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Abstract: The limit behaviour of I-shaped welded steel cross-sections subjected to axial force, shear,
and bending moment is a crucial matter to ascertain the reliability of framed structures constituted
by non-standard beam elements. International standards provide an approximate solution to the
problem, and other studies have proposed improved approximate formulations to ascertain the real
features of the relevant cross-sections. The present paper is devoted to enhancing the problem of
the limit behaviour of plane I-shaped welded steel cross-sections subjected to axial force (N), shear
(T) and bending moment (M); therefore, new appropriate formulations are proposed in order to
define suitable new domains, both in planes (N, T), (N, M), and (M, T) and in the space (N, T, M).
The material is assumed as elastic–perfectly plastic and the Von Mises limit condition is adopted as
the resistance criterion. The elastic stresses are described by the Navier formula and the Jourawski
formula. The limit stress condition related to the contemporaneous presence of the acting forces is
defined as the one that, at each point of the cross-section, fulfils the Von Mises limit condition as
equality. The formulation is rigorously devoted to factory-made welded I-shaped steel cross-sections.
Some numerical examples are reported in the application stage and useful comparison are carried
out, with the results being obtainable by the application of the classical known standard formulae,
proving the reliability and effectiveness of the determined domains.

Keywords: welded sections; steel; plane stresses; yield domains; international standards

1. Introduction

In many cases of practical interest, in the design of steel frame structures, it is very
useful to adopt factory-welded I-shaped beams instead of the standard rolled ones. One of
these cases is that of seismic retrofitting of existing masonry structures. In such a case, to
obtain the required seismic behaviour, it is necessary to modify the stiffness of the masonry
panels. For this goal, steel hooping is considered the most adequate, and the adoption of
suitably designed and factory-welded steel elements allows us to obtain optimal structures
with reduced size and, consequently, with little effect on usability. Another task is that of
new openings in masonry panels, which requires the steel hooping to restore both strength
and stiffness of those panels where the opening is created. In such cases, usually, the
required stiffness is often very high and, consequently, the chance of adopting steel frames
realized with suitably designed and factory-welded I-shaped beam elements with assigned
geometric characteristics is a fundamental strategy which also allows for a reduction in the
opening dimensions.

On the other hand, the above referenced chance of adopting welded structural ele-
ments is also often advantageous in new frame design. As is well known in such structures,
the connections between beams and columns are very critical, since their design plays a
crucial role in the safety and ductility of the overall structure. This topic is relevant when
elastoplastic analysis is performed both statically [1–4] or dynamically [5–9], as well as in
design problems for frame and truss structures [10–12], both taking into account buckling
and slenderness [13–16] and in the case of seismic and dynamic actions [17–20].

In practical applications, an important strategy is to plan interventions able to reduce
the strength of the element in suitably selected portions of the element close to the connec-

Appl. Sci. 2024, 14, 8037. https://doi.org/10.3390/app14178037 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14178037
https://doi.org/10.3390/app14178037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4735-9286
https://orcid.org/0000-0003-4278-0861
https://doi.org/10.3390/app14178037
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14178037?type=check_update&version=1


Appl. Sci. 2024, 14, 8037 2 of 19

tions between beams and columns. In this way, the onset of plastic strain also allows for
the protection of the welded connections between beams and columns. The most common
approach belonging to this strategy is the so-called dogbone, while a recently proposed
approach is referred to as the Limited Resistance Plastic Device (LRPD). Another approach
is based on dissipative approaches leading, e.g., to devices for seismic-resistant steel frames
developed by the FUSEIS EC project (RFSR-CT-2008-00032) or other devices [21–24].

The main idea of the dogbone [25–29] is that of suitably reducing the base of the
I-shaped beam in a portion close to the column to obtain a reduction in the limit bending
moment. Such a reduction in the case of high loads causes the required yielding and
decreases in the actions on the welded connections between beams and columns. The
seismic performances of structures equipped with dogbones is the topic of many papers
available in the literature (see, e.g., [30–32]), and developments of the main idea (i.e.,
reducing the web) have been also proposed (see, e.g., [33–36]).

