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Abstract: Estimated larval backward trajectories of three Tuna species, namely, Atlantic Bluefin Tuna
(Thunnus thynnus, Linnaeus, 1758), Bullet Tuna (Auxis Rochei, Risso, 1801) and Albacore Tuna (Thunnus
alalunga, Bonnaterre, 1788) in the central Mediterranean Sea, were used to characterize their spawning
habitats, and to assess the impact of changes due to the major environmental parameters (i.e., sea
surface temperature and chlorophyll-a concentration) on larval development during their advection
by surface currents. We assumed that the environmental variability experienced by larvae along their
paths may have influenced their development, also affecting their survival. Our results showed that
the Tuna larvae underwent an accelerated growth in favorable environmental conditions, impacting
on the notochord development. In addition, further updated information on spawning and larval
retention habitats of Atlantic Bluefin Tuna, Bullet and Albacore Tunas in the central Mediterranean
Sea were delivered.

Keywords: Thunnus thynnus; Auxis rochei; Thunnus alalunga; ichthyoplankton; Mediterranean Sea;
backward trajectories; Lagrangian simulations; spawning habitat; larval habitat; tuna

1. Introduction

The biotic and abiotic conditions of the water column, particularly the surface layers,
can strongly influence the distribution and the abundance of the fish larval stages, thereby
affecting the reproductive success of many fish species [1].

After the spawning events, the fate of eggs and larvae is uncertain. The high mortality
rates of these crucial early life phases have a strong impact on recruitment success [2–4].
Marine currents carry and disperse pelagic eggs and larvae through different habitats [5],
and consequently affect their fate, which is also driven by variability of environmental
forcings and biotic interactions, manifesting deterministic chaos [6]. For instance, pre-
dation rather than physical, chemical and trophic properties of water masses are some
examples [7]. Any environmental forcing and interactions eggs and larvae experiment
along their path can affect the final balance of reproductive success of each individual
spawning event. In addition, the influence of environmental factors may vary according
to the ontogenetic stage [8–10]. Thus, the pelagic environment is so variable and maxi-
mization of the reproductive success is so unpredictable that to increase our understanding
of how the resulting stochastic variability can influence the fate of pelagic fishes, such as
anchovies, mackerel and tunas, is crucial. This large unpredictability is expected to affect
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vastly vagrant species, such as adult Tunas, that migrate from feeding habitat to spawning
grounds at long distances [11]. Indeed, while adults can select the locations to maximize
the reproductive event’s success, stochastic events are more effective in addressing the
recruitment-related processes. In this, to limit the effects of unpredictability, natal homing
behavior is beneficial and is considered a strategy used by many organisms, including
Tunas [12,13], to increase the likelihood of reproductive success and maximize the larval
survival. Tunas follow specific signals to commence reproductive events together, but this
depends on species [14–17]. The spawning behavior of Bluefin Tuna, in particular, can
respond to environmental or physical signs, or a mix of both [18]. In any case, the typical
strategy is to ensure the survival of as many larvae as possible.

Despite the extent of larval life being relatively short compared with the organism’s
lifetime, the fate of early life stages is decisive for the future adult stock [19–21]. In fact,
larval abundances are currently used as a proxy for assessing spawning stock biomass [22].
During this phase, faster-growing individuals are favored over slower-growing individuals,
the latter being exposed for a longer time to a vulnerable status, characterized by higher
mortality rates induced by predation and harder feeding conditions [2]. This time interval
is also very short for Tuna species compared with other marine fish larvae [19].

During the early life phase, fish larvae can make only small individual, mainly vertical,
movements, but they undergo passive travel because they cannot decisively oppose the
currents [19,23,24]. Even if limited in extension, these horizontal movements are essential
because larvae can be removed from nursery areas and advected towards more, or not more
favorable, retention areas [6]. The flexion stage of the notochord is a milestone because
larval swimming and feeding abilities improve significantly [8–10]. They become able to
hunt better, escape predators more effectively, and make their first active movements by
escaping from passive current transport.

Tunas are top predators and targets of fisheries globally. They have an important
ecological and economic role, influencing the structure and function of marine commu-
nities [25]. Often larval fish habitats are associated with specific oceanic regions with
circulation systems generated by particular topographical features [26], and during the
early stages, different tuna species overlap in these habitats globally [27]. In the Mediter-
ranean Sea, Tunas’ larval habitats seem to be linked to specific temperature conditions,
hydrographic characteristics, oceanographic mesoscale structures such as gyres and fronts,
and oligotrophic waters that ensure the larvae encounter fewer predators [28–30].

