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Non-Nilpotent Leibniz Algebras with
One-Dimensional Derived Subalgebra

Alfonso Di Bartolo , Gianmarco La Rosa and Manuel Mancini

Abstract. In this paper we study non-nilpotent non-Lie Leibniz F-algeb-
ras with one-dimensional derived subalgebra, where F is a field with
char(F) �= 2. We prove that such an algebra is isomorphic to the direct
sum of the two-dimensional non-nilpotent non-Lie Leibniz algebra and
an abelian algebra. We denote it by Ln, where n = dimF Ln. This gen-
eralizes the result found in Demir et al. (Algebras and Representation
Theory 19:405-417, 2016), which is only valid when F = C. Moreover,
we find the Lie algebra of derivations, its Lie group of automorphisms
and the Leibniz algebra of biderivations of Ln. Eventually, we solve the
coquecigrue problem for Ln by integrating it into a Lie rack.
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Introduction

Leibniz algebras were introduced by Loday in [19] as a non-skew symmetric
version of Lie algebras. Earlier such algebraic structures were also consid-
ered by A. Blokh, who called them D-algebras [5] for their strict connection
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with derivations. Leibniz algebras play a significant role in different areas of
mathematics and physics.

Many results of Lie algebras are still valid for Leibniz algebras. One of
them is the Levi decomposition, which states that any Leibniz algebra over
a field F of characteristic zero is the semidirect sum of its radical and a
semisimple Lie algebra. This makes clear the importance of the problem of
classification of solvable and nilpotent Lie/Leibniz algebras, which has been
dealt with since the early 20th century (see [2–4,9–11,13] and [14], just for
giving a few examples).

In [16] and [17] nilpotent Leibniz algebras L with one-dimensional de-
rived subalgebra [L,L] were studied and classified. It was proved that, up
to isomorphism, there are three classes of indecomposable Leibniz algebras
with these properties, namely the Heisenberg algebras lA2n+1, which are pa-
rameterized by their dimension 2n + 1 and by a matrix A in canonical form,
the Kronecker algebra kn and the Dieudonné algebra dn, both parameterized
by their dimension only. We want to complete this classification by studying
non-nilpotent Leibniz F-algebras with one-dimensional derived subalgebra,
where F is a field with char(F) �= 2. Using the theory of non-abelian exten-
sions of Leibniz algebras introduced in [18], we prove that a non-nilpotent
non-Lie Leibniz algebra L with dimF L = n and dimF[L,L] = 1 is isomorphic
to the direct sum of the two-dimensional non-nilpotent non-Lie Leibniz alge-
bra S2, i.e. the algebra with basis {e1, e2} and multiplication table given by
[e2, e1] = e1, and an abelian algebra of dimension n − 2. We denote it by Ln.
This generalizes the result found in Theorem 2.6 of [11], where the authors
proved that a complex non-split non-nilpotent non-Lie Leibniz algebra with
one-dimensional derived subalgebra is isomorphic to S2.

We study in detail the properties of the algebra Ln and we compute the
Lie algebra of derivations Der(Ln), its Lie group of automorphism Aut(Ln)
and the Leibniz algebra of biderivations Bider(Ln).

Finally, we solve the coquecigrue problem for the Leibniz algebra Ln.
We mean the problem, formulated by J.-L. Loday in [19], of finding a gen-
eralization of Lie third theorem to Leibniz algebras. Using M. K. Kinyon’s
results for the class of real split Leibniz algebras (see [15]), we show how to
explicitly integrate Ln into a Lie rack defined over the vector space R

n.

1. Preliminaries

We assume that F is a field with char(F) �= 2. For the general theory we refer
to [1].

Definition 1.1. A left Leibniz algebra over F is a vector space L over F en-
dowed with a bilinear map (called commutator or bracket) [−,−] : L×L → L
which satisfies the left Leibniz identity

[x, [y, z]] = [[x, y] , z] + [y, [x, z]] , ∀x, y, z ∈ L.
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In the same way we can define a right Leibniz algebra, using the right
Leibniz identity

[[x, y] , z] = [[x, z], y] + [x, [y, z]] , ∀x, y, z ∈ L.