In recent years, a number of innovative systems based on energy dissipation and
damping have been invented as a result of national and European research projects, such as
dissipative connections assigned to braced steel frames (developed in “Two INnovations for
Earthquake Resistant Design”, INERD project) [24] and dissipative links (see, e.g., [37,38]).
These innovative systems consist of small and dismountable dissipative parts where seis-
mic damage is concentrated; hence, they have increased repairability while displaying
comparable stiffness and ductility to the conventional ones. The structural behaviour of
structures equipped with these devices is assessed in many papers available in the literature
(see, e.g., [39]).

The LRPDs represent the most recent proposal in this topic; these innovative devices
can be positioned either at the ends of beams and at the bases of columns, and their peculiar
design not only incites the onset of plastic strains on the selected portions of the equipped
beam elements, but, furthermore, also guarantees the invariance of the bending stiffness of
the overall involved elements.

The first version of LRPD was referred to as limited-resistance rigid perfectly plastic
flexural hinges (LRPH). Later, the design problem was enriched by taking into account
the simultaneous presence of both normal and tangential stresses and adopting a special
analysis of the beam elements by means of smart beam elements specialized to the design
of a frame with assigned capacity curve [40], as well as performing both numerical and
experimental validation. Other formulations, among which one is approximated to be
useful in practical applications, have been proposed to compare the results with those
achieved by different typologies of reduced beam section (RBS) connections [41]; some new
formulations have also been proposed to consider the local buckling and to protect the
welded connections between beams and columns [42].

The actual version, referred to as LRPD, is a beam element with multistep geometry,
constituted by three subsequent I-shaped portions whose web and flange thicknesses are
suitably designed.

In this last version of LRPD, the inner portion with reduced dimensions shows limited
strength and allows the onset of plastic strain, while the outer portions are equal to each
other and show greater web and flange thicknesses to guarantee that the bending stiffness
of the overall involved element is unaltered. As can be easily deduced, the LRPD design
requires the solution to appropriate optimal design problems, and their production has to
be performed in a factory by welding steel plates of appropriate thickness.

Expanding the focus to welded I-shaped sections of any size and referring to beam
elements belonging to frame structures, these sections are subjected to the simultaneous
action of axial force N, shear force T, and bending moment M. It is evident that the
knowledge of both the elastic and plastic limit domains of such sections is essential to
evaluate the overall structural safety. The actual international standards [43] provide
approximated expressions to identify such domains, and, therefore, it is appropriate to
examine this topic in depth to obtain more rigorous expressions for practical applications. In
the literature, some papers have recently been proposed for either elastic [41] or plastic [44],
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domains but the formulations for plastic domains still present approximations, and they
involve standard sections.

Therefore, the aim of the present paper is to propose a rigorous procedure to identify
the plastic domains of welded I-shaped sections subjected to the simultaneous action
of axial force N, shear force T, and bending moment M, assuming an elastic–perfectly
plastic material behaviour and imposing that the section belongs to Class 1 of the EC3
standard [43]. The expressions of the plastic domain contours in the (N, T, M) space, as
well as those in the (N, M), (N, T), and (M, T) planes, will be provided. Some numerical
applications for the case of welded sections and a comparison with the results from the
EC3 standard conclude the paper.

2. Materials and Methods

The mechanical behaviour of the I-shaped welded section sketched in Figure 1, sub-
jected to the simultaneous presence of axial force N, shear force Tz, and bending moment
My, is presented. An elastic–perfectly plastic behaviour of the material is considered, and
the adopted yielding criterion is the Von Mises one:

σ2
0 = σ2

x + 3
(

τ2
xy + τ2

xz

)
(1)

σ0 is the yielding stress of the material. Due to the symmetry of the domains to
be determined with respect to the (N, M), (N, T), (T, M) planes as well as in the space
(N, T, M), in the following section, reference will be made only to positive quadrants
or octants.
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Figure 1. Geometrical sketch of the cross-section with the acting internal forces.