Three Tuna fish species reproducing in the Mediterranean Sea also overlap their spatial
ranges during the vulnerable reproductive phase, i.e., Atlantic Bluefin Tuna (ABT) (Thunnus
thynnus, Linnaeus, 1758), Bullet Tuna (Auxis rochei, Risso, 1810) and Albacore Tuna (Thunnus
alalunga, Bonnaterre, 1788). Their life strategies are complex and different, but they have
certain key traits in common, including spawning areas and the larval habitats. Fluctuations
in their stock biomass also depend on the planktonic larval ecology, influencing mortality
rates and reproductive success. The geographical distribution of Tuna species is closely
linked to oceanographic conditions, which also influence their spawning behavior [18].
However, how environmental conditions affect larval survival and development during
larval dispersal is still an open question.

Some authors showed that the Strait of Sicily is a spawning area for Tuna species [30–33],
whose hydrodynamic complexity, but limited spatial extent, can represent a useful natural
laboratory to understand the impact of the oceanographic processes and conditions during
the offspring dispersal phase on larval development and survival. Actually, the local
surface circulation is dominated by the flow of the Modified Atlantic Waters (also known
as Atlantic Ionian Stream (AIS) [34]).

Profiting on the planktonic nature of Tuna early life stages, this study analyzed the
backward trajectories of larval specimens of the three Tuna species that overlap spatially
during the summer season, sharing their spawning grounds and larval habitats [28,35].

In order to investigate the fate of the larval stages and their relation with environmental
conditions, we used a Lagrangian simulation approach, which is able to estimate the larval
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path [36] and also to identify, by backward calculation, the spawning areas. This technique
has already been successfully applied to study larval stages and their relationships with
environmental conditions [37,38].

Often larval studies only rely on the environmental conditions observed in the ge-
ographical sites where larvae were collected. Instead, in this study it was possible to
assess the conditions experienced by sampled larval specimens, from their sampling sites
backward to their presumed hatching location (as estimated by Lagrangian simulations).

Here, we verify the hypothesis that the environmental conditions experienced by
fish larvae along the phase of passive transport can affect their developmental rates.
In addition, the observed changes in environmental factors were related to the notochord
development state.

2. Materials and Methods
2.1. Field Sampling

Ichthyoplankton samples were derived from oceanographic surveys carried out in the
Strait of Sicily during the summer period (June to August) from 2010 to 2016 (Figure 1).
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Figure 1. Study area.

The sampling was based on a regular grid of stations (1/10◦ × 1/10◦ in the continental
shelf area, 1/5◦ × 1/5◦ in the slope area) distributed along parallel transects perpendicular
to the southern coast of Sicily.

Fish larvae were collected by oblique tows of a Bongo 40 plankton net and oblique
or horizontal tows of a Bongo 90 plankton net, carried out at a ship speed of 2 knots. The
sampling nets were towed from the surface to 100 m depth (Bongo 40) and in the surface
mixed layer (Bongo 90).

2.2. Laboratory and Image Processing

After sampling, samples were immediately stored on-board in 70% ethanol,
and subsequently processed in the land-based laboratory to identify Tuna larvae at the
highest possible taxonomic level, according to Rodríguez et al. [4]. Images of each larva
were acquired using stereomicroscopes with integrated cameras. The dedicated Image
Pro Plus © (IPP) image management and processing software was used to obtain some
morphometric parameters from the photos. The considered measurements derived from
Catalán et al. [39].

2.3. Age Estimation

To assess the age (in days) of each individual Tuna larval specimen, we used the empir-
ical relationships estimated in previous studies in the Mediterranean Sea on the daily incre-
ment of otolith rings related to standard length (SL) [40,41]. In particular, for Bullet Tuna,
we used the relationship estimated by Laiz-Carrión et al. [41] for Mediterranean waters.
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2.4. Backward Trajectories Calculation

Once larval ages of collected Tuna larval specimens were calculated, the corresponding
larval backward trajectories (in terms of duration of simulation in days) were assessed,
in order to infer the location of spawning grounds and the (satellite-based) environmental
conditions that larvae experienced along their path, from the sampling sites backward
towards the hatching sites.