Given a left Leibniz algebra L, the multiplication [x, y]op = [y, x] defines a
right Leibniz algebra structure on L.

A Leibniz algebra that is both left and right is called symmetric Leibniz
algebra. From now on we assume that dimF L < ∞.

We have a full inclusion functor i : Lie → Leib that embeds Lie algebras
over F into Leibniz algebras over F. Its left adjoint is the functor π : Leib →
Lie, which associates to each Leibniz algebra L the quotient L/Leib(L), where
Leib(L) is the smallest bilateral ideal of L such that the quotient L/Leib(L)
becomes a Lie algebra. Leib(L) is defined as the subalgebra generated by all
elements of the form [x, x], for any x ∈ L, and it is called the Leibniz kernel
of L.

We define the left and the right center of a Leibniz algebra

Zl(L) = {x ∈ L | [x,L] = 0} , Zr(L) = {x ∈ L | [L, x] = 0} .

The intersection of the left and right center is called the center of L and
it is denoted by Z(L). In general for a left Leibniz algebra L, the left center
Zl(L) is a bilateral ideal, meanwhile the right center is not even a subalgebra.
Furthermore, one can check that Leib(L) ⊆ Zl(L).

The definition of derivation for a Leibniz algebra is the same as in the
case of Lie algebras.

Definition 1.2. A linear map d : L → L is a derivation of L if

d([x, y]) = [d(x), y] + [x, d(y)], ∀x, y ∈ L.

An equivalent way to define a left Leibniz algebra L is to saying that the
left adjoint maps adx = [x,−] are derivations. Meanwhile the right adjoint
maps Adx = [−, x] are not derivations in general. The set Der(L) of all
derivations of L is a Lie algebra with the usual bracket [d, d′] = d ◦ d′ − d′ ◦ d
and the set Inn(L) spanned by the left adjoint maps, which are called inner
derivations, is an ideal of Der(L). Moreover Aut(L) is a Lie group and its Lie
algebra is precisely Der(L).

In [19] Loday introduced the notion of anti-derivation and biderivation
for a Leibniz algebra.

Definition 1.3. A linear map D : L → L is an anti-derivation of L if

D([x, y]) = [x,D(y)] − [y,D(x)], ∀x, y ∈ L.

The space ADer(L) of anti-derivations of L has a Der(L)-module struc-
ture with the extra multiplication d · D = d ◦ D − D ◦ d, for any derivation d
and for any anti-derivation D, and one can check that the right adjoint maps
Adx are anti-derivations.

Definition 1.4. A biderivation of L is a pair (d,D) ∈ Der(L) × ADer(L) such
that

[d(x) + D(x), y] = 0, ∀x, y ∈ L.
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The set Bider(L) of all biderivations of L has a Leibniz algebra structure
with the bracket

[(d,D), (d′,D′)] = ([d, d′], d · D′)
and it is defined a Leibniz algebra homomorphism

L → Bider(L), x 	→ (adx,Adx).

The pair (adx,Adx) is called the inner biderivation associated with x ∈ L and
the set of all inner biderivations of L forms a Leibniz subalgebra of Bider(L).

We recall the definitions of solvable and nilpotent Leibniz algebras.

Definition 1.5. Let L be a left Leibniz algebra over F and let

L0 = L, Lk+1 = [Lk, Lk], ∀k ≥ 0

be the derived series of L. L is n− step solvable if Ln−1 �= 0 and Ln = 0.

Definition 1.6. Let L be a left Leibniz algebra over F and let

L(0) = L, L(k+1) = [L,L(k)], ∀k ≥ 0

be the lower central series of L. L is n− step nilpotent if L(n−1) �= 0 and
L(n) = 0.

When L is two-step nilpotent, it lies in different varieties of non-associat-
ive algebras, such as associative, alternative and Zinbiel algebras. In this case
we refer at L as a two-step nilpotent algebra and we have the following.

Proposition 1.7. (i) If L is a two-step nilpotent algebra, then L(1) = [L,L]
⊆ Z(L) and L is a symmetric Leibniz algebra.