Referring to the geometrical characteristics of the section reported in Appendix A, the
following limit internal forces can be determined:

NE = Np = Aσ0 (2)

ME = WEyσ0 (3)

Mp = Wpyσ0 (4)
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TE =
σ0√

3

Iytw

Sy,G
(5)

Tp =
σ0√

3
tw

(
h − 2t f

)
+ 2

σ0tw√
3·Sy

(
h
2 − t f

)∫ h
2

h
2 −t f

Sy(z)dz (6)

NE , Np , ME , Mp , TE , and Tp are the elastic and plastic limit axial force, bending
moment, and shear force, respectively. In Equation (5), τ0 = σ0/

√
3 is assumed. In

Equation (6) Tp is derived referring to the limit condition sketched in Figure 2, that is,
the web is assumed to be fully plasticized and the presence of τxz in the flanges is taken
into account.
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The following final remarks can be made: when N = Np, then T = 0 and M = 0 result;
when M = Mp , then N = 0 and T = 0 result; when T = Tp , then N ̸= 0 and M ̸= 0
can be.

2.1. Simultaneous Presence of T = Tp and N (M = 0)

The presence of Tp as the acting shear force does not exclude the simultaneous presence
of a limited axial force. In such a case, all along the web, τxz = τ0 = σ0/

√
3 occurs, so

the presence of normal stresses is excluded. Instead, in the flanges, both τxy and τxz are
present, assuming values lesser than τ0, so that the presence of normal stresses is possible.
Referring to Figure 3a, in the ranges h

2 − t f ≤ z ≤ h
2 and tw

2 ≤ y ≤ b
2 , the expression of

τxy is given by the following relation:

∣∣τxy(y)
∣∣ = Tp

(
b
2 − y

)(
h − t f

)
2Iy

(7)

The expression of τxz , in the ranges h
2 − t f ≤ z ≤ h

2 and 0 ≤ y ≤ b
2 (Figure 3b), is

given by:

|τxz(z)| =
Tp

(
h2

4 − z2
)

2Iy
(8)
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By imposing the full yielding condition on all the points of the cross-section in the
ranges h

2 − t f ≤ z ≤ h
2 and tw

2 ≤ y ≤ b
2 , the normal stresses acting in the flange must

respect Equation (1) as equality; that is, taking into account Equations (1), (7), and (8), the
following relation is obtained:

σx(y, z) =

√√√√σ2
0 − 3

T2
p

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2
]

(9)

By imposing the full yielding condition on all the points of the cross-section where
τxy = 0 (i.e., in the ranges h

2 − t f ≤ z ≤ h
2 and 0 ≤ y ≤ tw

2 ), the normal stresses
acting in the flange must respect Equation (1) as equality; that is, taking into account
Equations (1) and (8), the following relation is obtained:

σx(z) =

√√√√√σ2
0 − 3

T2
p

(
h2

4 − z2
)2

4I2
y

(10)Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 19 
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It follows that the limit axial force acting when T = Tp is given by:

Nlim
(
Tp

)
= 4

b
2∫

tw

2


h
2∫

h
2
−t f

√√√√σ2
0 − 3

T2
p

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
dz

dy

+2tw

h
2∫

h
2
−t f

√√√√√√σ2
0 − 3

T2
(

h2

4
− z2

)2

4I2
y

dz

(11)

The pair of values Nlim
(
Tp

)
, Tp represents the internal force condition, which deter-

mines the full yielding of the whole cross-section. It is worth noting that all the pairs of
values N, Tp, with 0 ≤ N < Nlim

(
Tp

)
, always represent limit conditions, but only for

shear; indeed, in this latter condition, the shear force reaches its limit yield value, but the
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web suffers plastic strains due to the shear, while the flanges behave elastically. It follows
that the segment

[
0, Tp; Nlim

(
Tp

)
, Tp

]
in the plane N, T represents the upper plateau of the

relevant yield domain boundary. The entire yield domain boundary is defined in Section 2.4
and is represented in the application stage for two representative cross-sections.

