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1. Introduction

Tensors, either as multidimensional arrays of data in applied settings or, more classi-
cally, as representations of multilinear applications among vector spaces, have recently 
attracted renewed attention: see, for instance, [4,18]. Among the many fascinating and 
intricate problems in the study of tensors, the calculation of any of the various estab-
lished notions of their rank marries theoretical interest and practical applications. In 
particular, the determination of the multilinear rank of a tensor, i.e. the ranks of all 
its flattening matrices, is part of the process needed to arrive at a core of a tensor, see 
Section 2.3. Being able to successfully and efficiently compute a core of large tensors can 
be a crucial step for concrete applications in image processing, computer engineering, 
and data management.

The authors have been interested for a while in a class of tensors that arise naturally 
in computer vision. In the classical case of reconstruction of a three-dimensional static 
scene from two, three, or four two-dimensional images, these tensors are known as the 
fundamental matrix, the trifocal tensor, and the quadrifocal tensor, respectively, and 
have been studied extensively, see for example [1–3,6,15,17,19]. In a more general setting, 
these tensors, called Grassmann tensors, were introduced by Hartley and Schaffalitzky, 
[16], and were studied by three of the authors in several articles [7–11,13] as well as by 
two of the authors and other collaborators, [12].

In [5], the authors leveraged the possibility of obtaining a canonical form for a general 
trifocal Grassmann tensor to compute its rank with a closed formula.

In this work we turn our attention to the multilinear rank of trifocal Grassmann 
tensors and to the related problem of computing their core. Under the same natural 
genericity assumption used in [5], see Assumption 2.1, and similarly leveraging the re-
sulting canonical form, in Section 3 the multilinear rank of a trifocal Grassmann tensor 
is computed, with closed formulas as well.

A standard approach for the computation of a core C of a tensor T is to utilize 
the so-called Tucker decomposition [20], often in the form of a higher order singular-
value decomposition (HOSVD), [14,21]. The Tucker decomposition combines the singular 
value decompositions of all the flattenings Ti = UiΣiW

∗
i of the tensor in a multilinear 

multiplication C = (U∗
1 , . . . , U

∗
i , . . . ) · T where ∗ denotes the adjoint matrix. Leveraging 

once again the canonical form for a trifocal Grassmann tensor, Section 4.2 shows how to 
compute a core in a simpler alternative way. Properties of the canonical form of trifocal 
Grassmann tensors allow for a direct, immediate computation of its core. This canonical 
core can then appropriately be pulled back to produce a core for the original tensor. As 
part of this process, singular values of appropriate matrices still need to be computed, 
but the size of the matrices involved is, in general, significantly smaller than in the 
standard Tucker decomposition or HOSVD.

Examples of the explicit computation of the multilinear rank and the core are provided 
in Section 5.
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2. Notation and background material

2.1. Notation

Throughout this work we assume that the underlying field is the field C of complex 
numbers. Given a matrix A with complex entries, A∗ denotes its adjoint matrix. For any 
positive integer k, Ik denotes the k × k identity matrix. A vector space V of dimension 
r over C is sometimes referred to as an r-space and V ∗ denotes its dual, i.e. V ∗ =
HomC(V, C).

2.2. Preliminaries on tensors

Notation and definitions of tensors and their ranks (rank, multilinear rank or F -rank, 
P-rank) used in this work are relatively standard in the literature. They are all contained 
in [18] and briefly summarized below.

Given vector spaces Vi, i = 1, . . . t, the rank of a tensor T ∈ V1 ⊗V2 ⊗ ... ⊗Vt, denoted 
by R(T ), is the minimum number of decomposable tensors needed to write T as a sum. 
Recall that R(T ) is invariant under changes of bases in the vector spaces Vi (see, for 
example, [18], Section 2.4).

This work focuses on a special class of trilinear tensors. For the convenience of the 
reader, and to fix our notation, it is useful to recall the explicit construction of the 
flattening matrices of a three dimensional tensor.

Let V1, V2, V3 be vector spaces of dimension n1, n2, n3, with chosen bases {αi}, {βj}, 
{γk}, respectively.

Let T = [Ti,j,k] ∈ V1 ⊗ V2 ⊗ V3. Interpreting V1 ⊗ V2 ⊗ V3 as V1 ⊗ (V2 ⊗ V3), we get

T =
∑
i

αi ⊗ (
∑
j,k

Ti,j,k(βj ⊗ γk)) (1)

and the corresponding matrix, of size n1 × (n2n3), which is the flattening T1, and has 
the following block structure:

T1 =

⎡
⎢⎣

T1,1,1 T1,2,1 . . . T1,n2,1 T1,1,2 . . . T1,n2,2 . . . T1,1,n3 . . . T1,n2,n3
T2,1,1 T2,2,1 . . . T2,n2,1 T2,1,2 . . . T2,n2,2 . . . T2,1,n3 . . . T2,n2,n3

...
... . . .

...
Tn1,1,1 Tn1,2,1 . . . Tn1,n2,1 Tn1,1,2 . . . Tn1,n2,2 . . . Tn1,1,n3 . . . Tn1,n2,n3

⎤
⎥⎦ .

In the same way, paying attention to the cyclic nature of indices i, j, k, one can define 
flattenings T2 and T3.

One then defines the multilinear rank (or F-rank) of the tensor T as F-rk (T ) =
(rk (T1), rk (T2), rk (T3)).

Remark 2.1. Let Mr ∈ GL(nr) be invertible matrices for r = 1, 2, 3. Let Tr be the r-th 
flattening of a tensor T as above. Then the F-rk (T ) is invariant under the left action 
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of GL(nr) and the right action of GL(nsnt) for s, t �= r. In particular the F-rk (T ) is 
invariant under the right multiplication of Ms ⊗Mt ∈ GL(nsnt).

2.3. Core of a tensor

Let T = [Ti,j,k] ∈ V1 ⊗ V2 ⊗ V3, where, as before, V1, V2, V3 are vector spaces of di-
mension, respectively, n1, n2, n3, with fixed bases and assume that F-rk (T ) = (r1, r2, r3). 
Standard procedures in applications associate a core tensor C to T . In this paper, follow-
ing [20], by a core tensor of T we mean a tensor C that satisfies the following properties:

1. C ∈ Z1 ⊗ Z2 ⊗ Z3, where Z1, Z2, Z3 are vector spaces of dimension, respectively, 
r1, r2, r3;

2. there exist semi-orthogonal matrices Uj , i.e. U∗
j Uj = Irj , of size nj × rj for j = 1, 2, 3

such that:

a. the multilinear multiplication (U∗
1 , U

∗
2 , U

∗
3 )· gives a map

(U∗
1 , U

∗
2 , U

∗
3 )· : V1 ⊗ V2 ⊗ V3 → Z1 ⊗ Z2 ⊗ Z3

with

(U∗
1 , U

∗
2 , U

∗
3 ) · T = C;

b. the multilinear multiplication (U1, U2, U3)· gives a map

(U1, U2, U3)· : Z1 ⊗ Z2 ⊗ Z3 → V1 ⊗ V2 ⊗ V3

with (U1, U2, U3) · C = T .

