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ABSTRACT
We introduce a family of local inhomogeneous mark-weighted summary statistics, of order two and higher,
for general marked point processes. Depending on how the involved weight function is specified, these
summary statistics capture different kinds of local dependence structures. We first derive some basic
properties and show how these new statistical tools can be used to construct most existing summary
statistics for (marked) point processes. We then propose a local test of random labeling. This procedure
allows us to identify points, and consequently regions, where the random labeling assumption does not
hold, for example, when the (functional) marks are spatially dependent. Through a simulation study we show
that the test is able to detect local deviations from random labeling. We also provide an application to an
earthquake point pattern with functional marks given by seismic waveforms.
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1. Introduction

The analysis of a point pattern, given as a collection of points in
a region, typically begins with computing an estimate of some
summary statistic which may be used to find specific structures
in the data and suggest suitable models (Van Lieshout 2000;
Daley and Vere-Jones 2008; Illian et al. 2008; Gelfand et al. 2010;
Chiu et al. 2013).

The choice of summary statistic depends both on the pattern
at hand and on the feature or hypothesis of interest.

A widely used summary statistic for descriptive analyses
and diagnostics, which is obtained as an instance of the so-
called reduced second moment measure (Cressie and Collins
2001; Møller 2003; Chiu et al. 2013), is Ripley’s K-function
(Ripley 1976), which is based on the assumption of a non-
marked stationary and isotropic point process. In the marked
case, assuming discrete marks and stationarity, cross versions
of the K- or nearest neighbor distance distribution functions
have been proposed (Diggle 2013). For real-valued marks, the
mark correlation type-functions in Penttinen and Stoyan (1989)
and Illian et al. (2008) are widely used and such second order
statistics have been studied in more detail and reformulated
by Schlather (2001), in order to obtain a more rigorous for-
mulation. However, although the assumption of stationarity is
mathematically appealing, it can rarely be justified in prac-
tice since the intensity tends to change over the study region.
This is to say that the underlying point process is inhomo-
geneous and, in the unmarked case, Baddeley, Møller, and
Waagepetersen (2000) proposed an inhomogeneous extension
of the K-function for a class of point processes, which are
referred to as second order intensity-reweighted stationary.
Their ideas were extended to spatio-temporal point processes in
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Gabriel and Diggle (2009) and Møller and Ghorbani (2012). Fur-
ther, Møller and Waagepetersen (2003) proposed an extension of
this K-function to second order intensity-reweighted stationary
multivariate point processes. As indicated in Cronie and van
Lieshout (2016) and Iftimi, Cronie, and Montes (2019), this
structure may be extended to K-functions for general marked
point processes. To analyze higher order interactions in gen-
eral stationary marked point processes, Van Lieshout (2006)
proposed marked versions of the nearest neighbor distance
distribution functions, the empty space function and the J-
function. These summary statistics, which allow us to study
spatial interactions between different mark groupings of the
points, were later extended to the inhomogeneous setting by
Cronie and van Lieshout (2016) and Iftimi, Cronie, and Montes
(2019). In particular, to test for random labeling, Cronie and van
Lieshout (2016) proposed inhomogeneous Lotwick-Silverman-
type Monte Carlo tests based on their new summary statistics,
while Iftimi, Cronie, and Montes (2019) proposed second order
Monte Carlo tests based on permuting the attached marks.
Further details on the random shift-type testing considered in
Lotwick-Silverman-type tests can be found in Mrkvička et al.
(2021).

Despite the relatively long history of point process theory (see
e.g., Stoyan and Stoyan 1994; Daley and Vere-Jones 2008; Diggle
2013), few approaches have been proposed to analyze spatial
point patterns where the features of interest are functions/curves
instead of qualitative or quantitative variables. Examples of
point patterns with associated functional data include forest
patterns where for each tree we have a growth function, curves
representing the incidence of an epidemic over a period of
time, and the evolution of distinct economic parameters such
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as unemployment and price rates, all for distinct spatial loca-
tions. The study of such configurations allows analyzing the
effects of the spatial structure on individual functions. Illian
et al. (2006) consider for each point a transformed Ripley’s
(1976) K-function to characterize spatial point patterns of eco-
logical plant communities, while Mateu, Lorenzo, and Porcu
(2007) build new marked point processes formed by spatial
locations and curves defined in terms of Local Indicators of
Spatial Association (LISA) functions, which describe local char-
acteristics of the points. They use this approach to classify and
discriminate between points belonging to a clutter and those
belonging to a feature. Finally, the idea of analyzing point pat-
terns with attached functions has been presented coherently
by Comas, Delicado, and Mateu (2011) and Ghorbani et al.
(2021).

Ghorbani et al. (2021) introduced a very broad framework
for the analysis of Functional Marked Point Processes (FMPPs),
indicating how they connect the point process framework with
both Functional Data Analysis (FDA; Ramsay and Silverman
(2002)) and geostatistics. In particular, they defined a new fam-
ily of summary statistics, so-called weighted nth order marked
inhomogeneous K-functions, together with their nonparametric
estimators, which they exploited to analyze Spanish population
structures, such as demographic evolution and sex ratio over
time. This summary statistic family can be used to run a Monte
Carlo test of random labeling, for example, by means of global
envelopes test (GET; Myllymäki et al. 2017), to assess whether
the functional marks of the analyzed pattern are spatially depen-
dent. However, this procedure is essentially global, since it does
not provide information on the points which mostly contributed
to the rejection of the random labeling hypothesis. Therefore,
motivated by the need of detecting such points, and thus the
regions in which they are located, where the functional marks
really do depend on the surrounding structure, in this article
we introduce a new class of summary statistics, local t-weighted
marked nth order inhomogeneous K-functions. These are used to
propose a local test of random labeling. Here t refers to a function
which governs how much weight we put on different aspects of
the marked point process/pattern.

Further, we use the developed tools to analyze seismic data.
Note that while the spatial (and temporal) locations of the
epicenters of earthquakes are typically analyzed within the
framework of point processes, the associated seismic waveforms
are commonly investigated in separate analyses through FDA.
Applying the local test allows us to identify where one would
expect waveforms (i.e., functional marks) to be similar to those
of nearby points.

All the performed analyses are carried out through the R Core
Team (2022) software, and the codes are available from the first
author. Preliminary data manipulation is performed through the
software Python (Van Rossum and Drake Jr 1995).

The structure of the article is as follows. In Section 2, the
motivation of this article is presented, showing the dataset and
problem that will be further analyzed along the article. Section 3
contains some preliminaries on functional marked point pro-
cesses. In Section 4, we present our proposed local t-weighted
nth order inhomogeneous K-functions and their main proper-
ties, also relating them to their global counterparts. Section 5
outlines the main steps to run a local test of random labeling.

In Section 6, we present a motivating example to show the
further advantages of a local test, compared to a global one. To
have a comprehensive understanding of the performance of the
proposed local test, we show simulation results under different
scenarios. Section 7 provides an application to seismic data.
Finally, conclusions are drawn in Section 8.

2. Data and Motivation

Earthquakes’ detection provides a whole set of data which are
usually studied separately, that is, spatial (and temporal) occur-
rence of points through point process theory (Siino et al. 2017;
Iftimi, Cronie, and Montes 2019; D’Angelo et al. 2022, to cite just
a few recent works), and the analysis of waveforms through FDA
(Adelfio et al. 2011, 2012; Chiodi et al. 2013).

