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�e nonclassicality of quantum states is a fundamental resource for quantum technologies and quantum
information tasks in general. In particular, a pivotal aspect of quantum states lies in their coherence properties,
encoded in the nondiagonal terms of their density matrix in the Fock-state bosonic basis. We present opera-
tional criteria to detect the nonclassicality of individual quantum coherences that only use data obtainable
in experimentally realistic scenarios. We analyze and compare the robustness of the nonclassical coherence
aspects when the states pass through lossy and noisy channels. �e criteria can be immediately applied to
experiments with light, atoms, solid-state system and mechanical oscillators, thus providing a toolbox allowing
practical experiments to more easily detect the nonclassicality of generated states.

I. INTRODUCTION

�e nonclassicality of quantum states is of utmost importance
for quantum information tasks [1], ranging from quantum
communication and computation [2–5], quantum sensing [6],
and thermodynamics [7]. Several notions of nonclassicality
have been explored in di�erent contexts. For bosonic systems,
the indivisibility of single bosons has for a long time been
considered a direct experimental manifestation of nonclassi-
cality [8–11]. Another type of nonclassicality is the impossi-
bility of a state to be writable as a convex decomposition of
coherent states [12–14]. �is can be formalised as the failure
of a state ρ to be decomposable as

ρ =

∫
d2αP (α) |α〉〈α| (1)

for some probability distribution P [12, 15]. Operationally,
coherent states |α〉 are ideal states of a linear oscillator driven
by external coherent force. However, reconstructing the P
function experimentally is highly nontrivial [16, 17], and cri-
teria to detect P -nonclassicality include witness-based ones,
relying on bounds on expectation values with respect to the P
function [18, 19]; hierarchies of necessary and su�cient non-
classicality criteria based on the moments of distribution [20–
24]; and criteria based on di�erent approaches [25–29]. �e
above methods share the shortcoming of relying on global
properties of the state, such as statistical moments, rather
than being tailored to the speci�c information acquired in
a given experimental scenario. Other nonclassicality crite-
ria, based on photon-click statistics [30–35], are based on
operationally measurable quantities, but are tied to speci�c
detection schemes.

As of yet, no nonclassicality criterion speci�cally tailored at
individual quantum coherences — as opposed to requiring a
more complete (o�en tomographically complete) knowledge
of the state — is known. A possible reason for this is that while
the shape of the set of classical states when only diagonal ma-
trix elements are being observed is relatively manageable via
generalised Klyshko-like inequalities [36, 37], �nding similar
inequalities when also coherences are involved is highly non-
trivial. However, being quantum coherences a useful resource

for a variety of quantum information tasks [38], understand-
ing the nonclassicality involving individual coherences would
be a valuable from both experimental and fundamental view-
points. In this Le�er we lay out a framework to characterise
the nonclassicality with Fock-state quantum coherences, by
devising operational criteria to certify the nonclassicality of
states leveraging their coherences. We can thus discuss the
role of coherence-based observables on certifying incompat-
ibility with classical states of the form (1) Opposite to what
was the case when characterising nonclassicality using only
Fock state probabilities [37], we �nd that when coherences are
involved it is also pivotal to consider the boundary of the set
of all states in the considered spaces, as in some situations the
two can partially overlap, resulting in more care being needed
when devising nonclassicality criteria. To ensure seamless ap-
plicability to experimental scenarios, our criteria only exploit
knowledge of the expectation values of few observables, as
one would have access to in realistic cirumstances. To achieve
this, we devise an approach to nonclassicality detection based
on incomplete knowledge of the density matrix [37, 39], ex-
tending the current state of the art by analysing the infor-
mation hidden in o�-diagonal terms. �ese elements are di-
rectly measurable by Ramsey-like interferometry of trapped
ion [40], superconducting circuit experiments [41], and elec-
tromechanical oscillators [42]. For light, atomic ensembles,
and optomechanical oscillators, they can be reconstructed
using homodyne tomography. We compare our criteria to
those relying only on Fock-state probabilities [36, 37], and
analyze the nonclassical depth of various quantum coherences
represented by di�erent o�-diagonal elements.

We �nd that observing coherence terms can provide enhanced
predictive power in terms of nonclassicality detection, and
showcase this in several instances of nonclassicality in one-,
two-, and three-dimensional spaces. More precisely, we �nd
that, remarkably, in some situations the Fock state probabili-
ties alone are su�cient to detect all of the existing nonclassi-
cality, whereas in other situations adding knowledge about
coherence terms provides enhanced predictive power. More-
over, we show how each set of di�erent measured observables
provides a distinct boundary of nonclassicality, and study the
behaviour in these spaces of superposition states subject to
a�enuation and thermal noise. �is further highlights how

ar
X

iv
:2

21
0.