(ii) If L is a left nilpotent Leibniz algebra with dimF[L,L] = 1, then L is
two-step nilpotent.

In [16] the classification of nilpotent Leibniz algebras with one-dimensio-
nal derived subalgebra was established. The classification revealed that, up
to isomorphism, there exist only three classes of indecomposable nilpotent
Leibniz algebras of this type.

Definition 1.8 [16]. Let f(x) ∈ F [x] be a monic irreducible polynomial. Let
k ∈ N and let A = (aij)i,j be the companion matrix of f(x)k. The Heisen-
berg algebra lA2n+1 is the (2n + 1)-dimensional Leibniz algebra with basis
{e1, . . . , en, f1, . . . , fn, z} and the brackets are given by

[ei, fj ] = (δij + aij)z, [fj , ei] = (−δij + aij)z, ∀i, j = 1, . . . , n.

When A is the zero matrix, then we obtain the (2n+1)−dimensional Heisen-
berg Lie algebra h2n+1.

Definition 1.9 [16]. Let n ∈ N. The Kronecker algebra kn is the (2n + 1)-
dimensional Leibniz algebra with basis {e1, . . . , en, f1, . . . , fn, z} and the brack-
ets are given by

[ei, fi] = [fi,ei] = z, ∀i = 1, . . . , n

[ei, fi−1] = z, [fi−1, ei] = −z, ∀i = 2, . . . , n.
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Definition 1.10 [16] Let n ∈ N. The Dieudonn é algebra dn is the (2n + 2)-
dimensional Leibniz algebra with basis {e1, . . . , e2n+1, z} and the brackets
are given by

[e1, en+2] = z,

[ei, en+i] = [ei, en+i+1] = z, ∀i = 2, . . . , n,

[en+1, e2n+1] = z,

[ei, ei−n] = z, [ei, ei−n−1] = −z, ∀i = n + 2, . . . , 2n + 1.

We want to extend this classification by studying non-nilpotent Leibniz
algebras with one-dimensional derived subalgebra.

2. Non-nilpotent Leibniz algebras with one-dimensional
derived subalgebra

Let L be a non-nilpotent left Leibniz algebra over F with dimF L = n and
dimF [L,L] = 1. We observe that such an algebra is two-step solvable since
the derived subalgebra [L,L] is abelian.

It is well known that a non-nilpotent Lie algebra with one-dimensional
derived subalgebra is isomorphic to the direct sum of the two-dimensional
non-abelian Lie algebra and an abelian algebra (see [12, Sect. 3]). Thus we
are interested in the classification of non-Lie Leibniz algebras with these
properties.

In [11, Theorem 2.6] the authors prove that a complex non-split non-
nilpotent non-Lie Leibniz algebra with one-dimensional derived subalgebra is
isomorphic to the two-dimensional algebra with basis {e1, e2} and multipli-
cation table [e2, e1] = [e2, e2] = e1. Here we generalize this result when F is
a general field with char(F) �= 2.

Proposition 2.1. Let L be a non-nilpotent left Leibniz algebra over F with
dimF [L,L] = 1. Then L has a two-dimensional bilateral ideal S which is
isomorphic to one of the following Leibniz algebras:

(i) S1 = 〈e1, e2〉 with [e2, e1] = − [e1, e2] = e1;
(ii) S2 = 〈e1, e2〉 with [e2, e1] = [e2, e2] = e1.

Proof. Let [L,L] = Fz. Since L is not nilpotent, then

[L, [L,L]] �= 0,

i.e. z /∈ Zr(L). Since [L,L] is an abelian algebra, there exists a vector x ∈ L,
which is linearly independent than z, such that [x, z] �= 0. Thus

[x, z] = γz,

for some γ ∈ F
∗. The subspace S = 〈x, z〉 is an ideal of L and it is not

nilpotent: in fact
0 �= γz = [x, z] ∈ [S, [S, S]] .