A recently released set of data on Italian seismic activity
encompasses both of these data types. The Italian seismic dataset
for machine learning (INSTANCE) is a dataset of seismic wave-
forms data and associated metadata (Michelini et al. 2021),
which includes 54,008 earthquakes for a total of 115,9249 three-
channel waveforms. It also contains 132,330 three-channel noise
waveforms. For each of these waveforms, 115 metadata (i.e., sta-
tistical variables) are available, providing information on station,
trace, source, path and quality. Overall, the data are collected by
19 networks which consist of 620 seismic stations. The dataset is
available on http://www.pi.ingv.it/instance/.

The earthquake list in the dataset is based on the Ital-
ian seismic bulletin (http://terremoti.ingv.it/bsi) of the “Istituto
Nazionale di Geofisica e Vulcanologia,” includes events which
occurred between January 2005 and January 2020, and in the
magnitude range between 0.0 and 6.5. The waveform data have
been recorded primarily by the Italian National Seismic Net-
work. Figure 1 (a)–(b) depict the earthquake locations and the
seismic stations which recorded the events.

In Figure 1(c), some waveforms contained in the dataset are
represented. All the waveform traces have a length of 120 sec, are
sampled at 100 Hz, and are provided both in counts and ground
motion physical units after deconvolution of the instrument
transfer functions. The waveform dataset is accompanied by
metadata consisting of more than 100 variables providing com-
prehensive information on the earthquake source, the recording
stations, the trace features, and other derived quantities.

3. Preliminaries on Marked Point Processes

Throughout the article, we consider a marked point process
Y = {(xi, mi)}N

i=1 (Daley and Vere-Jones 2008, Definition 6.4.1),
with ground points xi in the d-dimensional Euclidean space
R

d, d ≥ 1, which is equipped with the Lebesgue measure
|A| = ∫

A dz for Borel sets A ∈ B(Rd); a closed Euclidean r-
ball around x ∈ R

d will be denoted by b[x, r]. By definition, the
ground process Yg = {xi}N

i=1, obtained from Y by ignoring the
marks, is a well-defined point process on R

d in its own right.
Note that, formally, Y is a random element in the measurable
space (Nlf ,N ) of locally finite point configurations/patterns x =
{((x1, m1), . . . , (xn, mn))}, n ≥ 0 (Van Lieshout 2000; Daley
and Vere-Jones 2008). We assume that the mark space M is
Polish and equipped with a finite reference measure ν on the

http://www.pi.ingv.it/instance/
http://terremoti.ingv.it/bsi
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Figure 1. The Italian seismic dataset for machine learning (INSTANCE). (a) Earthquake locations; (b) Seismic stations used for waveforms extraction. The symbol sizes are
proportional to earthquake magnitude and number of arrival phases recorded by stations, respectively; (c) Seismic waveforms of some events with magnitude in the range
[2, 4]. Vertical lines indicate the seismic waves’ arrival times. Source: Michelini et al. (2021).

Borel σ -algebra B(M). The Borel σ -algebra B(Rd × M) =
B(Rd)⊗B(M) is endowed with the product measure A×E �→
|A|ν(E), A × E ∈ B(Rd × M). We will let Y(A × E) =∑

(x,m)∈Y 1{(x, m) ∈ A × E}, where 1 is the indicator function,
denote the cardinality of the random set Y ∩(A×E). We assume
that Y is simple, that is, it almost surely (a.s.) does not contain
multiple points in the sense that P(Y({(x, m)}) = 0 or 1) = 1
for all (x, m) ∈ R

d × M.
Given this general setup, one may obtain various forms of

marked point processes, most notably multivariate/multitype
point processes with M = {1, . . . , k} (Diggle 2013) and func-
tional marked point processes with M given by a suitable func-
tion space (Ghorbani et al. 2021).

3.1. Functional Marked Point Processes

In this section, we provide the definition of functional marked
point processes following Ghorbani et al. (2021).

In classical FDA, one analyses a collection of functions
{f1(t), . . . , fn(t)}, t ∈ T ⊂ [0, ∞), n ≥ 1, which take
values in some Euclidean space R

k, k ≥ 1, and belong to
some suitable function space, typically an L2-space. Although
t usually represents time, it could also represent some other
quantity, for example, spatial distance. Classically, one would
assume that such collections of functions constitute realiza-
tions or samples of some collection of iid random functions
or stochastic processes {F1(t), . . . , Fn(t)}, t ∈ T . Such an
assumption may, however, be questioned in certain settings. For

example, two functions fi and fj, which are spatially close to
each other in R

k, could gain (or lose) from being close to each
other. Accordingly, it seems natural to relax the iid assump-
tion for F1, . . . , FN . A natural way to handle such a scenario
is to generate F1, . . . , FN conditionally on some collection of
(dependent) random spatial locations. Note that the conditional
distribution of F1, . . . , FN could render them either independent
or dependent.

To facilitate such a setting, we consider a functional marked
point process (Ghorbani et al. 2021), which is defined as a
marked point process where the marks are random elements
in some (Polish) function space, M, most notably the space of
L2-functions f : T → R

k. Realizations of FMPPs are called
functional marked point patterns. It is noteworthy that the origi-
nal formal construction of functional marked point processes by
Ghorbani et al. (2021) also included an additional nonfunctional
mark, so that each ground process point would be marked
by a pair which consists of a function and a nonfunctional
variable. We here do not consider such auxiliary nonfunctional
marks.

3.2. Product Densities

Provided that it exists, the nth order intensity/product density
function ρ(n), n ≥ 1, which is the density of the nth order
factorial moment measure α(n), may be specified through the
nth order Campbell formula. It states that, for any nonnegative
measurable function h on (Rd × M)n, the expectation of the



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 591

random sum of h satisfies

E

⎡⎣ 
=∑
(x1,m1),...,(xn,mn)∈Y

h((x1, m1), . . . , (xn, mn))

⎤⎦
=

∫
· · ·

∫
h((x1, m1), . . . , (xn, mn))ρ

(n)((x1, m1), . . . , (xn, mn))

n∏
i=1

dxiν(dmi),

(1)

where 
= indicates that the sum is over n-tuples of distinct points
of Y . Heuristically, ρ(n)((x1, m1), . . . , (xn, mn))dx1ν(dm1) . . .

dxnν(dmn) gives the probability that Y has points in infinites-
imal neighborhoods d(xi, mi) � (xi, mi) ∈ R

d × M with mea-
sures dxiν(dmi), i = 1, . . . , n. Moreover, we retrieve α(n)((A1 ×
E1) × · · · × (An × En)), (Ai × Ei) ∈ B(Rd × M), i = 1, . . . , n,
by letting h be given by the indicator function 1{(x1, m1) ∈
(A1 × E1), . . . , (xn, mn) ∈ (An × En)}. It further follows that

ρ(n)((x1, m1), . . . , (xn, mn))

= fx1,...,xn(m1, . . . , mn)ρ
(n)
g (x1, . . . , xn),

where ρ
(n)
g is the nth order product density of Yg and fx1,...,xn(·)

is a conditional density function on Mn which governs the
joint distribution of n marks, given that their associated ground
process points are given by x1, . . . , xn ∈ R

d. These, in turn, yield
the corresponding mark distributions

Mx1,...,xn(E1, . . . , En)

=
∫

E1

· · ·
∫

En
fx1,...,xn(m1, . . . , mn)

n∏
i=1

ν(dmi),

which govern the joint distribution on n marks, given the asso-
ciated ground process locations.