04
39

0v
1 

 [
qu

an
t-

ph
] 

 1
0 

O
ct

 2
02

2



2

di�erent types of noise a�ect the observable nonclassicality
in nontrivial ways, even in relatively low-dimensional spaces.

II. GENERAL FRAMEWORK

Support function and support hyperplanes — Suppose we are
given the expectation values 〈Oi〉 for some set of observ-
ables Oi, and want to �gure out whether these measure-
ments are compatible with some classical state. Given the
relevant Hilbert space H, we will denote with Q the set of
density matrices in this space, and with C ⊂ Q the con-
vex hull of the coherent states. Let us also denote with
O(ρ) ≡ (Tr(Okρ))nk=1 the set of expectation values resulting
from measuring ρ. We seek a method to determine whether,
given an unknown state ρ, whether there is some σ ∈ C com-
patible with the observed measurements, that is, to determine
whether O(ρ) ∈ {O(σ) : σ ∈ C}.

�e convexity of C andQ allows to characterize them via sup-
porting hyperplanes, using the tools of convex geometry [43].
Any closed convex set A ⊂ Rn is characterized be its support
function hA : Rn → R, de�ned as hA(n) = supx∈A〈n,x〉.
Geometrically, hA(n) represents the distance from the ori-
gin to the hyperplane tangent to A orthogonal to n. Denote
with hC(n) and hQ(n) the support functions of C and Q,
respectively, in the space of interest. More explicitly, we
consider the structure of C and Q when projected onto the
�nite-dimensional subspaces spanned by the observables mea-
sured in a given context. �is allows to devise criteria with
a direct operational signi�cance. We can then translate the
task of nonclassicality detection into �nding whether there
is n such that hQ(n) > hC(n). Whenever this is the case, it
is possible to �nd a set of measurement results O ∈ Rn such
that n ·O > hC(n), which certi�es that these measurement
results are not compatible with any classical state. By study-
ing the structure of hC(n) and hQ(n) for all n, we can fully
characterize the geometry of the classical set, and o�en end
up with Klyshko-like nonclassicality criteria [36, 37]. Notably,
in many of the scenarios considered here, we will be able to
derive the relevant criteria without explicitly involving the
corresponding support function. �is is possible in su�ciently
simple situations where we can devise ad-hoc procedures to
reach the conclusion. �ese criteria are equivalent to the full
set of criteria of the form n ·O > hC(n), for all n. In a sense,
we can understand these ad-hoc derivations as corresponding
to a full characterization of the support functions hC(n) for
all values of n. Directly using the support function remains
nonetheless very useful, as we will show in some explicit
cases.

While hQ(n) is generally easier, as it amounts to �nding the
largest eigenvalue of n ·O ≡

∑
i niOi, that is, computing

the operator norm ‖n ·O‖op. On the other hand, computing
hC(n) is in general more di�cult, as it involves maximising∑
i ni Tr(Oiρ) over the set of ρ ∈ C. Nonetheless, even

though characterising hQ(n) is relatively straightforward for
any �xed value of n, this does not trivially translate into an
algebraic characterisation of the boundary of Q itself. We

show here how to tackle this task in several cases of interest.

Coherence terms — To focus on the nonclassicality of coher-
ences, we will consider as basic observables Xjk ≡ |j〉〈k| +
|k〉〈j| and Yjk ≡ i(|k〉〈j| − |j〉〈k|), which are a straightfor-
ward generalisation of non-diagonal Pauli matrices in higher
dimensions. �ese naturally capture information hidden in
coherence terms, that is not directly accessible via projections
of the form Pj ≡ |j〉〈j|. �e expectation value of Xjk, Yjk
on a coherent state |α〉 with α =

√
µeiφ are related to the

Fock-state number probabilities Pi ≡ |i〉〈i| as

Xij = 2
√
PiPj cos(φ(i− j)), Yij = 2

√
PiPj sin(φ(i− j)). (2)

For ease of notation, here and in the rest of the paper, we
will with some abuse of notation con�ate the operators Xjk

with their expectation values on a given state ρ, 〈Xjk〉ρ ≡
Tr(Xjkρ). For example, eq. (2) would be more precisely
wri�en as 〈Xjk〉α = 2

√
〈Pj〉µ〈Pk〉µ cos(φ(j − k)). More

generally, we can consider the rotated operators Rjk(θ) ≡
cos(θ)Xjk + sin(θ)Yjk , whose expectation value on coherent
states reads Rjk(θ) = 2

√
PjPk cos(θ − φ(j − k)).