We recall here the higher-order singular value decomposition (HOSVD) procedure 
which is the standard approach to the computation of a core of a tensor. It generalizes 
to tensors the standard (compact) singular value decomposition process for matrices.
Let T be a tensor of order 3 with flattening matrices T1, T2, T3 and F-rk (T ) = (r1, r2, r3). 
Then T1 is a n1 × (n2n3) matrix and one can perform the (compact) SVD to T1:

T1 = U1Σ1W
∗
1 ,

where Σ1 is a r1 × r1 square diagonal matrix and where U1 and W1 are, respectively, 
n1 × r1 and (n2n3) × r1 matrices such that U∗

1U1 = W ∗
1 W1 = Ir1 . Similarly, one can 

consider the SVD of T2 and T3, namely T2 = U2Σ2W
∗
2 , T3 = U3Σ2W

∗
3 .

The HOSVD procedure for the construction of a core C of T consists then of the 
following multilinear multiplication:

(U∗
1 , U

∗
2 , U

∗
3 ) · T = C.
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2.4. Multiview geometry and Grassmann tensors

For the convenience of the reader we recall standard facts and notation in the context 
of projective reconstruction in computer vision. A scene is a set of N points {Xi}i=1,...,N
in Pk = P (W ), where W is a vector space of dimension k+1. A camera P is a projection 
from Pk onto the target space (view) Ph = P (V), where V is a vector space of dimension 
h + 1, h < k, from a linear center CP = P (K), where K is a vector space of dimension 
k−h. Once bases have been chosen in W and V, P can be identified with a (h +1) ×(k+1)−
matrix of maximal rank, defined up to a constant, for which we use the same symbol P . 
With this notation, K is the right annihilator of P , and using the same notation X for 
the point’s homogeneous coordinates in the chosen bases, P (X) denotes the image P ·X
of a point X in Pk.

In the context of multiple view geometry, one considers a set of multiple images of 
the same scene, obtained from a set of cameras Pj : Pk \ Cj → Phj where Pk = P (W ), 
Phj = P (Vj), and Cj = P (Kj). Two different images Pl(X) and Pm(X) of the same 
point X are corresponding points and, more generally, r linear subspaces Sj ⊂ Phj , 
j = 1, . . . , r are said to be corresponding if there exists at least one point X ∈ Pk

such that Pj(X) ∈ Sj for j = 1, . . . , r. In [16] Hartley and Schaffalitzky introduced 
Grassmann tensors which encode the relations between sets of corresponding subspaces 
in the various views. We recall here the basic elements of their construction.

Consider, as above, a set of projections Pj : Pk \ Cj → Phj , j = 1, . . . , r, hj ≥ 2
and a profile, i.e. a partition (α1, α2, . . . , αr) of k + 1, where 1 ≤ αj ≤ hj for all j, and ∑

αj = k + 1.
Let {Sj}, j = 1, . . . , r, where Sj ⊂ Phj , be a set of general sj-spaces, with sj = hj−αj , 

and let Sj be a maximal rank (hj + 1) × (sj + 1)-matrix whose columns are a basis for 
Sj . By definition, if all the Sj are corresponding subspaces there exist a point X ∈ Pk

such that Pj(X) ∈ Sj for j = 1, . . . , r. In other words there exist r vectors vj ∈ Csj+1

j = 1, . . . , r, such that:

⎡
⎢⎢⎢⎢⎣
P1 S1 0 . . . 0
P2 0 S2 . . . 0
...

...
...

...
...

Pr 0 . . . 0 Sr

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

X
v1
v2
...
vr

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎥⎦ . (2)

The existence of a non trivial solution {X, v1, . . . , vr} for system (2) implies that the 
system matrix has zero determinant. This determinant can be thought of as an r-linear 
form, i.e. a tensor, in the Plücker coordinates of the spaces Sj . This tensor is called the 
Grassmann tensor T with profile (α1, . . . , αr).

More explicitly, the entries of the Grassmann tensor are computed as maximal minors 
of the matrix:
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[
P1

T P2
T . . . Pr

T
]
, (3)

obtained by selecting αj columns from Pj
T , for j = 1, . . . , r. Notice that each column in 

PT
j can be thought of as an element in P (Vj), where Vj =

∧sj+1((W/Kj)∗) is the vector 
space of dimension nj =

(
hj+1

hj−αj+1
)

=
(
hj+1
sj+1

)
such that the Grassmannian G(sj , hj) ⊂

P (Vj) = P (
∧sj+1((W/Kj)∗). As a consequence, T ∈ V1 ⊗ V2 ⊗ ... ⊗ Vr. Therefore for 

each j = 1, . . . , r, an sj-dimensional subspace Sj can be described as the intersection of 
αj = hj − sj hyperplanes of Pk containing P (Kj). In other words, the columns of each 
PT
j may be viewed as hyperplanes of Pk containing the center Cj . Moreover, the choice 

of αj columns of PT
j gives an element in Gr(αj − 1, hj) ⊂ P (

∧αj (W/Kj)) which is the 
dual Grassmannian of Gr(sj , hj).

It is useful to observe that a right action of GL(k+1) on (3), i.e. a change of coordinates 
in the ambient space Pk, does not alter the tensor, as all entries are multiplied by the 
same nonzero constant.

As far as the effect of changes of coordinates in each of the view we have the following 
remark:

Remark 2.2. The F-rk (T ) is invariant under change of coordinates in each of the views 
Phr . From Remark 2.1 it is enough to show that any left action of GL(hj +1) on PT

j , i.e. 
a change of coordinates in the corresponding view, induces a linear invertible transfor-
mation on Vj . Indeed, any transformation Hj ∈ GL((W/Kj)) yields the transformation ∧αj Hj on the Pluc̈ker coordinates of Gr(αj − 1, hj). Since the tensor is expressed in 
terms of the Plücker coordinates of the Grassmanniann Gr(sj, hj), the transformation 
induced on the tensor by the matrix Hj is 

∧sj+1 (
H∗

j

)−1, where the adjoint (transpose) 
is needed because of the dual coordinates and where the inverse appears because of the 
action on the coefficients of the tensor T .