The intensity measure of Y , which coincides with the first
order factorial moment measure, here satisfies

α(A × E) = E[Y(A × E)]
=

∫
A

∫
E
ρ(x, m)dxν(dm)

=
∫

A

∫
E

fx(m)ρg(x)dxν(dm)

=
∫

A
Mx(E)ρg(x)dx, (2)

where the first-order intensity functions ρ = ρ(1) and ρg =
ρ

(1)
g are typically referred to as the intensity functions of Y and

Yg . Note that ρ may be viewed as a “heat map” which reflects
the infinitesimal chance of having a point of Y at/around an
arbitrary location in R

d × M. When the intensity function (of
the ground process) is constant, we say that the (ground) process
is homogeneous, otherwise it is called inhomogeneous.

When, conditional on the ground process, all marks have
the same marginal univariate distribution, so that Mz(E) =∫

E fz(m)dν(dm) = ∫
E f (m)dν(m) = M(E), we say that X

has a common (marginal) mark distribution. This holds for
example, when Y is stationary, that is, when its distribution is

invariant under translations of the ground points; here α(A ×
E) = ρgM(E)|A| and ρg > 0 is the constant intensity of
the ground process. We will see that, at times, it is particularly
convenient to have here that the reference measure ν coincides
with the common mark distribution M, which implies that the
common mark density f is set to 1 and ρ(x, m) = ρg(x).

When Y is independently marked, that is, when the
marks are independent conditional on the ground process,
fx1,...,xn(m1, . . . , mn) = fx1(m1) · · · fxn(mn) for any n ≥ 1 and
if, in addition, there is a common mark distribution, whereby
the marks are iid conditional on the ground process, we say
that Y is randomly labeled and note that fx1,...,xn(m1, . . . , mn) =
f (m1) · · · f (mn).

3.2.1. Intensity Reweighted Stationarity
We next turn to the notion of a kth order marked intensity
reweighted stationary (k-MIRS) marked point process Y (Ghor-
bani et al. 2021). We say that Y is k-MIRS, k ∈ {1, 2, . . .}, if ρ is
bounded away from 0 and the correlation functions

g(n)((x1, m1), . . . , (xn, mn))

= ρ(n)((x1, m1), . . . , (xn, mn))

ρ(x1, m1) . . . ρ(xn, mn)

= fx1,...,xn(m1, . . . , mn)

fx1(m1) . . . fxn(mn)

ρ
(n)
g (x1, . . . , xn)

ρg(x1) . . . ρg(xn)
, n ≥ 1,

satisfy g(n)((x1, m1), . . . , (xn, mn)) = g(n)((z+x1, m1), . . . , (z+
xn, mn)) for any z ∈ R

d and any n ≤ k. Note that g(1)(·) ≡ 1
and that the second ratio on the right-hand side is the nth order
correlation function, g(n)

g , of the ground process. Provided that
the product densities of all orders exist, stationarity implies k-
MIRS for all orders k ≥ 1. Note further that g(n)(·) ≡ 1, n ≥ 1,
for a Poisson process and when g(n)((x1, m1), . . . , (xn, mn)) > 1
points of Yg in infinitesimal neighborhoods of x1, . . . , xn with
marks in infinitesimal neighborhoods of m1, . . . , mn tend to
cluster/aggregate. Similarly, g(n)((x1, m1), . . . , (xn, mn)) < 1
indicates inhibition/regularity.

3.3. Palm Distributions

Let Y be a simple marked point process whose intensity function
exists. Many of the summary statistics we will consider can be
expressed in terms of reduced Palm distributions. These satisfy
the reduced Campbell–Mecke formula which states that, for any
nonnegative measurable function h on the product space (Rd ×
M) × Nlf ,

E

⎡⎣ ∑
(z,m)∈Y

h((z, m), Y\{(z, m)})
⎤⎦ (3)

=
∫

E[h((x, m), Y !(x,m))]ρ(x, m)dxν(dm)

=
∫

E
!(x,m)[h((x, m), Y)]ρ(x, m)dxν(dm).

Here Y !(x,m) is the reduced Palm process at (x, m) ∈ R
d × M,

which we interpret as Y conditioned on the null event that
there is a point in (x, m), which is removed upon realization.
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The probability distribution P!(x,m)(·) = P
!(x,m)(Y ∈ ·) =

P(Y !(x,m) ∈ ·) on (Nlf ,N ), which corresponds to E
!(x,m), is

called the reduced Palm distribution at (x, m).

4. Local Weighted Marked Summary Statistics

Global summary statistics have had a prominent role in the
statistical analysis of point processes. More precisely, their non-
parametric estimators are typically used to characterize the
degree of spatial interaction present in the underlying data-
generating point process. In Section 1, we have reviewed a few
such examples, for instance K-functions.

The individual contributions to a global statistic, which are
commonly called Local Indicators of Spatial Association (LISA)
functions, can be used to identify outlying components mea-
suring the influence of each contribution to the global statistic
(Anselin 1995). This is the case of the scatterplot based on
the local Moran index (Anselin 1996). On the other hand, the
individual contributions can be used to test for specific local
structures, such as spatial association and hot spot detection in
areal data (Getis and Ord 1992). Basically, the local statistics
mentioned so far are often used to analyze areal data but Getis
and Franklin (1987) introduced a local version of the K-function
for spatial point processes to show that trees exhibit different
kinds of heterogeneity when examined at different scales of
analysis. The notion of individual functions for certain statistics
has also been studied in Stoyan and Stoyan (1994) and Mateu,
Lorenzo, and Porcu (2010) showed that the local product den-
sity function (Cressie and Collins 2001) is more sensitive to
identifying different local structures and unusual points than
the local K-function. Applications of LISA functions range from
detection of features in images with noise (Mateu, Lorenzo, and
Porcu 2007) to detection of disease clusters (Moraga and Montes
2011). In Siino et al. (2018) the authors extend local indicators
of spatial association to the spatio-temporal context (LISTA
functions) based on the second order product density, and these
local functions have been used to define a proper statistical test
for clustering detection. Recently, LISTA functions have been
used both for diagnostic (Adelfio et al. 2020) and fitting purposes
(D’Angelo, Adelfio, and Mateu 2023). Finally, D’Angelo, Adelfio,
and Mateu (2021) extended LISTA functions to spatio-temporal
point processes living on linear networks.

As we have clearly indicated, an alternative to studying the
aforementioned global summary statistics for marked point pro-
cesses is considering local summary statistics which describe
the spatial interaction in the vicinity of a given marked point.
In order to do so here in the marked context, we introduce the
function

L((x, m), x) = Ln((x, m), x; t̃, ρ̃) (4)

=

=∑

(x1,m1),...,(xn−1,mn−1)∈x

t̃((x, m), (x1, m1), . . . , (xn−1, mn−1))

ρ̃(x, m)ρ̃(x1, m1) . . . ρ̃(xn−1, mn−1)
,

for (x, m) ∈ R
d × M, point pattern x ∈ Nlf , and measurable

t̃ : (Rd × M)n → R, n ≥ 2. Note that, formally, the argument
ρ̃ does not need to be the true intensity function ρ of Y , it could
for example, be a plug-in estimator. We will exploit Definition 1,

and thereby (4), to define proper notions of (mark-weighted nth
order inhomogeneous) local summary statistics.

