Some recent results on singular p-Laplacian systems

Umberto Guarnotta, Roberto Livrea*
Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy
E-mail: umberto.guarnotta@unipa.it, roberto.livrea@unipa.it

Salvatore A. Marano

Dipartimento di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy

E-mail: marano@dmi.unict.it

Abstract

Some recent existence, multiplicity, and uniqueness results for singular p-Laplacian systems either in bounded domains or in the whole space are presented, with a special attention to the case of convective reactions. A extensive bibliography is also provided.

Keywords: quasi-linear elliptic system, gradient dependence, singular term, entire solution, strong solution.

AMS Subject Classification: 35-02, 35J62, 35J75, 35J92.

1 Introduction

This survey paper can be divided into two parts. The first one (cf. Section 3) treats singular quasi-linear Dirichlet systems in bounded domains. So, we

[^0]study problems of the type
\[

\left\{$$
\begin{array}{ll}
-\Delta_{p} u=f(x, u, v, \nabla u, \nabla v) & \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{1.1}\\
-\Delta_{q} v=g(x, u, v, \nabla u, \nabla v) & \text { in } \Omega, v>0
\end{array}
$$ in \Omega, v\left\lfloor_{\partial \Omega}=0, ~\right.\right.
\]

where $1<p, q<\infty$, the symbol Δ_{r} denotes the r-Laplace operator, namely

$$
\Delta_{r} u:=\operatorname{div}\left(|\nabla u|^{r-2} \nabla u\right),
$$

Ω is a bounded domain in $\mathbb{R}^{N}, N \geq 3$, having a smooth boundary $\partial \Omega$, while $f, g: \Omega \times\left(\mathbb{R}^{+}\right)^{2} \times\left(\mathbb{R}^{N}\right)^{2} \rightarrow \mathbb{R}$ fulfill Carathéodory's conditions and are singular at zero with respect the solution (u, v) or even its gradient $(\nabla u, \nabla v)$.

If $p=q=2$ then various special, often non-convective, cases of (1.1) have been thoroughly investigated; see Section 3.1 below. In particular, the monograph [33] gives a nice introduction to so-called singular GiererMeinhardt systems. Here, we simply make a short account on some recent existence, multiplicity, or uniqueness results when $(p, q) \neq(2,2)$, as well as the relevant technical approaches. Regarding this, let us also point out Chapter 7 of [57].

The second part (cf. Section 4) carries out a similar analysis for singular quasi-linear systems in the whole space. Hence, it deals with situations like

$$
\left\{\begin{array}{l}
-\Delta_{p} u=f(x, u, v, \nabla u, \nabla v) \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N}, \tag{1.2}\\
-\Delta_{q} v=g(x, u, v, \nabla u, \nabla v) \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N} .
\end{array}\right.
$$

The literature on problem (1.2) looks not fully exhaustive. For instance, two basic questions seem to be still open. Precisely,

- the existence of multiple solutions, even for semi-linear non-convective systems, and
- the uniqueness of solutions.

Moreover, as far as we know, no previous book or survey is already available.
Both parts contain four sub-sections. The first represents a historical sketch of the semi-linear setting. The next two address existence, multiplicity, and uniqueness in the non-convective case. The fourth is devoted to singular systems with convection.

It may be useful to emphasize that [38] treats non-local singular elliptic problems while [66, 71] pertain singular parabolic systems. For the sake of brevity, they are not examined here.

We apologize in advance for possibly forgetting significant works, but the production on (1.1)-(1.2) is by now extensive and our knowledge is somewhat limited.

2 Basic notation

Let $X(\Omega)$ be a real-valued function space on a nonempty measurable set $\Omega \subseteq \mathbb{R}^{N}$. If $u_{1}, u_{2} \in X(\Omega)$ and $u_{1}(x)<u_{2}(x)$ a.e. in Ω then we simply write $u_{1}<u_{2}$. The meaning of $u_{1} \leq u_{2}$, etc. is analogous. Put

$$
X(\Omega)_{+}:=\{u \in X(\Omega): u \geq 0\} .
$$

The symbol $u \in X_{\text {loc }}(\Omega)$ means that $u: \Omega \rightarrow \mathbb{R}$ and $u \bigsqcup_{K} \in X(K)$ for all nonempty compact subset K of Ω. Given $1<r<\infty$, define

$$
r^{\prime}:=\frac{r}{r-1} .
$$

We denote by $\lambda_{1, r}$ the first eigenvalue of the operator $-\Delta_{r}$ in $W_{0}^{1, r}(\Omega)$. If $r<N$ then

$$
r^{*}:=\frac{N r}{N-r} .
$$

Let us next recall the notion and some relevant properties of the so-called Beppo Levi spaces $\mathcal{D}_{0}^{1, r}\left(\mathbb{R}^{N}\right)$, systematically studied for the first time by Deny and Lions [25]. Set

$$
\mathcal{D}^{1, r}:=\left\{z \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right):|\nabla z| \in L^{r}\left(\mathbb{R}^{N}\right)\right\}
$$

and write \mathcal{R} for the equivalence relation that identifies two elements in $\mathcal{D}^{1, r}$ whose difference is a constant. The quotient set $\dot{\mathcal{D}}^{1, r}$, endowed with the norm

$$
\|u\|_{1, r}:=\left(\int_{\mathbb{R}^{N}}|\nabla u(x)|^{r} \mathrm{~d} x\right)^{1 / r}
$$

turns out complete. Indicate with $\mathcal{D}_{0}^{1, r}\left(\mathbb{R}^{N}\right)$ the subspace of $\dot{\mathcal{D}}^{1, r}$ defined as the closure of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ under $\|\cdot\|_{1, r}$, namely

$$
\mathcal{D}_{0}^{1, r}\left(\mathbb{R}^{N}\right):=\overline{C_{0}^{\infty}\left(\mathbb{R}^{N}\right)}\|\cdot\|_{1, r} .
$$

$\mathcal{D}_{0}^{1, r}\left(\mathbb{R}^{N}\right)$, usually called Beppo Levi space, is reflexive and continuously embeds in $L^{r^{*}}\left(\mathbb{R}^{N}\right)$, i.e.,

$$
\begin{equation*}
\mathcal{D}_{0}^{1, r}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{r^{*}}\left(\mathbb{R}^{N}\right) \tag{2.1}
\end{equation*}
$$

Consequently, if $u \in \mathcal{D}_{0}^{1, r}\left(\mathbb{R}^{N}\right)$ then u vanishes at infinity, meaning that the set $\left\{x \in \mathbb{R}^{N}:|u(x)| \geq \varepsilon\right\}$ has finite measure for any $\varepsilon>0$. In fact, by Chebichev's inequality and (2.1), one has

$$
\left|\left\{x \in \mathbb{R}^{N}:|u(x)| \geq \varepsilon\right\}\right| \leq \varepsilon^{-r^{*}}\|u\|_{r^{*}}^{r^{*}} \leq\left(c \varepsilon^{-1}\|u\|_{1, r}\right)^{r^{*}}<+\infty,
$$

where $c>0$ is the best constant related to (2.1). The monographs [28, 52, 69] provide an exhaustive introduction on this topic.

Finally, $\left.\mathbb{R}^{+}:=\right] 0, \infty[$ and

$$
a \vee b:=\max \{a, b\}, \quad a^{+}:=a \vee 0, a \wedge b:=\min \{a, b\} \quad \forall a, b \in \mathbb{R}
$$

If Ω is a bounded domain in \mathbb{R}^{N} then

$$
\begin{equation*}
d(x):=\operatorname{dist}(x, \partial \Omega), \quad x \in \bar{\Omega}, \tag{2.2}
\end{equation*}
$$

while $\Omega^{\prime} \subset \subset \Omega$ means $\overline{\Omega^{\prime}} \subseteq \Omega$.

3 Problems in bounded domains

3.1 The case $p=2$

As far as we know, the study of singular semi-linear elliptic systems in bounded domains started with the paper [14], devoted to Gierer-Meinhardt's type problem (see [37])

$$
\left\{\begin{array}{c}
-\Delta u=-u+\frac{u}{v} \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{3.1}\\
-\Delta v=-\alpha v+\frac{u}{v} \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega=0}\right.
\end{array}\right.
$$

where Ω denotes a smooth bounded domain in $\mathbb{R}^{N}, N \geq 1$, while $\alpha \in \mathbb{R}^{+}$. More general right-hand sides were then considered in [15, 48, 32]. The work [56] investigates the system

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u^{q_{1}}-\frac{u^{p_{1}}}{v^{\beta_{1}}} \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{3.2}\\
-\Delta v=\mu v^{q_{2}}-\frac{u^{p_{2}}}{v^{\beta_{2}}} \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0 .\right.
\end{array}\right.
$$

Here, $\left.q_{1}, q_{2}, \beta_{1}, \beta_{2} \in\right] 0,1\left[, p_{1}, p_{2} \in \mathbb{R}^{+}\right.$, and λ, μ are two positive parameters. Define

$$
\sigma:=\frac{p_{2}\left(1-q_{2}\right)}{\left(1+\beta_{2}\right)\left(1-q_{1}\right)}, \quad \eta:=\frac{\beta_{1}\left(1-q_{1}\right)}{\left(1-p_{1}\right)\left(1-q_{2}\right)} .
$$

An adequate sub-super-solution method yields the following
Theorem 3.1 ([56], Theorem 1.1). If $q_{1}<p_{1}$ then there exists $c_{1}>0$ such that (3.2) admits a solution $(u, v) \in C^{1, \alpha}(\bar{\Omega})^{2}$ for all $\lambda>0, \mu \geq c_{1} \lambda^{\sigma}$. If $q_{1} \geq p_{1}$ then there exists $c_{2}>0$ such that (3.2) has no solution once $\mu>0$ and $\lambda<c_{2} \mu^{-\eta}$.