�antum boundary — When only dealing with Fock-state
probabilities, any probability distributions is compatible with
some quantum state, and thus the boundary of Q is simply
de�ned by the relations

∑
j Pj ≤ 1 and 0 ≤ Pj ≤ 1. �e

situation changes signi�cantly when coherence terms are be-
ing considered. Finding the boundary of Q then amounts to
�guring out the conditions under which the observed expec-
tation values �t into a positive semide�nite matrix. Further
details on how this process results in di�erent inequalities are
given on a per-case basis in the text, and we also include for
completeness a more general discussion in the SM.

III. NONCLASSICALITY CRITERIA

We will discuss here the nonclassicality certi�able via non-
diagonal elements of the density matrix in the Fock state basis,
as well as the nonclassicality encoded in nontrivial combina-
tions of di�erent coherence terms, or in nontrivial combina-
tions of both coherence terms and Fock-state probabilities.

One-dimensional criteria — We �rst study the class of nonclas-
sicality criteria associated to an individual coherence term
Rjk(θ). �ese are the easiest to apply in any experimental
scenario where coherences are measured. In these spaces,
the set of all states is bounded by |Rjk(θ)| ≤ 1, with bound
saturated by the state 1√

2
(|j〉+ eiθ |k〉). On the other hand,

the corresponding classical bound is

|Rjk(θ)| ≤ max
ρ∈C

2
√
ρjjρkk = 2e−

j+k
2

[(j + k)/2]
j+k
2

√
j!k!

, (3)

where the maximisation can be restricted to the set of coherent
states. �e corresponding bound for the set of all states is
instead |Rjk(θ)| ≤ 1, saturated by the state 1√

2
(|j〉+ eiθ |k〉).
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In particular, we have

|X01| ≤
√

2e−1/2 ≈ 0.86, |X02| ≤
√

2e−1 ≈ 0.52,

|X12| ≤
√

27

2
e−3/2 ≈ 0.58.

(4)

�is means that e.g. measuring any value for the coherence
of 0.87 ≤ |X01| ≤ 1 is su�cient to certify nonclassicality.
We refer to states violating any such inequality involving a
single coherence term as displaying nonclassical coherence.
As an interesting example showcasing the nontriviality of
nonclassical coherences, consider any ρ that is a mixture of
the nonclassical state |1〉with any classical ρcl. Although such
ρ might be recognizable as nonclassical via some observable,
because only ρcl produces coherence terms, it will not display
any nonclassical coherences, meaning it is not recognizable as
nonclassical by any criterion involving only coherence terms.

Two-dimensional criteria — Even though one-dimensional
criteria using individual coherences can always be applied,
it is possible to devise stronger criteria by characterizing
the boundary corresponding to higher-dimensional spaces.
�is allows to detect as nonclassical states whose nonclas-
sicality cannot be deduced from any individual coherence
term. For example, when a pair of coherences of the form
(Xjk, Yjk) is considered, Q is characterised by the inequality
X2
jk+Y 2

jk ≤ 1, saturated by states of the form 1√
2
(|j〉+eiθ |k〉)

for all θ ∈ [0, 2π]. On the other hand, C only forms a circle of
radius given by eq. (3). It follows that measuring any pair of
values for (Xjk, Yjk) that falls outside such circle, is su�cient
to certify the nonclassicality of the underlying state.

One can also ask what nonclassicality is encoded in pairs of
observables including both coherences and Fock probabilities.
Consider for example some Rjk(θ) together with Pj . �e
boundary of Q corresponds to

|Rjk(θ)| ≤ max
Pk

2
√
PjPk = 2

√
Pj(1− Pj). (5)

where the maximum is taken with respect to all non-negative
reals Pk such that Pj + Pk ≤ 1 (that is, over all quantum
states compatible with the given values of Pj and Rjk(θ)).
On the other hand, classical states provide a generally more
complex boundary. For example, in the space (P0, X01), the
boundary is de�ned by the inequalities 0 ≤ P0 ≤ 1 and

0 ≤ |X01| ≤ 2P0

√
− logP0, (6)

with the la�er saturated by coherent states. Equation (6)
means that there are states whose nonclassicality cannot be de-
tected measuring P0, nor measuring X01 and applying eq. (4),
but is nonetheless revealed properly exploiting the knowledge
of both P0 and X01. An explicit example of this is measuring
P0 = 0.2 and X01 = 0.6, where we do not detect nonclas-
sicality using only P0 or X01, but we do via criterion in the
two-dimensional space (P0, X01).

In �g. 1 we show how the nonclassicality criteria look like
in two-dimensional spaces involving coherence terms, more
speci�cally in the spaces (P0, X01), (P1, X01), (X02, X01),

and (X12, X01). To show the relation between two-
dimensional and one-dimensional criteria, the �gure also
highlights the nonclassicality threshold corresponding to the
one-dimensional criterion using only X01. �is corresponds
to projecting each of the given plots onto the horizontal axis.
We refer to the SM for further details on the derivation of these
criteria, as well as some discussion on nonclassicality criteria
in the spaces (P0, P2) and (P0, X02). Figure 1 shows that
measuring coherence terms provides valuable information
regarding the nonclassicality of the states. �is is re�ected in
the blue solid line in the �gures being a strict subset of the
gray solid line. From an experimental point of view, these
mean that measuring any pair of expectation values to be
outside of the blue region is su�cient to certify the nonclassi-
cality of the underlying state. �is makes for criteria that can
be directly employed in pratical scenarios.