Specifically, larval trajectories were simulated using General NOAA Oil Modelling
Environment (GNOME), a software package designed by the NOAA Hazardous Materials
Response Division [42]. Lagrangian elements (particles) movement is simulated within a
geospatially mapped environment [43], which offers various opportunities for controlling
input data to describe the transport of passive particles (in the present study, Tuna larvae)
released at different sites [44,45]. In this study, the daily surface current field, i.e., the main
“mover” of the fish larvae, used for the simulation runs, were from altimetry products, as
distributed by the Copernicus Marine Service (CMEMS, http://marine.copernicus.eu/,
accessed on 20 October 2021). In addition, horizontal diffusion was treated as a random
walk process, calculated from a uniform distribution [46]. The GNOME default coefficient
of 105 cm2 s−1 was applied.

The influence of wind on surface circulation patterns was also taken into account,
starting from a value-added 6-hourly gridded analysis of ocean surface winds [47]. Pre-
cisely, wind speed and directions were calculated from a zonal and meridional surface
(10 m) and wind information was extracted using a 2.5 degrees of latitude × 2.5 degrees
of longitude global grid for the geographical area 33◦–40◦ N to 8◦–20◦ E, as available
in the link https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, accessed on
20 October 2021 Extracted wind time series were included as additional external movers
within GNOME backward Lagrangian simulations.

The start of the simulation runs was fixed at the sampling date of each collected
larval specimen, for a duration in days corresponding to the estimated age of each larva
based on its length, using the empirical relationships reported by García et al. [40] and
Laiz-Carrión et al. [41]. In each simulation run, the release of particles was instantaneous
from the selected sampling sites, corresponding to the geographical locations where at least
one of the three fish species under study was recorded. The simulation consisted of three
steps: (1) 1000 particles were positioned in each location of the selected sampling stations
in the study area; (2) using GNOME, the direction and speed of the transport trajectory
were calculated for the fixed duration of each simulation; and, (3) for each sampling station
and each of the three species, the average final positions of released particles at the end
of simulation runs, approximating the geographical location of the spawning sites, were
evaluated and plotted.

The effect of the wind on the dispersal of particles was related to the expected vertical
distribution of fish larvae in the water column. Given that the bulk of the larval abundance
was likely to be concentrated from the surface down to the maximum depth of the mixed
layer (from the analysis of temperature profiles using CTD probe, it was about 12 m on
average over the six summer surveys included in our study), this reference depth layer was
adopted for the simulations.

Taking into account the formulation reported in Patti et al. [36], the windage effect
in Lagrangian simulations, i.e., the movement of particles induced by the wind, was set
in terms of fractions of wind speed in the range 0.93–0.23%, with values corresponding,
respectively, to depths of 1 m and 10 m.

Finally, we obtained probability clouds for the estimated backward trajectories of
the released particles (see Supplementary Material, Figure S1h). The paths that impinged
the coastline were excluded from the analyses. The calculation of centroids of the daily
dispersion clouds made it possible to assess the backward larval path, to the hatching
sites. The areas of these clouds represented the basis for the subsequent characterization of
environmental conditions.

http://marine.copernicus.eu/
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
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2.5. Remote Sensing Dataset

Satellite-based datasets were used to characterize the environmental conditions occur-
ring in the identified areas. In particular, sea surface temperature (SST) and chlorophyll-a
concentration (Chl-a) values were extracted for each point within the areas covered by each
daily dispersion cloud. Subsequently, for each daily area, the average SST and Chl-a values
were calculated. All satellite information was from the E.U. Copernicus Marine Service.
In particular, we used daily data, with a spatial resolution of 0.01◦ × 0.01◦ for SST [48],
and of 1 km×1 km for Chl-a [49–53]. The reference geographical domain for SST and Chl-a
data was, 34.5–39.0◦ N and 9–16.5◦ E during the spawning seasons (June-August) of years
2010 to 2016. This way, daily environmental conditions were associated with the paths of
larval dispersion.

In order to investigate how larval development stages were affected by the environ-
mental conditions experienced during their dispersion, the average SST and Chl-a values
were obtained to include all simulation days in the calculation, i.e., from the catch day,
backward to the estimated hatching day. In addition, in order to better characterize the
spawning habitats of three Tuna species, bottom depth data extracted from the “Marpap
package” [54] (ETOPO1 database) were associated with the final positions of backward
larval trajectories.

2.6. Stages Classification

According to the development of the notochord, each larva was classified in pre-
flexion, flexion and post-flexion stage, following the classification based on morphological
characteristics of the notochord and caudal fin rays made by Blanco et al. [55].

We also divided each larval developmental stage into normal, early and late develop-
ment, following the distribution of the SLs for each of the three Tuna species analyzed in
this study.