Definition 1. Given a marked point process Y , we refer to
L((x, m), Y \{(x, m)}; t̃, ρ̃), (x, m) ∈ Y , as the family of nth order
local marked cumulative summary statistics of Y associated with
t̃ and ρ̃.

The construction of a specific local statistic is obtained by
identifying when, for some function family {t̃r},

G(r, Y) =
∑

(x,m)∈Y
Ln((x, m), Y \ {(x, m)}; t̃r , ρ̃) (5)

forms an estimator of an existing global summary statistic.
Using nth order local marked cumulative summary statistics

to quantify local spatial interactions for a point pattern x entails
inserting an estimate ρ̂(x, m) = f̂z(m)ρ̂g(x) for the unknown
intensity ρ(x, m) = fz(m)ρg(x), that is, setting ρ̃ = ρ̂. When
we assume that there is a common mark distribution which
coincides with the mark reference measure ν, we obtain that
ρ̂(x, m) = ρ̂g(x), that is, the intensity estimate does not depend
on the mark values. Imposing this assumption is particularly
convenient when dealing with functional marks since estimation
of the mark density, which here is a density on a function
space, is rather challenging and beyond the scope of this article.
Note that when Y is randomly labeled, it has a common mark
distribution and in this setting the assumption ρ̂(x, m) = ρ̂g(x)

thus makes sense.
Turning to the distributional properties of the nth order

local marked cumulative summary statistics, we next derive
their expectations under the assumption of k-MIRS. Note, in
particular, that the choice of t̃ plays a significant role here.

Theorem 1. When Y is k-MIRS and ρ̃ = ρ, for any W ∈ B(Rd)
the expectation of L((x, m), Y \{(x, m)}∩W ×M; t̃, ρ), (x, m) ∈
Y ∩ W × M, is almost everywhere given by∫

W−x
· · ·

∫
W−x

( ∫
M

· · ·
∫
M

t̃((x, m), (x1 + x, m1), . . . ,

(xn−1 + x, mn−1))
f0,x1,...,xn−1(m, m1, . . . , mn−1)

f0(m)fx1(m1) . . . fxn−1(mn−1)

ν(dm1) . . . ν(dmn−1)

)
g(n)

g (0, x1, . . . , xn−1)dx1 . . . dxn−1,

when 2 ≤ n ≤ k. Moreover, the expectation of G(r, Y ∩ W ×
M) is obtained by replacing t̃ by t̃r in the expression above and
integrating it over W ×M with respect to the reference measure
on R

d × M.

Proof. Note first that the expectation coincides with

E
!(x,m)[Ln((x, m), Y ∩ W × M; t̃, ρ)]

= E
!(x,m)

⎡⎣ 
=∑
(x1,m1),...,(xn−1,mn−1)∈Y∩W×M

t̃((x, m), (x1, m1), . . . , (xn−1, mn−1))

ρ(x, m)ρ(x1, m1) . . . ρ(xn−1, mn−1)

]
.
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Hence, our starting point will be the reduced Campbell-Mecke
formula. Consider an arbitrary bounded A × E ∈ B(Rd × M).
It follows that

E

⎡⎣ ∑
(x,m)∈Y∩A×E


=∑
(x1,m1),...,(xn−1,mn−1)∈Y\{(x,m)}∩W×M

t̃((x, m), (x1, m1), . . . , (xn−1, mn−1))

ρ(x, m)ρ(x1, m1) . . . ρ(xn−1, mn−1)

]

=
∫

A×E
E

!(x,m)

⎡⎣ 
=∑
(x1,m1),...,(xn−1,mn−1)∈Y∩W×M

t̃((x, m), (x1, m1), . . . , (xn−1, mn−1))

ρ(x1, m1) . . . ρ(xn−1, mn−1)

]
dxν(dm).

On the other hand, by the Campbell formula we have that

E

⎡⎣ ∑
(x,m)∈Y∩A×E


=∑
(x1,m1),...,(xn−1,mn−1)∈Y\{(x,m)}∩W×M

t̃((x, m), (x1, m1), . . . , (xn−1, mn−1))

ρ(x, m)ρ(x1, m1) . . . ρ(xn−1, mn−1)

]
=

∫
A×E

∫
Rd×M

· · ·
∫
Rd×M

1{x1, . . . , xn−1 ∈ W}t̃((x, m),

(x1, m1), . . . , (xn−1, mn−1))g(n)((x, m), (x1, m1), . . . ,
(xn−1, mn−1))dx1ν(dm1) . . . dxn−1ν(dmn−1)dxν(dm)

=
∫

A×E

∫
Rd×M

· · ·
∫
Rd×M

n−1∏
i=1

1{ui ∈ W − x}t̃((x, m),

× (u1 + x, m1), . . . , (un−1 + x, mn−1))g(n)((0, m), (u1, m1), . . . ,
(un−1, mn−1))du1ν(dm1) . . . dun−1ν(dmn−1)dxν(dm)

by the imposed k-MIRS and a change of variables, ui + x = xi.
Hence, since A×E ∈ B(Rd×M) was arbitrary, for almost every
(x, m) we have that
E

!(x,m)[Ln((x, m), Y ; t̃, ρ)]
=

∫
(W−x)×M

· · ·
∫

(W−x)×M
t̃((x, m), (u1 + x, m1), . . . ,

(un−1 + x, mn−1))g(n)((0, m), (u1, m1), . . . ,
(un−1, mn−1))du1ν(dm1) · · · dun−1ν(dmn−1)

=
∫

W−x
· · ·

∫
W−x

( ∫
M

· · ·
∫
M

t̃((x, m), (u1 + x, m1), . . . ,

(un−1 + x, mn−1))
f0,u1,...,un−1(m, m1, . . . , mn−1)

f0(m)fu1(m1) · · · fun−1(mn−1)

ν(dm1) · · · ν(dmn−1)

)
g(n)

g (0, u1, . . . , un−1)du1 · · · dun−1,

by Fubini’s theorem.

The first thing we note is that when Y is independently
marked then the density ratio in the expression for the expec-
tation vanishes. In addition, if Y is a Poisson process on R

d ×
M which satisfies being a marked point process with mark
space M, then the expectation reduces to an integral with t̃ as
integrand. These observations may be used as benchmarks for
when Y exhibits mark (in)dependence and spatial interaction
locally.

4.1. Special Cases

We next illustrate how (5), through Definition 1 and (4), reduces
to several existing summary statistic estimators by varying t̃
and ρ̃.

4.1.1. Ground K-functions
First, set n = 2 and t̃ to t̃r((x, m), (x1, m1)) = w(x, x1)1{x1 ∈
x + C}/|W|, r ≥ 0, where W ⊆ R

d, |W| > 0, and w(·) is an
edge correction term. If the ground process is stationary with
intensity ρg > 0 and ρ̃(x, m) ≡ ρg , then (5) with Y set to
Y ∩W ×M reduces to an estimator of Ripley’s K-function when
x + C = x + b[0, r] = b[x, r] whereas if the ground process is
inhomogeneous and we set ρ̃(x, m) = ρg(x), it follows that (5)
reduces to an estimator of the inhomogeneous K-function (Bad-
deley, Møller, and Waagepetersen 2000) for Yg . The extension to
space-time is straightforward; replace the Euclidean ball b[0, r]
by C = {(x, s) : ‖x‖ ≤ r, |s| ≤ t} ∈ B(Rd+1), where ‖ · ‖
denotes the Euclidean norm (Gabriel and Diggle 2009; Cronie
and Van Lieshout 2015; Iftimi, Cronie, and Montes 2019).