2.2. Simultaneous Presence of T = Tp and M (N = 0)

Analogously, on the grounds of Equations (7)–(10), the limit bending moment acting
when T = Tp is given by:

Mlim
(
Tp

)
= 4

b
2∫

tw

2


h
2∫

h
2
−t f

√√√√σ2
0 − 3

T2
p

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
zdz

dy

+2tw

h
2∫

h
2
−t f

√√√√√√σ2
0 − 3

T2
(

h2

4
− z2

)2

4I2
y

zdz

(12)

As previously noted for the axial force, the pair of values Mlim
(
Tp

)
, Tp represents

the internal force condition, which determines the full yielding of the whole cross-section.
It is worth noting that all the pairs of values M, Tp, with 0 ≤ M < Mlim

(
Tp

)
, always

represent limit conditions, but only for shear; indeed, in the latter condition, the shear force
reaches its limit yield value, but the web suffers plastic strains due to the shear, while the
flanges behave elastically. It follows that the segment

[
0, Tp; Mlim

(
Tp

)
, Tp

]
in the plane

M, T represents the upper plateau of the relevant yield domain boundary. The entire yield
domain boundary is defined in Section 2.5 and represented in the application stage for two
representative cross-sections.

2.3. Simultaneous Presence of T = Tp N and M

A successive step is considering the simultaneous presence of Tp as the acting shear
force together with both the axial force N< Nlim

(
Tp

)
and bending moment M < Mlim

(
Tp

)
.

With the aim of taking into account the influence of both the axial force and bending
moment, reference can be made to the usual procedure utilized for the definition of the
yield domain in the plane N, M. Therefore, each flange is divided in two parts by a segment
parallel to the y-axis; the inner ones are subjected to normal stress related to the axial
force, while the outer ones to normal stresses related to the bending moment. Due to
these remarks, the distance z = zN dividing the above-described parts lies in the range
h
2 − t f ≤ zN ≤ h

2 . The infinite pairs of N, M values which determine the yielding conditions
for the whole cross-section are given by the following relations:

N
(
Tp

)
= 4

b
2∫

tw

2

 zN∫
h
2
−t f

√√√√σ2
0 − 3

T2
p

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
dz

dy

+2tw

zN∫
h
2
−t f

√√√√√√σ2
0 − 3

T2
p

(
h2

4
− z2

)2

4I2
y

dz

(13)
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M
(
Tp

)
= 4

b
2∫

tw

2


h
2∫

zN

√√√√σ2
0 − 3

T2
p

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
zdz

dy

+2tw

h
2∫

zN

√√√√√√σ2
0 − 3

T2
p

(
h2

4
− z2

)2

4I2
y

zdz

(14)

It is worth noting that the deduced values define a plane boundary for T = Tp; the
surface within this boundary is the locus of the points for which the yield condition is
reached referring just the shear force, while the flanges still behave in an elastic condition.

2.4. Yield Domain in N, T Plane (M = 0 )

The next step is to define the boundary of the yield domain N, T. To this goal the
range 0 ≤ T ≤ TP is divided in the following subranges 0 ≤ T ≤ TE and TE ≤ T ≤ Tp.

In the range 0 ≤ T ≤ TE, for an assigned value of the shear force T, the expression of
τxy, for h

2 − t f ≤ z ≤ h
2 and tw

2 ≤ y ≤ b
2 , is given by:

∣∣τxy(y)
∣∣ = T

(
b
2 − y

)(
h − t f

)
2Iy

(15)

In the flange identified by the ranges h
2 − t f ≤ z ≤ h

2 and 0 ≤ y ≤ b
2 , the expression of

τxz is given by:

|τxz(z)| =
T
(

h2

4 − z2
)

2Iy
(16)