Two years before, in 2008, Hernandez, Mancebo, and Vega [45] established the existence of classical solutions to the problem

$$
\left\{\begin{array}{l}
\mathcal{L}_{1} u=f(x, u, v) \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0\right. \tag{3.3}\\
\mathcal{L}_{2} v=g(x, u, v) \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0\right.
\end{array}\right.
$$

where \mathcal{L}_{i} denotes a linear, second-order, uniformly elliptic operator in nondivergence form while $f, g: \Omega \times\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}$ are smooth enough. They examined both the cooperative and the non-cooperative situations; see [45, Theorems 2.1-2.2]. Here, cooperative means that the reaction $f(x, \cdot, \cdot)$ and $g(x, \cdot, \cdot)$ turn out increasing on \mathbb{R}^{+}with respect to each variable separately. A uniqueness result is also obtained provided (3.3) turns out cooperative and concave, namely

$$
f(x, \tau s, \tau t)>\tau f(x, s, t), \quad g(x, \tau s, \tau t)>\tau g(x, s, t)
$$

for all $\tau \in] 0,1\left[\right.$ and $(x, s, t) \in \Omega \times\left(\mathbb{R}^{+}\right)^{2}$; cf. [45, Theorem 2.3]. Many special cases are finally discussed. Singular systems driven by other linear, second-order, elliptic operators in divergence form were treated in [8].

Let us next point out that the paper [44] contains a uniqueness result (cf. [44, Theorem 2.2]) where no cooperative structure is supposed.

In 2015, Ghergu [31] thoroughly investigated both existence and uniqueness of classical solutions to the model system

$$
\left\{\begin{array}{l}
-\Delta u=u^{\alpha_{1}}+v^{\beta_{1}} \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0\right. \tag{3.4}\\
-\Delta v=v^{\alpha_{2}}+u^{\beta_{2}} \text { in } \Omega, v>0 \text { in } \Omega, \quad v\left\lfloor_{\partial \Omega}=0\right.
\end{array}\right.
$$

for $\alpha_{i} \vee \beta_{i}<0, i=1,2$. The work [55] (see also [30]) contains a similar analysis on the problem

$$
\left\{\begin{array}{l}
-\Delta u=K_{1}(x) u^{\alpha_{1}} v^{\beta_{1}} \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{3.5}\\
-\Delta v=K_{2}(x) v^{\alpha_{2}} u^{\beta_{2}} \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0,\right.
\end{array}\right.
$$

where, as before, $\alpha_{i} \vee \beta_{i}<0$ and $K_{i} \in C^{0, \alpha}(\Omega), i=1,2$, with $\alpha \in(0,1)$.
The existence of solutions to singular convective elliptic systems was firstly studied by Alves and Moussaoui [2] in 2014.
Theorem 3.2 ([2], Sections 3-4). Let $-\alpha_{i}, \beta_{i} \in\left[0,1\left[\right.\right.$ and $g_{i} \in C^{0}\left(\mathbb{R}^{2 N}, \mathbb{R}^{+}\right)$ be bounded, $i=1,2$. Then the problem

$$
\begin{cases}-\Delta u=v^{\alpha_{1}} \pm v^{\beta_{1}}+g_{1}(\nabla u, \nabla v) & \text { in } \Omega, u>0 \\ -\Delta v=u^{\alpha_{2}} \pm u^{\beta_{2}}+g_{2}(\nabla u, \nabla v) & \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \\ 0 & \text { in } \Omega, \\ \left\lfloor\left\lfloor_{\partial \Omega}=0\right.\right.\end{cases}
$$

admits a solution $(u, v) \in H_{0}^{1}(\Omega)^{2} \cap C^{2}(\Omega)^{2}$.

Finally, the very recent work [18] treats quasi-linear Schrödinger elliptic problems with both singular and convective reactions, while [11] concerns singular systems having quadratic gradient terms.

3.2 Existence and multiplicity

To shorten notation, given $p, q \in] 1, \infty[$, write

$$
\begin{aligned}
X^{p, q}(\Omega) & :=W^{1, p}(\Omega) \times W^{1, q}(\Omega), \\
X_{\mathrm{loc}}^{p, q}(\Omega) & :=W_{\mathrm{loc}}^{1, p}(\Omega) \times W_{\mathrm{loc}}^{1, q}(\Omega), \\
X_{0}^{p, q}(\Omega) & :=W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega) .
\end{aligned}
$$

Moreover, if $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in X_{\text {loc }}^{p, q}(\Omega)$ then $\left(u_{1}, v_{1}\right) \leq\left(u_{2}, v_{2}\right)$ means both $u_{1} \leq u_{2}$ and $v_{1} \leq v_{2}$.

To the best of our knowledge, the first existence result for singular quasilinear problems dates back to 2007 and examines the case

$$
\left\{\begin{array}{l}
-\Delta_{p} u=v^{\alpha_{1}}+v^{\beta_{1}} \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{3.6}\\
-\Delta_{q} v=u^{\alpha_{2}}+u^{\beta_{2}} \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0 .\right.
\end{array}\right.
$$

Here, $\alpha_{i}<0<\beta_{i}$, while $N \geq 2$.
Theorem 3.3 ([1], Theorem 1.1). If $\frac{2 N}{N+1} \leq p, q<N$ and $0<-\alpha_{i}, \beta_{i}<\theta_{i}$, $i=1,2$, with

$$
\theta_{1}:=\min \left\{1, p-1, \frac{q^{\prime}}{p^{\prime}}\right\}, \quad \theta_{2}:=\min \left\{1, q-1, \frac{p^{\prime}}{q^{\prime}}\right\},
$$

then (3.6) has a weak solution $(u, v) \in X_{0}^{p, q}(\Omega)$.
Its proof employs a result on nonlinear eigenvalue problems with lack of bifurcation due to Rabinowitz [65] and a Hardy-Sobolev type inequality [46].

Now, consider the general problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=f(x, u, v) \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{3.7}\\
-\Delta_{q} v=g(x, u, v) \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0,\right.
\end{array}\right.
$$

where $f, g: \Omega \times\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}$ fulfill Carathéodory's conditions. In 2012, El Manouni, Perera, and Shivaji [27] investigated (3.7) under the assumptions below.
$\left(\mathrm{a}_{1}\right)$ The functions $t \mapsto f(x, s, t)$ and $s \mapsto g(x, s, t)$ are increasing in \mathbb{R}^{+}, namely system (3.7) is cooperative.
(a a_{2}) For every $0<s_{0} \leq s_{1}$ and $0<t_{0} \leq t_{1}$ one has

$$
\sup _{\left.\left.\Omega \times\left[s_{0}, s_{1}\right] \times\right] 0, t_{1}\right]} f(x, s, t)<\infty, \sup _{\left.\Omega \times] 0, s_{1}\right] \times\left[t_{0}, t_{1}\right]} g(x, s, t)<\infty,
$$

as well as

$$
\sup _{\Omega \times\left[s_{0}, s_{1}\right] \times\left[t_{0}, t_{1}\right]} \max \{|f(x, s, t)|,|g(x, s, t)|\}<\infty .
$$

They seek solutions $(u, v) \in X_{\text {loc }}^{p, q}(\Omega)$ that satisfy the differential equations in the sense of distributions, i.e.,

$$
\begin{array}{ll}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \mathrm{~d} x=\int_{\Omega} f(\cdot, u, v) \varphi \mathrm{d} x & \forall \varphi \in C_{0}^{\infty}(\Omega), \\
\int_{\Omega}|\nabla v|^{q-2} \nabla v \cdot \nabla \psi \mathrm{~d} x=\int_{\Omega} g(\cdot, u, v) \psi \mathrm{d} x & \forall \psi \in C_{0}^{\infty}(\Omega),
\end{array}
$$

and, moreover, $u, v \in C^{0}(\bar{\Omega})$.
A pair $(\underline{u}, \underline{v}) \in X^{p, q}(\Omega)$ is called a sub-solution of problem (3.7) provided $f(\cdot, \underline{u}, \underline{v}) \in L^{p^{\prime}}(\Omega), g(\cdot, \underline{u}, \underline{v}) \in L^{q^{\prime}}(\Omega)$, and

$$
-\Delta_{p} \underline{u} \leq f(\cdot, \underline{u}, \underline{v}) \text { in } \Omega, \quad-\Delta_{p} \underline{v} \leq g(\cdot, \underline{u}, \underline{v}) \text { in } \Omega, \underline{u} \vee \underline{v} \leq 0 \text { on } \partial \Omega .
$$

A super-solution (\bar{u}, \bar{v}) is defined similarly, by reversing all the above inequalities.

Let $\left\{\varepsilon_{n}\right\} \subseteq \mathbb{R}^{+}$satisfy $\varepsilon_{n} \rightarrow 0$. Set, for every $n \in \mathbb{N},(x, s, t) \in \Omega \times\left(\mathbb{R}^{+}\right)^{2}$,

$$
f_{n}(x, s, t):=f\left(x, s \vee \varepsilon_{n}, t \vee \varepsilon_{n}\right), g_{j}(x, s, t):=g\left(x, s \vee \varepsilon_{n}, t \vee \varepsilon_{n}\right),
$$

and consider the sequence of regularized systems

$$
\begin{cases}-\Delta_{p} u=f_{n}(x, u, v) & \text { in } \Omega, u \bigsqcup_{\Omega}=0, \tag{3.8}\\ -\Delta_{q} v=g_{n}(x, u, v) & \text { in } \Omega, v\left\lfloor_{\Omega}=0 .\right.\end{cases}
$$

Theorem 3.4 ([27], Theorem 3.1). Suppose (a_{1})-(a_{2}) hold. If, for each $n \in \mathbb{N}$, there exist a sub-solution $\left(\underline{u}_{n}, \underline{v}_{n}\right)$ and a super-solution $\left(\bar{u}_{n}, \bar{v}_{n}\right)$ to (3.8) such that $\left(\underline{u}_{n}, \underline{v}_{n}\right) \leq\left(\bar{u}_{n}, \bar{v}_{n}\right)$,

$$
\inf _{n \in \mathbb{N}} \operatorname{essinf}\left(\underline{u}_{n} \wedge \underline{v}_{n}\right)>0
$$

whenever $\Omega^{\prime} \subset \subset \Omega$, and

$$
\sup _{n \in \mathbb{N}} \operatorname{ess} \sup _{\Omega}\left(\bar{u}_{n} \vee \bar{v}_{n}\right)<\infty,
$$

then (3.7) admits a distributional solution $(u, v) \in C_{\operatorname{loc}}^{1, \alpha}(\Omega)^{2} \cap C^{0}(\bar{\Omega})^{2}$.