4.1.2. Marked K-Functions
When n = 2, by instead letting t̃r((x, m), (x1, m1)) =
w(x, x1)1{x1 ∈ x + C}1{m ∈ E, m1 ∈ E1}/(|W|ν(E)ν(E1))
and ρ̃ = ρ in (4), using a suitable edge correction function
w(·), then G(r, Y ∩ W × M) in (5) reduces to an estimator of
the marked second-order reduced moment measure KEE1(C) of
Iftimi, Cronie, and Montes (2019), which measures the intensity
reweighted interactions between points with marks in E and
points with marks in E1, when their separation vectors belong
to C ∈ B(Rd). We note that measures of this kind are in
general not symmetric, that is, KEE1(·) 
= KE1E(·) (Iftimi,
Cronie, and Montes 2019). Furthermore, choosing C to be the
closed origin-centered ball b[0, r] of radius r ≥ 0, we consider
the marked inhomogeneous K-function KEE1

inhom(r) of Cronie
and van Lieshout (2016), which measures pairwise intensity
reweighted spatial dependence within distance r between points
with marks in E and points with marks in E1.

By additionally letting n > 2, we obtain a definition of
a marked nth order reduced moment measure, KE×n−1

i=1 Ei(C1 ×
· · · × Cn−1), which measures the intensity reweighted spatial
interaction between an arbitrary point with mark in E and
distinct (n − 1)-tuples of other points, where the separation
vectors between the E-marked point and these n − 1 points,
which have marks in E1, . . . , En−1, belong to C1, . . . , Cn−1. We
note that Ci = b[0, r], i = 1, . . . , n − 1, r ≥ 0, yields an n-point
version of the marked inhomogeneous K-function KE×n−1

i=1 Ei
inhom (r)

of Cronie and van Lieshout (2016), which may be used to analyze
intensity reweighted interactions between a point with mark in
E and n−1 of its r-close neighbors, which have marks belonging
to the respective sets E1, . . . , En−1.

4.1.3. Weighted Marked Reduced Moment Measures and
K-functions

Finally, by letting ρ̃ = ρ and t̃((x, m), (x1, m1), . . . ,
(xn−1, mn−1)) be given by the product of
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t̃(m, m1, . . . , mn−1) (6)

= t(m, m1, . . . , mn−1)
1{m ∈ E}

ν(E)

n−1∏
i=1

1{mi ∈ Ei}
ν(Ei)

,

w̃(x, x1, . . . , xn−1)

= w(x, x1, . . . , xn−1)
n−1∏
i=1

1{xi ∈ (x + Ci)},

for E ∈ B(M), ν(E) > 0, and Ci × Ei ∈ B(Rd) × B(M) =
B(Rd ×M), ν(Ei) > 0, i = 1, . . . , n − 1, we obtain an unbiased
estimator K̂E×n−1

i=1 Ei
t (C1 × · · · × Cn−1) = G(r, Y ∩ W × M) of

the t-weighted marked nth order reduced moment measure of
Ghorbani et al. (2021),

KE×n−1
i=1 Ei

t (C1 × · · · × Cn−1) = 1
|W|ν(E)

∏n−1
i=1 ν(Ei)

(7)

E

[ ∑
(x,m)∈Y∩W×E


=∑
(x1,m1),...,(xn−1,mn−1)∈Y\{(x,m)}

t(m, m1, . . . , mn−1)

ρ(x, m)

n−1∏
i=1

1{xi − x ∈ Ci}1{mi ∈ Ei}
ρ(xi, mi)

]
assuming that the edge correction function w is such that unbi-
asedness holds. Examples of such w include the minus sampling
edge correction and the translational edge correction (Ghorbani
et al. 2021). Note here that one just as well could have merged
the scaled indicators in the expression for t̃ with t so that
t̃ = t; Ghorbani et al. (2021) included this mark set filtering
to highlight that their summary statistic generalizes previously
proposed ones.

4.2. Local t-Weighted Marked nth Order Inhomogeneous
K-Function

In this section, we provide the estimator corresponding to the
local contributions of (7) and discuss its properties.

Definition 2. Let t̃ be (up to indicator-scaling) as in (6) and
consider

K̂(x,m)×n−1
i=1 Ei

t (C1 × · · · × Cn−1)

= Ln((x, m), Y \ {(x, m)} ∩ W × M; t̃, ρ̃)

= 1
ρ̃(x, m)ν(E)

∏n−1
i=1 ν(Ei)


=∑
(x1,m1),...,(xn−1,mn−1)∈Y\{(x,m)}∩W×M

w(x, x1, . . . , xn−1)

t(m, m1, . . . , mn−1)
n−1∏
i=1

1{xi − x ∈ Ci}1{mi ∈ Ei}
ρ̃(xi, mi)

,

(x, m) ∈ Y ∩ W × M,

(8)

for some suitable edge correction w in (6), W ∈ B(Rd),
E ∈ B(M), ν(E) > 0, and Ci × Ei ∈ B(Rd × M),
ν(Ei) > 0, i = 1, . . . , n − 1. We refer to K̂(x,m)×n−1

i=1 Ei
t (r) =

K̂(x,m)×n−1
i=1 Ei

t (b[0, r]n−1), r ≥ 0, as a local t-weighted marked
nth order inhomogeneous K-function. In particular, K̂(x,m)

t,n (r) =
K̂(x,m)×Mn−1

t (r) does not perform any explicit mark set filtering.

Note first that when there is a common mark distribution
which coincides with the reference measure on M, setting ρ̃ =
ρ we, for instance, obtain

K̂(x,m)
t,n (r) =


=∑
(x1,m1),...,(xn−1,mn−1)∈Y\{(x,m)}∩(b[x,r]∩W)×M

t(m, m1, . . . , mn−1)w(x, x1, . . . , xn−1)

ρg(x)ρg(x1) . . . ρg(xn−1)

since ν must be a probability measure here.
Regarding the distributional properties of (8), when Y is k-

MIRS, Theorem 1 tells us that the expectation is given by

1
ν(E)

n−1∏
i=1

1
ν(Ei)

∫
Rd

· · ·
∫
Rd

w(x, x1 + x, . . . , xn−1 + x)

n−1∏
i=1

1{xi ∈ (x + Ci) ∩ (W − x)}
( ∫

E1

· · ·
∫

En−1

t(m, m1, . . . , mn−1)

f0,x1,...,xn−1(m, m1, . . . , mn−1)

f0(m)fx1(m1) · · · fxn−1(mn−1)
ν(dm1) · · · ν(dmn−1)

)
g(n)

g (0, x1, . . . , xn−1)dx1 · · · dxn−1.

In particular, under independent marking the
mark related integral within brackets reduces to∫

E1
· · · ∫En−1

t(m, m1, . . . , mn−1)ν(dm1) . . . ν(dmn−1), whereby
(8) is given by the product of this term and a term measuring
intensity reweighted spatial interaction.