2.5. Canonical form of trifocal Grassmann tensors

In [5] the authors showed that, under some generality assumptions, one can obtain a 
canonical form T c for a trifocal Grassmann tensor T that leads to a direct computation of 
its rank. It turns out that the same canonical form allows us to successfully compute the 
multilinear rank of T as well, under the same genericity assumption. For the convenience 
of the reader here we summarize the construction of the canonical form T c for T , referring 
the reader to [5] for additional details.

Let T be a trifocal Grassman tensor corresponding to projection matrices Pj : Pk \
Cj → Phj , j = 1, 2, 3, with profile (α1, α2, α3), and let L1, L2 and L3 be the vector 
spaces of dimension h1 + 1, h2 + 1 and h3 + 1 respectively, spanned by the columns of 
P1

T , P2
T and P3

T . Let Λ1 = P (L1), Λ2 = P (L2) and Λ3 = P (L3).
We consider, for each triplet of distinct integers r, s, t ∈ {1, 2, 3} the following integers:

ir,s = hr + hs + 1 − k; (4)
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i = h1 + h2 + h3 + 1 − 2k; (5)

jr,s = ir,s − i = k − ht. (6)

Notice that the definition of jr,s is independent of the order of the indices, i.e. jr,s =
js,r. Our generality assumption is the following:

Assumption 2.1. For any choice of r, s, t with {r, s, t} = {1, 2, 3}, Lt and the intersection 
Λrs = Lr ∩ Ls span Ck+1, or, equivalently, the linear span of each pair of centers does 
not intersect the third one.

This assumption implies, in particular, that for any choice of a pair r, s, the span of 
Lr and Ls is the whole Ck+1, or, in other words, that the two centers Cr and Cs do not 
intersect.

Under Assumption 2.1, applying Grassmann formula one sees that the three numbers 
above have the following meaning: ir,s = dim(Lr ∩ Ls) ≥ 0, for any choice of r, s, 
i = dim(L1∩L2∩L3) ≥ 0 and jr,s is the affine dimension of the center Ct i.e. k−ht = jr,s
for r, s, t = 1, 2, 3.

In [5] it is shown that under Assumption 2.1 a suitable choice of bases, realized by 
Hj ∈ GL(hj + 1), for j = 1, 2, 3, and K ∈ GL(k + 1), transforms the matrix (3) as

Φk
h1,h2,h3

:=
[
(H1P1K)T |(H2P2K)T |(H3P3K)T

]
, (7)

so that

Φk
h1,h2,h3

:=

⎡
⎢⎢⎢⎣
Ii 0 0 Ii 0 0 Ii 0 0
0 Ij1,2 0 0 Ij1,2 0 0 0 0
0 0 Ij1,3 0 0 0 0 Ij1,3 0
0 0 0 0 0 Ij2,3 0 0 Ij2,3

⎤
⎥⎥⎥⎦. (8)

As described above, entries of T c are given by the maximal minors of (8), obtained 
by selecting αj columns from HjPjK

T , for j = 1, 2, 3. More precisely, as in [5], let 
(a1, a2, a3) be a partition of α1 and let (b1, b2, b3) and (c1, c2, c3) be partitions of α2 and 
α3, respectively. Each entry of T c is a maximal minor T c

I,J,K of (8) built by choosing a1
columns from Ii, a2 columns from Ij1,2 , a3 columns from Ij1,3 , appropriately completing 
them with zero vectors to obtain entire columns of (8) and proceeding analogously with 
b1, b2, b3 and the second block of (8) and with c1, c2, c3 and the third block of (8), where 
I = (i1, . . . , is1+1), J = (j1, . . . , js2+1), K = (k1, . . . , ks3+1), with 1 ≤ i1 < · · · < is1+1 ≤
h1 + 1, 1 ≤ j1 < · · · < js2+1 ≤ h2 + 1 and 1 ≤ k1 < · · · < ks3+1 ≤ h3 + 1 are the indices 
of the columns of the three blocks of (8) that were not chosen. As already recalled in [5], 
the entries T c

I,J,K of the tensor T c are indexed with respect to the lexicographical order 
of the families of multi-indices {I}, {J}, and {K}. If we consider the first flattening T c

1 of 
T c, one then sees that a row of T c

1 corresponds to one specific choice of a1 columns from 
Ii, a2 columns from Ij1,2 , and a3 columns from Ij1,3 , with a1 + a2 + a3 = α1. Similarly 
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one sees the role of specific choices of bu columns and cu columns from the corresponding 
submatrices of Φk

h1,h2,h3
in determining a chosen row of T c

2 and T c
3 respectively.

Remark 2.3. In the following section we will make use of the canonical form (8) in order 
to determine the multilinear rank of a Grassmann tensor satisfying Assumption 2.1. As 
mentioned in [5], if Assumption 2.1 doesn’t hold, we cannot obtain a canonical form 
depending only on the dimension of the various spaces and, indeed, even the rank of the 
Grassmann tensor depends also on the geometric configuration of the three projections.

This observation is still true as far as the multilinear rank is concerned; this is the 
reason why in this paper we will always assume that Assumption 2.1 is satisfied.

As an example, consider the case of three projections from P 4 to P 2, with profile 
(2, 2, 1). Notice that in this case i = −1. We can choose projection matrices Pj, j = 1, 2, 3
such that:

PT
1 :=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 a

0 0 b

0 0 c

⎤
⎥⎥⎥⎥⎥⎦, P

T
2 :=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0
0 0 d

0 1 0
0 0 e

0 0 f

⎤
⎥⎥⎥⎥⎥⎦, P

T
3 :=

⎡
⎢⎢⎢⎢⎢⎣

0 0 g

1 0 0
0 1 0
0 0 h

0 0 k

⎤
⎥⎥⎥⎥⎥⎦,

with (a, b, c) �= (0, 0, 0), (d, e, f) �= (0, 0, 0), (g, h, k) �= (0, 0, 0).

The first flattening of the corresponding trifocal tensor is
⎡
⎢⎣ g(ce− bf) a(fh− ek) ch− bk 0 bf − ce 0 0 0 0
d(bk − ch) 0 0 0 0 ce− bf 0 0 0
ek − fh 0 0 0 0 0 0 0 0

⎤
⎥⎦,

whose rank is generically 3 and drops to at most 2 if ek = fh.

3. The multilinear rank of trifocal Grassmann tensors

In this section, T will always be a trifocal Grassmann tensor of dimension n1×n2×n3, 
with profile (α1, α2, α3), satisfying Assumption 2.1 and T c will be its canonical form 
introduced in Section 2.5. Leveraging properties of T c we will obtain results on F-rk (T .)