Sufficient conditions for the existence of sub-super-solution pairs to (3.8) are given in [27, Sections 4-5]. As an example, via Theorem 3.4 one can show that the model problem (cf. (3.4))

$$
\left\{\begin{array}{l}
-\Delta_{p} u=u^{\alpha_{1}}+\mu v^{\beta_{1}} \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0\right. \\
-\Delta_{q} v=v^{\alpha_{2}}+\mu u^{\beta_{2}} \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0\right.
\end{array}\right.
$$

where $\alpha_{1} \vee \alpha_{2}<0$ and $\beta_{1} \wedge \beta_{2} \geq 0$, possesses a solution provided $\mu \geq 0$ is small enough. Moreover, singular semi-positone systems, which means both $\lim _{s \rightarrow 0^{+}} f(x, s, t)=-\infty$ uniformly in (x, t) and $\lim _{t \rightarrow 0^{+}} g(x, s, t)=-\infty$ uniformly with respect to (x, s), are investigated. Let us also mention the papers [51], [47], and [16]. In particular, [16] deals with a non-cooperative system.

One year later, Giacomoni, Hernandez, and Sauvy [35] obtained the general results below, where $f, g \in C^{1}\left(\Omega \times\left(\mathbb{R}^{+}\right)^{2}\right)$, through a different notion of sub-super-solution.

We say that $(\underline{u}, \underline{v}),(\bar{u}, \bar{v}) \in X_{\mathrm{loc}}^{p . q}(\Omega) \cap C^{0}(\bar{\Omega})^{2}$ are a sub-super-solution pair to (3.7) when $\underline{u}, \underline{v}, \bar{u}, \bar{v}$ are locally uniformly positive, $(\underline{u}, \underline{v}) \leq(\bar{u}, \bar{v})$, and for any $(u, v) \in[\underline{u}, \bar{u}] \times[\underline{v}, \bar{v}]$ one has

$$
-\Delta_{p} \underline{u} \leq f(\cdot, \underline{u}, v),-\Delta_{p} \underline{v} \leq g(\cdot, u, \underline{v}),-\Delta_{p} \bar{u} \geq f(\cdot, \bar{u}, v),-\Delta_{p} \bar{v} \geq g(\cdot, u, \bar{v})
$$

in Ω. The set $\mathcal{C}:=[\underline{v}, \bar{v}] \times[\underline{u}, \bar{u}]$ is usually called trapping region; cf. [10].
Theorem 3.5 ([35], Theorem 2.1). Let $(\underline{u}, \underline{v}),(\bar{u}, \bar{v}) \in X_{0}^{p, q}(\Omega)$ be a sub-super-solution pair to (3.7) fulfilling:
($\left.\mathrm{a}_{3}\right) \bar{u} \leq c_{1} d^{\gamma_{1}}$ and $\bar{v} \leq c_{2} d^{\gamma_{2}}$, with appropriate $c_{1}, c_{2}, \gamma_{1}, \gamma_{2} \in \mathbb{R}^{+}$.
(a_{4}) There exist $c_{3}, c_{4} \in \mathbb{R}^{+}, \delta_{1}, \delta_{2} \in \mathbb{R}$ such that

$$
|f(\cdot, u, v)| \leq c_{3} d^{\delta_{1}},|g(\cdot, u, v)| \leq c_{4} d^{\delta_{2}} \forall(u, v) \in \mathcal{C} .
$$

(a_{5}) For suitable $c_{5}, c_{6}, \sigma_{1}, \sigma_{2} \in \mathbb{R}^{+}$one has

$$
\left|\frac{\partial f}{\partial s}(\cdot, u, v)\right| \leq c_{5} d^{\delta_{1}-\sigma_{1}},\left|\frac{\partial g}{\partial t}(\cdot, u, v)\right| \leq c_{6} d^{\delta_{2}-\sigma_{2}},(u, v) \in \mathcal{C} .
$$

Here, d is given by (2.2). Assume further that

$$
\delta_{1}>-2+\frac{1}{p}+\left(\sigma_{1}-\gamma_{1}\right)^{+}, \quad \delta_{2}>-2+\frac{1}{q}+\left(\sigma_{2}-\gamma_{2}\right)^{+} .
$$

Then (3.7) admits a weak solution $(u, v) \in \mathcal{C}$.

Theorem 3.6 ([35], Theorem 2.3). Suppose $(\underline{u}, \underline{v}),(\bar{u}, \bar{v})$ is a sub-supersolution pair to (3.7) complying with $\left(\mathrm{a}_{3}\right)$. If

$$
\begin{equation*}
\frac{\partial f}{\partial t}(x, s, t)>0, \quad \frac{\partial g}{\partial s}(x, s, t)>0 \quad \forall(x, s, t) \in \Omega \times\left(\mathbb{R}^{+}\right)^{2} \tag{3.9}
\end{equation*}
$$

and there exist $c_{7}, c_{8} \in \mathbb{R}^{+}, \eta_{1}, \eta_{2} \in \mathbb{R}$ such that

$$
\left|\frac{\partial f}{\partial s}(\cdot, u, v)\right| \leq c_{7} d^{\eta_{1}},\left|\frac{\partial g}{\partial t}(\cdot, u, v)\right| \leq c_{8} d^{\eta_{2}} \forall(u, v) \in \mathcal{C}
$$

for d as in (2.2), then (3.7) possesses a distributional solution $(u, v) \in \mathcal{C}$.
Proofs are based on a very nice, non-trivial use of Schauder's fixed point theorem. Applications to the model problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=K_{1}(x) u^{\alpha_{1}} v^{\beta_{1}} \quad \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{3.10}\\
-\Delta_{q} v=K_{2}(x) v^{\alpha_{2}} u^{\beta_{2}} \quad \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0,\right.
\end{array}\right.
$$

where K_{1}, K_{2} satisfy appropriate conditions while

$$
\begin{equation*}
\alpha_{1}<p-1, \quad \alpha_{2}<q-1, \quad\left(p-1-\alpha_{1}\right)\left(q-1-\alpha_{2}\right)>\left|\beta_{1} \beta_{2}\right|>0, \tag{3.11}
\end{equation*}
$$

are furnished. Evidently, (3.10) becomes (3.5) for $p=q=2$. See also [21], where $p=q<N, K_{1} \in L^{\infty}(\Omega)_{+}, K_{2} \in L^{\gamma}(\Omega)_{+}$for some $\gamma>\frac{N}{p}$,

$$
0<\beta_{1}<1 \wedge(p-1), \quad-1<\alpha_{1}<p-\beta_{1}-1, \quad \alpha_{2}:=\beta_{1}-1, \quad \beta_{2}:=\alpha_{1}+1
$$

A special case of (3.10) was treated in [58] (cf. in addition [20]), namely

$$
\left\{\begin{array}{l}
-\Delta_{p} u=u^{\alpha_{1}} v^{\beta_{1}} \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{3.12}\\
-\Delta_{q} v=v^{\alpha_{2}} u^{\beta_{2}} \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0 .\right.
\end{array}\right.
$$

Theorem 3.7 ([58], Theorem 1.1). Let $1<p, q \leq N$ and let α_{i}, β_{i} satisfy

$$
\begin{array}{r}
-2+\frac{1}{p} \leq \alpha_{1}<0, \quad-2+\frac{1}{q} \leq \alpha_{2}<0 \tag{3.13}\\
0<\beta_{1}<\frac{q}{p}\left(p-1-\alpha_{1}\right), \quad 0<\beta_{2}<\frac{p}{q}\left(q-1-\alpha_{2}\right) .
\end{array}
$$

Then (3.12) has a weak solution $(u, v) \in X_{0}^{p, q}(\Omega) \cap L^{\infty}(\Omega)^{2}$.
Remark 3.8. It should be noted that (3.13) forces (3.11). Moreover, both (3.9) and (3.13) basically entail (a_{1}).

System (3.12), with a competitive interaction between the two components u and v was thoroughly studied by Giacomoni, Schindler, and Takáč [36]. Recall that (3.7) is said to be competitive if
(a_{1}^{\prime}) The functions $t \mapsto f(x, s, t)$ and $s \mapsto g(x, s, t)$ are decreasing on \mathbb{R}^{+}.
In the situation above this means $\beta_{1} \vee \beta_{2}<0$. Under the sub-homogeneity condition

$$
\begin{equation*}
\left(p-1-\alpha_{1}\right)\left(q-1-\alpha_{2}\right)>\beta_{1} \beta_{2} \tag{3.14}
\end{equation*}
$$

and suitable upper bounds regarding α_{i}, β_{i}, they proved that (3.12) admits a solution $(u, v) \in X_{0}^{p, q}(\Omega) \cap C^{0, \alpha}(\bar{\Omega})^{2}$. When $p=q$, see also [70].