4.2.1. Test Functions for FMPPs
Turning to the FMPP case, by choosing different test functions
t(·) for the functional marks, we may extract different features.
We here focus on pairwise interactions, that is, n = 2.

The test function t is intended to reflect similarities between
functions. Hence, a natural starting point would be a metric
t(f1, f2) = d(f1, f2) on the function space M, which does not
necessarily need to be the underlying assumed metric on M.
The first candidate that comes to mind is an Lp-distance:

t(f1, f2) =
(∫ b

a
|f1(t) − f2(t)|pdt

)1/p

, 1 ≤ p ≤ ∞, (9)

where p = ∞ represents the supremum metric. For any choice
of p in (9), similarity between functions implies a small value
of the test function. Other tentative functions are semi-metrics
based on the Lp distance between the sth derivatives of the
functions, for different combinations of p and s, with the L1 and
L2 distances being particular cases, and semi-metrics based on
functional principal component analysis.
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A further alternative is the functional marked counterpart of
the test function for the classical variogram, given by

t(f1, f2) =
∫ b

a
(f1(t) − F̄(t))(f2(t) − F̄(t))dt, (10)

with F̄(t) = (1/n)
∑n

i=1 fi(t) being the average functional mark
at time t for the observed functional part of the point pattern;
such averaging is motivated by the assumption of a common
mark distribution.

5. Local Test for Random labeling

Simple hypotheses for spatial point patterns, such as Complete
Spatial Randomness, are commonly tested using an estimator
of a global summary statistic, for example, Ripley’s K-function.
In this context, one typically resorts to Monte Carlo testing.
The first step is then to generate Q simulations under the null
hypothesis, and to estimate the chosen summary statistic for
both the observed pattern and the simulations. In order to
study whether there is random labeling in a (functional) marked
point process, the simulations are obtained by permuting the
(functional) marks, that is, randomly assigning them to the
spatial points of the ground pattern, which are kept fixed. Then,
the chosen summary statistic is estimated for each of these
permutations and global envelopes at a given nominal level are
generated based on them. The result of the test can be assessed
graphically: if the summary statistic estimate for the observed
pattern exits the envelopes, we proceed with the assumption that
the underlying FMPP is not randomly labeled. Furthermore, it
is possible to calculate a p-value based on the position of the
observed summary statistic within the qth envelopes, following
Myllymäki et al. (2017). We know, however, that the conclusion
drawn from the application of the above-mentioned global test
pertains to the whole analyzed process, indicating whether all
the functional marks are randomly labeled or not. Motivated
by the will to further detect the specific points, and regions,
where the functional marks really do depend on the other
marked points, we propose a local test for random labeling. The
main idea is to run a global envelope test on each point of the
analyzed pattern by means of the previously proposed local t-
weighted marked inhomogeneous K-functions, to draw different
conclusions about the individual points, based on the obtained
p-values. In Algorithm 1 we outline the proposed local test. Note
that we alternatively may use sampling without replacement
in step 5 of Algorithm 1. Moreover, if convinced that multi-
ple testing issues are present here, one may adjust the Type I
error probability α by using for example, the Holm-Bonferroni
method.

6. Motivating Example and Simulation Study

This section is dedicated to simulation studies to assess the per-
formance of our proposed local test. First, Section 6.1 provides
a motivating example of the use of such a test, by means of
simulated data resembling seismic events, which in turn have
motivated this work. In particular, this means simulating the
functional marks as seismic waveforms, following the typical
abrupt change in variance of the signal in correspondence with

Algorithm 1 Local test of random labeling
1: Set a fixed nominal value α for Type I error;
2: Consider a (functional) marked point pattern x =

{(xj, mj)}k
j=1, k ≥ 1;

3: Set a number of simulations, Q ≥ 1;
4: for each q = 1, . . . , Q: do
5: Randomly sample k (functional) marks, with replace-

ment, from the original k ones;
6: Denote the resulting point pattern by xq =

{(xj, mq
j )}k

j=1;
7: end for
8: for each j = 1, . . . , k, do

9: Compute L(j,q)
n = {K̂(xj,m

q
j )×n−1

i=1 Ei
t (r; xq)}r∈[0,rmax] for all

q = 1, . . . , Q;
10: Apply global envelope testing, using the functions L(j,q)

n ,
q = 1, . . . , Q, to generate the envelopes;

11: Obtain a p-value pj from the test;
12: Reject the null hypothesis for the jth point if pj ≤ α.
13: end for

the arrivals of the first P- and S-waves. Then, Section 6.2 presents
an extensive simulation study, showing diverse and more general
settings. Specifically, we assess the performance of the test by
summarizing the results in terms of classification rates.

6.1. The Need for a Local Test

We simulate a homogeneous spatial point pattern with 250
points on the unit square, W = [0, 1] × [0, 1], which represents
the ground pattern. For each ground point xi, we simulate a
functional mark of the from

fi(t) =y(t) = μ(t) + ε(t), t ∈ T = [0, 1],
ε(t) ∼N(0, σ(t)2),

σ(t)2 =0.2 + 7.51{t > 0.4} − 51{t > 0.6},

where the mean signal μ(t) is taken to be zero. The spatial
ground point pattern and the corresponding waveform for
a given point are shown in Figure 2(a) and (b). Since the
marks/waveforms are simulated from the same model, and inde-
pendently of each other and the spatial locations of the points,
we see that such a process is indeed randomly labeled.

Having generated the data, we first run a global envelope test
for random labeling, by randomly permuting the simulated wave-
forms, that is, the functional marks, keeping the location of the
points fixed. We run the test by means of the t-weighted marked
nth order inhomogeneous K-function of Ghorbani et al. (2021),
with n = 2, making it a second order summary statistic, and
t given by the test function (10), that is, the functional marked
counterpart of the test function for the classical variogram. As
previously mentioned, we assume that there is a common mark
distribution which coincides with the reference measure on the
mark space so that the intensity function is estimated by the
ground process intensity estimate. To be as objective as possible,
we do not use the homogeneous intensity estimator ρ̂g(·) =
Yg(W)/|W| here but instead we use a kernel intensity estimator,
as in practice it would be unknown to us whether the actual
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Figure 2. (a) Simulated earthquake locations. (b) Simulated waveform marking the highlighted point on panel (a). (c) Result of the global test.

ground process is (in)homogeneous. We use a Gaussian kernel
intensity estimator ρ̂g(·), where we select the bandwidth, h,
according to Cronie and Van Lieshout (2018). More specifically,
we minimize the discrepancy between the area of the obser-
vation window and the sum of reciprocal estimated intensity
values at the points of the point pattern, that is, we minimize
CvL(h) = (|W| −∑

i 1/ρ̂g(xi; h))2, where the sum is taken over
all the data points xi and ρ̂g(xi; h) is the kernel intensity estimate
with bandwidth h, evaluated in xi. Then, once the bandwidth has
been selected, the intensity estimate is corrected for edge effects
through global edge correction (the option diggle=FALSE
in the spatstat function density.ppp), that is, dividing
the estimate by the convolution of the Gaussian kernel with
the window of observation (Diggle 1985). Finally, for w we use
Ripley’s isotropic edge correction in the summary statistic to
correct for edge effects. We repeated the procedure 39 times,
obtaining the result depicted in Figure 2(c). We stress that our
approach seems to be robust with respect to the bandwidth
specification in this particular scenario setting, that is, the choice
of bandwidth selection approach plays a minor role in the final
result.

