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The extended Burrows-Wheeler Transform (eBWT) [Mantaci et al. TCS 2007] is a variant 
of the BWT, introduced for collections of strings. In this paper, we present the extended 
r-index, an analogous data structure to the r-index [Gagie et al. JACM 2020]. It occupies 
O(r) words, with r the number of runs of the eBWT, and offers the same functionalities 
as the r-index. We also show how to efficiently support finding maximal exact matches 
(MEMs). We implemented the extended r-index and tested it on circular bacterial genomes 
and plasmids, comparing it to five state-of-the-art compressed text indexes. While our 
data structure maintains similar time and memory requirements for answering pattern 
matching queries as the original r-index, it is the only index in the literature that can 
naturally be used for both circular and linear input collections. This is an extended version 
of [Boucher et al., r-indexing the eBWT, SPIRE 2021].
© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

There exist many sequencing projects that aim to identify the biological variation of individuals of a given species, 
such as the 100K Human Genome Project [51], the 1001 Arabidopsis Project [50], and the 3,000 Rice Genomes Project 
(3K RGP) [49]. Although biological variation is common and necessary among cultivars or individuals of these sequencing 
projects, a large portion of sequencing data is shared—leading to repetition within the dataset. Given the thousands of 
individual sequences within these sequencing projects, indexing them in a manner that allows variation to be identified and 
compared is challenging. The FM-index [17] has been the cornerstone of this indexing, as most standard read alignment 
algorithms (e.g., BWA [33] and Bowtie [31]) build and use the FM-index of the set of one or more reference genomes. More 
specifically, these read alignment algorithms build the Burrows-Wheeler Transform (BWT) and suffix array (SA) or a sample 
of the SA to find alignments between the sequence reads and the database of genomes. However, as the number of genomes 
increases, there has been an aim to build the BWT and SA-samples in space that is linear in the number of runs of the BWT
typically denoted as r. This is because the number of runs is likely to be much smaller than the size of the text in the case 
of massive and repetitive collections.
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Mäkinen and Navarro [35] introduced the run-length FM-index (RLFM), which is built on the run-length compressed BWT
(RL BWT), and showed how to locate all occurrences of a query string P [1..p] in text T [1..n] in O

(
(p + s · occ)

( logσ
log log r +

(log log n)2
))

time, where occ is the number of occurrences of P , σ is the alphabet size, and s is a parameter. The downside 
is that they require O(r + n/s) space for the RL BWT and the SA-samples. Given a query string P and the RL BWT of a 
string T , Policriti and Prezza [44] showed how to find one SA entry in the interval in RL BWT containing P in O(r) space. 
Later, Gagie et al. [19,20] showed how to fully support locate queries, i.e., locate all occ occurrences of P in O(r) space. 
The resulting data structure is referred to as the r-index. Recently, Nishimoto and Tabei [42] improved the previous running 
times for counting to O(p log logw σ) and locating to O(p log logw σ + occ), where w is the machine word size.

We note that Gagie et al. [19,20] defined the r-index but did not give an algorithm to construct it. An algorithm to 
construct the r-index was described later by Boucher et al. [6] and Kuhnle et al. [30]—both are based on a preprocessing 
technique called Prefix-Free Parsing (PFP). PFP produces two temporary structures called the dictionary and parse, from which 
the r-index can be built.

In a further development, Bannai et al. [3] showed how finding maximal exact matches (MEMs) with the r-index can be 
supported by computing the matching statistics of a query string P with respect to the text T . In order to compute the 
matching statistics, they described the addition of a small data structure to the r-index, referred to as thresholds. Rossi et 
al. [47] then showed how to compute the thresholds efficiently using the PFP based construction algorithm of the r-index.

1.1. Indexing string collections with the extended BWT

During the development of these data structures, however, little attention was paid to the fact that the input is typically 
a string collection (i.e., a multiset of strings), rather than an individual sequence. Indeed, this type of input is effectively 
just treated as if it was a single sequence: most tools use one of two existing methods, both of which concatenate the 
input strings, adding string separator symbols to mark string boundaries. In other words, they turn the input collection into 
one sequence, and then proceed to treat it as such, only making sure that no artificial matches (substrings spanning two 
consecutive input strings) are produced. Cenzato and Lipták [10,11] showed that these different methods are not equivalent; 
the output can vary significantly, extending to the number r of runs of the BWT. Moreover, the concatenation methods 
are input order dependent: if the same string collection is presented in a different order to the same tool, the resulting 
transform may be different, including the number of runs. For more details on the exact nature of these differences, see [10,
11]. The difference in the number of runs r has been shown to be as much as a multiplicative factor of 31 on real biological 
data (using the same method on the same input collection, varying only the input order), see Cenzato et al. [12].

While the fact that different methods co-exist does not compromise correctness of algorithms on the indexes, such as 
pattern matching or text access, it does have at least two serious implications: (1) Presenting the same string collection 
to different tools, or to the same tool but in different order, may result in a big variation in memory requirement of the 
resulting data structures (which depend on r). (2) The parameter r is increasingly being used as a repetitiveness measure 
of the string collection itself, similar to z (the number of phrases in the Lempel-Ziv 77 compression), or g (the size of the 
smallest grammar producing the text) [40]. But this measure is not well-defined if it can vary with the method used, as 
well as with the order in which the input sequences are presented.

Another issue is that many real-life strings, especially in biology, are not linear but circular. For example, bacterial 
genomes, human mitochondrial DNA, and many viral genomes are circular. This is of primary importance when analyzing 
metagenomes, since they typically contain very large bacterial communities [15]. Modelling circular strings as linear strings 
necessarily brings with it extra work, for example for accommodating substrings that span the end and the beginning of 
the linearization chosen.

Mantaci et al. in 2007 [38] proposed a mathematically sound extension of the BWT to string collections, which they 
called extended BWT (eBWT). The eBWT is independent of the input order, and thus does not suffer from the problem 
of different outputs on different permutations of the collection. Moreover, it can handle both circular and linear string 
collections: by default the input strings are regarded as circular, but if an end-of-string character (a $) is added to each 
input string, then the result is equivalent to computing the classical BWT on the linear strings, input in lexicographical 
order [10,11].

Until recently, no efficient construction algorithm of the eBWT was known. In 2021, Bannai et al. presented such an 
algorithm [4]. Their algorithm, an adaptation of the well-known SAIS algorithm [43], was originally introduced for computing 
in linear time the bijective BWT [23], a BWT-variant for single texts. After additional linear-time preprocessing, this algorithm 
can also be used to construct the eBWT of a collection of strings, in total time linear in the size of the input collection. 
We simplified this algorithm in [8], removing the preprocessing step and modifying other details. We also presented a full 
implementation, and further combined our original algorithm with prefix-free parsing (PFP) [6]. Thus, for the first time, 
there exists the possibility of efficiently constructing the original eBWT for very large string collections.

1.2. Our contribution

In this paper, we extend our eBWT-construction of [8] to computing the analog of the r-index for the eBWT. We refer to 
our new data structure as extended r-index. We show how to adapt the PFP to the new problem, thus allowing us to handle 
very large string collections. The extended r-index has similar properties to the r-index of Gagie et al. [20]. First, its memory 
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requirement is O(r) words, where r is the number of runs of the eBWT; in our case, this is independent of the input order. 
Next, it can return the number occ of occurrences of a pattern P [1..p] (i.e., answer count queries) in O(p log logw(σ + N/r))
time, where N is the total length of the input collection, σ the size of the alphabet, and w the computer word size. Lastly, 
it can return all occ occurrences of P (i.e., answer locate queries) in O(p log logw(σ + N/r) + occ log logw(N/r)) time. We 
also give details of how the data structure can be further extended to enable finding MEMs.

As the eBWT can handle both circular and linear strings, all of these results refer either to circular string collections, 
or to linear string collections. In the first case, occ denotes the number of circular (cyclic) occurrences of pattern P , i.e. 
including those that span the end and the beginning of some string in the collection. If, on the other hand, the input strings 
all have a final $ appended, then the eBWT returns only linear occurrences of the input pattern, similar to the original 
r-index. Cyclic occurrences have been computed before, in the context of indexing the bijective BWT [2]. However, there 
an effort has to be made to avoid those occurrences that span the end and the beginning of the string (i.e., those that are 
not linear occurrences). In the current context, on the other hand, being able to find these occurrences is desired. This is 
something that the eBWT is able to do in a natural way, while the original r-index is not.

We implemented our extended r-index and compared it to five state-of-the-art text indexes ranging through the most 
popular strategies for indexing texts. These include a very efficient implementation of the original r-index; one of its latest 
improvements, the subsampled r-index [14]; an improved version of the LZ-parsing index of Kreft and Navarro [28]; an 
implementation of one of the most efficient grammar-based indexes by Claude et al. [13]; and CHICO [52], an improvement 
of the hybrid index of Ferrada et al. [16]. We tested the five competing indexes and our index by comparing the running time 
and memory usage to perform circular count and locate queries on three biological datasets containing bacterial genomes. 
We selected these datasets since indexing circular genomes is the most interesting scenario for performing circular count 
and locating queries.

The experimental results show that our text index behaves similarly to the r-index both regarding time and space 
requirements, while reporting all circular occurrences. Compared to the dictionary-based indexes, it is faster on all data sets 
but needs significantly more space.

As the other indexes do not naturally accept circular input sequences, one of two strategies have to be applied to 
handle circular string collections. Either one duplicates each input string and filters out duplicate linear occurrences in a 
post-processing step, thus paying both in space and time; or one just regards the input strings as linear, thus losing those 
occurrences that span the end and beginning of some string. To see how big this latter effect is, we compared the number of 
cyclic and linear occurrences of patterns of varying lengths, sampled from the input collections. We show that the difference 
between these numbers can be significant, especially when considering long patterns: for patterns of length 10, 000, the 
number of linear occurrences is, on average, 50% less than the total number of (cyclic) occurrences.

Throughout the paper, we assume the word-RAM model, with machine word size w = �(log N); thus, all arithmetic and 
logical operations on a machine word are performed in constant time.

1.3. Overview of the paper

In the next section, we introduce our notation and terminology (Section 2). In Section 3, we present and analyze our data 
structure, the extended r-index, and in Section 4 detail its construction using PFP. In Section 5, we explain how to construct 
the thresholds data structure along with the extended r-index to answer MEM queries, and in Section 6, we present our 
experimental results. We close with an outlook in Section 7.

