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NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS WITH

ALMOST CRITICAL AND PARTIALLY CONCAVE REACTION

N.S. PAPAGEORGIOU, D.D. REPOVŠ, AND C. VETRO

Abstract. We consider a nonlinear Robin problem driven by a nonhomoge-
neous differential operator, with reaction which exhibits the competition of
two Carathéodory terms. One is parametric, (p− 1)-sublinear with a partially
concave nonlinearity near zero. The other is (p−1)-superlinear and has almost
critical growth. Exploiting the special geometry of the problem, we prove a
bifurcation-type result, describing the changes in the set of positive solutions
as the parameter λ > 0 varies.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we

study the following parametric Robin problem

(Pλ)




−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = λf(z, u(z)) + g(z, u(z)) in Ω,

∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω, u > 0.

In this problem a : R
N → R

N is a continuous, strictly monotone (hence also
maximal monotone) map which satisfies certain other regularity and growth con-
ditions listed in hypotheses H(a) below. These conditions are not restrictive and
incorporate in our framework many differential operators of interest. We point
out that the differential operator u → div a(∇u) is not homogeneous and this is
a source of difficulties in the analysis of problem (Pλ). The potential function is
ξ ∈ L∞(Ω), ξ ≥ 0. In the reaction (the right hand side of the equation) λ > 0 is
a parameter and f(z, x), g(z, x) are Carathéodory functions (that is, for all x ∈ R,
z → f(z, x), g(z, x) are measurable, while for a.a. z ∈ Ω, x → f(z, x), g(z, x) are
continuous). We assume that f(z, ·) is (p − 1)-superlinear near 0+ partially in
z ∈ Ω. So, near zero we have a partially concave nonlinearity and this complicates
the geometry of the problem near the origin. Near +∞ for a.a. z ∈ Ω, f(z, ·) is
strictly (p−1)-sublinear, while for a.a. z ∈ Ω, g(z, ·) exhibits almost critical growth,
a fact that further complicates the geometry of the problem, since the embedding
of W 1,p(Ω) into Lp∗

(Ω) is not compact (recall that p∗ denotes the critical Sobolev
exponent corresponding to 1 < p < +∞, defined by

p∗ =





Np

n− p
if p < N,

+∞ if p ≥ N.

Key words and phrases. Competition phenomena, nonlinear regularity, nonlinear maximum
principle, strong comparison principle, bifurcation-type result, almost critical growth.
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In the boundary condition
∂u

∂na
denotes the conormal derivative corresponding

to the map a(·) and defined by extension on W 1,p(Ω) of the map

C1(Ω) ∋ u→ (a(∇u), n)RN ,

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient is β ∈
C0,α(∂Ω) with α ∈ (0, 1) and β ≥ 0. When β ≡ 0, we recover the usual Neumann
problem.

We study the nonexistence, existence and multiplicity of positive solutions as the
parameter λ > 0 varies. Our main result is a “bifurcation-type” theorem, which
produces a critical parameter λ∗ > 0 such that

• for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive smooth solutions;
• for all λ = λ∗ problem (Pλ) has at least one positive solution;
• for all λ > λ∗ problem (Pλ) has no positive solutions.

Moreover, we show that we can have positive solutions uλ ∈ C1(Ω) such that

‖uλ‖C1(Ω) → 0 as λ→ 0+.

Our approach uses critical point theory combined with suitable truncation and
comparison techniques to exploit the particular geometry of the problem.

The study of problems in which in the reaction we have competition phenom-
ena between nonlinearities of different nature (“concave-convex” problems), was
initiated by the seminal paper of Ambrosetti-Brezis-Cerami [2] for semilinear equa-
tions driven by the Dirichlet Laplacian. Their work was extended to equations
driven by the Dirichlet p-Laplacian by Garćıa-Azorero-Peral Alonso-Manfredi [5]
and Guo-Zhang [9]. In the aforementioned works, the reaction has the following
special form

λxq−1 + xr−1 for all x ≥ 0 with 1 < q < p < r < p∗.

More general reactions were assumed by de Figueiredo-Gossez-Ubilla [4], Gasiński-
Papageorgiou [7], Hu-Papageorgiou [10], and Papageorgiou-Vetro [26] (Dirichlet
problems). For nonlinear Neumann and Robin problems we mention related works
of Molica Bisci-Rǎdulescu [14, 13], Molica Bisci-Repovš [15, 16], Papageorgiou-
Rǎdulescu [20, 23], and Papageorgiou-Rǎdulescu-Repovš [25].