�ree-dimensional criteria — Another interesting case is ob-
tained considering both Fock-state probabilities and coher-
ences. For example, in the space (P0, P1, X01, Y01), the setQ
is characterised by the trivial constraint 0 ≤ P0 + P1 ≤ 1 on
the probabilities, with the additional constraint

X2
01 + Y 2

01 ≤ 4P0P1 ⇐⇒ |R01(θ)| ≤ 2
√
P0P1 ∀θ, (7)

�us in this space, Q is a disk with radius 2
√
P0P1, as also

shown in �g. 2. More rigorously, as discussed in the SM,
this constraint follows from Sylvester’s criterion for positive
semide�niteness [44]. We thus �nd that, remarkably, albeit it
is possible to detect a state as nonclassical using the values
of P0 and P1, if using these values it is not possible to detect
the state as nonclassical, then it will still not be possible to do
so adding knowledge about X01 and Y01. With such analysis
we are thus able to predict which observables will be useful
for the purpose of identifying nonclassicality, which helps to
devise more e�cient experimental platforms.

In other cases, for example when one knows (P0, P2) but not
P1, the associated coherence terms do provide information
about nonclassicality. �is can be traced down to the boundary
of C in the space (P0, P2) containing non-pure states, and to
the non-convexity of the set of coherent states in the same
space. Remarkably, in this case adding knowledge of R02

allows to recognize as nonclassical states in the nonconvex
region of the space (P0, P2). Further discussion of this aspect
is provided in the SM.

�ese case studies highlight the stimulating nontrivial features
of nonclassical coherences that set them apart compared to
previously known nonclassicality criteria [36, 37].

IV. ROBUSTNESS OF NONCLASSICAL COHERENCES

To probe the robustness of the devised criteria, we study how
di�erent degrees of a�enuation and thermal noise a�ect our
capacity to detect the nonclassicality of coherent states. In
the process, we �nd a rich landscape of possible behaviours.

We show in �g. 1 how a�enuated superposition states look like
in these two-dimensional subspaces. In �g. 1(a) and (b) we plot
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FIG. 1. Classical regions in the spaces (X01, P0), (X01, P1),
(X01, X02), (X01, X12). Solid blue lines trace the boundary of C.
Dashed orange lines the set of coherent states of the form

∣∣√µ〉 for
µ ∈ R. outer gray lines trace the boundary of Q. In the spaces
(X01, Pi), the solid red line corresponds to 1√

2
(|0〉+ |1〉) a�enuated

through a beamspli�er with transmissivity T = |t|2, for T ∈ [0, 1].
�e two black dots joined by this line correspond to the states |+〉
and |0〉. �e green dot marks the transmissivity corresponding to a
transition between classicality and nonclassicality, and corresponds
to T ≈ 0.73 in (X01, P0) and T ≈ 0.69 in (X01, P1), respec-
tively. We also show the results of a�enuating 1√

2
(|1〉 + |2〉) in

the (X01, X12) space. �e nonclassicality threshold, again marked
with a green dot, corresponds to T ≈ 0.84. �e cyan dots at the
bo�om of the downmost �gure correspond to the one-dimensional
nonclassicality threshold for the coherence termX01, corresponding
to X01 ≈ ±0.86.

the points corresponding to a�enuation of 1√
2
(|0〉+ |1〉) with

transmi�ivities T ∈ [0, 1]. We �nd that nonclassicality can
be certi�ed using (P0, X01) for T > 0.73, while in (P1, X01)
for T > 0.69. In �g. 1(d) we plot a�enuated states obtained
from 1√

2
(|1〉 + |2〉). In this case we �nd the nonclassicality

threshold in the space (X01, X12) to sit at around T ≈ 0.84.

We furthermore analyze the robustness of states obtained
from 1√

2
(|0〉+ |1〉) and 1√

2
(|0〉+ |2〉) when subject to both

a�enuation and thermal noise. As shown in �g. 3, di�erent
pairs of observables result in di�erent nontrivial nonclassi-
cality criteria, highlighting how the hardness in witnessing
nonclassicality strongly depends on the measured observables.

We �nd a rich landscape of possibilities, that highlights how
choosing suitable observables can strongly enhance the capac-
ity to detect the nonclassicality of a given state by leveraging
their coherence properties.