2. Preliminaries

A string T = T [1..n] is a sequence of characters T [1] · · · T [n] drawn from an ordered alphabet � of size σ . We de-
note by |T | the length n of T . The empty string ε is the unique string of length 0. Given a multiset of m strings 
M = {T1, T2, . . . , Tm}, we denote the total length of the strings in M as ||M||, i.e., ||M|| = |T1| + . . . + |Tm|. We write 
T [i.. j] for the substring T [i] · · · T [ j], where by convention, T [i.. j] = ε if i > j. A prefix is a substring of the form T [1..i] for 
some i, and a suffix one of the form T [i..n], which we also write as T [i..] for brevity. Given a positive integer i ≤ n and a 
symbol c ∈ �, rankc(T , i) is defined as the number of occurrences of the character c in the prefix T [1..i], while selectc(T , i)
is the position of the ith occurrence of c in T . Given two strings S and T , we denote by lcp(S, T ) the length of the longest 
common prefix (LCP) of S and T , i.e., lcp(S, T ) = max{i | S[1..i] = T [1..i]}.

Given a string T = T [1..n] and an integer k ≥ 1, the kn-length string T k = T T · · · T is the k-fold concatenation of T , while 
T ω = T T · · · is the infinite string obtained by concatenating an infinite number of copies of T . A string T is called primitive
if T = Sk implies T = S and k = 1. For any string T , there exists a unique primitive word S and a unique integer k such that 
T = Sk . We refer to S = T [1..

|T |
k ] as root(T ) and to k as exp(T ). Thus, T = root(T )exp(T ) .

2.1. Suffix array and Burrows-Wheeler transform

We denote by <lex the lexicographic order: for two strings S[1..m] and T [1..n], S <lex T if S is a proper prefix of T , 
or there exists an index 1 ≤ i ≤ n, m such that S[1..i − 1] = T [1..i − 1] and S[i] < T [i]. Given a string T [1..n], the suffix 
array [37], denoted by SA = SAT , is the permutation of {1, . . . , n} such that T [SA[i]..] is the suffix which is the ith in 
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lexicographic order among all non-empty suffixes of T . For an example, see Example 1. Given a string T [1..n] and the SA of 
T , we denote the inverse suffix array as ISA, and define it as ISA[SA[i]] = i for all i = 1, . . . , n. In several data structures (such 
as the FM-index [17] or the r-index [20]), instead of storing the entire array SA, only a proper subset is stored; these will 
be referred to as SA-samples.

A basic property of the SA is that, given a substring P of T , the set of occurrences of P appear as an interval in SA. Thus, 
P defines a unique interval [sP , eP ] of SA, namely SA[sP ] is the lexicographically least suffix and SA[eP ] the lexicographically 
largest suffix which have P as a prefix.

The string S is a conjugate of the string T if S = T [i..n]T [1..i − 1], for some i ∈ {1, . . . , n}; S is then also called the ith 
rotation of T and denoted conji(T ). For a string T , the conjugate array1 CA = CAT of T is the permutation of {1, . . . , n} such 
that CA[i] = j if conj j(T ) is the ith conjugate of T with respect to the lexicographic order, with ties broken according to 
string order. In other words, if CA[i] = j and CA[i′] = j′ for some i < i′ , then either conj j(T ) <lex conj j′ (T ), or conj j(T ) =
conj j′ (T ) and j < j′ .

A string U is a cyclic or circular substring of string T if it is a substring of T T of length at most |T |, or equivalently, if it 
is the prefix of some conjugate of T . For example, ATA is a cyclic substring of AGCAT. It is sometimes also convenient to 
regard a given string T [1..n] itself as cyclic (or circular); hence, we set T [0] = T [n] and T [n + 1] = T [1].

Given a string T , the Burrows-Wheeler Transform [9], BWT(T ), is a permutation of the characters of T which equals the 
last column of the matrix of the lexicographically sorted conjugates of T . The construction is reversible (up to rotation), 
allowing the original string T to be reconstructed [9]. The BWT itself can be computed from the conjugate array, since for 
all i = 1, . . . , n, BWT(T )[i] = T [CA[i] − 1], where T is considered to be cyclic.

In many applications, it is assumed that an end-of-string-character (usually denoted $), which is not element of �, 
is appended to the string. This character is assumed to be smaller than all characters from �. In this case, computing 
the conjugate array becomes equivalent to computing the suffix array, since CAT $[i] = SAT $[i]. Thus, applying one of the 
linear-time suffix array computation algorithms [45,39] leads to linear-time computation of BWT(T $). In general, the two 
arrays CA and SA are not equal. However, there exist linear time algorithms for computing these two arrays also when no 
end-of-string marker is appended to the string. [22,8].

The LF-mapping (last-to-first mapping) [9] plays a central role in BWT-based algorithms. Given a string S of length n, the 
LF-mapping is a permutation of {1, . . . , n} defined as: LF( j) < LF( j′) if S[ j] < S[ j′] or S[ j] = S[ j′] and j < j′ . This permu-
tation is also called standard permutation of S [34]. When S is the BWT of some primitive string, then the lexicographically 
smallest such T can be constructed using the LF-mapping, as follows [9]: T [n] = S[1] and for i ≥ 1, T [n − i] = T [LFi(1)]. In 
particular, the LF-mapping allows to walk through the original string T , in a back-to-front direction, by mapping the lexico-
graphically jth conjugate conji(T ) to the lexicographic rank of conji−1(T ). The same mapping is fundamental for backward 
search [17], the efficient pattern matching algorithm on BWT-based data structures. For more details, see [41].

Another fundamental permutation is the φ-mapping introduced in [26]. This permutation is defined as φ(i) = SA[ISA[i] −
1] if ISA[i] > 1, and φ(i) = SA[n] otherwise. In other words, φ maps the ith suffix T [i..] to the lexicographically next smaller 
suffix. In terms of the suffix array, this can be expressed as: φ(SA[1]) = SA[n] and φ(SA[ j]) = SA[ j − 1], for j > 1. See 
Example 1 for an example. We note that the φ-function can be similarly defined on the basis of the conjugate array CA, and 
the LF-mapping on that of the SA (if an end-of-string marker is present).

In a certain sense, the LF-mapping and the permutation φ are analogous: LF gives the SA-index (or CA-index) of the 
previous suffix (or conjugate), where previous refers to text order; φ gives the text index of the previous suffix (or conjugate), 
where previous refers to SA-order (or CA-order). In other words, LF walks through the text, back-to-front, using suffix array 
(or conjugate array) indices, and φ walks through the suffix array (or conjugate array), back-to-front, using text indices.

Example 1. Let T = GATAT, and T ′ = GATAT$. In Fig. 1, for each string, we list its BWT, LF-mapping, and φ. We also give 
the CA and the SA for T and T ′ , respectively.

2.2. r-index

A common parameter in the context of the BWT is the number r of the equal-letter runs of the BWT of a string. For 
example, as shown in Fig. 1, r = 3 for the string T = GATAT since BW T (T ) = GTTAA. The memory required by the run-
length encoded version of the BWT is O(r). The r-index [20], building on the run-length encoded FM-index of Mäkinen 
and Navarro [35,36] and the Toehold Lemma by Policriti and Prezza [44], is a data structure that not only requires O(r)
memory only, but supports pattern matching queries in time which depends almost entirely on the size of the pattern. In 
detail, let w be the size of a computer word. Given a pattern P of length p, the r-index returns the number of occurrences 
of P (denoted as occ) in O(p log logw(σ + n/r)) time (a count query), and, after having answered the count query, returns 
all occ occurrences of P in O(log logw(n/r)) time per occurrence. In other words, it answers locate queries in total time 
O(p log logw(σ + n/r) + occ log logw(n/r)).

1 The conjugate array CA is called circular suffix array and denoted SA◦ in [25,4], and BW-array in [29], but in both cases defined for primitive strings 
only.
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T = GATAT

i φT CAT LFT BWTT

1 4 2 3 G ATATG
2 5 4 4 T ATGAT
3 1 1 5 T GATAT
4 2 3 1 A TATGA
5 3 5 2 A TGATA

T ′ = GATAT$

i φT ′ SAT ′ LFT ′ BWTT ′
1 2 6 5 T $GATAT
2 4 4 6 T AT$GAT
3 5 2 4 G ATAT$G
4 6 1 1 $ GATAT$
5 1 5 2 A T$GATA
6 3 3 3 A TAT$GA

Fig. 1. Figure for Example 1.

Two ideas are crucial in how pattern matching with the r-index works: (1) the Toehold Lemma [44] allows to produce 
one occurrence along with answering a count query (the toehold value), and (2) repeated application of the φ-function 
returns all occurrences contained in the SA-interval of P .

The r-index consists of three main components: (1) a data structure that stores the run-length encoded BWT supporting 
LF-mapping queries, (2) an SA-sample for each of the r runs, and (3) a data structure supporting φ operations. In particular, 
the data structure (1) combines the RLFM index [36] with the data structures for rank and predecessor queries described 
in [5], while (2) is an array storing the SA-samples at the end of each run. Finally, (3) is implemented as a predecessor data 
structure built on SA-samples at the beginning of each run, with the corresponding SA-sample at the end of the previous 
run as satellite information.

2.3. Maximal exact matches with the r-index

Maximal exact matches (MEMs) are exact matches between a text T and a pattern P that can neither be extended to the 
left nor to the right. More formally, P [i..i + � − 1] of length � is a MEM of P in T if (1) P [i..i + � − 1] occurs in T and (2) 
either i = 1 or P [i − 1..i + � − 1] does not occur in T , and (3) either i + � − 1 = |P | or P [i..i + �] does not occur in T .

A classic application for MEMs is finding seeds between a short sequence and a genome for computing multiple sequence 
alignments of both short and long reads [32]. As previously noted, the main components of the r-index, namely the run-
length BWT and the SA-samples, are not sufficient to find MEMs efficiently. Bannai et al. [3] showed that MEM-finding can 
be supported by computing the matching statistics (MS) of a query string P with respect to a text T . The matching statistics
of P [1..p] with respect to T [1..n] are defined as an array of pairs M S[1..p] whose ith entry consists of the length and 
an occurrence of the longest prefix of P [i..p] which occurs in T . More formally, for 1 ≤ i ≤ p, M S[i] = (�i, ji), where (1) 
T [ ji .. ji + �i − 1] = P [i..i + �i − 1] and (2) either i + �i > p or P [i..i + �i] does not occur in T . The next lemma is a slight 
variation of Lemma 1 from [47]; it can be used to compute MEMs from the matching statistics with a left-to-right scan.

Lemma 1. Given an input text T [1..n] and a query string P [1..p], let M S[1..p] = [(�1, j1), . . . , (�p, jp)] be the matching statistics of 
P with respect to T . For all positions i = 1, . . . , p, P [i..i + � − 1] is a MEM of length � in T if and only if �i = �, and either i = 1 or 
�i−1 ≤ �i (in the case i > 1).