2. Mathematical Background - Hypotheses

Let X be a Banach space. By X∗ we denote the topological dual of X and by
〈·, ·〉 we denote the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we
say that ϕ satisfies the “Cerami condition” (the “C-condition” for short), if the
following property holds:

“Every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded and (1 +
‖un‖X)ϕ′(un) → 0 in X∗ as n→ +∞, admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ and it leads to a de-
formation theorem from which one can derive the minimax theory of the critical
values of ϕ. One of the main results in this theory is the so-called “Mountain Pass
Theorem” which we recall below.

Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X,R) satisfies the C-condition,
u0, u1 ∈ X, ‖u1−u0‖X > ρ, max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u−u0‖X = ρ} = mρ,

and c = infγ∈Γmax0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) =
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u1}, then c ≥ mρ and c is a critical value of ϕ (that is, there exists û ∈ X such
that ϕ′(û) = 0, ϕ(û) = c ≥ mρ).

Consider a function ϑ ∈ C1(0,∞), ϑ(t) > 0 for all t > 0, which satisfies

(1) 0 < ĉ ≤
ϑ′(t)t

ϑ(t)
≤ c0 and c1t

p−1 ≤ ϑ(t) ≤ c2(t
τ−1 + tp−1) for all t > 0,

with 0 < c1, c2 and 1 ≤ τ < p < +∞.
Then the hypotheses on the map y → a(y) involved in the differential operator

of problem (Pλ) are the following:

H(a): a(y) = a0(|y|)y for all y ∈ R
N with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t→ a0(t)t is strictly increasing on (0,+∞), a0(t)t → 0+ as

t→ 0+ and lim
t→0+

a′0(t)t

a0(t)
> −1;

(ii) there exists c3 > 0 such that |∇a(y)| ≤ c3
ϑ(|y|)

|y|
for all y ∈ R

N \ {0};

(iii) (∇a(y)ξ, ξ)RN ≥
ϑ(|y|)

|y|
|ξ|2 for all y ∈ R

N \ {0}, ξ ∈ R
N ;

(iv) If Ĝ0(t) =
∫ t

0 a0(s)sds for all t > 0, then there exists q ∈ (1, p) such that

lim sup
t→0+

Ĝ0(t)

tq
≤ c∗ with c∗ > 0,

p Ĝ0(t)− a0(t)t
2 ≥ 0 for all t ≥ 0.

Remark 2.1. Conditions H(a) (i), (ii), (iii) are dictated by the nonlinear regularity
theory of Lieberman [12] (p. 320) and the nonlinear maximum principle of Pucci-
Serrin [27] (pp. 111, 120). These conditions were first used by Papageorgiou-
Rǎdulescu [21, 22]. Condition H(a) (iv) serves the needs of our problem, but it is
mild and it is satisfied in all cases of interest (see the examples below).

These conditions imply that t → Ĝ0(t) =
∫ t

0
a0(s)sds is strictly convex and

strictly increasing. We set Ĝ(y) = Ĝ0(|y|) for all y ∈ R
N . We have that G(·) is

convex, Ĝ(0) = 0, and

∇Ĝ(0) = 0, ∇Ĝ(y) = Ĝ′
0(|y|)

y

|y|
= a0(|y|)y = a(y) for all y ∈ R

N \ {0}.

So, Ĝ(·) is the primitive of the map a(·) and on account of the convexity of Ĝ(·)

and since Ĝ(0) = 0, we have

(2) Ĝ(y) ≤ (a(y), y)RN for all y ∈ R
N .

The next lemma summarizes the main properties of the map a(·) and is a straight-
forward consequence of (1) and hypotheses H(a) (i), (ii), (iii).

Lemma 2.1. If hypotheses H(a) (i), (ii), (iii) hold, then

(a) y → a(y) is strictly monotone and continuous (thus also maximal mono-
tone);

(b) |a(y)| ≤ c4(|y|τ−1 + |y|p−1) for all y ∈ R
N and some c4 > 0;

(c) (a(y), y)RN ≥
c1

p− 1
|y|p for all y ∈ R

N .