The sub-categories were selected based on the quartiles of the frequency distributions
of the three macro-categories (Figure 2, Table 1). Among the larvae evaluated in pre-flexion
stage, normal pre-flexion was attributed for SL values below the 75th percentile, and late
pre-flexion for SL values greater than or equal to the 75th percentile. For larvae evaluated
in flexion stage, early flexion was attributed to larvae with an SL lower or equal to the 25th
percentile, normal flexion for SL values between the 25th and the 75th percentile, and late
flexion for SL values greater than or equal to the 75th percentile. Lastly, among larvae in
post-flexion stage, early post-flexion was attributed for SL values below or equal to the
25th percentile, and normal post-flexion for values greater than the 25th percentile.
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The comparisons were accomplished, including all available data in the analysis
(surveys 2010–2016), and on a year-by-year basis, when the number of observations was
large enough.
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Table 1. Classification of Tuna larvae in developmental categories and corresponding number of
observations by species.

Macro-Category Sub-Category ABT Bullet Albacore

Pre-flexion
Normal 98 63 21

Late 33 22 7

Flexion
Early 10 16 10

Normal 18 31 20
Late 10 16 10

Post-flexion
Early 9 8 2

Normal 24 23 5
Non-parametric Kruskal–Wallis test was used to evaluate the significance of the differences in the medians of
environmental parameters (SST and Chl-a) among the larval developmental stages. Pairwise comparisons were
then carried out using the Wilcoxon rank-sum test in case of significant differences between groups (p < 0.05).

3. Results
3.1. Backward Trajectory Calculation

The estimated maximum larval age was 21 days, attributed to an ABT specimen
sampled in the 2016 survey. Considering the whole available dataset, the observed average
ages of collected larvae were 5 days for ABT, 8 days for Bullet Tuna, and 7 days for Albacore
Tuna. The year with the lowest average age for ABT was 2010, due to the large number (60)
of 1-day old specimens collected in the same sampling site, whereas the highest mean ages
were recorded in surveys in 2014 and 2015. The estimated mean age of Bullet Tuna larvae
was relatively stable over the sampling years, except in 2016, which was characterized by a
low number of observations. Albacore Tuna larvae showed the lowest estimated average
ages in all surveys.

The backward trajectories of some longer-lived larvae, by species and by year are
reported in Figures S1–S3. It is worth noting the case of ABT and Bullet in 2014, where
the trajectories mimic the average AIS path (Figures S1e and S2e). Pattern distribution of
ABT larvae origins evidences their concentration in the southern part of the study area,
off the southernmost tip of Sicily (Capo Passero) (Figure 3a). This applies also to many
of the larvae whose estimated hatching site is in the western sector (Figure S1). Similar
patterns are evident for the other two Tuna species, even though for Bullet Tuna the final
positions of backward trajectories appear to be distributed in shallower areas (Figure 3b,c).
In general, the paths of larvae of the same age can differ considerably. Surface currents can
advect them at relatively long distances, while in some cases they can be trapped by local
mesoscale oceanographic structures.

The variability in spawning sites seems to reflect the complex hydrodynamics of the
study area. In particular, the Capo Passero area, characterized by a thermohaline front and
warmer/saltier surface waters favoring the aggregation of larval stages of different fish
species, including Tunas [30,56–58], confirms its features also by the analysis of backward
trajectories. Generally, Tuna larvae that hatch in this area are trapped by the thermohaline
front and by the local mesoscale circulation, which favor concentration processes also for
larvae born elsewhere as long as they are advected there by the average path of surface
currents (AIS). Larvae originating from spawning events in the Ionian Sea tend to also
converge south of Capo Passero, where they join with larvae from the western sector
(Figures S1–S3).

3.2. Characterization of Estimated Hatching Sites

The observed temperatures at origin points of estimated backward trajectories suggest
different hatching temperatures for the three species (Table 2, Figure 4a,d,g). Specifically,
the minimum temperature value is about 3 degrees higher for Albacore compared with
ABT. However, the average temperature values are all in the range of 25–26 ◦C. In addition,
while ABT larvae mainly occurred in waters with a surface temperature around 25–26 ◦C,
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Bullet showed a wider thermal range skewed towards warmer waters. The same applies to
Albacore, though results for this species is based on few observations.
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Figure 4b,e,h shows that sampled larvae of the three species originated in highly
oligotrophic waters, with quite low average concentration values (Table 2) especially
for ABT.