In order to compute the matching statistics with the r-index, Bannai et al. [3] described a two-pass algorithm. First, 
working right to left, each suffix P [i..p] of P is processed to find a position in the text T which corresponds to the longest 
prefix of P [i..p] occurring in T , in this way populating the values of ji . Then, working left to right, one uses random access 
to T to determine the length of those matches.

The first pass requires the addition of a small data structure to the r-index referred to as thresholds; these serve to 
compute the position of a longest prefix of the ith suffix of P and T when a mismatch is found while backward searching 
for P on BWT(T ). Thresholds are defined for each two consecutive runs of the same character. The original definition of [3]
was later modified by Rossi et al. [47]. We use the latter definition.

Given a text T and four integers 1 ≤ j′ ≤ j < k ≤ k′ ≤ n such that BWT(T )[ j′.. j] and BWT(T )[k..k′] are two consecutive 
runs of the same character in BWT(T ). The threshold p for the pair of runs BWT(T )[ j′.. j] and BWT(T )[k..k′] of character 
BWT(T )[ j] is defined as the smallest index i in the interval [ j + 1..k] such that LCP[i] = min LCP[ j + 1..k].
5
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}. 
M = {AAT, AATAT, GATAATAA, AGA}

i GCAM LFM eBWTM
1 (3,4) 13 G AAG
2 (7,3) 15 T AAGATAAT
3 (4,3) 16 T AATAAGAT
4 (1,1) 17 T AAT
5 (1,2) 18 T AATAT
6 (1,4) 1 A AGA
7 (8,3) 2 A AGATAATA
8 (5,3) 3 A ATAAGATA
9 (2,3) 14 G ATAATAAG

10 (2,1) 4 A ATA
11 (4,2) 19 T ATAAT
12 (2,2) 5 A ATATA
13 (2,4) 6 A GAA
14 (1,3) 7 A GATAATAA
15 (6,3) 8 A TAAGATAA
16 (3,3) 9 A TAATAAGA
17 (3,1) 10 A TAA
18 (5,2) 11 A TAATA
19 (3,2) 12 A TATAA

Fig. 2. An illustration of the eBWT for the multiset of strings M. We report, from left to right, the index i, the generalized conjugate array GCA for M, 
the LF permutation, the eBWT, and the conjugates of M sorted according to the ω-order. Highlighted in red: the GCA-samples at the beginning and at the 
end of eBWT runs. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2.4. Generalized conjugate array and eBWT

The ω-order [21,38] (denoted by ≺ω) is defined as follows: for two strings S and T , S ≺ω T if root(S) = root(T ) and 
exp(S) < exp(T ), or Sω <lex T ω (this implies root(S) 	= root(T )). It can be verified that the ω-order relation is different from 
the lexicographic order. For instance, CG<lex CGA but CGA≺ ωCG.

Given a multiset of strings M = {T1, . . . , Tm}, the generalized conjugate array GCA = GCAM is an array of length ||M||
whose kth entry GCA[k] equals ( j, d) if conj j(Td) is the kth string in ω-sorted list of the conjugates of all strings of M, 
with ties broken first w.r.t. the index of the string (in case of identical strings) in the multiset, and then w.r.t. the index in 
the string itself. The text order for the entries of the generalized conjugate array GCAM is defined as follows: we say that 
( j, d) precedes ( j′, d′) in text order if either d < d′ or d = d′ and j < j′ .

Given a string P [1..p], referred to as pattern, we say that P occurs in M = {T1, T2, . . . , Tm} if P occurs as a cyclic 
substring of one of T1, T2, . . . , Tm . More formally, we define a cyclic occurrence (or simply occurrence) of P in M as a pair 
( j, d) such that P is a prefix of conj j(Td). For clarity, we call an occurrence ( j, d) of pattern P linear if 1 ≤ j ≤ |Td| − p.

The extended Burrows–Wheeler Transform [38] (eBWT) is a generalization of the BWT to a multiset M = {T1, . . . , Tm} of 
strings that is independent of the order in which the strings appear in the multiset. The eBWT(M) is a permutation of the 
characters of the strings in M which is based on the ω-order between the conjugates of the strings in M. Such a permu-
tation is obtained by sorting all the conjugates of the strings in the multiset according to the ω-order and by concatenating 
the last character of each conjugate in the sorted list. The eBWT(M) can be computed by using the generalized conjugate 
array, since for all k = 1, . . . , ||M||, eBWT(M)[k] = Td[ j − 1] if GCA[k] = ( j, d), where the string Td ∈ M is considered to 
be cyclic.

In [8], we showed how to compute the eBWT and the generalized conjugate array GCAM in time linear in the total size 
of M, also when non-primitive strings are included in M.

Similarly to the BWT, the eBWT is a reversible transformation, i.e., starting from eBWT(M) the original strings of the 
multiset M can be recovered (up to rotation). Such a recovering can be realized by using the LF-mapping denoted by LFM
and defined as the standard permutation of the string eBWT(M). In particular, for each d = 1, . . . , m, the lexicographically 
smallest rotation of the string Td is constructed as follows: Td[|Td|] = eBWT(M)[kd], with GCA[kd] = (1, d), and for i ≥ 1, 
Td[|Td| − i] = Td[LFi

M(kd)].

Example 2. In Fig. 2, we show the eBWT, GCA, and LF-mapping for the multiset of strings M = {AAT, AATAT, GATAATAA, AGA
We highlight the difference between the ω-order and lexicographic order in the GCA by noting that GCAM[9] = (2, 3) and 
GCAM[10] = (2, 1) corresponding to conjugates ATAATAAG and ATA respectively.

The definition of the φ-mapping can be naturally extended to the generalized conjugate array GCAM as follows: 
φM(GCA[1]) = GCA[||M||] and for each h > 1 φM(GCA[h]) = GCA[h − 1].

3. The extended r-index

In this section, we show how to extend the r-index to the eBWT. Throughout the rest of the paper, we assume that all 
strings in M are primitive, and that the multiset M is conjugate-free, i.e. no two strings are conjugates. The first assumption 
6
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is justified, since we showed in our previous work how, given a multiset of strings M = {T1, . . . , Tm}, the GCAM can be 
computed from the GCA of the roots of the strings in M [8]. In addition, the φ-mapping can be adapted to work with 
non-primitive strings by storing some additional information, such as the exponents of the non-primitive strings in M. The 
assumption that M does not contain two strings which are conjugate is more restrictive. In Section 6 we detail how we 
deal with input collections for which this condition does not hold. Note in particular that the fact that M is conjugate-free 
implies that M is a set.

Finally, given a pattern P [1..p], we assume the pattern length to be p ≤ min{|s| : s ∈ M}. This assumption is realistic in 
most practical scenarios. In the rest of the paper, we will denote the total length of strings in M by N .

3.1. The data structures for the extended r-index

The extended r-index consists of three main components: (1) a data structure supporting backward search queries on the 
run-length encoded eBWT, (2) a data structure computing the toehold value during the backward search, and (3) a data 
structure computing φM operations on the GCA.

We construct (1) by extending the RLFM-index by Mäkinen and Navarro [35] to the eBWT, and describe it using the 
definitions and notation of Gagie et al. [20]. It consists of four elements:

(i) a data structure E[1..r] which supports predecessor search queries and stores the first position of each eBWT run (run 
heads). The ith entry E[i] is the beginning of the ith run;

(ii) a sequence L[1..r] storing the symbol of the eBWT runs such that L[i] is the symbol of the ith run in the eBWT (from 
left to right). L supports rank and select operations;

(iii) a data structure D[1..r] which stores the cumulative lengths of the eBWT runs of the same symbol after stably sorting 
them according to the lexicographic order of their characters;

(iv) two vectors C[1..σ ] and C ′[1..σ ]: entry C[c] contains the number of characters smaller than c in the eBWT, and C ′[c]
contains the number of characters smaller than c in L.

In Example 3, we show the content of these data structures when the set M = {AAT, AATAT, GATAATAA, AGA} is con-
sidered.

We implement the backward search procedure to search a pattern P [1..p] in the eBWT using these four data structures. 
In particular, we compute the interval GCA[i.. j] for P by using 2p rank queries on the run-length encoded eBWT. Each rank 
query counts the occurrences of a character c in an eBWT prefix eBWT[1..i] and can be computed efficiently using the E , 
L, D and C ′ data structures as shown in [20, Section 2.5] (see Example 3). Then, once the results of the rank queries have 
been computed, the C vector is used to get the correct eBWT interval. All these data structures can be stored in O(r) words 
with up-to-date implementations (see Section 6.1). Note that also the select queries are computed using the same four data 
structures. We recall that rank and select queries can be formally defined as follows: given an array S of length n and a 
symbol c, rankc(S, i) returns the number of times in which c appears in the prefix S[1, i]; selectc(S, j) returns the position 
i of the jth occurrence of c in S[1, n]. Moreover, given an ordered array S and a symbol c, where S contains elements from 
a totally ordered set U and c ∈ U , the predecessor query pred(S, c) returns the position of the largest element in S smaller 
than or equal to c. In Example 3, we also show how these operations work on the previously defined data structures, and 
how to apply them for the computation described above.

Example 3. In Fig. 2, we have the eBWT and the GCA of a string collection M. Following the above list, (i) E =
[1, 2, 6, 9, 10, 11, 12] and answers predecessor queries like pred(E, 7) = 3, where E[3] = 6 is the predecessor of 7
in E; (ii) L = [G,T,A,G,A,T,A] and answers rank and select queries like rankA(L, 5) = 2, and selectA(L, 2) = 5; (iii) 
D = [3, 4, 12, 1, 2, 4, 5] corresponding to the sorted runs (A,3)(A,1)(A,8)(G,1)(G,1)(T,4)(T,1); (iv) C = [0, 12, 14], and 
C ′ = [0, 3, 5] for the A,G,T characters.

We compute the rank query rankA(eBWT, 13) as follows. The predecessor of 13 in E is 12 in position 7, and eBWT[13]
is in a run of A since L[7] = A. With rankA(L, 7) = 3, we detect that eBWT[13] is within the third run of A. We now access 
D to get D[C ′[A] + (3 − 1)] = 4, and compute the final result rankA(eBWT, 13) = 4 + (13 − 12) + 1 = 6.