V. CONCLUSIONS

We showed how to leverage individual o�-diagonal elements
of the density matrix in the Fock-state basis to assess the
nonclassicality of quantum states, and how to pair these with
Fock-state probabilities to detect even larger classes of non-
classical states. �is paves the way for a more thorough under-
standing of the relation between nonclassicality in quantum

FIG. 2. Boundary of the classical subset in the (P0, P1, X01) sub-
space, where P0 and P1 are the probabilities of �nding zero and
one bosons, and X01 is the expectation value of the coherence term.
�e dashed red line represents the a�enuated states obtained from
1√
2
(|0〉+|1〉), with di�erent degrees of a�enuations. �e two orange

surfaces represent the classicality boundaries corresponding to the
criteria. In particular, the vertical surface corresponds to criterion in
the (P0, P1) subspace, while the other surface is the one bounding
the value of |X01| for each value of (P0, P1). In this space, nonclas-
sicality is thus certi�ed by checking that a point lies beyond at least
one of these two surfaces.

(P1,
P2)

(P0
, P

2
)

(P
0
, X

02
)

(P1
, X

02
)

FIG. 3. Nonclassicality of the states 1√
2
(|0〉 + |1〉) (le�) and

1√
2
(|0〉+ |2〉) (right) a�er a�enuation with transmissivity T ≡ |t|2

and thermalisation with average boson number n̄, as detected di�er-
ent criteria. Each line corresponds to a nonclassicality criterion using
two observables, separating the lower-right region of nonclassicality
from the rest.

mechanics and the widely studied resource theories of quan-
tum coherence [38].

�ese criteria can be directly implemented experimentally,
by simply measuring the relevant observables and checking
whether the obtained expectation values violate the given cri-
teria. Such a protocol can be implemented with state of the art
technology, for example in photonics [45], trapped ions [40],
superconducting [41], and electromechanical [42] platforms.
Enhanced capabilities of detecting nonclassical states have
several applications, for example in the context of quantum
metrology [40, 46, 47] and quantum error-correction for quan-
tum communication and computing [48, 49]. Our results high-
light the nontrivial way the nonclassicality of states translates
into nonclassical coherences: while measuring coherences
provides useful information in many situations, there also ex-
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ist scenarios where all the information about nonclassicality
is already encoded in the Fock-state probabilities. �is leaves
open the stimulating question of characterizing the precise
class of situations where coherent terms do or do not result
in additional predictive power.

Our work paves the way for a more thorough understanding
of nonclassicality detection with multimode coherences over
diverse platforms [50–55]. Such criteria would provide en-
hanced detection schemes for platforms generating entangled
states, imposing more lenient demands on those sources than
entanglement. Another natural vanue of further study is to
devising criteria for quantum non-Gaussianity [35, 56], and
study the role of coherences in that context, which remain
not fully understood.
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Appendices
A. DERIVATION OF BOUNDARIES FORQ

In this section we provide some further details on the deriva-
tion of the boundary ofQ, the set of all quantum states, when
a few observables are known. To derive these bounds, we
need to �nd the conditions on the coe�cients of Hermitian
matrices with trace lesser than 1, that ensure their being pos-
itive semide�nite. More formally, the task is the following:
given a set of observables (O1, ...,On), what are the possible
sets of expectation values (Tr(Oiρ))ni=1 when ρ ranges across
all possible states? As a trivial example, if we consider the sin-
gle observable P0 ≡ |0〉〈0| 0, then clearly the possible values
it can take are 0 ≤ Tr(P0ρ) ≤ 1, which we will write here
concisely as just 0 ≤ P0 ≤ 1. On the other hand, if we are
given the single observable X01, then its possible values are
−1 ≤ X01 ≤ 1, with extremal points achieved for the states
1√
2
(|0〉 ± |1〉). Note how these boundaries di�erent from the

corresponding boundaries of C: for example, X01 = 1 is not
possible with classical states.

Boundary in the space (P0, P1, X01, Y01) — For example, if the
observed quantities are P0, P1, X01, Y01, we need to study
under what conditions we have(

P0 (X01 − iY01)/2
(X01 + iY01)/2 P1

)
≥ 0, (8)

with the additional constraint P0 + P1 ≤ 1, to ensure that
this matrix can be obtained projecting a higher-dimensional
(normalized) state. From Sylvester’s criterion [44], this is seen
to be equivalent to the constraints P0, P1 ≥ 0, and

X2
01 + Y 2

01 ≤ 4P0P1. (9)

�e same results apply when the expectation values of
Pi, Pj , Xij and Yij are known, for any 0 ≤ i < j. If only
a single coherence term Rij(θ) is given, then the boundary
corresponds to |Rij(θ)| ≤ 2

√
PiPj .