Thus S is a non-nilpotent Leibniz algebra. Using the classification of two-
dimensional Leibniz algebras given by C. Cuvier in [8], S is isomorphic either
to S1 or to S2. �
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Remark 2.1. The algebras S1 and S2 are respectively the Leibniz algebras
L2 and L4 of Sect. 3.1 in [1]. We observe that S1 is a Lie algebra, meanwhile
S2 is a non-right left Leibniz algebra.

One can see L as an extension of the abelian algebra L0 = L/S ∼= F
n−2

by S [18]

0 �� S
i �� L

π �� L0
s

�� �� 0 . (1)

It turns out that there exists an equivalence of Leibniz algebra extensions

0 S L0 �ω S L0 0

0 S L L0 0

i2

idS

π1

θ

i1
idB

i π

σ

where L0 �ω S is the Leibniz algebra defined on the direct sum of vector
spaces L0 ⊕ S with the bilinear operation given by

[(x, a), (y, b)](l,r,ω) = (0, [a, b] + lx(b) + ry(a) + ω(x, y)),

where
ω(x, y) = [σ(x), σ(y)]L − σ([x, y]L0) = [σ(x), σ(y)]L

is the Leibniz algebra 2-cocycle associated with (1) and

lx(b) = [σ(x), i(b)]L, ry(a) = [i(a), σ(y)]L

define the action of L0 on S; i1, i2, π1 are the canonical injections and projec-
tion. The Leibniz algebra isomorphism θ is defined by θ(x, a) = σ(x) + i(a),
for every (x, a) ∈ L0 ⊕ S.

By [18, Proposition 4.2], the 2-cocycle ω : L0 × L0 → S and the linear
maps l, r : L0 → gl(S) must satisfy the following set of equations

(L1) lx([a, b]) = [lx(a), b] + [x, lx(b)];
(L2) rx([a, b]) = [a, rx(b)] − [b, rx(a)];
(L3) [lx(a) + rx(a), b] = 0;
(L4) [lx, ly]gl(S) − l[x,y]L0

= adω(x,y);
(L5) [lx, ry]gl(S) − r[x,y]L0

= Adω(x,y);
(L6) ry(rx(a) + lx(a)) = 0;
(L7) lx(ω(y, z)) − ly(ω(x, z)) − rz(ω(x, y))

= ω([x, y]L0 , z) − ω(x, [y, z]L0) + ω(y, [x, z]L0)

for any x, y ∈ L0 and for any a, b ∈ S. Notice that these equations where also
studied in [6] in the case of Leibniz algebra split extensions.

Remark 2.2. The first three equations state that the pair (lx, rx) is a bideriva-
tion of the Leibniz algebra S, for any x ∈ L0. Biderivations of low-dimensional
Leibniz algebras were classified in [20] and it turns out that

• Bider(S1) = {(d,−d) | d ∈ Der(S1)} and

Der(S1) =

{(
α β
0 0

) ∣∣∣∣∣ α, β ∈ F

}
;
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• Bider(S2) =

{((
α α
0 0

)
,

(
0 β
0 0

)) ∣∣∣∣∣ α, β ∈ F

}
.

We study now in detail the non-abelian extension (1) in both cases that
S is isomorphic either to S1 or to S2.

2.1. S is a Lie algebra

When S ∼= S1, we have that ry = −ly, for any y ∈ L0 and the bilinear
operation of L0 �ω S1 becomes

[(x, a), (y, b)](l,ω) = (0, [a, b] + lx(b) − ly(a) + ω(x, y)).

The linear map lx is represented by a 2 × 2 matrix(
αx βx

0 0

)

with αx,βx ∈ F. From equations (L4)-(L5) it turns out that

ω(x, y) = (αxβy − αyβx)e1, ∀x, y ∈ L0

and the 2-cocycle ω is skew-symmetric. Moreover, equations (L6)-(L7) are
automatically satisfied and the resulting algebra L0�ωS1

∼= L is a Lie algebra.
We conclude that L is isomorphic to the direct sum of S1 and L0

∼= F
n−2.