This lemma and (2) lead to the following growth estimates for the primitive Ĝ(·).
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Corollary 2.1. If hypotheses H(a) (i), (ii), (iii) hold, then
c1

p(p− 1)
|y|p ≤ Ĝ(y) ≤

c5(|y|τ + |y|p) for all y ∈ R
N and some c5 > 0.

Example 2.1. The following maps satisfy hypothesesH(a) (for details see Papageorgiou-
Rǎdulescu [22]):

(a) a(y) = |y|p−2y, 1 < p < +∞. This map corresponds to the p-Laplace
differential operator defined by ∆pu = div (|∇u|p−2∇u) for all u ∈ W 1,p(Ω).

(b) a(y) = |y|p−2y + µ|y|q−2y, 1 < q < p < +∞, µ ≥ 0. This map corresponds
to the (p, q)-Laplacian defined by ∆pu + ∆qu for all u ∈ W 1,p(Ω). Such
operators arise in problems of mathematical physics (see Cherfils-Il′yasov
[3]).

(c) a(y) = (1 + |y|2)
p−2

2 y, 1 < p < +∞. This map corresponds to the general-

ized p-mean curvature differential operator defined by div ((1+|∇u|2)
p−2

2 ∇u)
for all u ∈ W 1,p(Ω).

(d) a(y) = |y|p−2y

[
1 +

1

1 + |y|p

]
, 1 < p < +∞. This map corresponds to the

following pertubation of the p-Laplacian ∆pu + div

(
|∇u|p−2∇u

1 + |∇u|p

)
for all

u ∈W 1,p(Ω).

Let A :W 1,p(Ω) →W 1,p(Ω)∗ be defined by

(3) 〈A(u), h〉 =

∫

Ω

(a(∇u),∇h)RN dz for all u, h ∈ W 1,p(Ω).

Using Lemma 2.1, we obtain the following result concerning the map A(·) (see
Gasiński-Papageorgiou [8], Problem 2.192, p. 279).

Proposition 2.1. If hypotheses H(a) (i), (ii), (iii) hold, then the map
A :W 1,p(Ω) →W 1,p(Ω)∗ defined by (3) is bounded (that is, it maps bounded sets to
bounded sets), continuous, monotone (hence also maximal monotone) and of type

(S)+ (that is, if un
w
−→ u in W 1,p(Ω) and lim supn→+∞〈A(un), un − u〉 ≤ 0, then

un → u in W 1,p(Ω)).

The following spaces will play a central role in the study of problem (Pλ): the
Sobolev space W 1,p(Ω), the Banach space C1(Ω) and the “boundary” Lebesgue
space Lp(∂Ω). By ‖ · ‖ we denote the norm of the Sobolev space W 1,p(Ω) defined
by

‖u‖ =
[
‖u‖pp + ‖∇u‖pp

]1/p
for all u ∈W 1,p(Ω).

The Banach space C1(Ω) is ordered with order (positive) cone C+ = {u ∈ C1(Ω) :
u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

D+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

Also, we will consider another open cone in C1(Ω), namely the cone

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω∩u−1(0)

< 0

}
.

On ∂Ω we consider the (N − 1)-dimensional surface (Hausdorff) measure σ(·).
Using this measure, we can define in the usual way the boundary Lebesgue spaces
Lq(∂Ω), 1 ≤ q ≤ +∞. There exists a unique continuous linear map γ0 :W 1,p(Ω) →
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Lp(∂Ω), known as the “trace map”, such that γ0(u) = u
∣∣
∂Ω

for all u ∈ W 1,p(Ω) ∩

C(Ω). So, the trace map extends the notion of boundary values to all Sobolev

functions. The trace map γ0(·) is compact into Lq(∂Ω) for all q ∈

[
1,

(N − 1)p

N − p

)

if p < N and into Lq(∂Ω) for all 1 ≤ q < +∞ if N ≤ p. Also, we have

im γ0 =W
1

p′
,p
(∂Ω)

(
1

p
+

1

p′
= 1

)
, ker γ0 =W

1,p
0 (Ω).

In the sequel, for notational economy, we drop the use of the map γ0(·). All restric-
tions of Sobolev functions on ∂Ω are understood in the sense of traces.

We introduce the following hypotheses on the potential ξ(·) and the boundary
coefficient β(·):

H(ξ): ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω.
H(β): β ∈ C0,η(∂Ω) for some η ∈ (0, 1), β(z) ≥ 0 for all z ∈ ∂Ω.
H0: ξ 6≡ 0 or β 6≡ 0.