We construct (2) by augmenting the backward search procedure to find a toehold [20, Lemma 3.2] in the GCA, rather 
than in the SA, and (3) by extending the locate machinery in [20, Section 3] to compute φ operations on the GCA rather 
than on the SA. We do this by including the following data structures:

(v) a data structure G[1..r] which stores the GCA-samples at the end of the eBWT runs. The ith entry G[i] is the GCA-
sample at the end of the ith run,

(vi) a data structure F [1..r] which supports circular predecessor search queries and stores the GCA-samples at the begin-
ning of the eBWT runs in text order. The ith entry F [i] is the ith GCA-sample at the beginning of an eBWT run in text 
order;
7
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(vii) a data structure F irstT oRun[1..r] which stores the mapping between the GCA-samples in F and G . The ith entry 
F irstT oRun[i] = i′ indicates that F [i] and G[i′] are the GCA-samples at the beginning and end of the i′th eBWT run, 
respectively;

(viii) a data structure B[1..m] which stores the length of each input string. The ith entry B[i] is the length of the ith string 
in M.

The content of these data structures for the input string collection M = {AAT, AATAT, GATAATAA, AGA} is described in 
Example 4. Notice that since we are working with collections of circular strings, the predecessor search queries on F have 
to work circularly. Given a GCA-sample, s = ( j, d), the circular predecessor query predcirc(F , s) returns the position of the 
GCA-sample ( j′, d) in F such that j′ is the largest positive integer smaller or equal than j. If there is no such a GCA-sample 
in F , we ensure the circular behavior by searching the predecessor of (B[d], d), i.e., the sample ( j′, d) such that j′ is the 
largest integer in { j + 1, .., B[d]}.

Example 4. Continuing Example 3, the data structure given in (v) stores the GCA-samples at the end of the eBWT runs 
G = [(3, 4), (1, 2), (5, 3), (2, 3), (2, 1), (4, 2), (3, 2)], the one in (vi) stores the GCA-samples at the beginning of the eBWT
runs sorted in text order F = [(2, 1), (2, 2), (4, 2), (2, 3), (7, 3), (1, 4), (3, 4)]. The data structure of (vii) stores the mapping 
between G and F , F irstT oRun = [5, 7, 6, 4, 2, 3, 1]. Finally, (viii) stores the input string lengths B = [3, 5, 8, 3].

We now describe how to compute the toehold value for the GCA during the backward search procedure. First, we need 
to augment the backward search in a way that, at each step, in addition to the interval [i.. j] of GCA, it also returns GCA[ j]. 
We always store the toehold value as the last value of the interval [i.. j]. Assume that we are searching for a pattern 
P [1..p] and we matched it up to position p′ . The interval of GCA corresponding to P [p′..p] is [i.. j]; the toehold for this 
interval is GCA[ j]. We update the toehold for the next backward search step as follows. Let [i′.. j′] be the interval of GCA for 
P [p′ − 1..p] and c = P [p′ − 1]. We need to distinguish between two cases. If eBWT[ j] 	= c then the last occurrence of c in 
eBWT[i.. j] is the last character of a run. Therefore, we can compute the new toehold value GCA[ j′] by finding the position 
of this character c in the input collection as follows. We use rank and select queries on eBWT to compute the position k of 
this character c in eBWT, thus, i ≤ k ≤ j. Then we use the predecessor query pred(E, k) to find the position h in E of the 
first character of the corresponding eBWT run containing this c. So, accessing G[h] = (x, d) allows us to compute the new 
toehold value GCA[ j′] = (x − 1, d). Otherwise, if eBWT[ j] = c, we simply update the current toehold value (x, d) to (x − 1, d). 
Notice that also the update of the toehold value has to work circularly. If x = 1 then we compute the updated toehold as 
(x − 1, d) = (B[d], d). We keep updating the toehold with this procedure until we have the final GCA-interval for P [1..p].

Example 5. Continuing Example 3, assume that we are locating pattern P = AAG. The GCA-interval for the empty string is 
[1..19] and the toehold value is (3, 2). Using the LF-mapping, we compute the new GCA-interval for P [3..3] = G, [13..14]. 
Since eBWT[19] 	= G, we compute the new toehold GCA[14] as follows: rankG(eBWT, 19) = 2, thus, selectG(eBWT, 2) =
9, meaning that the last occurrence of G is in position 9. Finally, we compute pred(E, 9) = 4 and G[4] = (2, 3). So, the 
updated toehold value is (2 − 1, 3) = (1, 3). Then we compute the GCA-interval for P [2..3] = AG, which is [6..7]. In this 
case, eBWT[14] = A. Thus, we compute the position preceding (1, 3) (circularly, using the length of T3, stored in B[3]), i.e., 
(8, 3). Finally, we compute the GCA-interval [1..2] for P [1..3] with toehold GCA[2] = (7, 3).

The last element we need to implement in our locate machinery is a data structure able to compute φ operations on the 
GCA. Given GCA[i] = ( j,d), we compute φM(GCA[i]) = GCA[i − 1] by using a predecessor search query on F and one access 
to F irstT oRun and to G each, as follows. First, we obtain the predecessor ( j′, d) of ( j, d) in F , by a predecessor query on F , 
h = predcirc(F , ( j, d)), and F [h] = ( j′, d). Then we compute the distance (number of LF-steps) of position ( j, d) from position 
( j′, d), namely 	 = j − j′ . Note that if j′ > j then the distance is computed in a circular way as 	 = j + B[d] − j′ . We get the 
final result by adding 	 to the sample in G[F irstT oRun[h] − 1] = (x, d′), i.e., φM(GCA[i]) = (((x +	 − 1) mod B[d′]) + 1, d′).

Example 6. Continuing Example 3, say we have already computed the GCA-interval [3..5] of the pattern P = AAT with toe-
hold GCA[5] = (1, 2). We get φM(GCA[5]) as follows. We compute a circular predecessor search query predcirc(F , (1, 2)) = 3, 
and find that F [3] = (4, 2). We compute the number of LF-steps separating the two GCA samples, 	 = (1, 2) − (4, 2) =
1 + (5 − 4) = 2. Now we get the GCA-sample at the end of the previous run G[F irstT oRun[3] − 1] = G[6 − 1] = (2, 1), and 
compute the final result GCA[4] = (1 + ((2 + 	 − 1) mod 3), 1) = (1, 1).

We store G, F , B , and F irstT oRun in O(r) words (Proposition 5), and give details of the implementation in Section 6.1.

3.2. Analysis of the extended r-index

We will now show that the memory requirement of our data structure is O(r) words, and that it can answer count and 
locate queries in time analogous to the original r-index. Recall also that all strings in M are assumed to be primitive and 
that M is a conjugate-free set.

We first need a technical lemma:
8
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Lemma 2. Let M = {T1, . . . , Tm} be a conjugate-free set of primitive strings of total length N, GCA its generalized conjugate array, 
with GCA[h] = ( jh, dh) for 1 ≤ h ≤ N. Let k be such that eBWT[k] = eBWT[k − 1], and let k′ = LF(k). Then LF(k − 1) = k′ − 1. In 
particular, GCA[k′ − 1] = ( jk−1 − 1, dk−1).

Proof. This follows directly from the fact that the eBWT has the LF-property, i.e., that same characters appear in the same 
order in the last and the first column of the eBWT-matrix, see Proposition 10 in [38]. �
Example 7. Fig. 2 illustrates an example of the property in Lemma 2. Let k = 13. As eBWT(13) = A = eBWT(12), we have 
LF(12) = 5 = 6 −1 = LF(13) −1, as claimed. Moreover, GCA(5) = (1, 2) = ( j12 −1, d12), since k −1 = 12 and GCA(12) = (2, 2).

To analyze the space required by the extended r-index, we show that every string in M is sampled at least once among 
the run-beginning samples and at least once among the run-end samples.

Proposition 3. Let M = {T1, . . . , Tm} be a conjugate-free set of primitive strings of total length N, GCA its generalized conjugate 
array, with GCA[h] = ( jh, dh) for h = 1, . . . , N. Then, for each i, 1 ≤ i ≤ m, there exist integers k and k′ , such that dk = dk′ = i and

1. either k = 1 or eBWT[k] 	= eBWT[k − 1], and
2. either k′ = N or eBWT[k′] 	= eBWT[k′ + 1].

Proof. We assume (for contradiction) that there exists an integer i, with 1 ≤ i ≤ m, such that at least one of the two 
following conditions holds:

1. d1 	= i and, for all 1 < h ≤ N such that dh = i, eBWTM[h] = eBWTM[h − 1];
2. dN 	= i and, for all 1 ≤ h < N such that dh = i, eBWTM[h] = eBWTM[h + 1].

We assume w.l.o.g. that 1 holds. By iteratively applying Lemma 2, we see that if Ti is never at a run beginning, then 
every conjugate of Ti is preceded by a conjugate of the same string in GCAM . Formally: there exists an integer 1 ≤ i′ ≤ m, 
with i′ 	= i, such that for all 1 < h ≤ N , if dh = i, then dh−1 = i′ . Let u = conj jh−1

(Tdh−1 ) and v = conj jh
(Tdh ). Since we 

are assuming that the respective eBWT-characters are always the same (as no conjugate of Ti is at a run beginning), we 
conclude that root(u) = root(v). In fact, every time we make an LF-step, the conjugate index in GCAM is decreased by 1, 
and after |v| steps, the index of the conjugate of u must be jh−1. This implies that root(u) = root(v). Since all strings in M
are primitive, this implies that u = v , and thus, Ti and Ti′ are conjugate. This is a contradiction to M being a conjugate-free 
set. �

Proposition 3 allows us to deduce the following relationship between the number r of runs and the number m of strings.

Corollary 4. Let M = {T1, . . . , Tm} be a conjugate-free set of primitive strings of total length N, r the number of runs of its eBWT. 
Then m ≤ r. Moreover, if all strings Ti have the same length �, then N/r ≤ �.

Proof. Both statements follow directly from Proposition 3. �
We are ready to state the memory requirement of our data structure:

Proposition 5. The extended r-index of a conjugate-free set of primitive strings requires O(r) words of storage, where r is the number 
of runs of the eBWT of M.

Proof. The data structures E, L, D, G, F , and F irstT oRun, as presented in Section 3.1, occupy O(r) words each, C and C ′
occupy O(σ ) words, and B occupies O(m) words. Since m ≤ r by Corollary 4, altogether we have O(r) space. �

Count queries are performed analogously to the r-index.

Proposition 6. Let M be a conjugate-free set of primitive strings of total length N, and r the number of runs of eBWT(M). We can 
build an index of O(r) words such that, later, given a pattern P [1..p], we can return the number of cyclic occurrences of P in M in 
O(p log logw(σ + N/r)) time.

Proof. Count queries are answered by applying p backward search steps, i.e., 2p rank queries, starting from the complete 
interval [1, N] and computing the interval [sP , eP ] which contains the conjugates of which the pattern P is a prefix. The 
number of occurrences is then occ = eP − sP + 1. Since our strategy and data structures are exactly analogous to the ones 
used for the r-index, the time complexity follows by using similar arguments as in [20, Lemma 2.1]. �
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Next, we give the analog of the Toehold Lemma [44,20].