As far bottom depth distribution is concerned, for ABT, the hatching site is more
concentrated below −500 m. The median depth of Bullet (Table 2) also reflects the shallow
water habitat of this species. For the same species, greater bottom depth values refer to
origin points located in the Ionian Sea, and reflect the local orography, characterized by a
narrow shelf area and a very steep continental slope but very close to the coastline.

Table 2. Environmental conditions, SST, Chl-a and bottom depth, in the estimated hatching sites for
the three Tuna species.

Environmental Variable ABT Bullet Albacore

SST
Minimum value 20.47 20.71 22.82
Maximum value 28.67 28.67 28.47

Median value 25.16 25.98 26.32

Chl-a
Minimum value 0.029 0.033 0.029
Maximum value 0.174 0.280 0.346

Median value 0.048 0.055 0.049

Bottom Depth
Minimum value −1607 −2470 −2484
Maximum value −15.7 −9.00 −11.28

Median value −283 −209 −507
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3.3. Relationships among Developmental Larval Traits and Environmental Forcings

Comparing the different developmental stage sub-groups (i.e., “Early”, “Late” and
“Normal”) in relation to the impact of the environmental conditions experienced by larvae
along their paths, some differences were found. In the case of ABT at the flexion stage,
the Kruskal–Wallis test did not evidence any significant difference. On the contrary, for
Chl-a, the difference between normal pre-flexion and late pre-flexion larvae was significant
(p < 0.001; Figure 5a), with late pre-flexion associated with higher Chl-a concentrations.
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For Bullet larval specimens at the flexion stage, the Kruskal–Wallis test evidenced a sig-
nificant overall difference in SST experienced along the path between sub-groups (p < 0.01;
Figure 5b). Using pairwise comparisons, a significant difference was found between early
and late development (Wilcoxon test, p < 0.01). Therefore, the early development larvae
were found at higher temperatures and the late development larvae at lower temperatures.

No significant differences were found for Albacore across all years.
Examining ABT data by year, only in 2016 were some significant differences detected

when comparing “normal pre-flexion” and “latepre-flexion” larval stages vs. SST (p < 001;
Figure 6a) and vs. Chl-a (p < 0.001; Figure 6b), with late pre-flexion associated with lower
SST and higher Chl-a concentrations.

No significant differences were found for Bullet or Albacore Tunas for the year-by-
year analysis.
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4. Discussion

The obtained results represent a further step forward the characterization of common
spawning areas shared by three important Tuna species in the Strait of Sicily. Larval sam-
pling was conducted during the spawning season, covering an area where larvae experience
their development. Spatial distribution analysis of larvae highlighted different patterns
among species. In addition, environmental variables seem to be helpful in describing the
differences in the larval developmental stages.

The estimated ages allowed us to verify heterogeneity from year to year, indicating
multiple spawning events within the studied area at different times. In fact, Tuna fish
are multiple batch spawners, and the reproductive events follow one another within their
reproductive season [59].

The analysis of backward trajectories showed the paths of each individual larva
from the hatching to the catch. In agreement with other studies focused on the same
region, AIS was one the main drivers affecting larval advection [36,60,61]. The surface
current transported the planktonic fish stages and concentrated them in the southeastern
retention area, where other larvae coming from the eastern sector also converge. Through
backward Lagrangian simulations runs, the environmental conditions experienced by
larvae throughout their lives were evaluated, starting from the origin points of their
estimated backward trajectories, which represent the hatching sites. Considering the
relatively short hatching time of the Tuna species (e.g., for ABT [62]), this study improved
our knowledge about the spawning environment selected by the adults in the study area.
The geographical positions of the origin points of backward larval trajectories varied
significantly by species and by year. However, in all cases, the larval trajectories reflected
the dominant path of the local surface current in the spawning and adjacent areas.

The larvae born at the edge of the thermohaline front tended to be trapped in this area.
It was also interesting to note how larvae with similar age, depending on their origins,
could experience different paths, covering large or short distances, and could often be
found in common retention areas. This, of course, could also impact their development
and/or survival. The events that affect larval development, along their path from the
spawning sites, are fundamental in assessing reproductive success. In this framework,
local oceanographic processes play a crucial role in determining the spatial distribution of
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the planktonic fish stages, controlling the advection from the spawning areas to more or
less suitable retention zones [63,64]. Other important factors affecting larval development
and survival are the maternal effect and stochastic events during transport. The choice
of the spawning grounds by adult specimens impact on the environmental conditions
experienced by their offspring. Even the water masses’ origin can affect larval growth,
as shown by previous studies on Bullet Tuna [41,65,66].