Remark 2.2. If β ≡ 0, then we have the usual Neumann problem.

The next two lemmata can be found in Papageorgiou-Rǎdulescu-Repovš [24].

Lemma 2.2. If ξ̂ ∈ L∞(Ω), ξ̂(z) ≥ 0 for a.a. z ∈ Ω, ξ̂ 6≡ 0, then there exists

c6 > 0 such that ‖∇u‖pp +
∫
Ω
ξ̂(z)|u|pdz ≥ c6‖u‖p for all u ∈ W 1,p(Ω).

Lemma 2.3. If β̂ ∈ L∞(∂Ω), β̂(z) ≥ 0 for a.a. z ∈ ∂Ω, β̂ 6≡ 0, then there exists

c7 > 0 such that ‖∇u‖pp +
∫
∂Ω
β̂(z)|u|pdσ ≥ c7‖u‖p for all u ∈W 1,p(Ω).

Now consider a Carathéodory function f0 : Ω× R → R which satisfies

|f0(z, x)| ≤ a0(z)(1 + |x|r−1) for a.a. z ∈ Ω and all x ∈ R,

with a0 ∈ L∞(Ω), 1 < r ≤ p∗. We set F0(z, x) =
∫ x

0
f0(z, s)ds and consider the

C1-functional ϕ0 :W 1,p(Ω) → R defined by

ϕ0(u) =

∫

Ω

Ĝ(∇u)dz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

F0(z, u)dz for all u ∈ W 1,p(Ω).

The next result is an outgrowth of the nonlinear regularity theory and can be
found in Papageorgiou-Rǎdulescu [21].

Proposition 2.2. If hypotheses H(a), H(β) hold and u0 ∈ W 1,p(Ω) is a local
C1(Ω)-minimizer of ϕ0(·), that is, there exists ρ1 > 0 such that ϕ0(u0) ≤ ϕ0(u0+h)
for all h ∈ C1(Ω), ‖h‖C1(Ω) ≤ ρ1, then u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and it

is also a local W 1,p(Ω)-minimizer of ϕ0(·), that is, there exists ρ2 > 0 such that
ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p(Ω), ‖h‖ ≤ ρ2.

This result is a powerful tool in the study of elliptic problems, when it is combined
with the following strong comparison principle due to Papageorgiou-Rǎdulescu-
Repovš [24].

Proposition 2.3. If hypotheses H(a) hold, ξ̂ ∈ L∞(Ω), ξ̂(z) ≥ 0 for a.a. z ∈ Ω,
h1, h2 ∈ L∞(Ω) such that 0 < c8 ≤ h2(z)−h1(z) for a.a. z ∈ Ω, u, v ∈ C1(Ω) \ {0}
satisfy u ≤ v and

− div a(∇u(z)) + ξ̂(z)|u(z)|p−2u(z) = h1(z) for a.a. z ∈ Ω,

− div a(∇v(z)) + ξ̂(z)|v(z)|p−2v(z) = h2(z) for a.a. z ∈ Ω,
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then v − u ∈ int Ĉ+.

Next, let us fix some basic notation which we will use in the sequel. So, for
x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W 1,p(Ω), we define u±(·) = u(·)±

and we know that

u± ∈W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

If k : Ω×R → R is a measurable function (for example, a Carathéodory function),
then we set Nk(u)(·) = k(·, u(·)) for all u ∈ W 1,p(Ω) (the Nemytskii operator
corresponding to k(·, ·)). Also, by | · |N we denote the Lebesgue measure on R

N .
Given u, v ∈W 1,p(Ω) with u ≤ v, we can define the order interval [u, v] by setting

[u, v] = {y ∈W 1,p(Ω) : u(z) ≤ y(z) ≤ v(z) for a.a. z ∈ Ω}.

By intC1(Ω)[u, v], we denote the interior in C1(Ω) of [u, v] ∩ C1(Ω). Also, if

u ∈ W 1,p(Ω), then

[u) =
{
y ∈W 1,p(Ω) : u(z) ≤ y(z) for a.a. z ∈ Ω

}
.

If X is a Banach space and ϕ ∈ C1(X,R), then by Kϕ we denote the critical set
of ϕ, that is, Kϕ = {u ∈ X : ϕ′(u) = 0}.