Proposition 7. Let M be a conjugate-free set of primitive strings of total length N and r the number of runs of eBWT(M). We can 
build an index of O(r) words such that, later, given a pattern P [1..p], we can return the interval [sP , eP ] of cyclic occurrences of P in 
M, along with one position q and the content GCA[q], in O(p log logw(σ + N/r)) time.

Proof. As described in Section 3.1, we compute the toehold value similarly to the r-index, employing the additional data 
structures for the extended r-index, which allow us to handle circular predecessor queries and navigation between different 
strings in the string collection. The running time follows again analogously to [20, Lemma 3.2]. �

The next lemma, the analog of Lemma 3.5 in [20], states that one φM-value can be computed in O(log logw(N/r)) time. 
Together with Proposition 7, this will allow us, analogously to the r-index, to output all occ occurrences of a pattern P .

Lemma 8. Let M be a conjugate-free set of primitive strings of total length N and r the number of runs of eBWT(M). Using the 
extended r-index of M, we can evaluate φM in O(log logw(N/r)) time.

Proof. As described in Section 3.1, the evaluation of φM is realized analogously to the r-index. Our additional data struc-
tures that allow the predecessor data structure E to work circularly, do not affect the O(log logw(N/r)) query time proved 
in [5]. �

We summarize the properties of the extended r-index in the following theorem.

Theorem 9. Let M be a conjugate-free set of primitive strings of total length N, and let r be the number of runs of eBWT(M). We can 
build an index of O(r) words such that, later, given a pattern P [1..p], we can return the number of cyclic occurrences of P in M in 
O(p log logw(σ + N/r)) time, and after counting, return all occ cyclic occurrences of P in M in O(occ log logw(N/r)) time.

Proof. The extended r-index can be stored in O(r) words by Proposition 5. Given a query pattern P , in O(p log logw(σ +
N/r)) time the GCA-interval of its occurrences [sP , eP ] can be computed, along with one occurrence in M (the toehold 
value) by Proposition 7. By our construction, this toehold value is always the last in the interval, i.e. GCA(eP ). Then, by 
repeated applications of φM , we can compute all occ occurrences of P , each in time O(log logw(N/r)) by Lemma 8. �
4. Efficient construction of the extended r-index

In [8], we showed how to efficiently construct the eBWT of large string collections in a way that preserves the original 
definition of Mantaci et al. [38]. We do this by combining two algorithms: a modified version of the Suffix Array Induced 
Sorting (SAIS) algorithm of Nong et al. [43] with a variant of the prefix-free parsing algorithm (PFP) of Boucher et al. [6]. In 
this section, we augment the PFP algorithm to compute the GCA-samples as well as the eBWT. The PFP is a preprocessing 
technique originally introduced to construct the BWT of large and repetitive string collections. We now give a brief overview 
of the algorithm. With one scan, the PFP divides the input in overlapping substrings of variable length, called phrases, which 
are used to construct what is referred to as the dictionary D and parse P of the input collection. This is done based on a set 
of trigger strings E of fixed (short) length t: a phrase is defined as a substring starting and ending with some trigger string, 
and no internal occurrence of any trigger string; therefore, two consecutive phrases in the text will overlap by t characters. 
Then a separate procedure constructs the BWT of the input directly from D and P ; thus using space proportional to the 
combined size of these two data structures. The key of the PFP is that if the input collection is repetitive enough, the 
combined size of D and P will be much smaller than the size of the original input. In [8] we presented a variant of the 
PFP, called cyclic PFP, to compute the eBWT of string collections. The cyclic PFP is designed to process circular strings; in 
particular, it constructs a dictionary that also contains phrases spanning the beginning of an input string.

In [30] Kuhnle et al. showed how to construct the SA, and the SA-samples along with the run-length encoded BWT using 
the PFP data structures. This is performed by computing for each BWT entry, BWT[i], its corresponding SA value SA[i]. On 
the other hand, the SA-samples are computed by checking at each step whether BWT[i] 	= BWT[i − 1]; if this is the case we 
store both the sample at the end, SA[i − 1], and at the beginning, SA[i] of the previous and current BWT run respectively. 
The SA entries are computed by storing ||P|| additional integers, one for each phrase, representing the offsets of the last 
characters of the PFP phrases in the original text. Later in the algorithm, when processing each sorted suffix s of one of the 
phrases in D, we use the offset of the corresponding phrase and the length of s to output the SA value together with the 
BWT character.

In this work, we extend our previously described strategy from [8] to compute the GCA-samples rather than the SA-
samples. We do this by storing ||P|| additional offsets o = [( j1, d1), ..., ( j||P||, d||P||)] representing the last positions of the 
cyclic PFP phrases in M and implementing an algorithm similar to the one in [30]. Briefly, every time we process a suffix s
of some phrase in D, we get the offset of the corresponding phrase ( j, d) and use the suffix length to compute the correct 
GCA-sample ( j −|s|, d). The only exception we need to handle is the case where we process a phrase spanning the beginning 
10
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of a string, i.e., |s| ≥ j. Here, in order to ensure the correct circular GCA-sample computation, we need to maintain only m
additional integers storing the length of each input string. In particular, when processing a suffix s of some phrase in D, if 
s spans the beginning of a string Ti , we retrieve the string length and compute the correct circular GCA-sample for s. As 
a result, we compute the run-length eBWT as well as the GCA samples using the augmented cyclic PFP algorithm in time 
linear in the size of the input collection M and space linear in the combined size of D and P .

Finally, given these two data structures, we construct the extended r-index using the procedure described in [20, Ap-
pendix A].

As for the RLFM-index, we compute the run heads, the cumulative lengths of the sorted runs, and the content of C and 
C ′ while scanning the run-length encoded eBWT in O(r) time. Moreover, we compute the E and D predecessor search 
data structures in O(r) time and O(r) words of space using up-to-date data structures (see Section 6.1). As for the locate 
machinery, we sort the GCA samples at the beginning of the runs and store them in F in O(sort(r)) time and O(r) words 
of space, where sort(r) is the time required to sort r integers. Since we have already sorted the samples in F in text order, 
we compute the F irstT oRun in O(r) time by storing the original positions of those samples in F . Note that the values in B
are computed during the first pass of the cyclic PFP algorithm by maintaining a counter for the length of the input strings.

Proposition 10. Given a conjugate-free set of primitive strings M of total length N, we compute the run-length encoded eBWT and 
the GCA-samples in O(N) time and O(||D|| + ||P||) words of space, where D and P are the dictionary and parse defined by the cylic 
PFP, and construct the extended r-index in O(sort(r)) time and O(r) words of space.

Proof. In the previous discussion, we described how to augment the PFP algorithm introduced in [8] to compute the GCA-
samples along with the run-length eBWT. This requires, in addition to the PFP data structures, to store ||P|| additional 
phrase offsets and m additional integers for the end-of-string indexes. However, since P contains at least one phrase for 
each input string, both are stored in O (||P||) words of space. In addition, we need to execute O(r) additional rank and select 
queries on a bitvector to compute the GCA-samples. Thus, altogether we maintain the same O(N) time and O(||D|| +
||P||) space complexity of the original algorithm [8]. Finally, it follows from the previous discussion that given the run-
length eBWT and the GCA-samples, we construct the extended r-index in O(sort(r)) time and O(r) space by extending the 
procedure described in [20, Appendix A]. �
5. Computing MEMs with the extended r-index

The first step for computing MEMs with the extended r-index is to define both matching statistics and MEMs in the 
context of the eBWT. Given a multiset M = {T1, . . . , Tm} of input strings and a query string P , the matching statistics (MS) 
of P w.r.t. M is defined as an array of size |P |, with M S[i] = (�, ( j, d)), where � is the length of the longest substring 
starting at position i in P which occurs in M, and ( j, d) is one of its occurrences, i.e. conj j(Td)[1..�] = P [i..i + � − 1]. 
A substring P [i..i + � − 1] of length � is a MEM of P in M if (1) P [i..i + � − 1] occurs in M and (2) either i = 1 or 
P [i − 1..i + � − 1] does not occur in M, and (3) either i + � − 1 = |P | or P [i..i + �] does not occur in M. Note that in both 
definitions, occurrence stands for circular occurrence.

We now extend Lemma 1 to the eBWT:

Lemma 11. Let M be a conjugate-free set of primitive strings of total length N and a query string P [1..p], let M S[1..p] =
[(�1, ( j1, d1)), . . . , (�p, ( jp, dp))] be the matching statistics of P with respect to M. For all positions i = 1, . . . , p, P [i..i + � − 1]
is a maximal exact match of length � in M if and only if �i = �, and either i = 1 or �i−1 ≤ �i (in the case i > 1).

Proof. For P [i..i + � − 1] to be a MEM, it has to be shown that all of its occurrences in M are left- and right-maximal. That 
they are right-maximal, follows from the definition of M S . On the other hand, if an occurrence i 	= 1 was not left-maximal 
then this would imply that �i−1 = �i + 1. �

Next we extend the definition of LCP to the eBWT where the length of query patterns is bounded by the length of the 
smallest string in the multiset M. To this end, we define the bounded extended LCP (beLCP) as an array of length N such 
that element i contains the length of the longest common prefix of the ith and (i − 1)st smallest conjugate in M w.r.t. the 
ω-order, bounded by the length of the shortest string in M. Formally, let b be the length of the shortest string in M. We 
set beLCP[1] = 0, and for i = 2, . . . , N , if GCA[i] = ( ji, di) then beLCP[i] = min{b, lcp(conj ji

(Tdi ), conj ji−1
(Tdi−1 ))}, where the 

lcp is w.r.t. the linear strings conj ji
(Tdi ) and conj ji−1

(Tdi−1 ).
The data structure beLCP can be built with a straightforward generalization of the algorithm of Kasai et al. [27] for 

LCP-array construction, in time O(N).
We are now ready to modify the definition of thresholds from Rossi et al. [47] to the extended r-index, substituting 

the LCP by beLCP. Given a multiset M = {T1, . . . , Tm} of input strings and four integers 1 ≤ j′ ≤ j < k ≤ k′ ≤ n such that 
eBWT(M)[ j′.. j] and eBWT(M)[k..k′] are two consecutive runs of the same character in eBWT(M). The threshold p for the 
run pair eBWT(M)[ j′.. j] and eBWT(M)[k..k′] of character eBWT(M)[ j] is defined as the smallest index i in the interval 
beLCP[ j + 1..k] such that beLCP[i] = min beLCP[ j + 1..k].
11
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Fig. 3. An illustration of the thresholds for calculating the matching statistics of a query string P [1..p] in a set of strings M. Shown on the left is P , the 
longest prefix of the current suffix of P that occurs in M, and the matching statistics M S with their components (�, ( j, d)). Below the pattern P , we show 
the thresholds THRM for the characters A, G, and T; e.g., the threshold between the first and the second run of A is in position 9, and the threshold 
between the second and third run of A is in position 11. Shown on the right, the GCAM of M with the entries corresponding to the beginning or to 
the end of some run highlighted in red, the beLCPM computed with b = 3, the eBWTM , and the corresponding rotations of strings in M. The arrows 
illustrate the position in GCAM which corresponds to the prefix on the left. See also Example 8.