The analysis of available satellite data (SST and Chl-a) and bathymetry associated
with larval trajectories has increased our knowledge about the Tuna spawning habitat in
the Strait of Sicily. Some observed patterns, such as the coastal attitude of Bullet or the
different distributions depending on water temperature, correspond to what was verified
by previous studies on the larval habitat [30]. In particular, backward trajectories analysis
highlighted the different origins for larvae from the same sampling area, also delivering
further insights into the maternal effect.

We hypothesized that the environmental conditions experienced by larvae along
their passive drifting phase would have affected the development of these organisms.
In fact, the individual’s experience along the paths appears to influence the stage of the
notochord, anticipating or delaying its development for ABT and Bullet. We hypothesized
that warmer waters could anticipate development, and low Chl-a indicated unfavorable
nutritional conditions, slowing the notochord development. Our results confirmed the
hypotheses regarding temperatures, as early developing larvae were found in warmer
waters, especially in the case of Bullet. For Chl-a, we found the opposite trend to what
was hypothesized. This could be due to competition phenomena. We hypothesize that
the occurrence of more competitors and predators in richer environments can drive lower
feeding rates and energy waste due to escaping and hunting behavior, thereby leading
to late notochord development. In this framework, warmer temperatures could lead
Bullet, the fastest-growing species among those analyzed here [40], to a more accelerated
development than the other Tunas. This, in turn, could lead to resource competition
phenomena and/or early juvenile Bullet Tuna preying behavior on other Tuna species,
as hypothesized by Bakun and Broad [67].

Condition, growth and survival in marine fish larvae are influenced by food [68],
temperature [69], hydrographic patterns [70], and environment in general [71]. However,
the parents’ genotype could also be an essential factor [72,73]. In this study we did not
evaluate any genotypic differences and a parental effect due to purely genetic factors.
Embryo and larval characteristics, developmental rate, and metabolism are affected by the
parents’ genotype [72,73]. Together with the environmental parameters, they can lead to
the manifestation of morphological differences and can affect the success of recruitment.

More in-depth studies involving genetic aspects are recommended, especially after
recent tagging studies on adult ABT in the same reproductive area have shown different
adult migratory behaviors [74]. However, the same study did not clarify whether these
migratory patterns are related to two different subpopulations or whether the observed
behavior is linked to different spawners’ sizes. Therefore, the origin of the ABT population
in the area is still an open question.

The early life stage analyzed here represents the most critical period in the life history
of fish, affected by the highest mortality rates [75]. Understanding Tuna population dynam-
ics is essential for determining the fundamental features of survival processes in the early
life stages [76]. It is also necessary to understand the mechanisms affecting recruitment
success for the three Tuna species analyzed here. In fact, understanding the links between
ocean patterns, spatial distribution and paths of early life stages, and other environmental
parameters is crucial for the sustainable management of fishery resources [77,78].

5. Conclusions

The Lagrangian simulation approach adopted in this study has improved our under-
standing of Tuna reproductive biology processes and early life history. The origin points
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calculated varied significantly by species and by year, but the final position where the
larvae were found reflect the surface current in the area.

We analyzed organisms that originated from multiple spawning events, finding that,
regardless of the spawning area, the larvae released into the area ended up concentrating
in a common retention area related to a local frontal mesoscale oceanographic feature.
Therefore, the AIS seems to be fundamental in larval advection, and the front plays a
key role trapping the larvae in a specific environment. The spawning habitat and the
larval habitat have common characteristics, although some larvae have undertaken long
transport routes.

We have shown that the environmental conditions experienced by the organisms,
in accelerating or slowing down some relevant features of individual fish development
(i.e., pre-flexion and flexion stages), could be fundamental for their survival from the first
days of life. However, there is still a need for further insights into the physical processes
affecting larval fate. Finally, our approach was intended to provide useful information
to support Tuna fisheries management. Identifying spawning and retention areas for
spawning products could be the baseline for developing fishery-independent recruitment
indices. Furthermore, as suggested by Mariani et al. [23], better information on spawning
areas and larval habitats can help establish marine protected areas or areas closed to fishing,
for a valid protection strategy for these important fish species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14101568/s1, Figure S1: ABT backward trajectories maps
year-by-year, and an example of the cloud points derived from Lagrangian simulations; Figure S2:
Bullet backward trajectories maps year-by-year; Figure S3: Albacore backward trajectories maps
year-by-year.
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