Finally, we introduce the hypotheses on the two competing functions in the
reaction of problem (Pλ).

H(f): f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a.
z ∈ Ω and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω) such that f(z, x) ≤ aρ(z) for a.a.
z ∈ Ω and all 0 ≤ x ≤ ρ;

(ii) f(z, x) ≥ ηs > 0 for a.a. z ∈ Ω, all x ≥ s > 0, and lim
x→+∞

f(z, x)

xp−1
= 0

uniformly for a.a. z ∈ Ω;

(iii) there exist U ⊆ Ω open and δ0 ∈ (0, 1] such that U ⊆ Ω and c9x
q−1 ≤ f(z, x)

for a.a. z ∈ U , all 0 ≤ x ≤ δ0 with c9 > 0, and q ∈ (1, p) as in H(a) (iv).

Remark 2.3. Since we are looking for positive solutions and all the above hypotheses
concern the positive semiaxis, we may assume without any loss of generality, that
f(z, x) = 0 for a.a. z ∈ Ω and all x ≤ 0. Hypothesis H(f) (ii) implies that for a.a.
z ∈ Ω, f(z, ·) is strictly (p − 1)-sublinear near +∞. Hypothesis H(f) (iii) implies
that there is a partially concave nonlinearity near zero.

H(g): g : Ω× R → R+ = [0,+∞) is a Carathéodory function such that g(z, 0) = 0
for a.a. z ∈ Ω and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω) such that g(z, x) ≤ aρ(z) for a.a.
z ∈ Ω and all 0 ≤ x ≤ ρ;

(ii) lim
x→+∞

g(z, x)

xp
∗−1

= 0 and lim
x→+∞

g(z, x)

xp−1
= +∞ uniformly for a.a. z ∈ Ω;

(iii) lim
x→0+

g(z, x)

xp−1
= 0 uniformly for a.a. z ∈ Ω.

Remark 2.4. Again we may assume that g(z, x) = 0 for a.a. z ∈ Ω and all x ≤ 0.
Hypothesis H(g) (ii) implies that for a.a. z ∈ Ω, g(z, ·) is (p − 1)-superlinear and
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has almost critical growth. Hypothesis H(g) (iii) says that for a.a. z ∈ Ω, g(z, ·) is
(p− 1)-sublinear near zero, in contrast to f(z, ·) which exhibits a partially concave
nonlinearity.

Usually superlinear problems are treated using the so-called Ambrosetti-Rabinowitz
condition (see, for example, Motreanu-Motreanu-Papageorgiou [17], p. 341). This
condition, although useful in checking the compactness condition for the energy
(Euler) functional of the problem, it is rather restrictive. For this reason we em-

ploy a weaker condition (see hypothesis Ĥ0 (i) below), which incorporates in our
framework also superlinear terms which have “slower” growth near +∞ and fail to
satisfy the Ambrosetti-Rabinowitz condition.

We introduce F (z, x) =
∫ x

0
f(z, s)ds and G(z, x) =

∫ x

0
g(z, s)ds. For every λ > 0

we define
eλ(z, x) = [λf(z, x) + g(z, x)]x− p[λF (z, x) +G(z, x)].

Ĥ0: for all λ in a bounded set B ⊆ (0,+∞), we have:

(i) there exists ηB ∈ L1(Ω) such that eλ(z, x) ≤ eλ(z, v)+ ηB(z) for a.a. z ∈ Ω
and all 0 ≤ x ≤ v, λ ∈ B;

(ii) for every ρ > 0, we can find ξ̂Bρ > 0 such that for a.a. z ∈ Ω and all λ ∈ B,

x→ λf(z, x) + g(z, x) + ξ̂Bρ x
p−1

is nondecreasing on [0, ρ].

Remark 2.5. Hypothesis Ĥ0 (i) replaces the Ambrosetti-Rabinowitz condition. It
is a slight generalization of a condition used by Li-Yang [11] (see also Mugnai-

Papageorgiou [18]). Hypothesis Ĥ0 (ii) is satisfied, if, for example, for a.a. z ∈ Ω,
the functions f(z, ·), g(z, ·) are differentiable and for every ρ > 0, there exists

ξ̂Bρ > 0 such that

[λf ′
x(z, x) + g′x(z, x)]x

2 ≥ −ξ̂Bρ |x|p for a.a. z ∈ Ω and all 0 ≤ x ≤ ρ, λ ∈ B.