In the web, for the range 0 ≤ z ≤ h
2 − t f , τxz is given by:

|τxz(z)| =
T
{

bt f

(
h − t f

)
+ tw

[(
h
2 − t f

)2
− z2

]}
2Iytw

(17)

By imposing the Von Mises full yielding condition in all points of the cross-section
where both tangential stresses are present, the following expression for σx(y, z) is obtained:

σx(y, z) =

√√√√σ2
0 − 3

T2

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2
]

(18)

By performing analogous steps for the flange portion where only τxz(z) acts, the
following relation is obtained:

σx(z) =

√√√√√σ2
0 − 3

T2
(

h2

4 − z2
)2

4I2
y

(19)

By performing analogous steps for the web where only τxz(z) acts, the following
relation is obtained:

σx(z) = σx(z) =

√√√√√√σ2
0 − 3

T2
{

bt f

(
h − t f

)
+ tw

[(
h
2 − t f

)2
− z2

]}2

4I2
y t2

w
(20)
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Finally, the limit axial force Nlim(T) is given by

Nlim(T) = 4

b
2∫

tw

2


h
2∫

h
2
−t f

√√√√σ2
0 − 3

T2

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
dz

dy

+2tw

h
2∫

h
2
−t f

√√√√√√σ2
0 − 3

T2
(

h2

4
− z2

)2

4I2
y

dz

+2tw

h
2
−t f∫
0

√√√√√√√σ2
0 − 3

T2

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
dz

(21)

In the range TE ≤ T ≤ TP a portion of the web is fully plasticized with τxz = τ0 =
σ0/

√
3 due to the acting shear. In the other portions of the web, τxz shows the usual

parabolic expression, while in the flanges, τxy acts with a linear expression.
Let the fully plasticized portion of the web be identified by a value of z = z in the

range of
(

0, h
2 − t f

)
. Clearly, in this portion:

τxz(z) =
σ0√

3
(22)

In the remaining portion of the web, i.e., for z ≤ z ≤ h
2 − t f ,

τxz(z) =
σ0√

3

Sy(z)
Sy(z)

(23)

In the flanges, for h
2 − t f ≤ z ≤ h

2 ,

τxz(z) =
σ0√

3

Sy(z)
Sy(z)

tw

b
(24)

It follows that, for an assigned 0 ≤ z ≤ h
2 − t f , the shear force is given by:

T(z) =
σ0√

3
2twz + 2

h
2
−t f∫

z

σ0√
3

Sy(z)
Sy(z)

twdz + 2

h
2∫

h
2
−t f

σ0√
3

Sy(z)
Sy(z)

twdz (25)

In the web portion outside the fully plasticized one, the acting normal stress must
fulfil the Von Mises yielding condition, leading to the following relation:

σx(z) = σx(z) = σ0

√
1 −

[
Sy(z)
Sy(z)

]2

(26)

and, as a consequence, the axial force Nlim[T(z)] reads
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Nlim[T(z)] = 4

b
2∫

tw

2


h
2∫

h
2
−t f

√√√√σ2
0 − 3

T2(z)
4I2

y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
dz

dy

+2tw

h
2∫

h
2
−t f

√√√√√√σ2
0 − 3

T2(z)
(

h2

4
− z2

)2

4I2
y

dz

+2tw

h
2
−t f∫
z

√√√√√√√σ2
0 − 3

T2(z)

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
dz

(27)

2.5. Yield Domain in M, T Plane (N = 0)

The boundary of the yield domain in the plane M, T can be defined by perform-
ing analogous steps to those in the foregoing section. Therefore, the following relations
are obtained.