Existence results for problem (3.7) where the competitive structure (a_{1}^{\prime}) is allowed can be found in $[59,60]$.

The recent work [4] examines singular $(p(x), q(x))$-Laplacian problems with singularity coming through logarithmic reactions that involve variable exponents growth conditions; cf. also [3, 63].

As far as we know, till today, much less attention has been paid to multiplicity of solutions. Actually, we can only mention the papers [68, 12, 26, 5, 50]. The first deals with singular $p(x)$-Laplacian systems while the second is devoted to quasi-linear problems driven by $\left(\Phi_{1}, \Phi_{2}\right)$-Laplace operators. Theorem 1 in [26] considers the case when f, g do not depend on x, are positive, entail a cooperative structure, and fulfill

$$
\lim _{s \rightarrow+\infty} \frac{f(s, t)}{s^{p-1}}=J_{1}>\lambda_{1, p}, \quad \lim _{t \rightarrow+\infty} \frac{g(s, t)}{t^{q-1}}=J_{2}>\lambda_{1, q} .
$$

Two smooth solutions are obtained combining sub-super-solution methods with the Leray-Schauder topological degree. A different approach is adopted in [5]. The differential operators, which include the r-Laplacian as a special case, are neither homogeneous nor linear, while

$$
f(x, s, t):=K_{1}(x) s^{\alpha_{1}}+\frac{\partial h}{\partial s}(x, s, t), \quad g(x, s, t):=K_{2}(x) t^{\alpha_{2}}+\frac{\partial h}{\partial t}(x, s, t),
$$

where $K_{i} \in L^{\infty}(\Omega), \alpha_{i}<0$, and $h \in C^{1}\left(\bar{\Omega} \times \mathbb{R}^{2}\right)$ satisfy appropriate conditions that permit the use of variational methods. Theorem 1.7 of [5] gives two positive solutions provided $\max _{i=1,2}\left\|K_{i}\right\|_{\infty}$ is sufficiently small. Finally, [50] addresses singular $p(x)$-Laplacian systems with nonlinear boundary conditions.

3.3 Uniqueness

Except for the semi-linear case, uniqueness of solutions looks a difficult matter, even for problem (3.12). In fact, as pointed out by Giacomoni, Hernandez, and Moussaoui [34], equations with quasi-linear elliptic operators exhibit
additional troubles to obtain the validity of the strong comparison principle, which requires the C^{1}-regularity of solutions. If it cannot be obtained (as in the strongly singular setting $\alpha_{i}+\beta_{i}<-1$) then one can still try to use a suitable variant of the well known Krasnoleskii's argument [49].
Let us first examine the cooperative case $\beta_{1} \wedge \beta_{2}>0$. Proposition 3.1 of [34] basically yields

Theorem 3.9 ([34], Theorem 3.2). If $-1<\alpha_{i}+\beta_{i}<0<\beta_{i}, i=1,2$, then (3.12) admits a unique weak solution $(u, v) \in X_{0}^{p, q}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})^{2}$. Moreover, $u, v \geq c_{1} d$ for some $c_{1}>0$.

Suppose now

$$
\begin{equation*}
\alpha_{1}+\beta_{i}<-1, i=1,2, \quad 0<\beta_{1}<p-1, \quad 0<\beta_{2}<q-1, \tag{3.15}
\end{equation*}
$$

and denote by $\gamma, \theta \in] 0,1$ [the unique solution to the system

$$
\left\{\begin{array}{l}
(\gamma-1)(p-1)-1=\alpha_{1} \gamma+\beta_{1} \theta \tag{3.16}\\
(\theta-1)(q-1)-1=\beta_{2} \gamma+\alpha_{2} \theta .
\end{array}\right.
$$

Theorem 3.10 ([34], Theorem 3.3). Let (3.15)-(3.16) be satisfied. Assume also that

$$
\begin{equation*}
\alpha_{1} \gamma+\beta_{1} \theta>\frac{1}{p}-2, \quad \beta_{2} \gamma+\alpha_{2} \theta>\frac{1}{q}-2 . \tag{3.17}
\end{equation*}
$$

Then (3.12) possesses a unique weak solution $(u, v) \in X_{0}^{p, q}(\Omega)$ fulfilling

$$
c_{2}\left(\varphi_{1, p}^{\gamma}, \varphi_{1, q}^{\theta}\right) \leq(u, v) \leq c_{3}\left(\varphi_{1, p}^{\gamma}, \varphi_{1, q}^{\theta}\right)
$$

with appropriate $c_{2}, c_{3} \in \mathbb{R}^{+}$.
We next examine the competitive case $\beta_{i}<0$. Via the sub-homogeneity condition (3.14), Theorem 2.2 of [36] considers various possible choices of exponents. Here, for the sake of brevity, we will present only one.
Theorem 3.11 ([36], Theorem 2.2). Suppose $\alpha_{i} \vee \beta_{i}<0$. Under (3.14), (3.16), and (3.17), the same conclusion of Theorem 3.10 is true.

3.4 Systems with convection terms

In 2017, Motreanu, Moussaoui, and Zhang [61] treated the general problem

$$
\begin{cases}-\Delta_{p} u=f(u, v, \nabla u, \nabla v) & \text { in } \Omega, u>0 \text { in } \Omega, u\left\lfloor_{\partial \Omega}=0,\right. \tag{3.18}\\ -\Delta_{q} v=g(u, v, \nabla u, \nabla v) & \text { in } \Omega, v>0 \text { in } \Omega, v\left\lfloor_{\partial \Omega}=0,\right.\end{cases}
$$

where $f, g:\left(\mathbb{R}^{+}\right)^{2} \times\left(\mathbb{R}^{N} \backslash\{0\}\right)^{2} \rightarrow \mathbb{R}^{+}$are continuous functions satisfying the growth conditions below.
(a6) There exist $\mu_{i}, \hat{\mu}_{i} \in \mathbb{R}^{+}$and $\alpha_{i}, \beta_{i} \in \mathbb{R}$, such that

$$
\begin{aligned}
& \quad \mu_{1}\left(s+\left|\xi_{1}\right|\right)^{\alpha_{1}}\left(t+\left|\xi_{2}\right|\right)^{\beta_{1}} \leq f\left(s, t, \xi_{1}, \xi_{2}\right) \leq \hat{\mu}_{1}\left(s+\left|\xi_{1}\right|\right)^{\alpha_{1}}\left(t+\left|\xi_{2}\right|\right)^{\beta_{1}}, \\
& \qquad \mu_{2}\left(s+\left|\xi_{1}\right|\right)^{\beta_{2}}\left(t+\left|\xi_{2}\right|\right)^{\alpha_{2}} \leq g\left(s, t, \xi_{1}, \xi_{2}\right) \leq \hat{\mu}_{2}\left(s+\left|\xi_{1}\right|\right)^{\beta_{2}}\left(t+\left|\xi_{2}\right|\right)^{\alpha_{2}} \\
& \text { for all }\left(s, t, \xi_{1}, \xi_{2}\right) \in\left(\mathbb{R}^{+}\right)^{2} \times\left(\mathbb{R}^{N} \backslash\{0\}\right)^{2} .
\end{aligned}
$$

(a_{7}) One has

$$
\beta_{1} \vee \beta_{2}<0, \quad \alpha_{1} \alpha_{2}>0, \quad\left|\alpha_{1}\right|<p-1+\beta_{1}, \quad\left|\alpha_{2}\right|<q-1+\beta_{2} .
$$

Since $\beta_{1} \vee \beta_{2}<0$, system (3.18) has a competitive structure. Moreover, the right-hand sides may exhibit singularities in both the solution and its gradient.

Combining comparison arguments with a priori estimates yields the next Theorem 3.12 ([61], Theorem 1.1). If $\left(\mathrm{a}_{6}\right)-\left(\mathrm{a}_{7}\right)$ hold then (3.18) admits a solution $(u, v) \in C^{1, \alpha}(\bar{\Omega})^{2}$.

Three years later, also the cooperative case was examined; see [9]. Now, $1<p, q<N$ while $f, g:\left(\mathbb{R}^{+}\right)^{2} \times \mathbb{R}^{2 N} \rightarrow \mathbb{R}^{+}$are continuous and fulfill the following conditions.
(a8) There exist $\left.\mu_{i}, \hat{\mu}_{i}, \beta_{i}, \gamma_{i}, \theta_{i} \in \mathbb{R}^{+}, \alpha_{i} \in\right]-1,0[, i=1,2$, such that

$$
\begin{gathered}
\mu_{1} s^{\alpha_{1}} t^{\beta_{1}} \leq f\left(s, t, \xi_{1}, \xi_{2}\right) \leq \hat{\mu}_{1} s^{\alpha_{1}} t^{\beta_{1}}+\left|\xi_{1}\right|^{\gamma_{1}}+\left|\xi_{2}\right|^{\theta_{1}} \\
\mu_{2} s^{\beta_{2}} t^{\alpha_{2}} \leq g\left(s, t, \xi_{1}, \xi_{2}\right) \leq \hat{\mu}_{2} s^{\beta_{2}} t^{\alpha_{2}}+\left|\xi_{1}\right|^{\gamma_{2}}+\left|\xi_{2}\right|^{\theta_{2}}
\end{gathered}
$$

for all $\left(s, t, \xi_{1}, \xi_{2}\right) \in\left(\mathbb{R}^{+}\right)^{2} \times \mathbb{R}^{2 N}$.
(a9) One has $\alpha_{i}+\beta_{i} \geq 0$, as well as

$$
\max \left\{-\alpha_{1}+\beta_{1}, \gamma_{1}, \theta_{1}\right\}<p-1, \quad \max \left\{-\alpha_{2}+\beta_{2}, \gamma_{2}, \theta_{2}\right\}<q-1
$$