Example 2.2. The following pair of functions f(z, x), g(z, x) satisfies hypotheses

H(f), H(g), Ĥ0 above:

f(z, x) = â(z)xq−1 + c10x
τ−1

with â ∈ L∞(Ω)+ ∩ intL∞(U)+ with U ⊆ Ω open, U ⊆ Ω, c10 > 0, τ < p, and

g(z, x) = µ(z)xp−1 ln(1 + x)

with µ ∈ L∞(Ω), µ(z) ≥ γ > 0 for a.a. z ∈ Ω. The function g(z, ·) does not satisfy
the Ambrosetti-Rabinowitz condition.

In what follows for the sake of simplicity, the collection of all the hypotheses on

the data of (Pλ), namely the hypotheses H(a), H(ξ), H(β), H0, H(f), H(g), Ĥ0

will be denoted by H̃ .

3. A Bifurcation-Type Theorem

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) admits a positive solution},

S(λ) = set of positive solutions of (Pλ) (λ > 0).
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Proposition 3.1. If hypotheses H̃ hold, then S(λ) ⊆ D+ for all λ > 0.

Proof. Of course the result is trivially true if S(λ) = ∅.
So, suppose that S(λ) 6= ∅ and let u ∈ S(λ). Then

(4)




−div a(∇u(z)) + ξ(z)u(z)p−1 = λf(z, u(z)) + g(z, u(z)) for a.a. z ∈ Ω,

∂u

∂na
+ β(z)up−1 = 0 on ∂Ω,

(see Papageorgiou-Rǎdulescu [19]).
From (4) and Proposition 7 of Papageorgiou-Rǎdulescu [21], we have u ∈ L∞(Ω).
Apply the regularity theory of Lieberman [12] (p. 320), to obtain that

u ∈ C1,γ(Ω) for some γ ∈ (0, 1).

Let ρ = ‖u‖C1(Ω), B = {λ} and let ξ̂Bρ > 0 be as postulated by hypothesis

Ĥ0(ii). We have

− div a(∇u(z)) + [ξ(z) + ξ̂Bρ ]u(z)p−1 ≥ 0 for a.a. z ∈ Ω,

⇒ div a(∇u(z)) ≤ [‖ξ‖∞ + ξ̂Bρ ]u(z)p−1 for a.a. z ∈ Ω.

Using the nonlinear maximum principle of Pucci-Serrin [27] (Theorem 5.4.1, p.
111), we have

u(z) > 0 for all z ∈ Ω.

Finally, invoking the Boundary Point Lemma of Pucci-Serrin [27] (Theorem 5.5.1,
p. 120), we conclude that u ∈ D+.

Therefore for every λ > 0, S(λ) ⊆ D+. �

Next, we show the nonemptiness of L.

Proposition 3.2. If hypotheses H̃ hold, then L 6= ∅.

Proof. Let η > 0 and consider the following auxiliary Robin problem

(5)




−div a(∇u(z)) + ξ(z)|u(z)|p−2u(z) = η in Ω,

∂u

∂na
+ β(z)|u|p−2u = 0 on ∂Ω.

We introduce the operator V :W 1,p(Ω) → W 1,p(Ω)∗ defined by

〈V (u), h〉 = 〈A(u), h〉 +

∫

Ω

ξ(z)|u|p−2uhdz+

∫

∂Ω

β(z)|u|p−2uhdσ for all u, h ∈ W 1,p(Ω),

which is continuous, monotone (see Proposition 2.1), hence it is also maximal mono-
tone. Also, we have

〈V (u), h〉 ≥
c1

p− 1
‖∇u‖pp +

∫

Ω

ξ(z)|u|pdz +

∫

∂Ω

β(z)|u|pdσ (see Lemma 2.1)

≥ c11‖u‖
p for some c11 > 0 (see Lemmata 2.2 and 2.3),

⇒ V (·) is coercive.

A maximal monotone coercive operator is surjective (see Gasiński-Papageorgiou
[6], Corollary 3.2.31, p. 319). So, we can find u ∈ W 1,p(Ω), u 6= 0 such that

V (u) = η,



NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS 9

⇒ 〈A(u), h〉+

∫

Ω

ξ(z)|u|p−2uhdz +

∫

∂Ω

β(z)|u|p−2uhdσ = η

∫

Ω

hdz(6)

for all h ∈W 1,p(Ω).