In the range 0 ≤ T ≤ TE, Mlim(T) is given by:

Mlim(T) = 4

b
2∫

tw

2


h
2∫

h
2
−t f

√√√√σ2
0 − 3

T2

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
zdz

dy

+2tw

h
2∫

h
2
−t f

√√√√√√σ2
0 − 3

T2
(

h2

4
− z2

)2

4I2
y

zdz

+2tw

h
2
−t f∫
0

√√√√√√√σ2
0 − 3

T2

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
zdz

(28)

In the range TE ≤ T ≤ Tp, Mlim(T) is given by:

Mlim[T(z)] = 4

b
2∫

tw

2


h
2∫

h
2
−t f

√√√√σ2
0 − 3

T2(z)
4I2

y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
zdz

dy

+2tw

h
2∫

h
2
−t f

√√√√√√σ2
0 − 3

T2(z)
(

h2

4
− z2

)2

4I2
y

zdz

+2tw

h
2
−t f∫
z

σ0

√√√√√√√σ2
0 − 3

T2(z)

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
zdz

(29)
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2.6. Yield Domain in N, T, M Space

For T = Tp, the yield conditions for N and M have been already determined in
the foregoing sections by Equations (13) and (14). In the following section, the relations
characterizing the 3D domain N, T, M will be determined separately by considering the
two subsequent ranges: 0 ≤ T ≤ TE and TE ≤ T ≤ Tp.

In the range 0 ≤ T ≤ TE, the 3D domain N, T, M is obtained by assigning a set
of values to T and determining the consequent N, M plane domain boundaries. To this
aim, as usual, increasing values to zN are assigned, with 0 ≤ zN ≤ h

2 , 2zN being the
portion of the cross-section area (symmetric with respect to the y-axis) that reaches the full
plasticization as a result of the presence of shear force and axial force. For the typical value
of T, in the flanges, τxy shows the expression reported in Equation (15), while τxz shows the
expression reported in Equation (16). In the web, the expression of τxz shows the expression
reported in Equation (17). It is important to note that, due to the geometric discontinuities
characterizing the shape of the section under consideration for zN = h

2 − t f , the relations
which define the limit values for N and M are defined for each range: 0 ≤ zN ≤ h

2 − t f and
h
2 − t f ≤ zN ≤ h

2 .
In the range 0 ≤ zN ≤ h

2 − t f , the normal stress acting in the range 0 ≤ z ≤ zN is
given by Equation (20). It follows that the axial force N(zN) is given by:

N(zN) = 2tw

zN∫
0

√√√√√√√σ2
0 − 3

T2

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
dz (30)

and the bending moment M(zN) is given by:

M(zN) = 4

b
2∫

tw

2


h
2∫

h
2
−t f

√√√√σ2
0 − 3

T2

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
zdz

dy

+2tw

h
2∫

h
2
−t f

√√√√√√σ2
0 − 3

T2
(

h2

4
− z2

)2

4I2
y

zdz

+2tw

h
2
−t f∫

zN

√√√√√√√σ2
0 − 3

T2

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
zdz

(31)

In the range h
2 − t f ≤ zN ≤ h

2 , the axial force N(zN) is given by:

N(zN) = 2tw

h
2
−t f∫
0

√√√√√√√σ2
0 − 3

T2

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
dz+

4

b
2∫

tw

2

 zN∫
h
2
−t f

√√√√σ2
0 − 3

T2

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
dz

dy + 2tw

zN∫
h
2
−t f

√√√√√√σ2
0 − 3

T2
(

h2

4
− z2

)2

4I2
y

dz

(32)

The bending moment M(zN) is given by:
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M(zN) = 4

b
2∫

tw

2


h
2∫

zN

√√√√σ2
0 − 3

T2

4I2
y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
zdz

dy

+2tw

h
2∫

zN

√√√√√√σ2
0 − 3

T2
(

h2

4
− z2

)2

4I2
y

zdz

(33)

In the range TE ≤ T ≤ Tp, for 0 ≤ z ≤ h
2 − t f the shear force is given by

T(z) =
σ0√

3
2tw

z +

h
2
−t f∫

z

Sy(z)
Sy(z)

dz +

h
2∫

h
2
−t f

Sy(z)
Sy(z)

dz

 (34)

Once the shear force is given, the corresponding N, M domain boundary is obtained
as described in the foregoing sections. By selecting different values of zN in the range of
z ≤ zN ≤ h