Fig. 3 depicts an example of matching statistics query of the pattern P = TAG against the collection of strings M =
{AAT, AATAT, AAGATAAT, AGA}, which is described in the following.

Example 8. We begin the query matching the empty suffix ε of the pattern with the prefix of the first conjugate AAG at 
index 1 of the GCA.

To extend the matching we check whether the eBWT character at index 1 (G) matches the character at index 3 of P
(G). In this case the characters match, therefore we perform one LF step to index 13 corresponding to the conjugate GAA
and we store the corresponding GCA value (2,4) in the M S array in position 3. We now check if we can extend the 
match by checking whether the eBWT character at index 13 matches the character at index 2 of P (A). The characters 
match, therefore we perform one LF step to index 6 corresponding to the conjugate AGA, and we store the corresponding 
GCA value (1,4) in the M S array in position 2. We now check if we can extend the match by checking whether the 
eBWT character at index 6 matches the character at index 1 of P (T). The characters do not match. Therefore, we use the 
thresholds of the character T to determine the index, in GCA, of the conjugate preceded by T sharing the longest prefix 
with the suffix AG of P . To do this we count the number of runs of T in the eBWT up to index 6, which is 1, and check the 
threshold between the first and second run of T, which also points to index 6. Since those values are equals, we continue 
the matching from the index of the beginning of the second run of Ts in the eBWT, which in this case is at index 11
corresponding to the conjugate ATAAT. We perform one LF step from index 11 to index 19 corresponding to the conjugate
TATAA and we store the corresponding GCA value (3,2) in the M S array in position 1.

5.1. Computing the thresholds using prefix-free parsing

Rossi et al. in [47] showed how to compute the thresholds efficiently using the PFP-based construction algorithm of the 
r-index. In this work, we show that such a modification can also be made for the extended r-index, allowing the thresholds 
for the eBWT to be constructed along with the GCA-samples.

Given the dictionary D and the parse P of the cyclic PFP of a multiset M = {T1, . . . , Tm} of input strings, in addition to 
the data structures needed to build the eBWT and the GCA-samples, we build the following data structures:

1) the LCP array of the concatenation of the phrases of the dictionary D separated by different end-of-string symbols, with 
an additional data structure supporting range minimum queries; and

2) the beLCP array of the parse P where the longest common prefixes are measured in terms of original characters, 
not symbols of P , with trigger strings counted only once. We refer to this data structure as beLCP of P associated to 
eBWT(M). This data structure is also enriched with an additional RMQ-data structure.
12
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Lemma 12. Let M be a conjugate-free set of primitive strings of total length N, and P and D its parse and dictionary given by the 
cyclic PFP. We can build the LCP-array of D and the beLCP-array of P associated to eBWT(M) in O(||P|| + ||D||) time.

Proof. First, we compute the LCP-array of the string consisting of the concatenated phrases of the dictionary D, separated 
by distinct separators, using the algorithm of Kasai et al. [27], in O(||D||) time. We build on this an RMQ-data structure 
that allows constant time range-minimum queries. Such a data structure can be constructed in O(||D||) time and requires 
2||D|| + o(||D||) bits [18]. This will give us the possibility of giving, for any two distinct suffixes of phrases from D, the 
length of the longest common prefix, in O(1) time.

For constructing the beLCP of P , we will use a modification of the Kasai et al. algorithm [27]. The generalization to cyclic 
strings, as well as from one string to a set of strings, is straightforward. However, additional complexity is added by the fact 
that the entries of the beLCP contain the length of the LCP in terms of the number of characters in the original strings in 
M, rather than in terms of the number of meta-characters of P .

In the following, we assume familiarity with the algorithm by Kasai et al. [27], and only sketch our modification. Note 
that the algorithm fills in the beLCP array in string order, rather than in GCA-order. In our case, it fills the beLCP-values 
corresponding to each parse string P ∈ P individually. The basic idea of the original algorithm is that for any text position 
i, if LCP[ISA[i]] = k then LCP[ISA[i + 1]] ≥ k − 1, and therefore, the comparisons for LCP[ISA[i + 1]] can start at position 
i + k in the text. As a result, when updating i to i + 1, if the current value k of the lcp is greater than 0, then it has to be 
decremented by 1, and further comparisons taken from there. In our modified algorithm, we will carry forward two values: 
the current length k of the lcp in terms of number of meta-characters, and the current length of the same lcp in terms 
of characters of the underlying strings in M, which we refer to as κ . We will update both values, and when filling in the 
corresponding entry, we cut it off at b, i.e. LCPP [ j] = min(b, κ).

Let P be some conjugate of some parse string in P with GCAP [ j] = P , and Q the conjugate that immediately precedes 
P in GCAP , i.e. GCAP [ j − 1] = Q . If LCPP [ j] = k, then we can compute beLCPP [ j] as follows. First, LCPP [ j] = k implies 
that the k-length prefix of P , P [1..k], is common to P and Q ; therefore, the corresponding prefix is also common to the 
underlying strings in M. The length of this prefix is given by the sum of the phrase lengths of P [1..k]; however, the 
overlapping trigger strings, of length t , must be counted only once, yielding 

∑k
ι=1(|P [ι]| − t) as total length of this prefix. 

Further, if |P |, |Q | ≥ k, then we also need to add the lcp of the subsequent phrases P [k +1] and Q [k +1]. Let P [k +1] = D[i1]
and Q [k + 1] = D[i2], and let d = lcp(D[i1], D[i2]). Observe that d ≥ t , since these two phrases necessarily start with the 
same trigger string. Note further that d can be computed in O(1) time using the RMQ-data structure on LCPD . The total 
length of the lcp of the string conjugates in M corresponding to P and Q is therefore κ = ∑k

ι=1(|P [ι]| − t) + d, and we get 
beLCPP [ j] = min(b, κ).

Now when passing to the next conjugate P ′ = P [2..|P |]P [1], we need to decrement the value κ by d, the lcp of the first 
mismatching character pair P [k + 1], Q [k + 1]. If k ≥ 1, we decrement κ further by the length of the first meta-character, 
|P [1]| − t; in this case, k is decremented by 1. Both k and κ are then incremented according to the possible new matching 
meta-characters between the following characters of P ′ and those of the immediately preceding conjugate in the GCA of P . 
Finally, we build an RMQ-data structure on beLCPP in time O(||P||).

By amortized analysis it can be seen that the total time taken is O(||P||) for computing beLCPP , since each value |P [i]|, 
corresponding to the character P [i], is only added once. Therefore, for computing both data structures, we get altogether 
O(||D|| + ||P||) time, as claimed. �

We now show how to use the data structures of Lemma 12 to compute the thresholds. We build on the algorithm in 
Section 4. The high-level idea is that given the multiset M = {T1, . . . , Tm} and its cyclic PFP parse P and dictionary D, 
we can iterate sequentially through the values of eBWT[i], GCA[i], and beLCP[i], for i = 1, . . . , N . We already know from 
Section 3 how to compute the first two. We will now show how to compute also the beLCP-array (of M) using the data 
structures 1) and 2).

We recall that each conjugate in GCA can be uniquely identified by a proper phrase suffix in D and the conjugate in P
starting in correspondence to the first complete phrase following the proper phrase suffix in D of the conjugate.

When iterating through the conjugates in GCA order using P and D, in order to compute beLCP[i] we need to compare 
two consecutive conjugates in GCA order, i.e., GCA[i − 1] and GCA[i]. We need to consider two cases. In the first case, 
the conjugates corresponding to GCA[i − 1] and GCA[i] are identified by different proper phrase suffixes in D. Therefore, 
beLCP[i] is given by the length of the longest common prefix between the two proper phrase suffixes in D (bounded by 
b). This can be computed with an RMQ-query in O(1) time using the data structure 1). In the second case, the conjugates 
corresponding to GCA[i − 1] and GCA[i] are identified by the same proper phrase suffix in D, therefore their conjugates in 
P will be different. In this case, we can compute beLCP[i] as the length of the common proper phrase suffixes in D plus 
the longest common prefix of the conjugates in P , in terms of characters of the underlying strings in M, bounded by b. 
This can be computed with an RMQ-query in O(1) time using the data structure 2).2

2 Note that this computation needs to be adjusted to take into account the overlap between phrases that is introduced by the prefix-free parsing. See 
Rossi et al. [46] for additional details.
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Proposition 13. Let M be a conjugate-free set of primitive strings of total length N, we can build the thresholds in addition to the 
extended r-index in O(N) time and O(||D|| + ||P||) space, where D and P are the dictionary and parse defined by the PFP.

Proof. In the previous discussion, we described how to extend the algorithm presented in Section 4 to compute the entries 
of beLCP of M alongside the eBWT and GCA. To compute the thresholds, we need to store, for each character of the 
alphabet, the minimum value of the beLCP computed from the last occurrence of the character run in the eBWT, and 
reporting it when we encounter a new run of the same character. Therefore, computing the thresholds requires additional 
O(Nσ) time and O(σ ) space, in addition to the computation of the runs of the eBWT and the GCA-samples. Under the 
assumption of constant size alphabet, we can thus build the thresholds in addition to the extended r-index in O(N) time 
and O(||D|| + ||P||) space. �
6. Experimental results

We implemented the extended r-index in C++ by adapting the code of the r-index (https://github .com /nicolaprezza /r-
index), and made it available at https://github .com /davidecenzato /extended _r-index. We compute all data structures nec-
essary to construct the extended r-index via an adaptation of pfpebwt [8] to enable our construction algorithm to scale 
to large string collections. We compare the performance of our text index with the r-index and other four available text 
indexes for highly repetitive biological data. Note that, unlike the r-index and the other indexes, our implementation sup-
ports circular pattern matching, i.e., we report occurrences that span the end and beginning of a string in addition to linear 
occurrences.