In (6) we choose h = −u− ∈ W 1,p(Ω). Then using Lemma 2.1, we obtain

c1

p− 1
‖∇u−‖pp +

∫

Ω

ξ(z)(u−)pdz +

∫

∂Ω

β(z)(u−)pdσ ≤ 0,

⇒ c12‖u‖
p ≤ 0 for some c12 > 0 (see Lemmata 2.2 and 2.3),

⇒ u ≥ 0, u 6= 0.

From (6) we obtain



−div a(∇u(z)) + ξ(z)u(z)p−1 = η for a.a. z ∈ Ω,

∂u

∂na
+ β(z)up−1 = 0 on ∂Ω.

(see Papageorgiou-Rǎdulescu [19]).
As before (see the proof of Proposition 3.1), using the nonlinear regularity theory,

we infer that u ∈ C+ \ {0}.
In fact, we have

div a(∇u(z)) ≤ ‖ξ‖∞u(z)
p−1 for a.a. z ∈ Ω (see hypothesis H(ξ)),

⇒ u ∈ D+ (see Pucci-Serrin [27], pp. 111, 120).

Since V (·) is strictly monotone (see hypothesis H0), the solution u ∈ C+ \ {0} is
unique. Using Proposition 7 of Papageorgiou-Rǎdulescu [21], we have

(7) ‖u‖∞ ≤ c13η
1

p−1 for some c13 > 0.

Hypotheses H(g) imply that given ε > 0, we can find c14 = c14(ε) > 0 such that

(8) g(z, x) ≤ εxp−1 + c14x
p∗−1 for a.a. z ∈ Ω and all x ≥ 0.

Combining (7) and (8) we have

g(z, u(z)) ≤ εu(z)p−1 + c14u(z)
p∗−1 ≤ εc13η + c14c13η

p∗−1

p−1 .

Since p < p∗, choosing η ∈ (0, 1) and ε > 0 small, we can have

(9) g(z, u(z)) <
η

2
for a.a. z ∈ Ω.

Notice that 0 ≤ f(z, u(z)) ≤ c15 for a.a. z ∈ Ω and some c15 > 0 (see hypothesis
H(f) (i)). So, choosing λ > 0 small we can have that

(10) λf(z, u(z)) <
η

2
for a.a. z ∈ Ω.

It follows from (9) and (10) that

(11) −div a(∇u(z))+ ξ(z)u(z)p−1 = η > λf(z, u(z))+ g(z, u(z)) for a.a. z ∈ Ω.

We introduce the following truncation of the reaction in problem (Pλ)

(12) kλ(z, x) =

{
λf(z, x+) + g(z, x+) if x ≤ u(z),

λf(z, u(z)) + g(z, u(z)) if u(z) < x.
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This is a Carathéodory function. We set Kλ(z, x) =
∫ x

0
kλ(z, s)ds and consider

the C1-functional ψλ :W 1,p(Ω) → R defined by

ψλ(u) =

∫

Ω

Ĝ(∇u)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

Kλ(z, u)dz

for all u ∈ W 1,p(Ω).

We have

ψλ(u) ≥
1

p

[
c1

p− 1
‖∇u‖pp +

∫

Ω

ξ(z)|u|pdz +

∫

∂Ω

β(z)|u|pdσ

]
−

∫

Ω

Kλ(z, u)dz

≥
c15

p
‖u‖p − c16 for some c15, c16 > 0 (see Lemmata 2.2 and 2.3),

⇒ ψλ(·) is coercive.

Also, by the Sobolev embedding theorem and the compactness of the trace
map, we see that ψλ(·) is sequentially weakly lower semicontinuous. So, by the
Weierstrass-Tonelli theorem, we can find uλ ∈W 1,p(Ω) such that

(13) ψλ(uλ) = inf{ψλ(u) : u ∈W 1,p(Ω)}.

Let V ⊆ Ω be open with C1-boundary such that U ⊆ V ⊆ V ⊆ Ω. If δ > 0, we
define

Vδ = {z ∈ V : d(z, ∂V ) < δ}.

We can always choose δ > 0 small such that

(14) U ⊆ V \ Vδ.