2 and identifying the portion of the web where the yield condition is reached
due to the presence of normal stresses due to the axial force and shear stresses, the relevant
pairs of axial force and bending moment defining the searched boundary can be obtained
by considering the two subranges z ≤ zN ≤ h

2 − t f and h
2 − t f ≤ zN ≤ h

2 separately.
In the range z ≤ zN ≤ h

2 − t f , the axial force N[T(z), zN ] and the bending moment
M[T(z), zN ] are given by:

N[T(z), zN ] = 2tw

zN∫
z

√√√√√√√σ2
0 − 3

T2(z)

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
dz (35)

M[T(z), zN ] = 4

b
2∫

tw

2


h
2∫

h
2
−t f

√√√√σ2
0 − 3

T2(z)
4I2

y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
zdz

dy

+2tw

h
2∫

h
2
−t f

√√√√√√σ2
0 − 3

T2(z)
(

h2

4
− z2

)2

4I2
y

zdz

+2tw

h
2
−t f∫

zN

√√√√√√√σ2
0 − 3

T2(z)

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
zdz

(36)

In the range h
2 − t f ≤ zN ≤ h

2 , the axial force N[T(z), zN ] and the bending moment
M[T(z), zN ] are given by:
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N[T(z), zN ] = 4

b
2∫

tw

2

 zN∫
h
2
−t f

√√√√σ2
0 − 3

T2(z)
4I2

y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
dz

dy

+2tw

zN∫
h
2
−t f

√√√√√√σ2
0 − 3

T2(z)
(

h2

4
− z2

)2

4I2
y

dz

+2tw

h
2
−t f∫
z

√√√√√√√σ2
0 − 3

T2(z)

{
bt f

(
h − t f

)
+ tw

[(
h
2
− t f

)2
− z2

]}2

4I2
y t2

w
dz

(37)

M[T(z), zN ] = 4

b
2∫

tw

2


h
2∫

zN

√√√√σ2
0 − 3

T2(z)
4I2

y

[(
b
2
− y

)2(
h − t f

)2
+

(
h2

4
− z2

)2]
zdz

dy

+2tw

h
2∫

zN

√√√√√√σ2
0 − 3

T2(z)
(

h2

4
− z2

)2

4I2
y

zdz

(38)

3. Numerical Application

In order to test the reliability of the domain formulations defined in the foregoing sec-
tion, in the following section, numerical applications to two welded sections are presented
and compared with the domain defined in the EC3 standard. The selected sections possess
the geometrical characteristics reported in Table 1. As can be easily observed, with the aim
of performing the necessary comparison, the geometry of section W1 is chosen with width,
depth, and thickness equal to those of HEA300, while the geometry of section W2 is chosen
with width, depth, and thickness equal to those of IPE360.

Table 1. Geometrical characteristics of the welded sections under examination.

Section Width b
(mm)

Depth h
(mm)

Web Thickness tw
(mm)

Flange Thickness tf
(mm)

W1 300 290 8.5 14
W2 170 360 8 12.7

The equations defining the proposed domains were written in Mathematica® 14.0
software to obtain the corresponding graphs. For the plain domains, the investigated range
for z was divided into 20 intervals, leading to satisfactory results, which are reported in
the following section. For 3D domains, the investigated range for T was divided into
10 intervals, and for each of these intervals, 100 points were calculated. The overall
computing time for each section was equal to 5 min on HP I7-32 GB RAM workstation.

As the first application, the case of the W1 section was considered. In Figure 4,
the N, M domain obtained by Equations (13) and (14), the N, T domain obtained by
Equations (21) and (27), and the M, T domain obtained by Equations (28) and (29) are
sketched, respectively.
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Figure 5. Proposed yield domain in N, M, T space for section W1: (a) 3D domain with plane domains
evidenced; (b) 3D domain with bounding surface.

In Figure 5a, the plane domains reported in Figure 4 are also reported to enhance the
overall coherence of the proposed approach.