Theorem 3.13 ([9], Theorem 1). Under $\left(\mathrm{a}_{8}\right)-\left(\mathrm{a}_{9}\right)$, problem (3.18) possesses a solution $(u, v) \in C_{0}^{1}(\bar{\Omega})^{2}$. Moreover, $c_{1} d \leq u, v \leq c_{2} d$ for suitable $c_{1}, c_{2}>0$, with d given by (2.2).
A further interesting contribution in contained in [22].
The very recent paper [40] (see also [41]) establishes the existence of infinitely many solutions to the Neumann problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=f(x, u, v, \nabla u, \nabla v) \text { in } \Omega, u>0 \text { in } \Omega, \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega, \tag{3.19}\\
-\Delta_{q} v=g(x, u, v, \nabla u, \nabla v) \text { in } \Omega, v>0 \text { in } \Omega, \frac{\partial v}{\partial \nu}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

where $1<p, q<\infty, f, g: \Omega \times\left(\mathbb{R}^{+}\right)^{2} \times \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ satisfy Caratheodory's conditions while ν denotes the outer unit normal to $\partial \Omega$.
The sub-linear case is first investigated using the next assumptions.
(a_{10}) There exist $\alpha_{i}<0<\beta_{i}, \gamma_{1}, \delta_{1} \in\left[0, p-1\left[, \gamma_{2}, \delta_{2} \in[0, q-1[\right.\right.$, and $a_{i}, b_{i}, c_{i} \in L^{\infty}(\Omega)$ such that

$$
\begin{array}{r}
\left|f\left(x, s, t, \xi_{1}, \xi_{2}\right)\right| \leq a_{1}(x) s^{\alpha_{1}} t^{\beta_{1}}+b_{1}(x)\left(\left|\xi_{1}\right|^{\gamma_{1}}+\left|\xi_{2}\right|^{\delta_{1}}\right)+c_{1}(x), \\
\left|g\left(x, s, t, \xi_{1}, \xi_{2}\right)\right| \leq a_{2}(x) s^{\beta_{2}} t^{\alpha_{2}}+b_{2}(x)\left(\left|\xi_{1}\right|^{\gamma_{2}}+\left|\xi_{2}\right|^{\delta_{2}}\right)+c_{2}(x)
\end{array}
$$

for all $\left(x, s, t, \xi_{1}, \xi_{2}\right) \in \Omega \times\left(\mathbb{R}^{+}\right)^{2} \times \mathbb{R}^{2 N}$.
(a a_{11}) There are $\left\{h_{n}\right\},\left\{\hat{h}_{n}\right\},\left\{k_{n}\right\},\left\{\hat{k}_{n}\right\},\left\{C_{n}\right\} \subseteq \mathbb{R}^{+}$, with $C_{n} \rightarrow+\infty$, satisfying $h_{n}<k_{n}<h_{n+1}, \hat{h}_{n}<\hat{k}_{n}<\hat{h}_{n+1}$,

$$
\begin{align*}
& f\left(x, k_{n}, t, \xi_{1}, \xi_{2}\right) \leq 0 \leq f\left(x, h_{n}, t, \xi_{1}, \xi_{2}\right) \\
& g\left(x, s, \hat{k}_{n}, \xi_{1}, \xi_{2}\right) \leq 0 \leq g\left(x, s, \hat{h}_{n}, \xi_{1}, \xi_{2}\right) \tag{3.20}
\end{align*}
$$

for all $\left(x, s, t, \xi_{1}, \xi_{2}\right) \in \Omega \times\left[h_{n}, k_{n}\right] \times\left[\hat{h}_{n}, \hat{k}_{n}\right] \times B_{\mathbb{R}^{N}}\left(C_{n}\right)^{2}, n \in \mathbb{N}$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{h_{n}^{\alpha_{1}} \hat{k}_{n}^{\beta_{1}}}{C_{n}^{p-1}}=0, \quad \lim _{n \rightarrow \infty} \frac{\hat{h}_{n}^{\alpha_{2}} k_{n}^{\beta_{2}}}{C_{n}^{q-1}}=0 . \tag{3.21}
\end{equation*}
$$

Theorem 3.14 ([40], Theorem 4.2). If $\left(\mathrm{a}_{10}\right)-\left(\mathrm{a}_{11}\right)$ hold then (3.19) has a sequence of solutions $\left\{\left(u_{n}, v_{n}\right)\right\} \subseteq C^{1}(\bar{\Omega})^{2}$ such that $\left(u_{n}, v_{n}\right)<\left(u_{n+1}, v_{n+1}\right)$ for every $n \in \mathbb{N}$. Moreover, $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}=+\infty$ uniformly in $\bar{\Omega}$ once $h_{n}, \hat{h}_{n} \rightarrow+\infty$.

As regards the super-linear case, denote by (a_{10}^{\prime}) condition (a_{10}) written for $\gamma_{1}, \delta_{1}>p-1$ and $\gamma_{2}, \delta_{2}>q-1$. Similarly,
$\left(\mathrm{a}_{11}^{\prime}\right)$ There exist $\left\{h_{n}\right\},\left\{\hat{h}_{n}\right\},\left\{k_{n}\right\},\left\{\hat{k}_{n}\right\},\left\{C_{n}\right\} \subseteq \mathbb{R}^{+}$, with $C_{n} \rightarrow 0$, satisfying $k_{n+1}<h_{n}<k_{n}, \hat{k}_{n+1}<\hat{h}_{n}<\hat{k}_{n}$ for all $n \in \mathbb{N}$ and (3.20)-(3.21).

Theorem 3.15 ([40], Theorem 4.3). Under $\left(\mathrm{a}^{\prime}{ }_{10}\right)-\left(\mathrm{a}^{\prime}{ }_{11}\right)$, problem (3.19) possesses a sequence of solutions $\left\{\left(u_{n}, v_{n}\right)\right\} \subseteq C^{1}(\bar{\Omega})^{2}$ such that $\left(u_{n+1}, v_{n+1}\right)<$ $\left(u_{n}, v_{n}\right)$ for every $n \in \mathbb{N}$. Moreover, $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}=0$ uniformly in $\bar{\Omega}$ once $k_{n}, \hat{k}_{n} \rightarrow 0$.

An easy example of nonlinearities, with both singular and convective terms, that fulfill (3.20)-(3.21) is the following.

Example 3.16. Set, for every $\left(x, s, t, \xi_{1}, \xi_{2}\right) \in \Omega \times\left(\mathbb{R}^{+}\right)^{2} \times \mathbb{R}^{2 N}$,

$$
\begin{aligned}
& f\left(x, s, t, \xi_{1}, \xi_{2}\right)=\sin \frac{1}{s}\left(s^{\alpha_{1}} t^{\beta_{1}}-\left|\xi_{1}\right|^{\gamma_{1}}-\left|\xi_{2}\right|^{\delta_{1}}\right), \\
& g\left(x, s, t, \xi_{1}, \xi_{2}\right)=\cos \frac{1}{t}\left(s^{\beta_{2}} t^{\alpha_{2}}-\left|\xi_{1}\right|^{\gamma_{2}}-\left|\xi_{2}\right|^{\delta_{2}}\right),
\end{aligned}
$$

where

$$
\gamma_{1} \wedge \delta_{1}>\alpha_{1}+\beta_{1}>p-1, \quad \gamma_{2} \wedge \delta_{2}>\alpha_{2}+\beta_{2}>q-1
$$

To check (3.20)-(3.21) one can pick $C_{n}=\frac{1}{n}$,

$$
h_{n}=\frac{1}{\pi / 2+2 \pi n}, k_{n}=\frac{1}{-\pi / 2+2 \pi n}, \hat{h}_{n}=\frac{1}{2 \pi+2 \pi n}, \hat{k}_{n}=\frac{1}{\pi+2 \pi n} .
$$

4 Problems on the whole space

4.1 The case $p=2$

In 2009, Moussaoui, Khodja, and Tas [62] studied the following singular, semi-linear elliptic, Gierer-Meinhardt's type system (see [37]):

$$
\left\{\begin{array}{c}
-\Delta u+\alpha_{1}(x) u=a_{1}(x) \frac{1}{v^{q}} \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N}, \tag{4.1}\\
-\Delta v+\alpha_{2}(x) v=a_{2}(x) \frac{u^{r}}{v^{s}} \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N}, \\
u(x) \rightarrow 0, v(x) \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

where, roughly speaking, $\alpha_{i}, a_{i} \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)_{+}, a_{i}$ satisfies suitable integrability conditions, $q, r, s>0$, and $r \leq s+1<2$. A solution $(u, v) \in \mathcal{D}_{0}^{1,2}\left(\mathbb{R}^{N}\right)^{2}$ is obtained via Schauder's fixed point theorem. Previous papers on the same subject are [23, 24], whilst, excepting [6, 7], we were not able to find more recent contributions.

Even for the semi-linear case, the question whether a singular elliptic problem on the whole space admits multiple positive solutions is an open question.

Finally, as regards uniqueness, we mention [6, Theorem 1.1], which deals with the system

$$
\left\{\begin{array}{l}
-\Delta u+\alpha(x) u^{2}=a(x) \frac{v^{1-p}}{u^{p}} \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N}, \tag{4.2}\\
-\Delta v+\alpha(x) v^{2}=a(x) \frac{u^{1-p}}{v^{p}} \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N}
\end{array}\right.
$$

where $N \geq 3, p \in] \frac{1}{2}, 1\left[, \alpha \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\frac{q}{q-2}}\left(\mathbb{R}^{N}\right)\right.$ for some $\left.q \in\right] 2,2^{*}[, \alpha>0$, and $0 \leq a \leq \alpha$.