6.1. Implementation

We now describe how we implemented the data structures described in Section 3.1. We construct the eBWT RLFM-index 
that computes the GCA-interval [i.. j] for a pattern P by using a similar implementation as the one described by Gagie et al. 
in [20, Section 7.1]. We compute L by constructing the wavelet tree of the characters in the run-length encoded eBWT using 
the Huffman-encoded wavelet tree implementation of sdsl (wt_huff) supporting rank and select queries. We compute 
E and D by encoding the run heads and the cumulative lengths using the unary encoding and storing the final binary 
strings in two sdsl Elias-Fano compressed bitvectors (sd_vector) that support rank and select queries. We do not store 
C ′ explicitly since we split D in σ different substrings, enabling direct access to D . Finally, we store the C vector using 
the sdsl (int_vector) implementation. Altogether, these data structures take (1 + ε)r(log(N/r) + 2) + (rH0 + 2σ log r) +
σ log N bits of space (lower-order terms omitted), where ε > 0 is a constant defined at construction time (ε = 0.5 in our 
case), N denotes the total length of the input collection, and H0 is the zero-order entropy.3

We extend the locate machinery described by Gagie et al. [20] to support φ operations on the GCA rather than on the 
SA. We construct G , the data structure that stores the GCA-samples at the end of the runs, as well as the F irstT oRun
vector using the sdsl (int_vector) implementation [24]. Further, we compute F by storing the GCA-samples at the 
beginning of a run using a gap-encoded bitvector. In particular, we construct a bitvector B f [1..N] for F such that the ith 
entry B f [i] = 1 if i ∈ F . We construct the B data structure that we additionally need in the extended r-index in a similar 
way. More specifically, we define a bitvector Bb[1..N] for B such that the ith entry Bb[i] = 1 if i is the position of the 
first character of one of the input strings. In our implementation, we store the input collection M = {T1, . . . , Tm} as the 
concatenation of the input strings T1 · · · Tm . Thus, the indexes encoded by B f refer to positions in the concatenation, and 
Bb stores the string boundaries in the concatenation. We implement both B f and Bb using the Elias-Fano compressed 
bitvector of sdsl (sd_vector) implementation. Altogether these data structures implementing the locate machinery take 
r log N + r log r + r(log(N/r) + 2) + m(log(N/m) + 2) bits of space (lower-order terms omitted).

6.2. Handling equal conjugates

Proposition 3 ensures that an input collection M where no two strings have the same set of conjugates, has at least 
two GCA-samples for each string, one at the beginning and one at the end of an eBWT run. However, when working with 
string collections containing circular genomes of the same species, this condition may not be fulfilled since we may find 
two sequences such that one is a rotation of the other. In this case, we will have some sequences with no GCA-samples. 
We solve this problem by sampling some additional GCA values corresponding to the first rotation of each string in M. We 
added this functionality to the algorithm described in Section 4: while computing the eBWT, every time we process the 
first rotation of a string, we check whether the corresponding character eBWT[i] is the first character of a new run. If not, 
we instantiate a new run and store two GCA-samples, one at the beginning of the new run GCA[i], and one at the end of 
the previous run GCA[i − 1]. At the end of this procedure, we will have sampled at most 2m additional GCA-samples.

3 The Huffman-shaped wavelet tree, first introduced in [35], in the sdsl implementation uses (rH0 + 2σ log r) bits of space, see github .com /simongog /
sdsl -lite /blob /master /include /sdsl /wt _huff .hpp.
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We set this functionality as our software’s default mode since it allows our index to handle any genomic collection 
containing primitive strings, thus meeting the majority of real scenarios. In addition, the space required to store and process 
the additional GCA-samples is negligible when working with whole long genome sequences. We ran all our experiments 
using this default mode. We allow deactivating this functionality using a flag if the user knows that no input string is a 
conjugate of another.

Example 9. In Fig. 2, assume we want to sample the GCA positions corresponding to the first rotation of each string in M. 
In this case, we also need to store (1, 1), (1, 2) and (1, 3), which are the samples corresponding to the AAT, AATAT and
GATAATAA rotation, respectively. Note that (1, 4) was already at the beginning of the third eBWT run, thus, we do not need 
to sample it again.

6.3. Handling non-primitive strings

As for handling non-primitive strings, we need two additional functionalities: (i) computing the GCA and eBWT of string 
collections containing non-primitive strings and (ii) supporting φM operations on such a GCA. We obtain (i) by modifying 
the PFP algorithm as described in [7]; this includes running the algorithm on the roots {root(T1), ..., root(Tm)} of the 
strings in M and using the exponents {exp(T1), ..., exp(Tm)} to output the correct eBWT and GCA-samples. Without loss of 
generality we can assume that the collection of the roots is a conjugate-free set. Otherwise, we use the strategy described in 
the previous subsection, where strings with conjugate roots are considered according to an order given by the exponents. As 
for (ii) we implement it again by using the exponents and root lengths; in particular, given kd = exp(Td) and rd = |root(Td)|, 
when computing φM(GCA[i]), where GCA[i] = ( j, d), if j > rd then the query will report ( j − rd, d) as a result, otherwise 
we apply the procedure described in Subsection 3.1 on the set M′ = {root(T1), ..., root(Tm)} to get φM′(( j, d)) = ( j′, d′). If 
kd′ = 1, then φM(( j, d)) = ( j′, d′). Otherwise, if kd′ > 1, we additionally set j′ = j′ + rd′ · (kd′ − 1).

Example 10. Let M = {ACGACG, GCGCGC} be a string collection containing two non-primitive strings, GCA(M) =
[(1, 1), (4, 1), (2, 1), (5, 1), (2, 2), (4, 2), (6, 2), (3, 1), (6, 1), (1, 2), (3, 2), (5, 2)], r1 = 3, k1 = 2 and r2 = 2, k2 = 3. We evalu-
ate φM((5, 2)) and φM((1, 2)) as follows. Since 5 > r2, the answer is φM((5, 2)) = (5 − r2, 2) = (3, 2). As for the second 
query, 1 < r2, thus we need to evaluate φM((1, 2)) by using the procedure described in Subsection 3.1 on the set of the 
roots {ACG, GC}. The result is (3, 1). Since k1 > 1, we finally obtain φM((1, 2)) = (3 + r1(k1 − 1), 1) = (6, 1).

6.4. Text indexes tested

We included in the comparison six text indexes using different strategies to encode repetitiveness in biological data.

• extended r-index: Our text index, constructed using a variant of the pfpebwt algorithm and sampling the beginning of 
the eBWT runs.4

• r-index: The r-index implementation using the Big-BWT algorithm [6] to enable the index construction for large 
datasets.5

• subsampled r-index: The subsampled r-index implementation (sr-index) by Cobas et al. [14].6 We computed it using 
the sampling value s = 64.

• lz-index: An optimized implementation of the Lempel-Ziv based text index by Kreft and Navarro [28].7

• hybrid-index: The CHICO implementation [52],8 which improves the original hybrid index by Ferrada et al. [16]. We 
computed it by setting the M parameter to the three pattern lengths.

• grammar-index: The grammar-based text index implementation by Claude et al. [13].9 We computed it with Patricia 
trees sampling value s = 64.

6.5. Datasets

We evaluated the extended r-index and the other indexes using three genomic datasets: the first one contains cir-
cular assembled genomes of Salmonella enterica (Salmonella); the second one contains circular assembled genomes of 
Escherichia coli (E.coli) strains; the last dataset contains a set of plasmid (Plasmids) genomes. We downloaded the
Salmonella and E.coli datasets from NCBI using the accession ids of the reference genomes from the ZymoBIOMICS 

4 https://github .com /davidecenzato /extended _r-index.
5 https://github .com /alshai /r-index.
6 https://github .com /duscob /sr-index.
7 https://github .com /migumar2 /uiHRDC /tree /master /uiHRDC /self -indexes /LZ.
8 https://www.cs .helsinki .fi /u /dvalenzu /software.
9 https://github .com /apachecom /grammar _improved _index.
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Table 1
Table summarizing the main parameters of the three datasets. From left to right, we report the dataset name, 
the number of sequences, the total length, the average, minimum, and maximum sequence length, and the 
average run-length of the eBWT (n/r).

dataset no. seq total length avg. length min. length max. length n/r (eBWT)

Salmonella 846 4,121,587,394 4,871,853 4,482,093 5,700,307 70.574
E.coli 1,362 7,024,773,608 5,157,690 4,456,672 6,162,417 88.011
Plasmids 25,916 3,458,859,947 133,464 10,005 4,605,385 4.220

High-Molecular-Weight DNA Mock Microbial community used by Ahmed et al. [1]. We downloaded the most recent as-
semblies of this data, and removed the ones marked as anomalous. In addition, we only kept the reference genomes and 
removed additional contigs. This resulted in 846 Salmonella enterica and 1,362 Escherichia coli assembled genomes. As for
Plasmids, we downloaded the sequences from the PLSDB database containing a collection of plasmid sequences gathered 
from NCBI and INSDC [48]. Since our implementation does not include the functionalities described in Section 6.3, we re-
moved non-primitive strings, which resulted in 25,916 genomic sequences. Features of the three datasets are summarized 
in Table 1.

Some of the competing methods are not designed to work on large datasets. Thus, for each dataset, we derived a smaller 
string collection to make it possible to evaluate a broader range of methods. This resulted in 210 Salmonella enterica, 200 
Escherichia coli, and 8,000 plasmid assembled genomes.

6.6. Experimental setup

We performed the experiments on a server with Intel(R) Core(TM) CPU i9-11900 @ 2.50GHz with 8 cores and 64 Giga-
bytes of RAM running Ubuntu 22.04 LTS 64-bit. The compiler was g++ version 11.3.0 using C++ 17 standard and -Ofast 
-fstrict-aliasing -march=native -DNDEBUG options. We recorded the memory usage using the maximum resi-
dent set size retrieved from /usr/bin/time.

From each dataset, we extracted four pattern sets containing 1 million sequences each, of length 10, 100, 1, 000, and 
10, 000, respectively. Patterns were extracted by randomly sampling substrings from the input strings. In particular, for each 
pattern length p, we select a string Td ∈M at random, select a random offset 1 ≤ i ≤ |Td|, and extract the circular substring 
beginning at the i-th position, Td[i..(i + p − 1) mod |Td|]. Notice that this procedure samples both patterns occurring as 
linear substrings and patterns spanning the end and the beginning of a string. For each set of patterns, we computed both 
count and locate queries on all patterns and collected the number of occurrences, the total memory usage, and the average 
time to process a pattern. Note that only the three indexes based on the BWT naturally support count queries; in particular, 
they allow computing the number of occurrences of a pattern in the input without locating explicitly where it occurs.