Constraints with three coherences — �e constraints when three
diagonal terms are known are instead more complicated. In
this case, it is necessary to �nd the conditions such that

P0
X01 − iY01

2

X02 − iY02

2
X01 + iY01

2
P1

X12 − iY12

2
X02 + iY02

2

X12 + iY12

2
P2

 ≥ 0. (10)

Let us temporarily denote with cij the o�-diagonal matrix
elements. From the determinants of the principal submatrices,
the positive semide�niteness condition is equivalent to the
three conditions |cij | ≤

√
PiPj , which re�ect the same con-

ditions we obtain when knowing only a coherence term and
the corresponding probabilities, and an additional constraint
of the form

|t01|2 + |t02|2 + |t12|2 ≤ 1 + 2 Re(t01t12t̄13), (11)

where tij ≡ cij/
√
PiPj . �is gives us a direct geometric

understanding of the boundary of the space of all states. For
every value of P0, P1, P2, we get a corresponding range of
possible values for o�-diagonal elements. Similar results can
be found, via careful application of Sylvester’s criterion, for
larger sets of observables.

B. TOY EXAMPLE: (P0, P1)

In this section we show in a simple example how support
functions can be used to derive boundaries. We focus on the
space (P0, P1), with Pi ≡ |i〉〈i| projections onto the Fock
basis states. Our goal is showcasing, in a well-known simple
case, what the derivation of quantum and classical boundaries
via support functions would look like.

�antum boundary — Computing the boundary of Q in the
space (P0, P1) is trivial, as we know that all pairs of non-
negatives with 0 ≤ P0 + P1 ≤ 1 are achievable with some
quantum state.

Classical boundary — �e support function hC reads in this
case, writing n ≡ (a, b) ∈ R2,

hC(a, b) = max
ρ∈C

(aP0(ρ) + bP1(ρ)) = max
µ≥0

e−µ(a+ bµ). (12)

Being the support function homogeneous, hC(λa, λb) =
λhC(a, b) for all λ ≥ 0, we can restrict our a�ention to the
cases with b = 1 and b = −1. More speci�cally, the nontrivial
boundary arises from the b = 1 sector, so we will restrict to
this case in the following. De�ning f(µ; a) ≡ e−µ(a + µ),
we �nd that

∂µf(µ; a) = e−µ(1− a− µ). (13)

It follows that µ = 1−a is a stationary point for f , which can
also be veri�ed to be a local maximum. �us the maximization
in hC(a) ≡ hC(a, 1) can be achieved via either µ = 1 − a,
µ = ∞, or µ = 0, and hC(a, 1) = max(ea−1, a, 0).We can
then observe that, for all a ∈ R, we have ea−1 ≥ 0 and
ea−1 ≥ a, and thus conclude that

hC(a, 1) = ea−1. (14)

�is result provides a nonclassicality criterion for each value
of a. To otain a general nonclassicality criterion, which ac-
counts for all the criteria with di�erent a at the same time,
we observe that our goal is, given some observed values of P0

and P1, �nd a such that

aP0 + P1 > hC(a, 1). (15)

We can thus obtain a general nonclassicality criterion com-
puting

HC(P0) ≡ min
a

[hC(a, 1)− aP0]. (16)

Computing this amounts to �nding the value of a that is
optimal to certify the nonclassicality of given P0 and P1.
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De�ning HC(a;P0) ≡ hC(a, 1) − aP0, we see easily that
lima→±∞HC(a;P0) =∞, which means that the minimum
is achieved at a local stationary point. �e function is contin-
uous, and therefore we can �nd the minimum by imposing
∂aHC(a;P0) = 0, which gives amin = logP0+1, from which
we get

HC(P0) = P0 log

(
1

P 0

)
, (17)

and conclude that the relevant nonclassicality criterion is
P1 > P0 log(1/P0). Of course, this result could have been
obtained by more direct methods, and was already discussed
at length in [37], but it is nonetheless highly interesting to
derive it like this, as this approach is much more suitable for
computing criteria in more general spaces.

C. DERIVATION OF OTHER TWO-DIMENSIONAL
CRITERIA

However, for classical states, there is in general no simple way
to write a bound for Pj in terms of Pk , albeit it is possible to
express algebraically their relations via implicit relations. For
example, considering (P1, P2), the set of coherent states traces
the curve 2P2

P 2
1

exp(−2P2/P1) = 1, but there is no algebraic
expression in terms of simple functions of the bound on P1

for any given value of P2. Nonetheless, if one can �nd such
relations e.g. numerically, this provides bounds of the form
Pmj (Pi) ≤ Pj ≤ PMj (Pi) satis�ed by classical states, which
then translates into an inequality in the (Xij , Pi) space of the
form

0 ≤ |Xij | ≤ 2
√
PiPMj (Pi). (18)