Lemma 3.1. Let T c be the canonical from of a trifocal Grassmann tensor T of dimension 
n1 ×n2 ×n3, satisfying Assumption 2.1. Then the multilinear rank is F-rk (T c) = (n1 −
v1, n2 − v2, n3 − v3) where vr is the number of zero rows in the flattening matrix T c

r .

Proof. In the proof of [5, Theorem 5.2] the authors showed that, with our assumptions 
on T , if T c

ˆ ˆ ˆ �= 0 then T c
ˆ ˆ = 0 for all k �= k̂. Considering the cyclic role of the indices 
i,j,k i,j,k



M. Bertolini et al. / Linear Algebra and its Applications 698 (2024) 5–25 13
i, j, k the above observation also says that T c
i,ĵ,k̂

= 0 for all i �= î, and T c
î,j,k̂

= 0 for all 
j �= ĵ. Assume T c

î,ĵ,k̂
�= 0, then the above observation can be visualized in T c

1 as follows:

⎡
⎢⎢⎢⎣
.. .. .. .. .. .. .. .. .. 0 .. .. .. .. .. ..

.. 0î,ĵ,1 .. .. .. 0î,ĵ,2 .. .. 0 ∗î,ĵ,k̂ 0 0 .. 0î,ĵ,n3
.. ..

.. .. .. .. .. .. .. .. .. 0 .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. 0 .. .. .. .. .. ..

⎤
⎥⎥⎥⎦ .

While T c
1 can have more than one nonzero element on the same row, it cannot contain 

two nonzero elements on the same column. Hence any two rows containing non-zero 
elements are linearly independent. Therefore, if v1 is the number of zero rows of T c

1 , it 
is rk (T c

1 ) = n1 − v1. A similar argument can be carried out for T c
2 and T c

3 . �
Lemma 3.2. Let T c be the canonical form of a trifocal Grassmann tensor T of dimension 
n1 × n2 × n3, with profile (α1, α2, α3), satisfying Assumption 2.1. Let (r, s, t) be any 
permutation of {1, 2, 3} and let jr,s be defined as in (6). Then the flattening matrix T c

r

contains zero rows if and only if

jr,s − αs − 1 ≥ max(0, αr − i− jr,t) or (9)

jr,t − αt − 1 ≥ max(0, αr − i− jr,s).

Moreover, conditions (9) are mutually exclusive.

Proof. For simplicity, let us fix (r, s, t) = (1, 2, 3) and conduct the proof for T c
1 , noticing 

that the proof is identical for T c
2 and T c

3 , with a cyclic adjustment of the role of the three 
indices and of the parameters {aj, bj , cj} introduced in Section 2.5. Recall that T c

1 is the 
first flattening matrix of T c = [T c

�,j,k], of dimension n1 × (n2n3) obtained by juxtaposing 
n3 blocks of dimension n1×n2, where � runs over the rows of T c

1 , j runs over the columns 
of each block, and k runs over the blocks. Let i be as defined in (5), and let {aj, bj , cj}, 
j = 1, 2, 3 be as in Section 2.5. As noted in Section 2.5, a row of T c

1 corresponds to 
one specific choice of a1 columns from the first block of (8), a2 columns from its second 
block, and a3 columns from its third block, with ai ≥ 0, and a1 + a2 + a3 = α1.
Suppose j1,3−α3−1 ≥ max(0, α1−i −j1,2), so that j1,3 ≥ α3+1, and let a1, a2, a3 be such 
that 0 ≤ a3 ≤ j1,3−α3−1. Notice that the assumption j1,3−α3−1 ≥ max(0, α1−i −j1,2)
implies that there exists at least one such triplet with a1+a2+a3 = α1. Because c2 ≤ α3, 
it is

a3 + c2 ≤ j1,3 − 1. (10)

Recalling the canonical structure of the matrix (8), it follows from (10) that all ele-
ments of the row of T c

1 corresponding to a choice of a1, a2, a3 as above are zero, as all 
the maximal minors corresponding to elements of this row are now forced to contain at 
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least one duplicate column coming from Ii, Ij1,2 or Ij2,3 . The proof can be carried out 
with the obvious adjustments if j1,2 − α2 − 1 ≥ max(0, α1 − i − j1,3).

Assume now that

j1,2 − α2 − 1 < max(0, α1 − i− j1,3) and (11)

j1,3 − α3 − 1 < max(0, α1 − i− j1,2). (12)

We will show that every row in T c
1 contains at least one non-zero element. Let us fix a 

row of T c
1 by fixing non-negative values for (a1, a2, a3) with 

∑
� a� = α1, a1 ≤ i, a2 ≤ j1,2, 

and a3 ≤ j1,3. As observed in [5], this row contains a non zero element if the following 
system of linear equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 + c1 = i− a1
b2 = j1,2 − a2
c2 = j1,3 − a3
b3 + c3 = j2,3
b1 + b2 + b3 = α2
c1 + c2 + c3 = α3

(13)

has at least one set of integer solutions in the unknowns (b1, b2, b3, c1, c2, c3), that satisfy 
the following conditions:

0 ≤ b1 ≤ i 0 ≤ b2 ≤ j1,2 0 ≤ b3 ≤ j2,3 (14)

0 ≤ c1 ≤ i 0 ≤ c2 ≤ j1,3 0 ≤ c3 ≤ j2,3.

Our assumptions on (a1, a2, a3) imply that the second and third equation of (13) are 
already solved, satisfying the relevant (14). Therefore it remains to show that it is possible 
to choose 0 ≤ c3 ≤ j2,3 such that b1 = α2−j1,2 +a2−j2,3 +c3 and c1 = α3−j1,3 +a3−c3
satisfy the relevant (14), i.e.