Existence and uniqueness of solutions to singular convective elliptic problems was firstly studied by Benrhouma [7] in 2017, who considered the system

$$
\left\{\begin{array}{l}
-\Delta u+\alpha_{1} \frac{|\nabla u|^{2}}{u}=\frac{p}{p+q} a(x) u^{p-1} v^{q}+b_{1}(x) \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N}, \\
-\Delta v+\alpha_{2} \frac{|\nabla v|^{2}}{v}=\frac{q}{p+q} a(x) u^{p} v^{q-1}+b_{2}(x) \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

with $p \wedge q>1, p+q<2^{*}-1, a$ fulfilling appropriate integrability conditions, $\alpha_{i}>\frac{N+2}{4}$, and $b_{i} \in L^{2^{*}}\left(\mathbb{R}^{N}\right)_{+} \cap L^{\infty}\left(\mathbb{R}^{N}\right), i=1,2$.

4.2 Existence and multiplicity

Henceforth, given $p, q \in] 1, \infty[$, we will write

$$
X^{p, q}\left(\mathbb{R}^{N}\right):=\mathcal{D}_{0}^{1, p}\left(\mathbb{R}^{N}\right) \times \mathcal{D}_{0}^{1, q}\left(\mathbb{R}^{N}\right)
$$

To the best of our knowledge, until 2019, singular elliptic systems in the whole space were investigated only for $p=q=2$, essentially exploiting the linearity of involved differential operators. The paper [54] considers the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=a_{1}(x) f(u, v) \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N}, \tag{4.3}\\
-\Delta_{q} v=a_{2}(x) g(u, v) \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

where $N \geq 3$ while $p, q \in] 1, N\left[\right.$. The nonlinearities $f, g:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$are continuous and fulfill the condition
(a_{12}) There exist $\mu_{i}, \hat{\mu}_{i} \in \mathbb{R}^{+}, i=1,2$, such that

$$
\mu_{1} s^{\alpha_{1}} \leq f(s, t) \leq \hat{\mu}_{1} s^{\alpha_{1}}\left(1+t^{\beta_{1}}\right), \quad \mu_{2} t^{\alpha_{2}} \leq g(s, t) \leq \hat{\mu}_{2}\left(1+s^{\beta_{2}}\right) t^{\alpha_{2}}
$$

for all $s, t \in \mathbb{R}^{+}$, with $-1<\alpha_{i}<0<\beta_{i}$,

$$
\begin{equation*}
\alpha_{1}+\beta_{2}<p-1, \quad \alpha_{2}+\beta_{1}<q-1, \tag{4.4}
\end{equation*}
$$

as well as

$$
\beta_{1}<\frac{q^{*}}{p^{*}} \min \left\{p-1, p^{*}-p\right\}, \quad \beta_{2}<\frac{p^{*}}{q^{*}} \min \left\{q-1, q^{*}-q\right\} .
$$

The coefficients $a_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$satisfy the assumption
$\left(\mathrm{a}_{13}\right) a_{i} \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\zeta_{i}}\left(\mathbb{R}^{N}\right)$, where

$$
\frac{1}{\zeta_{1}} \leq 1-\frac{p}{p^{*}}-\frac{\beta_{1}}{q^{*}}, \quad \frac{1}{\zeta_{2}} \leq 1-\frac{q}{q^{*}}-\frac{\beta_{2}}{p^{*}} .
$$

A pair $(u, v) \in X^{p, q}\left(\mathbb{R}^{N}\right)$ is called a (weak) solution to (4.3) provided $u, v>0$ and

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \nabla \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N}} a_{1} f(u, v) \varphi \mathrm{d} x \forall \varphi \in \mathcal{D}_{0}^{1, p}\left(\mathbb{R}^{N}\right), \\
& \int_{\mathbb{R}^{N}}|\nabla v|^{q-2} \nabla v \nabla \psi d x=\int_{\mathbb{R}^{N}} a_{2} g(u, v) \psi d x \quad \forall \psi \in \mathcal{D}_{0}^{1, q}\left(\mathbb{R}^{N}\right) .
\end{aligned}
$$

Variational methods do not work, at least in a direct way, because (4.3) has, in general, no variational structure. A similar comment holds for sub-super-solution techniques, that are usually employed in the case of bounded domains. So, one is naturally led to apply fixed point results. An a priori estimate in $L^{\infty}\left(\mathbb{R}^{N}\right) \times L^{\infty}\left(\mathbb{R}^{N}\right)$ for solutions of (4.3) is first established by a Moser's type iteration procedure and an adequate truncation, which, due to singular terms, require a specific treatment. Problem (4.3) is next perturbed by introducing a parameter $\varepsilon>0$. This produces the family of regularized systems

$$
\left\{\begin{array}{l}
-\Delta_{p} u=a_{1}(x) f(u+\varepsilon, v) \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N}, \tag{4.5}\\
-\Delta_{q} v=a_{2}(x) g(u, v+\varepsilon) \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

whose study yields useful information on the original problem. In fact, the previous L^{∞}-boundedness still holds for solutions to (4.5), regardless of ε. Thus, via Schauder's fixed point theorem, one gets a solution ($u_{\varepsilon}, v_{\varepsilon}$) lying inside a rectangle given by positive lower bounds, where ε does not appear, and positive upper bounds, that may instead depend on ε. Finally, letting $\varepsilon \rightarrow 0^{+}$and using the $(S)_{+}$- property of the negative r-Laplacian in $\mathcal{D}_{0}^{1, r}\left(\mathbb{R}^{N}\right)$ (see [54, Proposition 2.2]) yields a weak solution to (4.3).

Theorem 4.1 ([54], Theorem 5.1). Let $\left(\mathrm{a}_{12}\right)$ and $\left(\mathrm{a}_{13}\right)$ be satisfied. Then (4.3) has a weak solution $(u, v) \in X^{p, q}\left(\mathbb{R}^{N}\right)$, which is essentially bounded.

Very recently, the parametric system

$$
\left\{\begin{array}{l}
-\Delta_{p} u=a_{1}(x) f_{1}(u)+\lambda b_{1}(x) g_{1}(u) h_{1}(v) \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N}, \tag{4.6}\\
-\Delta_{p} v=a_{2}(x) f_{2}(v)+\mu b_{2}(x) g_{2}(v) h_{2}(u) \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N}, \\
u(x) \rightarrow 0, v(x) \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{array}\right.
$$

where $N \geq 3,1<p<N, a_{i}, b_{i} \in C^{0}\left(\mathbb{R}^{N}\right), f_{i}, g_{i}, h_{i} \in C^{0}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$, f_{i} is singular at zero, and $\lambda, \mu \in \mathbb{R}^{+}$, was thoroughly investigated in [67]. Under suitable hypotheses, it is shown that there exists an open set $\Theta \subseteq\left(\mathbb{R}^{+}\right)^{2}$, whose part of its boundary contained in $\left(\mathbb{R}^{+}\right)^{2}$, say Γ, turns out to be a continuous monotone curve, such that (4.6) admits a C^{1}-solution if $(\lambda, \mu) \in \Theta$ and has no solution when $(\lambda, \mu) \in\left(\mathbb{R}^{+}\right)^{2} \backslash(\Theta \cup \Gamma)$.

4.3 Uniqueness

As far as we know, uniqueness of solutions to singular quasi-linear elliptic systems in the whole space is still an open problem. Taking inspiration from [13], a first result has been obtained by Gambera and Guarnotta [29].

4.4 Systems with convection terms

The very recent paper [43] treats the problem

$$
\begin{cases}-\Delta_{p} u=f(x, u, v, \nabla u, \nabla v) & \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N} \tag{4.7}\\ -\Delta_{q} v=g(x, u, v, \nabla u, \nabla v) & \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N}\end{cases}
$$

where $N \geq 3, p, q \in] 2-\frac{1}{N}, N\left[\right.$, while $f, g: \mathbb{R}^{N} \times\left(\mathbb{R}^{+}\right)^{2} \times \mathbb{R}^{2 N} \rightarrow \mathbb{R}^{+}$are Carathéodory's functions satisfying assumptions ($\left.\mathrm{a}_{14}\right)-\left(\mathrm{a}_{15}\right)$ below. Since f, g depend on the gradient of solutions and equations are set in the whole space, neither variational methods can be exploited nor compactness for Sobolev embedding holds. The research started in [54], where convective terms did not appear, is continued here, along the works [9, 40, 42], which address analogous questions, but concerning a bounded domain.

A pair $(u, v) \in X^{p, q}\left(\mathbb{R}^{N}\right)$ such that $u, v>0$ is called:

1) distributional solution to (4.7) if for every $(\varphi, \psi) \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)^{2}$ one has

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \nabla \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N}} f(\cdot, u, v, \nabla u, \nabla v) \varphi \mathrm{d} x, \\
& \int_{\mathbb{R}^{N}}|\nabla v|^{q-2} \nabla v \nabla \psi \mathrm{~d} x=\int_{\mathbb{R}^{N}} g(\cdot, u, v, \nabla u, \nabla v) \psi \mathrm{d} x \tag{4.8}
\end{align*}
$$

2) (weak) solution of (4.7) when (4.8) holds for all $(\varphi, \psi) \in X^{p, q}\left(\mathbb{R}^{N}\right)$;
3) 'strong' solution to (4.7) if $|\nabla u|^{p-2} \nabla u,|\nabla v|^{q-2} \nabla v \in W_{\text {loc }}^{1,2}\left(\mathbb{R}^{N}\right)$ and the differential equations are satisfied a.e. in \mathbb{R}^{N}.

Obviously, both 2) and 3) force 1), whilst reverse implications turn out generally false; see also [43, Remark 4.5]. Moreover, as observed at p. 48 of [69], problems in unbounded domains may admit strong solutions that are not weak or vice-versa.