It is worth noting that the boundary of the upper plateau of the domain in Figure 5b
represents the yield conditions for the whole cross-section, while all the points within the
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relevant boundary define the limit conditions related to the shear forces; in other words, for
this plane domain, just the web of the cross sections is fully plasticized, while the flanges
remain in the elastic regime. On the contrary, all the points of the lateral surface represent
yield conditions for the whole cross-section.

To check the affordability of the proposed approach, the plane domains reported
in Figure 4 are compared with those arising from the EC3 international standard and
sketched in Figure 6. It is important to emphasize that the EC3 code does not provide
any information about the interaction between axial and shear force. Two outcomes can
be inferred from the last remark: the first is that no comparison can be made for the N, T
domain sketched in Figure 4b; the second is that no limit condition is derived from the
EC3 for the N, T domain, and, consequently, the 3D N, T, M is that reported in Figure 7.
An examination of Figures 5–7 allows us to draw the following conclusions: the proposed
domains are fully coherent with those proposed by the international standards, but they
represent a rigorous definition of the real yield conditions of the cross-section subjected
to the presence of axial force, shear, and bending moment; furthermore, the proposed
approach can easily be extended to the case of cross-sections subjected to more complex
combinations of internal forces (N, Ty, Tz, Mx, My, Mz), but this point will be considered in
future studies.
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As a second application, the case of the W2 section is considered. In Figure 8,
the N, M domain obtained by Equations (13) and (14), the N, T domain obtained by
Equations (21) and (27), and the M, T domain obtained by Equations (28) and (29) are
sketched, respectively.
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In Figure 9, the N, T, M domain is sketched both with and without a bounding surface.
In Figure 9a, the plane domains reported in Figure 8 are also reported to enhance the overall
coherence of the proposed approach.
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As previously stated, the boundary of the upper plateau of the domain in Figure 9b
represents yield conditions for the whole cross-section, while all the points within the
relevant boundary define limit conditions related to the shear forces, and all the points of
the lateral surface represent yield conditions for the whole cross-section.

To check the affordability of the proposed approach, the plane domains reported in
Figure 8 are compared with those arising from the EC3 international standard and sketched
in Figure 10. As previously stated, the EC3 code does not provide any information about
the interaction between axial and shear force, so no comparison can be made for the N, T
domain sketched in Figure 8b, and, consequently, the 3D N, T, M related to EC3 is reported
in Figure 11. The examination of Figures 9–11 allows us to make analogous remarks, as
previously stated with reference to Figures 5–7.
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4. Conclusions

The proposed approach for the identification of the yield domains of I-shaped welded
steel sections is rigorous and takes full advantage of the well-known classical formulas
usually adopted in beam theory. The comparison with the corresponding domains obtained
in agreement with the EC3 standard confirms the affordability of the proposed approach,
and it allows the fact that EC3 does not propose the formulation related to the determination
of the yield domain for the interaction between axial and shear forces to be overcome. The
proposed approach can therefore be adopted for the analysis of I-shaped welded cross-
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sections of any geometry, allowing for a more reliable design. Possible developments of
the proposed study are represented by an extension to the case of the presence of different
combinations of internal forces and by the specialization of the approach to the case of
rolled sections, as well as to the case of welded cross-sections of any geometry. Moreover,
due to the necessary manufacturing production of the welded cross-section beam elements,
further in-depth analyses must be performed, consisting of appropriate experimental
tests and the related FE computations. All these detailed topics will be the subjects of
future papers.
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A, Iy, WEy and WPy represent the area, the second-order moment of area (with respect
to the y-axis), the elastic modulus (with respect to the y-axis) and the plastic modulus (with
respect to the y-axis), of the given section, respectively.

Finally, the first-order moment of area of the portion of the area of the given section
below the y-axis evaluated with respect to the y-axis, is given by:

Sy,G = bt f

(h − t f

2

)
+

tw

2
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h
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− t f
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