0 ≤ α2 − j1,2 + a2 − j2,3 + c3 ≤ i and 0 ≤ α3 − j1,3 + a3 − c3 ≤ i. (15)

Recalling that i =
∑

� α� − j1,2 − j1,3 − j2,3, (15) give:

j1,2 + j2,3 − α1 − α2 + a3 ≤ c3 ≤ α1 + α3 − j1,3 − a2 (16)

j1,2 + j2,3 − α2 − a2 ≤ c3 ≤ α3 − j1,3 + a3. (17)

As 
∑

� a� = α1 and a1 ≥ 0, it follows that (17) implies (16), hence, setting LB =
j1,2 + j2,3 −α2 −a2 and UB =≤ α3 − j1,3 +a3, we need to show that under assumptions 
(11) and (12) we can choose c3 such that

0 ≤ c3 ≤ j2,3 and LB ≤ c3 ≤ UB. (18)
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First notice that if α1 − j1.2 − i > 0 then j2,3 ≥ α2 and LB ≥ 0. Indeed in this case 
it is max(0, α1 − j1,2 − 1) = α1 − j1,2 − i and (11) gives j2,3 ≥ α2. Because j1,2 − a2 ≥ 0
then it is LB ≥ 0. A very similar argument, using (12), shows that if α1 − j1.3 − i > 0
then j2,3 ≥ α3 and UB ≤ j2,3.
Four different cases, according to the respective sign of α1 − j1,2 − i and α1 − j1,3 − i, 
need to be considered, as in the table below:

Case α1 − j1,2 − i α1 − j1.3 − i

1 > 0 > 0
2 > 0 ≤ 0
3 ≤ 0 > 0
4 ≤ 0 ≤ 0

Case 1. From above it is LB ≥ 0 and UB ≤ j2,3, hence one can choose any value 
LB ≤ c3 ≤ UB to satisfy (18).

Case 2. From above it is LB ≥ 0. Choose c3 = LB. Because α1 − j1,3 − i ≤ 0 it is 
max(0, α1 − j1,3 − i) = 0 and thus (12) gives j1,2 − α2 ≤ 0. As a2 ≥ 0, it is LB ≤ j2,3
and (18) are satisfied.

Case 3. From above it is UB ≤ j2,3. Choose c3 = UB. Because α1 − j1,2 − i ≤ 0 it is 
max(0, α1 − j1,2 − i) = 0 and thus (11) gives j1,3 − α3 − 1 ≤ 0. As a3 ≥ 0, it is UB ≥ 0
and (18) are satisfied.

Case 4. In this case we need to further consider the possible relative sign of LB and 
UB − j2,3, generating four possible cases as in the table below. In each case one can 
choose c3 as indicated in the fourth column. Arguments similar to the ones used above 
in previous cases show that (18) are satisfied.

Case LB UB c3

i ≥ 0 ≤ j2,3 any LB ≤ c3 ≤ UB
ii ≥ 0 > j2,3 c3 = LB
iii < 0 ≤ j2,3 c3 = UB
iv < 0 > j2,3 any 0 ≤ c3 ≤ j2,3

Finally, notice that conditions (9) cannot both hold. If they did, then for any 0 ≤
a2 ≤ j1,2 − α2 − 1 and 0 ≤ a3 ≤ j1,3 − α3 − 1 it would follow that:

a2 + a3 ≤ j1,2 + j1,3 − α2 − α3 − 2. (19)

Recalling that a1 + a2 + a3 = α1, 
∑

j αj = k + 1 = i + j1,2 + j1,3 + j2,3, (19) would 
give i + j2,3 ≤ a1 − 2, which is impossible as a1 ≤ i. �
Claim 3.1. With the notation of this section, let i and ju,v for u, v ∈ {1, 2, 3}, u �= v, 
be defined as in (5) and (6) and let T c

1 be the first flattening matrix of T c. Assume 
that rk (T c

1 ) < n1, i.e. rk (T c
1 ) is not maximum, so that, by Lemma 3.2, j1,s − αs − 1 ≥

max(0, α1 − i − j1,t) for some s, t ∈ {2, 3} t �= s. Let
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A = {(a1, a2, a3)| au ∈ Z≥0,
∑
u

au = α1, a1 ≤ i,

max(0, α1 − i− j1,t) ≤ as ≤ j1,s − αs − 1, at ≤ j1,t}.

The cardinality |A| of the set A can be computed as follows. For each (a1, a2, a3) ∈ A

set m1 = min (i, α1 − as) and m2 = min (j1,t, α1 − as). Then

|A| =
∑

max(0,α1−i−j1,t)≤as≤j1,s−αs−1

Ns

where

Ns =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1 − as + 1 if m1 = m2 = α1 − as

i + 1 if m1 = i and m2 = α1 − as

j1,s + 1 if m1 = α1 − as and m2 = j1,t

|i− α1 + as + j1,t| + 1 if m1 = i and m2 = j1,t.

Similarly, one can define sets B and C, respectively, for flattenings T c
2 and T c

3 , if their 
ranks are not maximum. In those cases bu and cu play the role of au and the ju,v are 
adjusted accordingly, taking into consideration their role in (8) and in Lemma 3.2.

Theorem 3.1. Let T be a trifocal Grassmann tensor of dimension n1 × n2 × n3, with 
profile (α1, α2, α3), satisfying Assumption 2.1. Let i and ju,v for u, v ∈ {1, 2, 3}, u �= v, 
be defined as in (5) and (6). Then the rank of the first flattening T1 is:

rk (T1) = n1 −
∑
A

(
i

a1

)(
j1,2
a2

)(
j1,3
a3

)
(20)

where A = {(a1, a2, a3)| au ∈ Z≥0, 
∑

u au = α1, a1 ≤ i, max(0, α1 − i − j1,t) ≤ as ≤
j1,s − αs − 1, at ≤ j1,t}.

Proof. Let T c be the canonical form of T and T c
1 be its first flattening matrix. Re-

mark 2.2 shows that F-rk (T c
1 ) = F-rk (T1), therefore from now on we will focus on 

F-rk (T c
1 ). From Lemma 3.1 the rank of the flattening matrix T c

1 is known if the number 
v1 of zero rows of T c

1 is known. Assume j1,s − αs − 1 ≥ max(0, α1 − i − j1,t) and let A
be the corresponding set defined in Claim 3.1, which, under our last assumption, is non 
empty. As noted above, choosing a row of T c

1 is equivalent to choosing a1 columns from 
Ii, a2 columns from Ij1,2 , a3 columns from Ij13 , appropriately completing them with zero 
vectors to obtain entire columns of (8), where ai ≥ 0, a1 +a2+a3 = α1, a1 ≤ i, a2 ≤ j1,2, 
and a3 ≤ j1,3. From Lemma 3.2 and Claim 3.1 it follows that zero rows in T c

1 are exactly 
all rows that correspond to triplets of nonnegative integers (a1, a2, a3) ∈ A, hence
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rk (T c
1 ) = n1 −

∑
A

(
i

a1

)(
j1,t
at

)(
j1,s
as

)
.

If j1,2 − α2 − 1 < max(0, α1 − i − j1,3) and j1,3 − α3 − 1 < max(0, α1 − i − j1,2) then 
A is the empty set and thus v1 = 0, and F-rk (T c

1 ) is maximum, i.e. F-rk (T1) = n1. �
Remark 3.1. While Theorem 3.1 gives the result for the first flattening, one can easily 
obtain the rank of the second and third flattening matrices by simply switching the order 
of the views and proceeding accordingly.