Roughly speaking, the technical approach proceeds as follows. The auxiliary problem

$$
\begin{cases}-\Delta_{p} u=f(x, u+\varepsilon, v, \nabla u, \nabla v) & \text { in } \mathbb{R}^{N}, u>0 \text { in } \mathbb{R}^{N}, \tag{4.9}\\ -\Delta_{q} v=g(x, u, v+\varepsilon, \nabla u, \nabla v) & \text { in } \mathbb{R}^{N}, v>0 \text { in } \mathbb{R}^{N},\end{cases}
$$

$\varepsilon>0$, obtained by shifting appropriate variables of reactions, which avoids singularities, is first solved. To do this, nonlinear regularity theory, a priori estimates, Moser's iteration, trapping region, and fixed point arguments are employed. Unfortunately, bounds from above alone do not allow to get a solution of (4.7): treating singular terms additionally requires some estimates from below. Theorem 3.1 in [19] ensures that solutions to (4.9) turn out locally greater than a positive constant regardless of ε. Thus, under the hypotheses below, one can construct a sequence $\left\{\left(u_{\varepsilon}, v_{\varepsilon}\right)\right\} \subseteq X^{p, q}\left(\mathbb{R}^{N}\right)$ such that $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ solves (4.9) for all $\varepsilon>0$ and whose weak limit as $\varepsilon \rightarrow 0^{+}$is a distributional solution to (4.7). Next, a localization-regularization reasoning shows that

$$
(u, v) \text { distributional solution } \Longrightarrow(u, v) \text { weak solution. }
$$

Through the recent differentiability result [17, Theorem 2.1], one then has

$$
(u, v) \text { distributional solution } \Longrightarrow(u, v) \text { strong solution. }
$$

The assumptions below will be posited.
$\left(\mathrm{a}_{14}\right)$ There exist $\left.\left.\alpha_{i} \in\right]-1,0\right], \beta_{i}, \gamma_{i}, \delta_{i} \in \mathbb{R}_{0}^{+}$, as well as $\mu_{i}, \hat{\mu}_{i} \in \mathbb{R}^{+}$such that

$$
\begin{gathered}
\mu_{1} a_{1}(x) s^{\alpha_{1}} t^{\beta_{1}} \leq f\left(x, s, t, \xi_{1}, \xi_{2}\right) \leq \hat{\mu}_{1} a_{1}(x)\left(s^{\alpha_{1}} t^{\beta_{1}}+\left|\xi_{1}\right|^{\gamma_{1}}+\left|\xi_{2}\right|^{\delta_{1}}\right), \\
\mu_{2} a_{2}(x) s^{\beta_{2}} t^{\alpha_{2}} \leq g\left(x, s, t, \xi_{1}, \xi_{2}\right) \leq \hat{\mu}_{2} a_{2}(x)\left(s^{\beta_{2}} t^{\alpha_{2}}+\left|\xi_{1}\right|^{\gamma_{2}}+\left|\xi_{2}\right|^{\delta_{2}}\right)
\end{gathered}
$$

in $\mathbb{R}^{N} \times\left(\mathbb{R}^{+}\right)^{2} \times \mathbb{R}^{2 N}$. Moreover,

$$
\beta_{1} \vee \delta_{i}<q-1, \quad \beta_{2} \vee \gamma_{i}<p-1, \quad i=1,2,
$$

$a_{1} \in L_{\operatorname{loc}}^{s_{p}}\left(\mathbb{R}^{N}\right)$, with $s_{p}>p^{\prime} N, a_{2} \in L_{\operatorname{loc}}^{s_{q}}\left(\mathbb{R}^{N}\right)$, with $s_{q}>q^{\prime} N$, and $\underset{B_{\rho}}{\operatorname{essinf}} a_{i}>0$ for all $\rho>0$.
(a_{15}) There exist $\left.\left.\zeta_{1}, \zeta_{2} \in\right] N, \infty\right]$ such that $a_{i} \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\zeta_{i}}\left(\mathbb{R}^{N}\right)$, where

$$
\frac{1}{\zeta_{1}}<1-\frac{p}{p^{*}}-\theta_{1}, \quad \frac{1}{\zeta_{2}}<1-\frac{q}{q^{*}}-\theta_{2},
$$

with

$$
\theta_{1}:=\max \left\{\frac{\beta_{1}}{q^{*}}, \frac{\gamma_{1}}{p}, \frac{\delta_{1}}{q}\right\}<1-\frac{p}{p^{*}}, \quad \theta_{2}:=\max \left\{\frac{\beta_{2}}{p^{*}}, \frac{\gamma_{2}}{p}, \frac{\delta_{2}}{q}\right\}<1-\frac{q}{q^{*}} .
$$

Further,

$$
\begin{gathered}
\left(\beta_{1} \vee \delta_{1}\right)\left(\beta_{2} \vee \gamma_{2}\right)<\left(p-1-\gamma_{1}\right)\left(q-1-\delta_{2}\right) \\
\frac{1}{s_{p}}+\left(\frac{\gamma_{1}}{p} \vee \frac{\delta_{1}}{q}\right) \leq \frac{1}{2}, \quad \frac{1}{s_{q}}+\left(\frac{\gamma_{2}}{p} \vee \frac{\delta_{2}}{q}\right) \leq \frac{1}{2}
\end{gathered}
$$

Example 4.2. Condition (a_{15}) is fulfilled once $a_{1}, a_{2} \in L^{1}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ and

$$
\max \left\{\frac{\beta_{1}}{q^{*}}, \frac{\gamma_{1}}{p}, \frac{\delta_{1}}{q}\right\}<1-\frac{p}{p^{*}}, \quad \max \left\{\frac{\beta_{2}}{p^{*}}, \frac{\gamma_{2}}{p}, \frac{\delta_{2}}{q}\right\}<1-\frac{q}{q^{*}} .
$$

In fact, it suffices to choose $\zeta_{1}:=\zeta_{2}:=\infty$.
Theorem 4.3 ([43], Theorem 1.3). Under hypotheses $\left(\mathrm{a}_{14}\right)-\left(\mathrm{a}_{15}\right)$, problem (4.7) admits a weak and strong solution $(u, v) \in X^{p, q}\left(\mathbb{R}^{N}\right)$.

Remark 4.4. If we merely seek weak solutions to (4.7) then the request $p, q \in] 1, N\left[\right.$ and a weaker integrability property of a_{i} suffice; cf. [39, Section 4.2.2].

Acknowledgement

All the authors were supported by the research project PRIN 2017 'Nonlinear Differential Problems via Variational, Topological and Set-valued Methods' (Grant No. 2017AYM8XW) of MIUR.
The first and the third author were supported by the research project MO.S.A.I.C. PRA 2020-2022 PIACERI Linea 2 (S.A. Marano) and Linea 3 (U. Guarnotta) of the University of Catania.
The first author also acknowledges the support of the GNAMPA-INdAM Project CUP_E55F22000270001.
The second author was also supported by the grant 'FFR 2021 Roberto Livrea'.