2.2. S is not a Lie algebra

With the change of basis e2 	→ e2 − e1, S2 becomes the Leibniz algebra with
basis {e1, e2} and the only non-trivial bracket given by [e2, e1] = e1. Now a
biderivation of S1 is represented by a pair of matrices((

α 0
0 0

)
,

(
0 β
0 0

))

with α, β ∈ F and the pair (lx, rx) ∈ Bider(S2) is defined by lx(e1) = αxe1
and rx(e2) = βxe1, for any x ∈ L0.

Equation (L4) states that [lx, ly]gl(S2)
= [ω(x, y),−], with

[lx, ly]gl(S2)
= lx ◦ ly − ly ◦ lx =

(
αx 0
0 0

) (
αy 0
0 0

)
−

(
αy 0
0 0

) (
αx 0
0 0

)

=
(

αxαy 0
0 0

)
−

(
αxαy 0

0 0

)
=

(
0 0
0 0

)
,

for any x, y ∈ L0. Thus ω(x, y) ∈ Zl(S2) = Fe1.
From equation (L5) we have [lx, ry]gl(S2)

= [−, ω(x, y)]S2
, with

[lx, ry]gl(S2)
= lx ◦ ry − ry ◦ lx =

(
0 αxβy

0 0

)
−

(
0 0
0 0

)
=

(
0 αxβy

0 0

)
.

Thus, for every a = a1e1 + a2e2 ∈ S2 and for every x, y ∈ L0, we have

[a, ω(x, y)] = [lx, ry] (a) = αxβya2e1,

i.e. ω(x, y) = αxβye1. Finally, equations (L6) and (L7) are identically satis-
fied.
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Summarizing we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lx ≡
(

αx 0
0 0

)

ry ≡
(

0 βy

0 0

)

ω(x, y) = αxβye1

for every x, y ∈ L0 and the bilinear operation [−,−](l,r,ω) becomes

[(x, a), (y, b)](l,r,ω) = (0, (a2b1 + αxb1 + βya2 + αxβy)e1),

for any x, y ∈ L0 and for any a = a1e1 + a2e2, b = b1e1 + b2e2 ∈ S2.
If we fix a basis {f3, . . . , fn} of L0 and we denote by

αi = αfi
, βi = βfi

, ∀i = 3, . . . , n

then L is isomorphic to the Leibniz algebra with basis {e1, e2, f3, . . . , fn} and
non-zero brackets

[e2, e1] = e1

[e2, fi] = βie1, ∀i = 3, . . . , n

[fi, e1] = αie1, ∀i = 3, . . . , n

[fi, fj ] = αiβje1, ∀i, j = 3, . . . , n.

With the change of basis fi 	→ f ′
i =

fi

βi
− e1, if βi �= 0, we obtain that

[e2, f ′
i ] = e1 − [e2, e1] = 0,

[f ′
i , e1] = γie1, where γi =

αi

βi
,

[fi, f
′
j ] = αie1 − [fi, e1] = 0,

[f ′
i , f

′
j ] = γie1 − 1

βi
[fi, e1] = 0.

If we denote again fi ≡ f ′
i and αi ≡ γi when βi �= 0, then L has basis

{e1, e2, f3, . . . , fn} and non-trivial brackets

[e2, e1] = e1, [fi, e1] = αie1, ∀i = 3, . . . , n.

Finally, when αi �= 0, we can operate the change of basis

fi 	→ fi

αi
− e2.

One can check that the only non-trivial bracket now is [e2, e1] = e1 and L is
isomorphic to the direct sum of S2 and the abelian algebra L0

∼= F
n−2. This

allows us to conclude with the following.

Theorem 2.2. Let F be a field with char(F) �= 2. Let L be a non-nilpotent
non-Lie left Leibniz algebra over F with dimF L = n and dimF[L,L] = 1.
Then L is isomorphic to the direct sum of the two-dimensional non-nilpotent
non-Lie Leibniz algebra S2 and an abelian algebra of dimension n − 2. We
denote this algebra by Ln. �
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If we suppose that L is a non-split algebra, i.e. L cannot be written as
the direct sum of two proper ideals, then we obtain the following result, that
is a generalization of [11, Theorem 2.6] and which is valid over a general field
F with char(F) �= 2.