Corollary 3.1. Let T be a trifocal Grassmann tensor of dimension n1 × n2 × n3, with 
profile (α1, α2, α3), satisfying Assumption 2.1. Then for at least one r ∈ {1, 2, 3} it is 
rk (Tr) = nr.

Proof. Suppose that rk (Tr) < nr for all r = 1, 2, 3. From Lemma 3.2 it follows that 
three of the six conditions

(r, s, t) : jr,s − αs − 1 ≥ max(0, αr − i− jr,t), (21)

where r, s, t ∈ {1, 2, 3}, must hold, one with r = 1, one with r = 2, and one with r = 3. 
First observe that, for fixed values of r, s, t, if (r, s, t) holds then neither (s, t, r) nor 
(t, r, s) can hold. Indeed assume (r, s, t) holds and αr − i − jr,t = jr,s−αs + js,t−αt < 0. 
Then max(0, αr − i − jr,t) = 0, and jr,s − αs − 1 ≥ 0, which in turn gives js,t − αt < 0, 
and thus (s, t, r) can not hold. Assume instead that (r, s, t) holds and αr − i − jr,t =
jr,s − αs + js,t − αt ≥ 0. Then (r, s, t) gives js,t − αt ≤ −1, and thus (s, t, r) is not 
possible in this case either. Further observe that (r, s, t) implies jr,s − αs ≥ 1 and if 
(t, r, s) held it would be jt,r−αr−1 ≥ jt,r−αr + jr,s−αs and thus jr,s−αs ≤ −1 which 
is impossible. Hence if (r, s, t) holds neither (s, t, r) nor (t, r, s) can hold. Now assume 
(r, s, t) is one of the six conditions that hold. From the above observation it follows that 
(s, r, t) must hold. But the same observation then implies that (t, s, r) must hold, which 
is incompatible with (s, r, t), again from the above observation. �
Remark 3.2. Let T be a trifocal Grassmann tensor of dimension n1 × n2 × n3, with 
profile (α1, α2, α3), satisfying Assumption 2.1. As its canonical form T c is obtained 
via successive invertible transformations in the ambient space and in the views, it is 
rk (T ) = rk (T c).

Remark 3.3. Proposition 3.1 and Claim 3.1 show how to count the number of zero rows 
in a flattening matrix T c

r of a tensor T c in canonical form. Here we describe a procedure 
that identifies exactly which rows of the flattening matrix vanish. For simplicity we will 
set r = 1, as similar arguments work for r = 2, 3. Let T c

1 be a flattening matrix of a 
tensor T c as above, and let a = (a1, a2, a3) ∈ A, where A is as in Claim 3.1. Recall that 
the rows of T c

1 are indexed by the multi-indices I with respect to the lexicographic order.
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First, choose any a1 columns among the first i columns of the first block of (8), a2

columns from the next j12 columns, and a3 columns from the last j13 columns. Each such 
choice produces entries T c

Ia,J,K
of the tensor T c, where Ia is any multi-index containing 

the indices of any non-chosen i − a1 + j1,2 − a2 + j1,3 − a3 = s1 + 1 columns of the 
canonical form, and J, K are any multi-indices of length, respectively, s2 + 1 and s3 + 1, 

as described above. Therefore, for any triplet a = (a1, a2, a3) the 

(
i

a1

)(
j1,2
a2

)(
j1,3
a3

)
rows with indices Ia of the flattening T c

1 are zero.

4. Core of Grassmann tensors

4.1. Core of Grassmann tensors in canonical form

Let T be a trifocal Grassmann tensor and denote by T c its canonical form. Results 
form the previous section allow one to directly find the core of T c. This approach is 
similar to HOSVD (see Section 2.3) but the canonical form of a tensor makes it easier 
to compute the matrices Uj involved in the process.

In Section 3 we computed the multilinear rank (r1, r2, r3) of T c. As seen before, it is 
given by rj = nj − vj where vj is the number of zero rows of T c

j . Moreover, Remark 3.3
gives an effective method to list the zero rows rh1 , . . . , rhvj

, in T c
j . Denote by rk1 , . . . , rkrj

, 
with rk1 < rk2 < · · · < rkrj

the non-zero rows of T c
j .

As remarked in the proof of Lemma 3.1, the columns of T c
j are zero or they are 

elements of the canonical basis {e1, . . . , enj
} of Cnj , i.e., among the columns of T c

j we 
can find all vectors ekt

for t = 1, . . . rj . Hence it is straightforward to find an orthonormal 
basis for the image of each flattening and therefore the matrices Uj quoted in 2.3. Indeed, 
the matrix Uj is the matrix whose columns are the vectors ek1 , . . . , ekrj

. Notice that 
deleting the zero rows rh1 , . . . , rhvj

from Uj we get the identity matrix. What’s more, 
the multiplication of U∗

j by T c
j deletes the zero rows of T c

j . As a consequence, the core 
tensor Cc of T c is obtained from T c by deleting all zero faces in each of the three 
directions.

4.2. Core of Grassmann tensors in the general case

Let T be a trifocal Grassmann tensor and denote by T c its canonical form. Recall that 
T c can be obtained from T via multilinear multiplication, i.e., T c = (V1, V2, V3) ·T where 
Vi are invertible matrices obtained from the matrices Hi and K in Section 2.5. More 
precisely, Vj = (

∧sj+1
H−1

j )∗ for j = 1, 2, 3. As shown in the previous subsection, our 
construction of the canonical tensor allows us to introduce suitable matrices U1, U2, U3

such that the core Cc of T c can be obtained as follows: Cc = (U∗
1 , U

∗
2 , U

∗
3 ) · T c.

In order to find a core C of T , we proceed as follows. First, we define an invertible 
matrix Bj of size rj × rj for j = 1, 2, 3 as Bj = EjD

−1
j where Dj is the diagonal 
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matrix with the singular values of V −1
j Uj and Ej is the matrix whose columns are the 

eigenvectors of (V −1
j Uj)∗(V −1

j Uj).
Second, we define the tensor C as (B−1

1 , B−1
2 , B−1

3 ) · Cc. Finally, we introduce matrices 
Sj = V −1

j UjBj for j = 1, 2, 3, which are semi-orthogonal.
Third, we verify that C is a core of T , i.e., T = (S1, S2, S3) ·C because C = (S∗

1 , S
∗
2 , S

∗
3) ·

T and the following diagram commutes:

T
(V1,V2,V3) T c

(UT
1 ,UT

2 ,UT
3 )

C

(S1,S2,S3)

Cc

(B−1
1 ,B−1

2 ,B−1
3 )

(22)

The matrices of the diagram above are computed in the following concrete example.