For example, if P1 = 0.2, then |X12| ≤ 2
√

0.2× 0.254 '
0.45 < 1, and thus any measured value of X12 > 0.45 certi-
�es nonclassicality. Alternatively, one can retrieve directly
the algebraic relation between Xij and Pi satis�ed by all co-
herent states using ideas similar to those discussed in [37] for
Fock states. More speci�cally, one can always �nd coe�cients
α, β, γ ∈ R, depending on i, j ∈ N, such that

X2
ij/P

α
i = e−βµ, µ = (Xij/Pi)

γ , (19)

and thus the set of classical states is in the convex hull of the
curve de�ned algebraically as

X2
ij

Pαi
exp

[
−β
(
Xij

Pi

)γ]
= 1. (20)

D. EXAMPLE WITH COHERENCES PROVIDING
ENHANCED PREDICTIVE POWER

As hinted at in the main text, there are situations where knowl-
edge of coherences allows to detect nonclassicality that would
not have been otherwise detectable via only Fock-state proba-
bilities.

We consider here as such an example the space (P0, P2, X02).
We know that the set of coherent states in non-convex in
the space (P0, P2), as can be seen directly from �g. 5. Let us
consider a point in this non-convex region, for example, P0 =
0.6 and P2 = 0.1. �is is thus clearly classical given only
knowledge of (P0, P2). Is it possible to detect it as nonclassical
if knowledge of X02 is provided? To see that this is the case,
we can consider the associated support function, and show
that there are values of (a, b, c) ∈ R2 such that

aX02 + bP0 + cP2 > hC(a, b, c), (21)

where

hC(a, b, c) ≡ sup
µ≥0,ϕ

e−µ
[√

2aµ cos(2ϕ) + b+ c
µ2

2

]
= sup
µ≥0

e−µ
[
|a|
√

2µ+ b+ c
µ2

2

]
.

(22)

Let us consider the case with a = 1/2 and c = 1. With this
assumption the calculation of the support function simpli�es
to

hC(0.5, b, 1) =
1

2
sup
µ≥0

e−µ
[
µ2 +

√
2µ+ 2b

]
. (23)

�e associated function to maximize is f(µ; b) ≡ µ2 +
√

2µ+
2b, which can be seen to have local real stationary points, for
b ≤ 3/4, at

µ±(b) =
2−
√

2

2
±
√

6− 8b

2
, (24)

with µ−(b) ≥ 0 only for b ≥ 1/
√

2. One can further ver-
ify that f(µ+(b); b) ≥ f(µ−(b); b), meaning that only the
µ+(b) local solution needs be considered. We also have
f(µ+(b); b) ≥ 0 in the domain of de�nition of µ+, which
allows us to exclude the µ→∞ solution to eq. (23). Finally,
f(0; b) = b, which for b > 0 is a possible alternative solu-
tion. �e transition between the local solution and the µ = 0
solution happens when

f(µ+(b); b) = f(0; b) = b. (25)

�is equation has no analytic solution, but can be veri�ed
numerically to pinpoint btr ' 0.738.

All of the above reasoning allows us to �nally write down the
support function as{

hC(0.5, b, 1) = f(µ+(b); b), b ≤ btr,
hC(0.5, b, 1) = b, b > btr.

(26)

With this explicit expression for the support function we can
answer probe for the existence of some b such that

0.5X02 + bP0 + P2 > hC(0.5, b, 1), (27)

for someX02. More speci�cally, we can consider a case where
the coherence term is saturated, meaning X02 = 2

√
P0P2 '
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FIG. 4. Support function hC(0.5, b, 1) and g(b) as a function of b. �e
values of b corresponding to g(b) > hC(0.5, b, 1) can all be used to
certify the nonclassicality of the corresponding observed quantities,
here (P0, P2, X02) with P0 = 0.6, P2 = 0.1, and X02 = 2

√
P0P2.

0.49. All that remains is now to compare the function g(b) ≡
0.5X02+bP0+P2, for the given values ofP0, P2, X02, and see
whether there are values of b such that g(b) > hC(0.5, b, 1).
As can be seen clearly from �g. 4, any 0.6 ≤ b ≤ 0.8 will
work to certify nonclassicality.

We conclude that there are situations where coherence terms
are necessary to detect the nonclassicality. As a more explicit
examples, a state resulting in the observed values considered
above is

ρ ≡ 0.7 |ψ〉〈ψ|+ 0.3 |3〉〈3| , (28)

with |ψ〉 ≡ 1√
0.7

(
√

0.6 |0〉 +
√

0.1 |2〉). �is state gives
P0 = 0.6, P2 = 0.1, X02 = 2

√
P0P2, cannot be detected

as nonclassical looking only at P0 and P2, but can be detected
as nonclassical using the coherence term X02, exploiting the
inequality obtained from the support function with values
a = 0.5, b = 0.6, c = 1.

