Susilo. Ant colony
optimization for resolving unit commitment issues by considering reliability
constraints. IJITEE (International Journal of Information Technology and
Electrical Engineering) 2018;2(4):120–4.

[87] Mengyi Xu, Congxiang Tian, and Ahmed N Abdalla. Synergizing renewable
energy sources in building-integrated hybrid energy systems via niche-ant colony
optimization. Case Studies in Thermal Engineering, page 104880, 2024.

[88] Hisham Alghamdi, Taimoor Ahmad Khan, Lyu-Guang Hua, Ghulam Hafeez,
Imran Khan, Safeer Ullah, and Farrukh Aslam Khan. A novel intelligent optimal
control methodology for energy balancing of microgrids with renewable energy
and storage batteries. Journal of Energy Storage, 90:111657, 2024.

[89] Zhuang F, Galiana FD. Unit commitment by simulated annealing. IEEE Trans.
Power Syst. 1990;5(1):311–8.

[90] Mantawy AH, Abdel-Magid Youssef L, Selim Shokri Z. A simulated annealing
algorithm for unit commitment. IEEE transactions on power systems 1998;13(1):
197–204.

[91] Dudek Grzegorz. Adaptive simulated annealing schedule to the unit commitment
problem. Electric Power Systems Research 2010;80(4):465–72.

[92] Yang Qiangda, Liu Peng, Zhang Jie, Dong Ning. Combined heat and power
economic dispatch using an adaptive cuckoo search with differential evolution
mutation. Appl Energy 2022;307:118057.

[93] Wangunyu Irungu G, Murage David K, Kihato Peter K. Power system congestion
management by generator active power rescheduling using cuckoo search
algorithm. In: In Proceedings of the Sustainable Research and Innovation
Conference; 2022. p. 159–64.

[94] Terki Amel, Boubertakh Hamid. Cuckoo search algorithm for solving the problem
of unit-commitment with vehicle-to-grid. In: International conference on
electrical engineering and control applications. Springer; 2019. p. 77–92.

[95] Yang Xin-She, Deb Suash. Cuckoo search via lévy flights. In 2009 World congress
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