4.2.1. Example
Let us consider 3 projections from P 4 onto, respectively, P 3, P 2, P 2 having profile 

(2, 2, 1) and corresponding to the following 3 projection matrices A1, A2, A3 such that

AT
1 =

⎛
⎜⎜⎜⎜⎜⎝

2 0 3 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , AT

2 =

⎛
⎜⎜⎜⎜⎜⎝

−1 −1 1
0 1 0
0 0 0
0 0 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎠ , AT

3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
1 0 0
−1 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

The associated 6 × 3 × 3 Grassmann tensor T turns out to be

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 −1 −4 0 −1 −4
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 4
1 0 1 0 0 2 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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The matrices (V1, V2, V3) are given by

V1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0 −1
2 0 0 −3 −1 0
0 −3 −1 0 0 0
0 0 0 −1 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

V2 =

⎛
⎜⎝−1 −1 1

0 1 0
1 0 0

⎞
⎟⎠ , V3 =

⎛
⎜⎝ 1 0 0

0 1 0
0 −1 1

⎞
⎟⎠ .

The matrices (U1, U2, U3) are given by (U1, I3, I3) where

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The tensor T c has flattening T c
3 given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Removing the last row in T c
3 gives the core Cc that is a 5 × 3 × 3 tensor. For the 

convenience of the reader, we switch to another notation in order to describe Cc and C
more clearly. Indeed, if we introduce canonical bases {ai}5

i=1, {bj}3
j=1, {ck}3

k=1 of the 
corresponding vector spaces, Cc is a sum of indecomposables as follows:

Cc = −a1 ⊗ b3 ⊗ c1 + (a3 ⊗ b2 − a5 ⊗ b1) ⊗ c2 − (a2 ⊗ b2 − a4 ⊗ b1) ⊗ c3.

The multilinear multiplication (B−1
1 , B−1

2 , B−1
3 ) ·Cc gives the core C of T . The matrices 

(B−1
1 , B−1

2 , B−1
3 ) are given by
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B−1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√

17−
√

13
2

√
17−

√
13

2 0 0
0 α β 0 0
3
2 0 0 −13−

√
221

13
−13+

√
221

13√
13+3
2 0 0 γ δ

0 0 0
√

13+
√

17
2

√
13+

√
17

2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

α = 117
√

3 − 117
√

3 − 27
√

39 + 507
676 , β = 117

√
3 + 117

√
3 − 27

√
39 − 507

676 ,

γ = 39
√

13 + 39
√

17 + 9
√

221 + 117
52 , δ = 39

√
13 − 39

√
17 − 9

√
221 + 117

52 ,

and

B−1
2 =

⎛
⎜⎝

√
2−

√
6

4

√
6

2

√
6

2
0 −

√
3

√
3√

2+
√

6
4

3
√

2+2
√

6
2

3
√

2+2
√

6
2

⎞
⎟⎠ , B−1

3 =

⎛
⎜⎝ 0 9

√
5−25
22

15−
√

5
11

1 0 0
0 8

√
5−10
11

8
√

5−10
11

⎞
⎟⎠ .

If we denote by Ki
ji

the ji-th column of B−1
i for 1 ≤ i ≤ 3, 1 ≤ j1 ≤ 5, 1 ≤ j2 ≤ 3

and 1 ≤ j3 ≤ 3, the core of T can be written as

−K1
1 ⊗K2

3 ⊗K3
1 + (K1

3 ⊗K2
2 −K1

5 ⊗K2
1 ) ⊗K3

2 − (K1
2 ⊗K2

2 −K1
4 ⊗K2

1 ) ⊗K3
3 .

5. Examples

In this section we provide seven different examples of three projections Pj : Pk −→
Phj j = 1, 2, 3, leading to trifocal Grassman tensors of dimension n1 × n2 × n3, with 
profile (α1, α2, α3), whose multilinear rank is explicitly computed following Lemma 3.1, 
Lemma 3.2, and Proposition 3.1. In the first example we also explicitly identify the zero 
rows responsible for the drop in rank of the first flattening, and we also provide explicit 
matrices needed for the calculation of the core. Recall that k is determined by the profile, 
i.e., k = α1 + α2 + α3 − 1, i and jr,s are defined in (5) and (6), and m1, m2, A, |A|, and 
N are defined in Claim 3.1.

Example 5.1. In this case we consider three projections from P 7 to, respectively, P 6, P 4, 
and P 4, with profile (3, 3, 2). T is a tensor of dimension 35 × 10 × 10 and the value of 
the quantities in (5) and (6) are as in the table on page 22. Notice that Assumption 2.1
is satisfied as i = 1 and hence the construction of T c can be performed. The only values 
of r, s that satisfy one of (9) are r = 1, s = 3, as j1,3 − (α3 + 1) = 0. Hence rk (T c

2 ) and 
rk (T c

3 ) are both maximal while rk (T c
1 ) drops. For (r, s, t) = (1, 3, 2) Claim 3.1 shows 

that A = {(0, 3, 0), (1, 2, 0)}. According to Proposition 3.1, the contribution to the rank 
deficiency given by the first triplet in A is 

(1
0
)(3

3
)(3

0
)

= 1 while the contribution of the 
second triplet is 

(1)(3)(3) = 3. Therefore, rk (T c
1 ) drops by 4, and F-rk (T ) = (31, 10, 10).
1 2 0
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xample 5 Example 6 Example 7
12 9

5, 5, 5) (7, 8, 8) (3, 8, 8)
1, 4, 4) (1, 6, 6) (3, 3, 4)

0 2
3, 3, 3) (4, 4, 5) (1, 1, 6)
6, 15, 15) (8, 84, 84) (4, 84, 126)
6, 12, 12) (8, 50, 50) (4, 65, 75)
Example 1 Example 2 Example 3 Example 4 E
k 7 6 9 5 8
(h1, h2, h3) (6, 4, 4) (5, 4, 3) (8, 6, 4) (2, 4, 4) (
(α1, α2, α3) (3, 3, 2) (3, 2, 2) (4, 3, 3) (2, 2, 2) (
i 1 1 1 1 0
(j1,2, j1,3, j2,3) (3, 3, 1) (3, 2, 1) (5, 3, 1) (1, 1, 3) (
(n1, n2, n3) (35, 10, 10) (20, 10, 6) (126, 35, 10) (3, 10, 10) (
F-rk (T ) (31,10,10) (19, 10, 6) (105, 35, 10) (3, 9, 9) (
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Following Remark 3.3, we will now identify the 4 zero rows of T c
1 . Notice that the 

first block of (8) is a submatrix of dimension 9 × 7 while α1 = 3, hence the multi-indices 
of the sets of columns that are not chosen in the calculation of each maximal minor, i.e. 
the row multi-indices of T c

1 , have length 4 and are the following, in proper lexicographic 
order, listed above their corresponding row indices:

1234 1235 1236 ... ... ... 3467 3567 4567
1 2 3 ... ... ... 33 34 35.