In our experiments, we built and queried the extended r-index and the five competing text indexes. In order to make our 
experimental results comparable, we needed all indexes to compute the same circular count and locate queries supported by 
our index. Given a collection of strings M = {T1, T2, ..., Tm}, we fulfilled this requirement by constructing the five competing 
indexes for the two strings S = T1$ · · · Tm$, and S ′ = T1T1$ · · · Tm Tm$. This allowed searching for circular patterns with 
minimal implementation effort and without changing the software specifications.

Next we explain how to answer circular pattern matching queries with the competing indexes. Given a pattern P , circular 
count queries are performed by computing a count query on the indexes of S ′ , which return twice the number of linear 
occurrences of P in M, and once the number of occurrences of P that span the end and the beginning of some string in 
M; then we subtract from this value the result of a count query on the indexes of S . Thus, every count query computed by 
one of the competing indexes consists of two count queries. Finally, the locate queries are computed as a locate query on 
the indexes of S ′ , where all occurrences located in the second copy of some string are discarded.

6.7. Results

We first report the running time and space comparison with competing indexes, on reduced versions of the three 
datasets (see Sec. 6.5). This is followed by an analysis of the number of linear and circular occurrences of patterns on 
the complete datasets.

6.7.1. Comparison with competing indexes using reduced datasets
We start the experimental comparison between our index and the five competing indexes by discussing their running 

times. In Fig. 4, 5 and 6, we illustrate the time and the memory usage to perform locate queries on the small versions of
Salmonella, E.coli, and Plamids datasets and a subset of 100, 000 patterns, as explained at the end of Sec. 6.5. In 
particular, we report the resident set size on the x-axis and the average time to process a pattern occurrence on the y-axis. 
We note that the differences are largest for the shortest pattern length, where the extended r-index is always faster than 
the other indexes. In particular, for p = 10, our index has a 160x maximum and 1.4x minimum speedup on E.coli dataset, 
a 137x maximum and 1.4x minimum speedup on Salmonella dataset, and a 536x maximum and 1.6x minimum speedup 
on Plasmids dataset, compared to hybrid-index and r-index respectively. On the other hand, our index always uses more 
16
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Fig. 4. Time and space to perform locate and count queries on E.coli small datasets. Each point in the figures represents a pair consisting of the average 
time to find a pattern occurrence and the peak memory usage of one of the indexes.

memory than the competitors except for the r-index. These performances for short patterns are justified by considering 
that the competing indexes, unlike our index, have to find and filter a lot of duplicated occurrences, thus slowing down the 
computation.

For the other pattern lengths p ≥ 100, there are more differences to take into consideration. As for the BWT-based 
indexes, the runtime and memory requirements for the extended r-index are similar to the r-index for all datasets and 
pattern lengths. The extended r-index was slightly faster for locate queries on Salmonella and E.coli, with a maximum 
1.10x speedup factor. In contrast, the extended r-index was slightly slower for p = 10, 000 on the Plasmids dataset. The 
same holds for memory usage, where the extended r-index uses at most 1.04x less memory than the r-index. As for the 
sr-index, it always uses between 3x to 6x less memory and has similar running times as our index. As for the other three 
indexes, the grammar-index and lz-index are always slower but more memory efficient than our index. In particular, the 
extended r-index uses between 3x and 5x more memory; however, it is always between 5x and 58x faster than the two 
indexes. Finally, the hybrid-index is always slower and more memory efficient than our index for all p values except the 
largest one, where the running times of the two indexes are similar. This suggests that lz- and grammar-based indexes are 
more memory efficient than our method, however, they are much slower in most scenarios.

We also measured the running time to perform circular count queries with the BWT-based indexes. Since the competing 
indexes need to run two queries for each circular count query, the extended r-index is always faster than the competitors 
with a 2.2x maximum speedup. In addition, we realized that in all cases except for p = 10, it is more efficient to implement 
the circular count query in the competitor tools by performing one locate query on S ′ rather than perform count queries 
on S and S ′ , as explained at the end of Sec. 6.6. That’s why we also report, for the r-index and the sr-index, the average 
running time for both types of query, locate and count.

In summary, we showed that the extended r-index has better or similar running times compared to the other indexes 
for all combinations of dataset and pattern length. Notwithstanding this performance, our index uses more memory than 
the competing indexes except for the original r-index. However, we noticed that by adapting the results of the subsampled 
r-index to the eBWT, we may be able to obtain an index that is both fast and very memory efficient. Finally, the extended 
17
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Fig. 5. Time and space to perform locate and count queries on Salmonella small dataset. Each point in the figures represents a pair consisting of the 
average time to find a pattern occurrence and the peak memory usage of one of the indexes.

r-index can handle large datasets and is also simpler to construct than the competitors since we do not need to double the 
size of the dataset.

6.7.2. Analysis of the number of occurrences
In this section, we analyze the differences between circular and linear pattern matching queries. For each complete 

dataset of Salmonella, E. coli, and Plasmids, we ran count queries for three pattern sets, each containing 1 million 
randomly extracted substrings of length 100, 1, 000, and 10, 000. For each pattern, we recorded the number of linear and 
circular (or cyclic) occurrences.

The difference in the number of linear and cyclic occurrences depends on two factors: the lengths of the indexed se-
quences and the lengths of the patterns. With long indexed sequences and short patterns, it is less likely to extract a 
pattern that spans the beginning of a string; thus, most patterns have the same number of linear and cyclic occurrences. 
On Salmonella, and E.coli datasets, only 0.02%, 0.04%, 0.30% and 0.04%, 0.06%, 0.27% of the patterns show a different 
number of linear and cyclic occurrences for the 100, 1,000, and 10,000 pattern length, respectively. On the other hand, 
when the dataset contains short sequences, we are more likely to extract patterns that span the beginning of a string. On 
the Plasmids dataset, 3.59%, 9.44%, and 24.77% of the patterns show a different number of linear vs. cyclic occurrences 
for the three pattern lengths, respectively (see Fig. 7).

We continue this analysis by studying the difference in the number of occurrences, only for those patterns where linear 
and circular occurrence numbers do not coincide, i.e. the patterns spanning the beginning of a string. In Fig. 8, we show a 
dispersion plot where each dot corresponds to the number of linear and cyclic occurrences of one pattern: the farther the 
dots are from the main diagonal, the higher the difference. Again, we notice the largest variations for the longest pattern 
length and Plasmids, which contains the shortest sequences among the three datasets.

We now report a more in-depth analysis of the number of matches we lose when using the r-index on circular strings, 
on which all cyclic occurrences should be reported. Given a string P , we defined the percentage of matches lost as (1 −
c(P )/c′(P )) ·100, where c(P ) and c′(P ) are the number of cyclic and linear occurrences of P in the input, respectively. Thus, 
we analyze the average number of matches lost on patterns for which c(P ) 	= c′(P ). For patterns of length 10,000, we lose 
18
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Fig. 6. Time and space to perform locate and count queries on Plasmids small dataset. Each point in the figures represents a pair consisting of the average 
time to find a pattern occurrence and the peak memory usage of one of the indexes.

on average more than 50% of its matches when using the r-index. In particular, we report 68.0%, 71.9%, and 78.4% average 
matches lost for the Salmonella, E.coli, and Plasmids dataset, respectively. For patterns of length 1,000, the average 
match loss is 42.5%, 32.7%, and 20.0% for the three datasets. Finally, the reported average match loss is 6.0%, 3.7%, and 5.1% 
on patterns of length 100. In Fig. 9, we summarize these results showing a histogram that reports the number of patterns 
associated with each percentage of matches lost.

7. Conclusion

In this paper, we described how the fundamentals of the r-index can be transferred to the context of the eBWT. We note 
that the eBWT has the advantage over other BWT-based data structures for string collections that it is independent of the 
order of the input strings. The r-index based on the eBWT, which we call extended r-index, inherits this important property. 
We showed that it presents the most convenient framework for circular strings, among the different options present in the 
literature and in existing implementations. To substantiate this claim, we compared our extended r-index to five state-of-
the-art text indexes, including the classical r-index and several grammar-based indexes. We tested the performance of these 
indexes on three biological data sets containing circular bacterial genomes and plasmids.

Applied as given, all competitor indexes would miss cyclic occurrences that span the end of the input strings; but 
constructing the indexes on two copies of each input string introduces unnecessary increase in space and post-processing 
work. For this reason, when the input collection consists of circular strings, the extended r-index should be chosen rather 
than the original r-index, given the very similar performance both in space and query time. On the other hand, grammar-
based compressed self-indexes are superior to our data structure with respect to space usage but they are slow and do 
not scale well for big collections. We note that the subsampled r-index, a variant of the original r-index, uses an amount 
of memory similar to the LZ-index, grammar-index, and hybrid-index. Due to this, extending the improvements of the 
subsampled r-index to the eBWT could improve the space requirements of our index and close the memory gap with the 
dictionary-based indexes.
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Fig. 7. Histograms summarizing the difference between the number of cyclic and linear occurrences on the Plasmids dataset and three sets of patterns of 
different lengths, containing 1 million sequences each. Each bar reports the percentage of patterns with a given difference. For ease of presentation, we cut 
the x-axis at 13 since all other bars have a value on the x-axis below 1,000. We omitted the first bin containing the number of patterns whose difference 
is zero (the percentage of patterns included is reported in the text).

Note also that the use of the extended r-index is not restricted to circular strings; it can be applied to string collections 
of linear strings, by simply appending an end-of-string character to each input string.

Throughout we assumed that the pattern length is bounded by the length of the shortest string in M. This is to avoid 
finding occurrences which are substrings of ω-powers of input strings, but not of the strings themselves. We pose it as an 
open problem to give efficient locate and count algorithms for the extended r-index that do not necessitate this assumption. 
We note further that recasting some of the more recent results—including the results of Nishimoto and Tabei [42], Bannai et 
al. [3], and Cobas et al. [14]—regarding the r-index to the context of eBWT merits attention since it would allow to further 
improve time and space requirements of our extended r-index.
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Fig. 8. Dispersion plots between the number of linear vs. cyclic occurrences on three sets of patterns of different lengths, containing 1 million sequences 
each. Each point in the figures represents a specific pattern. We only included the patterns having different number of cyclic and linear occurrences (the 
percentage of patterns included is reported in the text).
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Fig. 9. Histograms summarizing the number of matches lost between the extended r-index and the r-index on the three datasets. Each bar shows the 
percentage of the number of patterns with a given percentage of matches lost. For this plot, we only include the patterns whose number of occurrences is 
different between the two indexes. We omitted the 100% bins containing the patterns with zero matches using the r-index for length 10,000. The heights 
of these bins are 63.9% for E.coli, 56.4% for Salmonella and 69.6% for Plasmids.
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