As evident from Figure 2(c), the observed summary statis-
tic completely lies within the envelopes, and this confirms the

expected result of lack of spatial dependence/structure of the
functional marks. This result is further corroborated by the
nonsignificant p-value, equal to 0.25.

6.1.1. Simulating Spatially Dependent Functional Marks
To make the functional marks spatially dependent, we then
superimpose a homogeneous spatial point pattern with 50
points, generated in the [0, 0.5]× [0, 0.5] square, that is, the bot-
tom left region of the entire study region W. For these additional
points, we generate different functional marks than before,
namely with the underlying trend μ(t) = 10 + 6 sin(3πzt).
Consequently, we have simulated a FMPP with spatially varying
functional marks, that is, not randomly labeled. We therefore
expect a global test of random labeling to confirm this.

We first run the same global test of random labeling as before.
Here, the K-function is based on a kernel intensity estimate
whose bandwidth is selected by Diggle’s (2013) rule. It represents
a good alternative to Cronie and Van Lieshout’s (2018) one,
being slightly faster to compute. We use Q = 39 and obtain
a global p-value of 0.025. This, together with the observed K-
function lying outside the envelopes (Figure 3(a)), indicates the
ability of the global test to correctly detect the spatial depen-
dence of the functional marks.
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Figure 3. (a) Result of global test for the spatially dependent simulated data. (b) Output of the local test: the black triangles are the significant points for which the hypothesis
of random labeling is rejected.

We know, however, that this conclusion should not be drawn
for each point of the pattern, if we consider local restrictions of
it, but specifically for those in the vicinity of the [0, 0.5]×[0, 0.5]
square. We therefore proceed by running our proposed local test,
based on the proposed second order local K-function K̂(x,m)

t,2 (r),
r ∈ [0, rmax], in Definition (2), with the same choice of test
function t(·) and the same intensity estimation scheme as for
the global one. Figure 3(b) depicts the points of the simulated
point pattern, and it displays as black triangles those points for
which the local test came out significant. Hence, this illustrates
that the proposed local test is able to correctly identify some of
the points, and consequently some parts of the region, where the
hypothesis of random labeling does not hold locally. Note that
a universally preferable option for rmax does not exist. In this
article, it is set to min(xW , yW)/4, where xW and yW represent
the maximum width and height of the observation region W,
respectively; note that this rule of thumb is supported by Diggle
(2013). Indeed, changing the value of rmax has an impact on the
final results, and we found that our choice provided the best
compromise among the options.

6.2. Extended Simulation Study

This section aims to study the proposed method’s performance
in terms of classification rates considering different scenarios,
concerning both the ground processes and the functional marks’
structures. To this end, we simulate under different such scenar-
ios, to obtain a comprehensive understanding of the results of
the local test in different settings.

In detail, we consider three types of ground process struc-
tures, all with an expected point count of 200: (a) a homogeneous
Poisson process; (b) an inhomogeneous Poisson process with
intensity function ρg(x) = ρg(x1, x2) = exp(3.5 + 3x2), x ∈
W; (3) a Thomas process, with intensity of the Poisson process
of cluster centeres equal to 25, standard deviation of random
displacement of a point from its cluster center equal to 0.05,
and mean number of points per cluster equal to 7. They are all
generated in W, that is, the unit square, and will be referred to
as the base patterns. Then, we superimpose additional simulated

patterns in the [0, 0.5] × [0, 0.5] square, coming from the same
generating processes, but with an expected number of points
of 50; hereby the expected total number of points on [0, 0.5] ×
[0, 0.5] is 50 + 200/4 = 100 and on its complement it is 150.
These additional patterns will be referred to as feature patterns.
A graphical representation of these three ground patterns comes
in Figure 4 (a)–(c).

As for the functional marks, we consider the time domain
T = [0, 10] and, practically, we sample each simulated mark
function in 100 equally spaced time points in T . We assume that
each functional mark satisfies fi(t) = Z(xi, t), where xi is the ith
ground point and

Z(x, t) = μ + ξ(x, t), (x, t) ∈ W × T , (11)

for a zero-mean stationary Gaussian random field ξ with covari-
ance function C(h, u); here h and u denote the spatial and the
temporal lags, respectively. For the base patterns, we consider
μ = 5 and a pure nugget effect model with covariance function
C(h, u) = σ 21{h = 0}, σ 2 = 0.01. In other words, each fi is
random noise with mean 5 and variance 0.01 and all fi’s are iid;
see the grey curves in Figure 4(d)–(f). For the feature patterns,
we consider three different marking models:

1. Shifted base model: We here let ξ have the same form as
in the base model but let μ = 5.5.

2. Decreased variance base model: We here let ξ have the
same form as in the base model but let σ 2 = 0.001.

3. Nonseparable space-time model: We here let μ = 5 and
consider a space isotropic covariance function given by
C(h, u) = (ψ(u) + 1)−δ/2φ(h/

√
ψ(u) + 1). Here, φ is a

normal mixture and the corresponding covariance func-
tion only depends on the distance between two points,
while ψ is a variogram model, which we choose according
to a fractal Brownian motion with fractal dimension α =
1; this is an intrinsically stationary isotropic variogram
model.

We note that the first two of these scenarios represent indepen-
dent but not identically distributed marks, whereas in the third
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Figure 4. Simulation scenarios. (a)–(c) Spatial ground patterns; (d)–(f ) Functional marks of model (11) (in gray) and of the marking models in item 1, 2, and 3, respectively
(in black).

Table 1. Results of the local test averaged over 100 simulated point patterns with
an expected point count of 250 each.

Ground process Marking model TPR FPR ACC

Homogeneous Poisson (1) 0.112 0.346 0.583
Homogeneous Poisson (2) 0.583 0.066 0.820
Homogeneous Poisson (3) 0.870 0.024 0.896
Inhomogeneous Poisson (1) 0.032 0.585 0.449
Inhomogeneous Poisson (2) 0.648 0.084 0.856
Inhomogeneous Poisson (3) 0.895 0.023 0.932
Thomas (1) 0.109 0.394 0.571
Thomas (2) 0.637 0.088 0.846
Thomas (3) 0.865 0.025 0.925

scenario we additionally have that the marks are also dependent.
In Figure 4 (d)–(f), the functional marks corresponding to the
marking models in item 1, 2, and 3 are depicted.

We show the results of the local test in terms of true-positive
rate (TPR), false-positive rate (FPR), and accuracy (ACC), aver-
aging over 100 simulated point patterns in Table 1. The rates are
defined as

TPR = true positives
positives

,

FPR = false negatives
negatives

,

ACC = true positives and negatives
positives and negatives

.

We of course wish to have TPR and ACC close to 1 and FPR close
to 0.

As shown in Table 1, the performance of the local test in terms
of classification rates strongly depends on the difference in the
functional marks. Specifically, changing only the mean of the
underlying random field is not enough for properly identifying
the points of the feature patterns. This sufficiently improves
when changing the variance only, but the best result is obtained
when the whole model is changed, that is, changing the corre-
lation structure. The effect of the type of ground pattern is less
evident but still present. The inhomogeneous Poisson scenario
reports the best classification rates, followed by the Thomas and
homogeneous Poisson ones.