More specifically, the entries of the first row of T1 are given by T1234,J,K , where J and 
K are multi-indices as in Section 2.5.

In correspondence of the first triplet (0, 3, 0), as a2 = j12 = 3, we are forced to choose 
the second, the third and the fourth column of the first block of (8) to compute entries 
of the tensor. These entries T c

I,J,K correspond to the multi-index I = {1567}, i.e. the 
20th row of T c

1 .
On the other hand, the triplet (1, 2, 0) gives three possible multi-indices of rows. 

As i = a1 = 1 we are forced to choose the first column of the first block of (8). As 
j1,2 = 3 and a2 = 2, we have three possible choices {(2, 3), (2, 4), (3, 4)} for two out of 
the next three columns of the same block. Hence we have, respectively, the three rows 
T c

1 4567,J,K , T c
1 3567,J,K , T c

1 2567,J,K , i.e. rows 30, 34, and 35.

Example 5.2. In this case we consider three projections from P 6 to, respectively, P 5, P 4, 
and P 3, with profile (3, 2, 2). T is a tensor of dimension 20 × 10 × 4 and the value of the 
quantities in (5) and (6) are as in the table above. Notice that Assumption 2.1 is satisfied 
as i = 1 and hence the construction of T c can be performed. The only values of r, s that 
satisfy one of (9) are r = 1, s = 2, as j1,2−(α2+1) = 0. Hence rk (T2) and rk (T3) are both 
maximal while rk (T1) drops. For (r, s, t) = (1, 2, 3) Claim 3.1 shows that A = {(1, 0, 2)}. 
According to Proposition 3.1, the contribution to the rank deficiency given by the triplet 
in A is 

(1
1
)(3

0
)(2

2
)

= 1 therefore rk (T 1
c ) drops by 1 and F-rk (T ) = (19, 10, 4).

Example 5.3. In this case we consider three projections from P 9 to, respectively, P 8, P 6, 
and P 4, with profile (4, 3, 3). T is a tensor of dimension 126 ×35 ×10 and the value of the 
quantities in (5) and (6) are as in the table above. Notice that Assumption 2.1 is satisfied 
as i = 1 and hence the construction of T c can be performed. In this case, only one set of 
values satisfy one of (9), (r, s, t) = (1, 2, 3), as j1,2−(α2+1) = 1 ≥ max(0, α1−i −j1,3) = 0. 
Hence rk (T1) drops, while both rk (T2) and rk (T3) are maximal. For (r, s, t) = (1, 2, 3)
Claim 3.1 shows that A = {(1, 0, 3), (0, 1, 3), (1, 1, 2)}. According to Proposition 3.1, the 
contribution to the rank deficiency given by the first triplet in A is 

(1
1
)(5

0
)(3

3
)

= 1; the 
contribution of the second triplet is 

(1
0
)(5

1
)(3

3
)

= 5; and the contribution of the third 
triplet is 

(1
1
)(5

1
)(3

2
)

= 15. Therefore rk (T 1
c ) drops by 21.

Example 5.4. In this case we consider three projections from P 5 to, respectively, P 2, P 4, 
and P 4, with profile (2, 2, 2). T is a tensor of dimension 3 × 10 × 10 and the value of 
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the quantities in (5) and (6) are as in the table above. Notice that Assumption 2.1 is 
satisfied as i = 1 and hence the construction of T c can be performed. The only values 
of r, s that satisfy one of (9) are r = 2, s = 3, as j2,3 − (α3 + 1) = 0 and r = 3, s = 2, as 
j2,3 − (α2 + 1) = 0. Hence rk (T1) is maximal, while both rk (T2) and rk (T3) drop. For 
(r, s, t) = (2, 3, 1) Claim 3.1 shows that B = {(1, 1, 0)}. According to Proposition 3.1, 
the contribution to the rank deficiency of rk (T 2

c ) is given by the triplet in B which 
is 

(1
1
)(1

1
)(3

0
)

= 1. Therefore rk (T 2
c ) drops by 1. Similarly the contribution to the rank 

deficiency of rk (T 3
c ) is given by the triplet in C = {(1, 1, 0)} which is 

(1
1
)(1

1
)(3

0
)

= 1. 
Therefore rk (T 3

c ) drops by 1 too and F-rk (T ) = (3, 9, 9).

Example 5.5. In this case we consider three projections from P 8 to P 5 with profile (1, 4, 4). 
T is a tensor of dimension 6 × 15 × 15 and the value of the quantities in (5) and (6) are 
as in the table above. Notice that Assumption 2.1 is satisfied as i = 0 and hence the 
construction of T c can be performed. The two sets of values of r, s that satisfy one of 
(9) are r = 2, s = 1, as j2,1 − (α1 + 1) = 1 ≥ max(0, α2 − i − j2,3) = 0 and r = 3, s = 1, 
as j3,1 − (α1 + 1) = 1 ≥ max(0, α1 − i − j3,2) = 0. Hence rk (T1) is maximal, while both 
rk (T2) and rk (T3) drop. Proceeding as in previous examples in this section one gets 
F-rk (T ) = (6, 12, 12).

Example 5.6. In this case we consider three projections from P 12 to, respectively, P 7, 
P 8, and P 8, with profile (1, 6, 6). T is a tensor of dimension 8 × 84 × 84 and the value 
of the quantities in (5) and (6) are as in the table above. Notice that Assumption 2.1 is 
satisfied as i = 0 and hence the construction of T c can be performed. The only values 
of r, s that satisfy one of (9) are r = 2, s = 1 and r = 3, s = 1, as we have the strict 
inequalities: j2,1 − (α1 + 1) = 2 > max(0, α2 − i − j2,3) = 1 and j3,1 − (α1 + 1) = 2 >
max(0, α1 − i − j3,2) = 1. Hence rk (T1) is maximal, while both rk (T2) and rk (T3) drop. 
Proceeding as in previous examples in this section one gets F-rk (T ) = (8, 50, 50).

Example 5.7. In this last case we have an example of tensor with a relatively small core. 
We consider three projections from P 9 to P 3, P 8, and P 8, with profile (3, 4, 4). T is 
a tensor of dimension 4 × 84 × 126, i = 1. Proceeding as in previous examples in this 
section one gets F-rk (T ) = (4, 65, 75).
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