Corollary 2.3. Let L be a non-split non-nilpotent non-Lie left Leibniz algebra
over F with dimF L = n and dimF[L,L] = 1. Then n = 2 and L ∼= S2. �

Now we study in detail the algebra Ln = S2 ⊕ F
n−2 by describing the

Lie algebra of derivations, its Lie group of automorphisms and the Leibniz
algebra of biderivations. Moreover, when F = R, we solve the coquegigrue
problem (see [7] and [15]) for Ln by integrating it into a Lie rack.

2.3. Derivations, Automorphisms and Biderivations of Ln

Let n ≥ 2 and let Ln = S2 ⊕ F
n−2. We fix the basis Bn = {e1, e2, f3, . . . , fn}

of Ln and we recall that the only non-trivial commutator is [e2, e1] = e1.
A straightforward application of the algorithm proposed in [20] for finding
derivations and anti-derivations of a Leibniz algebra as pair of matrices with
respect to a fixed basis produces the following.

Theorem 2.4. (i) A derivation of Ln is represented, with respect to the basis
Bn, by a matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α 0
0 0

0 0 · · · 0
0 0 · · · 0

0 a3

0 a4

...
...

0 an

A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where A ∈ Mn−2(F).
(ii) The group of automorphisms Aut(Ln) is the Lie subgroup of GLn(F) of

matrices of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β 0
0 1

0 0 · · · 0
0 0 · · · 0

0 b3
0 b4
...

...
0 bn

B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where β �= 0 and B ∈ GLn−2(F).
(iii) The Leibniz algebra of biderivations of Ln consists of the pairs (d,D)

of linear endomorphisms of Ln which are represented by the pair of
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matrices⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α 0
0 0

0 0 · · · 0
0 0 · · · 0

0 a3

0 a4

...
...

0 an

A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 α′

0 0
0 0 · · · 0
0 0 · · · 0

0 a′
3

0 a′
4

...
...

0 a′
n

A′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where A,A′ ∈ Mn−2(F). �

3. The Integration of the Leibniz Algebra Ln

The coquecigrue problem is the problem formulated by Loday in [19] of finding
a generalization of Lie third theorem to Leibniz algebras. Given a real Leibniz
algebra L, one wants to find a manifold endowed with a smooth map, which
plays the role of the adjoint map for Lie groups, such that the tangent space
at a distinguished element, endowed with the differential of this map, gives a
Leibniz algebra isomorphic to L. Moreover, when L is a Lie algebra, we want
to obatin the simply connected Lie group associated with L. From now on,
we assume that the underlying field of any algebra is F = R.

In [15] M. K. Kinyon shows that it is possible to define an algebraic
structure, called rack, whose operation, differentiated twice, defines on its
tangent space at the unit element a Leibniz algebra structure.

Definition 3.1. A rack is a set X with a binary operation � : X × X → X
which is left autodistributive

x � (y � z) = (x � y) � (x � z), ∀x, y, z ∈ X

and such that the left multiplications x � − are bijections.
A rack is pointed if there exists an element 1 ∈ X such that 1 � x = x

and x � 1 = 1, for any x ∈ X.
A rack is a quandle if the binary operation � is idempotent.

The first example of a rack is any group G endowed with its conjugation

x � y = xyx−1, ∀x, y ∈ G.

We denote this rack by Conj(G) and we observe that it is a quandle.

Definition 3.2. A pointed rack (X,�, 1) is said to be a Lie rack if X is a
smooth manifold, � is a smooth map and the left multiplications are diffeo-
morphisms.

M. K. Kinyon proved that the tangent space T1 X at the unit element
1 of a Lie rack X, endowed with the bilinear operation

[x, y] =
∂2

∂s∂t

∣∣∣∣
s,t=0

γ1(s) � γ2(t)

where γ1, γ2 : [0, 1] → X are smooth paths such that γ1(0) = γ2(0) = 1,
γ′
1(0) = x and γ′

2(0) = y, is a Leibniz algebra.
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He also solved the coquecigrue problem for the class of split Leibniz
algebras. Here a Leibniz algebra is said to be split if there exists an ideal

Leib(L) ⊆ I ⊆ Zl(L)

and a Lie subalgebra M of L such that L ∼= (M ⊕ I, {−,−}), where the
bilinear operation {−,−} is defined by

{(x, a), (y, b)} = ([x, y], ρx(b))

and ρ : M × I → I is the action on the M -module I. L is said to be the
demisemidirect product of M and I. More precisely, we have the following.