E. EFFECTS OF ATTENUATION

In this section we provide, for completeness, explicit expres-
sions for the states obtained via a�enuation from superposi-
tions of Fock states, and show other examples of how their
nonclassicality emerges from coherence terms.

A. 1√
2
(|0〉+ |1〉)

Consider the superposition of Fock states |ψ〉 ≡ 1√
2
(|0〉+|1〉).

Evolving through a beamspli�er with transmissivity t ∈ C.
�e output state on the �rst output mode is

ρt =
1

2
[(2− T )P0 + TP1 + (t |1〉〈0|+ h. c.)], (29)

where T ≡ |t|2 is the beamspli�er transmissivity. �e corre-
sponding expectation values read

〈P0〉 =
2− T

2
, 〈P1〉 =

T

2
, 〈X01〉 =

√
T cos(φ), (30)

where t =
√
Teiφ.

B. 1√
2
(|0〉+ |2〉)

If the input state is a superposition of vacuum and Fock state
|2〉, a�er evolution through the beamspli�er we get

ρt =
1

2
(1 +R2)P0 + TRP1 +

1

2
T 2P2

+
1

2
(t2 |2〉〈0|+ t̄2 |0〉〈2|),

(31)

where R ≡ 1 − T . �e corresponding expressions for the
expectation values ofP0, P1, P2, X02 follow directly from this.
�e nonclassicality of these a�enuated states in the N = 2
case is shown in �g. 5. In particular, we �nd nonclassicality in
(P0, X02) for T ≥ 0.34, and in (P0, P2, X02) for T ≥ 0.273.

C. 1√
2
(|1〉+ |2〉)

If we consider the input state 1√
2
(|1〉+ |2〉), the nonvanish-

ing coherence terms a�er a�enuation through a beamspli�er
are X01 and X12. We �nd the nonclassicality threshold to
correspond to the a�enuation T ≈ 0.84, as shown in �g. 1 in
the main text. As in the previous cases, we therefore �nd a
nontrivial nonclassicality threshold for the coherences.

F. EFFECTS OF THERMAL NOISE

We outline here for completeness the procedure used to obtain
the results about thermalized a�enuated states, reported in
the main text.

�ermal noise can be modelled as the following operation
applied to a given state ρt:

Φth
n̄ (ρt) ≡

∫
dµ
e−µ/n̄

n̄

∫ 2π

0

dφ

2π
D(
√
µeiφ)ρtD

†(
√
µeiφ), (32)

where D(α) = exp
(
αa† − ᾱa

)
is the displacement operator.

When ρt is obtained evolving 1√
2
(|0〉+ |1〉) through a beam-

spli�er with transmi�ivity t, we �nd that

Φth
n̄ (ρt) =

∞∑
j=0

(
P

(th;t,n̄)
j Pj +X

(th;t,n̄)
j Xj

)
, (33)

where Xj ≡ |j〉〈j + 1|+ |j + 1〉〈j|, and

P
(th;t,n̄)
j ≡ n̄j

(n̄+ 1)j+1

[2n̄(n̄+ 1) + T (j − n̄)]

2n̄(n̄+ 1)
,

X
(th;t,n̄)
j ≡ n̄j

(n̄+ 1)j+2

√
j + 1 Re(t).

(34)
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FIG. 5. States obtained a�enuating 1√
2
(|0〉+|2〉) with di�erent trans-

missivities, in the spaces (P0, P2) (a) and (P0, X02) (b). �e blue
�lled regions are bounded by the coherent states in the respective
spaces. �e classical region is thus the convex hull of these regions.
While in (b) the boundary is convex and thus the classical set co-
incides with the blue �lled region, the same is not true in (a). �e
purple do�ed line gives the values of the support function hC(u) for
all the possible directions u ∈ S1. �is is what is used to determine
classicality of a state (equivalently, it is used to determine the convex
hull of the coherent states). �e red and blue continuous line cor-
responds to the states obtained a�enuating 1√

2
(|0〉+ |2〉). �e red

sections correspond to nonclassical states. �e green dot between the
two marks the transition between classicality and nonoclassicality.

In particular,

P
(th;t,n̄)
0 =

1

2n̄(n̄+ 1)2
[2n̄(n̄+ 1)− T n̄],

P
(th;t,n̄)
1 =

1

2(n̄+ 1)3
[2n̄(n̄+ 1) + T (1− n̄)],

P
(th;t,n̄)
2 =

n̄2

2n̄(n̄+ 1)4
[2n̄(n̄+ 1) + T (2− n̄)],

X
(th;t,n̄)
0 =

Re(t)

(n̄+ 1)2
.

(35)

Similar calculations are used to derive the expressions in the
case of |0〉+ |2〉, used for Fig. 3 in the main text.
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