The summit part of Mount Etna revealed by High Resolution DC Electrical Resistivity Tomography coupled with complementary geophysical and soil gas techniques

Anthony Finizola¹, Tullio Ricci², Eric Delcher¹, Raphael Antoine³, Aline Peltier⁴, Marco Neri⁵, Alessandra Sciarra², Julien Bernard⁶, Elodie Brothelande⁶, Sergio Calabrese⁷, Yannick Fargier³, Cyrille Fauchard³, Brice Foucart⁸, Lydie Gailler⁶, Rachel Gusset¹, Ivonne Lazarte¹, Erwan Martin⁹, Cécile Mézon¹, Matthieu Poret¹⁰, Angélie Portal⁶, Matteo Rossi¹¹

¹Laboratoire GéoSciences Réunion, Université de la Réunion, IPGP, CNRS, Saint Denis, La Réunion, France ²Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Roma, Italy

³Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement, Rouen, France

⁴Observatoire Volcanologique du Piton de La Fournaise, IPGP, La Plaine des Cafres, La Réunion, France

⁵Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania - Osservatorio Etneo, Catania, Italy

⁶Laboratoire Magmas et Volcans, Clermont-Ferrand, France

⁷DiSTeM, Università degli Studi di Palermo, Palermo, Italy

⁸Laboratoire de l'Atmosphère et des Cyclones, Université de la Réunion, Sainte-Clotilde, La Réunion, France

⁹Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie, Paris, France

¹⁰Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy

¹¹Engineering Geology, Lund University, Lund, Sweden

Between 25 June and 13 July 2015 a very deep ERT profile (Pole-Dipole configuration, 40m spacing between electrodes and a remote electrode located at ~10km from the acquisition points) has been performed in the framework of the "MED-SUV" Project. Self-potential, soil gas concentrations (CO₂, ²²²Rn, ²²⁰Rn, He, H₂ and CH₄) and soil temperature measurements were coupled to the ERT profile with a spacing of 20m (except for Rn: 40m). The NE-SW profile crossed Etnas summit craters in the middle of the 5720m ERT total length. Six roll along protocols of ¹/₄ of the dispositive (600m out of 2520m tot) have been carried out and, for the first time, a high resolution DC ERT profile reached the noticeable investigation depth of 900m b.g.l.. The results clearly evidence the central shallow hydrothermal system of Mt. Etna with large positive self-potential anomaly, high values of temperature, ²²²Rn, CO₂, He, H₂ and CH₄, in the areas where the conductive bodies reach the surface in correspondence of the summit craters and the 2014 eruptive vents (CO₂, ²²²Rn and temperature). Structural boundaries, such as the Elliptic Crater, were highlighted by a sharp decrease of the self-potential inside the Elliptic Crater. The high activity of ²²⁰Rn (Thoron) outside the Elliptic Crater highlights shallow gas source. The resistive body identified just below the NE crater is probably due to the over-heated plume rising from the top of the shallow feeding system towards the surface.