References

[1] C.O. Alves and F.J.S.A. Correa, On the existence of positive solution for a class of singular systems involving quasilinear operators, Appl. Math. Comput. 185 (2007), 727-736.
[2] C.O. Alves and A. Moussaoui, Existence of solutions for a class of singular elliptic systems with convection term, Asymptot. Anal. 90 (2014), 237-248.
[3] C.O. Alves and A. Moussaoui Existence and regularity of solutions for a class of singular $(p(x), q(x))$-Laplacian systems, Complex Var. Elliptic Equ. (2017), DOI 10.1080/17476933.2017.1298589
[4] C.O. Alves, A. Moussaoui, and L. Tavares, An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal. 8 (2019), 928-845.
[5] S.C. Arruda and R.G. Nascimento, Existence and multiplicity of positive solutions for a singular system via sub-supersolution method and Mountain Pass Theorem, Electron. J. Qual. Theory Differ. Equ. 2021, Paper no. 26, 20 pp.
[6] M. Benrhouma, Existence and uniqueness of solutions for a singular semilinear system, Nonlinear Anal. 107 (2014), 134-146.
[7] M. Benrhouma, On a singular elliptic system with quadratic growth in the gradient, J. Math. Anal. Appl. 448 (2017), 1120-1146.
[8] L. Boccardo and L. Orsina, A variational semilinear singular system, Nonlinear Anal. 74 (2011), 3849-3860.
[9] P. Candito, R. Livrea, and A. Moussaoui, Singular quasilinear elliptic systems involving gradient terms, Nonlinear Anal. Real World Appl. 55 (2020), 103142.
[10] S. Carl and D. Motreanu, Extremal solutions for novariational quasilinear elliptic systems via expanding trapping regions, Monatsh. Math. 182 (2017), 801-821.
[11] J. Carmona, P.J. Martinez-Aparicio, and A. Suarez, A sub-supersolution method for nonlinear elliptic singular systems with natural growth and some applications, Nonlinear Anal. 132 (2016), 47-65.
[12] M.L.M. Carvalho, E.D. Silva, C. Goulart, and C.A. Santos, Ground and bound state solutions for quasilinear elliptic systems including singular nonlinearities and indefinite potentials, Comm. Pure Appl. Math. 19 (2020), 4401-4432.
[13] M. Chhetri, P. Drabek, and R. Shivaji, Analysis of positive solutions for classes of quasilinear singular problems on exterior domains, Adv. Nonlinear Anal. 6 (2017), 447-459.
[14] Y.S. Choi and P.J. McKenna, A singular Gierer-Meinhardt system of elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 503-522.
[15] Y.S. Choi and P.J. McKenna, A singular Gierer-Meinhardt system of elliptic equations: the classical case, Nonlinear Anal. 55 (2003), 521-541.
[16] K.D. Chu, D.D. Hai, and R. Shivaji, Positive solutions for a class of noncooperative pq-Laplacian systems with singularities, Appl. Math. Lett. 85 (2018), 103-109.
[17] A. Cianchi and V.G. Maz'ya, Second-order two-sided estimates in nonlinear elliptic problems, Arch. Ration. Mech. Anal. 229 (2018), 569-599.
[18] F.J.S.A. Correa, G.C.G. dos Santos, L.S. Tavares, and S.S, Muhassua, Existence of solution for a singular elliptic system with convection terms, Nonlinear Anal. Real World Appl. 66 (2022), Paper no. 103549, 18 pp.
[19] L. D'Ambrosio and E. Mitidieri, Entire solutions of quasilinear elliptic systems on Carnot groups, Reprint of Tr. Mat. Inst. Steklova 283 (2013), 9-24, Proc. Steklov Inst. Math. 283 (2013), 3-19.
[20] L. M. De Cave, Singular elliptic systems with higher order terms of plaplacian type, Adv. Nonlinear Stud. 16 (2016), 667-687.
[21] L.M. De Cave, F. Oliva, and M. Strani, Existence of solutions to a nonvariational singular elliptic system with unbounded weights, Math. Nachr. 290 (2017), 236-247.
[22] H. Dellouche and A. Moussaoui, Singular quasilinear elliptic systems with gradient dependence, Positivity 26 (2022), paper no. 10, 14 pp.
[23] M. del Pino, M. Kowalczyk, and X. Chen, The Gierer-Meinhardt system: the breaking of homoclinics and multi-bump ground states, Commun. Contemp. Math. 3 (2001), 419-439.
[24] M. del Pino, M. Kowalczyk, and J. Wei, Multi-bump ground states of the Gierer-Meinhardt system in \mathbb{R}^{2}, Ann. Inst. H. Poincaré, Anal. Non Linéaire 20 (2003), 53-85.
[25] J. Deny and J.L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (1955), 305-370.
[26] H. Didi and A. Moussaoui, Multiple positive solutions for a class of quasilinear singular elliptic systems, Rend. Circ. Mat. Palermo (2) 69 (2020), 977-994.
[27] S. El Manouni, K. Perera, and R. Shivaji, On a singular quasi-monotone (p, q)-Laplacian systems, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 585-594.
[28] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011.
[29] L. Gambera and U. Guarnotta, Existence, uniqueness, and decay results for singular Φ-Laplacian systems in \mathbb{R}^{N}, preprint.
[30] M. Ghergu, Singular elliptic systems of Lane-Emden type, in "Recent trends in nonlinear partial differential equations. II. Stationary problems", 253-262, Contemp. Math., 595, Amer Math. Soc., Providence, RI, 2013.
[31] M. Ghergu, On a class of singular elliptic systems, Nonlinear Anal. 119 (2015), 98-105.
[32] M. Ghergu and V. Radulescu, On a class of singular Gierer-Meinhardt systems arising in morphogenesis, C. R. Math. Acad. Sci. Paris 344 (2007), 163-168.
[33] M. Ghergu and V.D. Radulescu, Singular elliptic problems: bifurcation and asymptotic analysis, Oxford Lecture Ser. Math. Appl. 37, Oxford Univ. Press, Oxford, 2008.
[34] J. Giacomoni, J. Hernandez, and A. Moussaoui, Quasilinear and singular systems: the cooperative case, Contemp. Math. 540 (2011), 79-94.
[35] J. Giacomoni, J. Hernandez, and P. Sauvy, Quasilinear and singular elliptic systems, Adv. Nonlinear Anal. 2 (2013), 1-41.
[36] J. Giacomoni, I. Schindler, and P. Takáč, Singular quasilinear elliptic systems and Hölder regularity, Adv. Differential Equations 20 (2015), 259-298.
[37] A. Gierer and H. Meinhardt, Generation and regeneration of sequence of structures during morphogenesis, J. Theor. Biol. 85 (1980), 429-450.
[38] T. Godoy, Existence of positive weak solutions for a nonlocal singular elliptic system, AIMS Math. 4 (2019), 792-804.
[39] U. Guarnotta, Existence results for singular convective elliptic problems (PhD thesis), Department of Mathematics and Computer Sciences, University of Palermo (Italy), 2020/21, https://iris.unipa.it/handle/10447/524941.
[40] U. Guarnotta and S.A. Marano, Infinitely many solutions to singular convective Neumann systems with arbitrarily growing reactions, J. Differential Equations 271 (2021), 849-863.
[41] U. Guarnotta and S.A. Marano, Corrigendum to "Infinitely many solutions to singular convective Neumann systems with arbitrarily growing reactions" [J. Differ. Equ. 271 (2021) 849-863], J. Differential Equations 274 (2021), 1209-1213.
[42] U. Guarnotta, S.A. Marano, and D. Motreanu, On a singular Robin problem with convection terms, Adv. Nonlinear Stud. 20 (2020), 895-909.
[43] U. Guarnotta, S.A. Marano, and A. Moussaoui, Singular quasilinear convective elliptic systems in \mathbb{R}^{N}, Adv. Nonlinear Anal. 11 (2022), 741-756.
[44] D.D. Hai and R.C. Smith, Uniqueness for a class of singular semilinear elliptic systems, Funkcial. Ekvac. 59 (2016), 35-49.
[45] J. Hernández, F.J. Mancebo, and J.M. Vega, Positive solutions for singular semilinear elliptic systems, Adv. Differential Equations 13 (2008), 857-880.
[46] O. Kavian, Inegalité de Hardy-Sobolev et applications, Thèse de Doctorate de 3eme cycle, Université de Paris VI (1978).
[47] B. Khodja and A. Moussaoui, Positive solutions for infinite semipositone/positone quasilinear elliptic systems with singular and superlinear terms, Differ. Equ. Appl. 8 (2016), 535-546.
[48] E.H. Kim, Singular Gierer-Meinhardt systems of elliptic boundary value problems, J. Math. Anal. Appl. 308 (2005), 1-10.
[49] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford-London-Paris, 1964.
[50] M. Kratou and K. Saoudi, The fibering map approach for a singular elliptic system involving the $p(x)$-laplacian and nonlinear boundary conditions. Rev. Un. Mat. Argentina 62 (2021), 171-189.
[51] E.K. Lee, R. Shivaji, and J. Ye, Classes of singular pq-Laplacian semipositone systems, Discrete Contin. Dyn. Syst. 27 (2010), 1123-1132.
[52] E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, 2nd ed., American Mathematical Society, Providence, 2001.
[53] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[54] S.A. Marano, G. Marino, and A. Moussaoui, Singular quasilinear elliptic systems in \mathbb{R}^{N}, Ann. Mat. Pura Appl. 198 (2019), 1581-1594.
[55] L. Mi, Positive solutions for a class of singular elliptic systems, Electron. J. Qual. Theory Differ. Equ. 24 (2017), 1-13.
[56] M. Montenegro and A. Suárez, Existence of a positive solution for a singular system, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 435-447.
[57] D. Motreanu, Nonlinear differential problems with smooth and nonsmooth constraints, Math. Anal. Appl. Ser., Academic Press, London, 2018.
[58] D. Motreanu and A. Moussaoui, Existence and boundedness of solutions for a singular cooperative quasilinear elliptic system, Complex Var. Elliptic Equ. 59 (2014), 285-296.
[59] D. Motreanu and A. Moussaoui, An existence result for a class of quasilinear singular competitive elliptic systems, Appl. Math. Lett. 38 (2014), 33-37.
[60] D. Motreanu and A. Moussaoui, A quasilinear singular elliptic system without cooperative structure, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), 905916.
[61] D. Motreanu, A. Moussaoui, and Z. Zhang, Positive solutions for singular elliptic systems with convection term, J. Fixed Point Theory Appl. 19 (2017), 2165-2175.
[62] A. Moussaoui, B. Khodja, and S. Tas, A singular Gierer-Meinhardt system of elliptic equations in \mathbb{R}^{N}, Nonlinear Anal. 71 (2009), 708-716.
[63] A. Mossaoui and J. Vélin, Existence and a priori estimates of solutions for quasilinear singular elliptic systems with variable exponents, J. Elliptic Parabol. Equ. 4 (2018), 417-440.
[64] P. Pucci and J. Serrin, The maximum principle, Prog. Nonlinear Differential Equations Appl. 73, Birkhäuser Verlag, Basel, 2007.
[65] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971) 487-513.
[66] Y. Salmaniw, Uniformly bounded weak and classical solutions to a singular parabolic system and applications, J. math. Anal. Appl. 490 (2020), Paper no. $124200,23 \mathrm{pp}$.
[67] C.A. Santos, R. Lima Alves, M. Reis, and J. Zhou, Maximal domains of the (λ, μ)-parameters to existence of entire positive solutions for singular quasilinear elliptic systems, J. Fixed Point Theory Appl. 22 (2020), Paper no. $54,30 \mathrm{pp}$.
[68] K. Saoudi, A singular elliptic system involving the $p(x)$-Laplacian and generalized Lebesgue-Sobolev spaces, Internat. J. Math. (2019), Paper no. 1950064, 17 pp .
[69] C.G. Simader and H. Sohr, The Dirichlet problem for the Laplacian in bounded and unbounded domains. A new approach to weak, strong and $(2+k)-$ solutions in Sobolev-type spaces, Pitman Research Notes in Mathematics Series 360, Longman, Harlow, 1996.
[70] G. Singh, Weak solutions for singular quasilinear elliptic systems, Complex Var. Elliptic Equ. 61 (2016), 1389-1408.
[71] Q. Wang and Y. Zhang, Asymptotic and quenching behaviors of semilinear parabolic systems with singular nonlinearities, Comm. Pure Appl. Anal. 21 (2022), 797-816.

[^0]: * Corresponding author.