Finally, we found that the test function t(·) based on the
L2 distance in (9) gave the better results overall. To further
explore how the choice of test function influences the test, we
also compared to a test function incorporating a derivative
function accounting for the shape of the functional marks. This
yielded similar results but turned out to be more computation-
ally demanding.

7. Real Seismic Data Analysis

We analyze data coming from the ISTANCE dataset, presented
in Section 2. More specifically, we analyze a sample dataset
provided at http://www.pi.ingv.it/instance/. The observed point
pattern consists of 300 seismic events which occurred in a period
ranging from 21st July 2012 to the 9th December 2016. As
shown in Figure 5, the observation area is [6.729, 18.002] ×
[36.64, 46.46], including also seismic events occurring around
Italy. They tend to gather into two main clusters. The north-
ernmost originated in May 2012, when two major earthquakes

http://www.pi.ingv.it/instance/
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Figure 5. Earthquake locations.

struck Northern Italy, causing 27 deaths and widespread dam-
age. The events are known in Italy as the 2012 Emilia earth-
quakes, because they mainly affected the Emilia region. Then,
the Central Italy seismic sequence began in August 2016, and it is
now defined by the INGV as the Amatrice-Norcia-Visso seismic
sequence. The analyzed events’ magnitudes vary between 0.5
to 4.8.

We first compute the proposed local K-function. Figure 6
depicts the estimated local summary statistics. In particular, the
steady black lines represent the global statistics, while the grey
ones represent the individual contributions. In dashed lines we
also represent the theoretical value. In panel (a), the K-function
is based on a kernel intensity estimate whose bandwidth is
selected by Diggle’s (2013) rule, while in panel (b) the bandwidth
is chosen as in Cronie and Van Lieshout (2018). We observe
some relevant differences: while with Cronie and Van Lieshout’s
(2018) rule we depict different local K-functions deviating from
the global one, following Diggle (2013), we find a unique out-
lying local K-function. This may be explained by the fact that
Cronie and Van Lieshout’s (2018) approach tends to yield a
bit too large bandwidths when large parts of the study region
contain no points, while Diggle’s (2013) approach tends to yield
too small bandwidths in general; see Cronie and Van Lieshout
(2018) for details. Note that by increasing the bandwidth we
decrease the intensity estimate and, as a consequence, the sum-
mand denominators in (8) are decreased. Therefore, we run the
proposed local test of random labeling with both options for the
bandwidth selection and, as expected, the differences observed
in the computation of the local K-functions are reflected in the
results of the test.

Figure 7 displays the significant points (black triangles) and
the nonsignificant ones (grey points). Panel (a) shows the results
with Diggle’s (2013) bandwidth while the ones in panel (b) are
obtained with Cronie and Van Lieshout’s (2018) bandwidth. For
both choices, we selected a significance level of 0.1. We observe

that the significant points tend to be similar in both cases,
therefore, the choice of bandwidth (selection method) does
not seem to be crucial. We note that such bandwidth-induced
differences were missing in the previously run simulation study.
We attribute this sensitivity of the procedure to the shapes of the
functional marks, that are obviously more variable, if compared
to the simulated ones.

Nevertheless, both bandwidths lead to significant events
belonging to important well known Italian seismic sequences. Of
course, these sequences are likely generated by different under-
lying processes, giving rise to long-term and highly correlated
aftershocks. The implication of this result is twofold. On one
hand, we have been able to correctly identify seismic events
belonging to important well-known Italian seismic sequences.
On the other hand, we have found that the shocks related to
these sequences exhibit different local dependence structure and
therefore, these events are likely generated by different underly-
ing processes, corresponding to different seismic sources.

8. Conclusions

In this work, we have proposed a general form for local summary
statistics for marked point processes, which has been exploited
to define the family of local inhomogeneous mark-weighted
summary statistics for spatial point processes with functional
marks, that is, Functional Marked Point Processes (FMPP). We
have employed such local summary statistics to construct a local
test for random labeling, that is, to identify points, as well as
regions, where this hypothesis does not hold.

More specifically, we first introduce a general local function
for marked point patterns. With this specification, we are able
to show that this function may be exploited to generate most
summary statistics established in the literature. With particular
reference to the functional marked context, we define the family
of local t-weighted marked nth order inhomogeneous summary
statistics based on the K-function, which is a local contribution
to a global summary statistic estimator. We obtain a result for the
expectation of the general local summary statistic and exploit
it to derive an expression for the expectation of our t-weighted
local statistics.

Having access to these tools, we have proposed a local test
of random labeling, resorting to the second order version of
our proposed local estimator, obtaining a local test useful for
identifying specific regions where a global test would not detect
atypical behavior of the points.

To study the performance of the test in terms of classification
rates, we have conducted a simulation study, considering a num-
ber of scenarios with different ground processes and structures
for the functional marks. Such simulations have shown that in
many settings, the local test performs well in identifying points
of a pattern where the hypothesis of random labeling is not
verified.

We can draw a number of future work paths. Nevertheless,
the local functions proposed in this article can be considered as
a very informative synthesis of the local second-order behavior,
useful for characterizing the study area by an extended marked
model, based on the FMPP theory. Incorporating local charac-
teristics as functional marks would become part of the so called
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Figure 6. Local K-functions. (a) The K-function is based on a kernel intensity estimate whose bandwidth is selected by Diggle’s (2013) rule. (b) The bandwidth is chosen as
in Cronie and Van Lieshout (2018).

Figure 7. Results of the local test at α = 0.1. Nonsignificant events are displayed as gray points and significant events are the black triangles. (a) The K-function is based
on a kernel intensity estimate whose bandwidth is selected by Diggle’s (2013) rule. (b) The bandwidth is chosen as in Cronie and Van Lieshout (2018).

Constructed Functional Marks (CFMs), which are marks reflect-
ing the geometries of point configurations in neighborhoods of
the individual points.

Concerning the application to seismic data, we aim at includ-
ing also auxiliary (nonfunctional) marks into the analysis. These
could contain synthetic information about the waveforms, such
as the arrival times of the seismic event, or the inter-time
between the two. The achievement of the unification of earth-
quake data and the FMPP theory would result in building a
framework where it would be possible to exploit the available
information of the seismic point process altogether.

A final comment concerns the possible extension of this
article’s tools to spatio-temporal ground processes, which of
course are of importance for processes which typically exhibit
spatio-temporal interactions, such as the seismic one. Undoubt-
edly, such extensions would be crucial for accounting for the

temporal dimension of the seismic events, whose realization
depends on their past history, as proved by the existence of
aftershocks. This would mean to consider a spatio-temporal
marked point process Y = {(xi, mi)}N

i=1, with ground points
xi in the three-dimensional space R

2 × R
+ and exploit the

methodological framework introduced in this article. More-
over, local summary statistics in space and time are well estab-
lished, both theoretically (Siino et al. 2018; Adelfio et al. 2020)
and computationally (Gabriel et al. 2021). Although such an
extension could be straightforwardly achieved by essentially
having our summary statistic functions incorporate an addi-
tional argument, t, which controls the temporal lags (see Iftimi,
Cronie, and Montes 2019), this adds another level of com-
plexity which we believe is out of the scopes of this arti-
cle, but it surely represents an interesting path to cover in
future.
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