Theorem 3.3 [15]. Let L be a split Leibniz algebra. Then a Lie rack integrating
L is X = (H ⊕ I,�), where H is the simply connected Lie group integrating
M and the binary operation is defined by

(g, a) � (h, b) = (ghg−1, φg(b)),

where φ is the exponentiation of the Lie algebra action ρ.

Some years later S. Covez generalized M. K. Kinyon’s results proving
that every real Leibniz algebra admits an integration into a Lie local rack
(see [7]). More recently it was showed in [16] that the integration proposed
by S. Covez is global for any nilpotent Leibniz algebra. Moreover, when a
Leibniz algebra L is integrated into a Lie quandle X, it turns out that L is
a Lie algebra and X = Conj(G), where G is the simply connected Lie group
integrating L.

Our aim here is to solve the coquecigrue problem for the non-nilpotent
Leibniz algebra Ln = S2 ⊕ F

n−2. One can check that S2 is a split Leibniz
algebra, in the sense of M. K. Kinyon, with I = Zl(S2) ∼= R and M ∼= R.
Thus L ∼= (R2, {−,−}) with the bilinear operation defined by

{(x1, x2), (y1, y2)} = (0, ρx1(y2))

and ρx1(y2) = x1y2, for any x1, y2 ∈ R. It turns out that a Lie rack integrating
S2 is (R2,�), where

(x1, x2) � (y1, y2) = (y1, y2 + ex1y2).

and the unit element is (0, 0). Finally, one can check that the binary operation

(x1, x2, x3, . . . , xn) � (y1, y2, y3, . . . , yn) = (y1, y2 + ex1y2, y3, . . . , yn)

defines on R
n a Lie rack structure with unit element 1 = (0, . . . , 0), such

that (T1 R
n,�) is a Leibniz algebra isomorphic to Ln. This result, combined

with the ones of [16, Section 4], completes the classification of Lie racks
whose tangent space at the unit element gives a Leibniz algebra with one-
dimensional derived subalgebra.
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de l’ É cole Normale Sup é rieure 27(1), 1–45 (1994)

[9] Demir, I.: Classification of some subclasses of 6-dimensional nilpotent Leibniz
algebras. Turkish J. Math. 44(5), 1012–1018 (2020). https://doi.org/10.3906/
mat-2002-69

[10] Demir, I., Kailash, K.C., Misra, C., Stitzinger, E.: On classification of four-
dimensional nilpotent Leibniz algebras. Commun. Algebra 45(3), 1012–1018
(2017). https://doi.org/10.1080/00927872.2016.1172626

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.laa.2010.09.036
https://doi.org/10.17323/1609-4514-2018-18-4-607-616
https://doi.org/10.1016/j.difgeo.2017.04.009.
https://doi.org/10.1017/S0013091523000548
https://doi.org/10.5802/aif.2754
https://doi.org/10.3906/mat-2002-69
https://doi.org/10.3906/mat-2002-69
https://doi.org/10.1080/00927872.2016.1172626


MJOM Non-Nilpotent Leibniz Algebras Page 13 of 13   138 

[11] Demir, I., Misra, K.C., Stitzinger, E.: Classification of some solvable Leibniz
algebras. Algebras Representation Theory 19, 405–417 (2016). https://doi.org/
10.1007/s10468-015-9580-5

[12] Erdmann, K., Wildon, M.J.: Introduction to Lie Algebras. Springer, London
(2006). (ISBN: 9781846284908)

[13] Ignatyev, M.V., Kaygorodov, I., Popov, Y.: The geometric classification of 2-
step nilpotent algebras and applications. Revista Matem á tica Complutense
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