We consider a function ĥ ∈ C1(Ω) such that

(15) 0 ≤ ĥ(z) ≤ 1 for all z ∈ Ω and ĥ
∣∣∣
V \Vδ

= 1, ĥ
∣∣∣
Ω\V

= 0.

Hypothesis H(a) (iv) implies that we can find c17 ≥ c∗ and δ ∈ (0, δ0) (see
hypothesis H(f) (iii)) such that

Ĝ(y) ≤ c17|y|
q for all |y| ≤ δ.

Since u ∈ D+, we can find t ∈ (0, 1) small such that

(16) tĥ ∈ (0, u] and 0 ≤ tĥ(z) ≤ δ for all z ∈ V .

We have

ψλ(tĥ) =

∫

Vδ

Ĝ(t∇ĥ)dz +
tp

p

∫

Ω

ξ(z)ĥpdz +
tp

p

∫

∂Ω

β(z)ĥpdσ−

∫

Ω

Kλ(z, tĥ)dz (see (15)) ≤ tqc17

∫

Vδ

|∇ĥ|qdz +
tp

p

∫

Ω

ξ(z)ĥpdz+

tp

p

∫

∂Ω

β(z)ĥpdσ −
λc9t

q

q

∫

U

ĥqdz (see (14), (16) and H(f) (iii))

= tq
[
c17

∫

Vδ

|∇ĥ|qdz −
λc9

q

∫

U

ĥqdz

]
+
tp

p

[∫

Ω

ξ(z)ĥpdz +

∫

∂Ω

β(z)ĥpdσ

]
.

We see that if we choose δ > 0 small (so that |Vδ|N is small) and t ∈ (0, 1) small,
too, since q < p, we will have

ψλ(tĥ) < 0,

⇒ ψλ(uλ) < 0 = ψλ(0) (see (13)),
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⇒ uλ 6= 0.

From (13) we have

ψ′
λ(uλ) = 0,

⇒ 〈A(uλ), h〉+

∫

Ω

ξ(z)|uλ|
p−2uλhdz +

∫

∂Ω

β(z)|uλ|
p−2uλhdσ =

∫

Ω

kλ(z, uλ)hdz

(17)

for all h ∈ W 1,p(Ω).

In (17) we choose h = −u−λ ∈W 1,p(Ω). Then

c1

p− 1
‖∇u−λ ‖

p
p +

∫

Ω

ξ(z)(u−λ )
pdz +

∫

∂Ω

β(z)(u−λ )
pdσ = 0,

⇒ c18‖u
−
λ ‖

p ≤ 0 for some c18 > 0 (see Lemmata 2.2 and 2.3),

⇒ uλ ≥ 0, uλ 6= 0.

Also, if in (17) we choose h = (uλ − u)+ ∈W 1,p(Ω), then

〈A(uλ), (uλ − u)+〉+

∫

Ω

ξ(z)up−1
λ (uλ − u)+dz +

∫

∂Ω

β(z)up−1
λ (uλ − u)+dσ

=

∫

Ω

[λf(z, u) + g(z, u)](uλ − u)+dz

≤ η

∫

Ω

(uλ − u)+dz (see (11))

= 〈A(u), (uλ − u)+〉+

∫

Ω

ξ(z)up−1(uλ − u)+dz +

∫

∂Ω

β(z)up−1(uλ − u)+dσ

⇒ 〈A(uλ)−A(u), (uλ − u)+〉+

∫

Ω

ξ(z)(up−1
λ − up−1)(uλ − u)+dz

+

∫

∂Ω

β(z)(up−1
λ − up−1)(uλ − u)+dσ ≤ 0

⇒ uλ ≤ u (see Lemmata 2.2, 2.3).

So, we have proved that

(18) uλ ∈ [0, u], uλ 6= 0.

On account of (12) and (18), equation (17) becomes

〈A(uλ), h〉+

∫

Ω

ξ(z)up−1
λ hdz +

∫

∂Ω

β(z)up−1
λ hdσ

=

∫

Ω

[λf(z, uλ) + g(z, uλ)]hdz for all h ∈W 1,p(Ω),

⇒ uλ ∈ S(λ) ⊆ D+ (see Proposition 3.1) and so λ ∈ L 6= ∅.

�

In the next proposition, we prove a structural property of L, namely we show
that L is an interval.

Proposition 3.3. If hypotheses H̃ hold, λ ∈ L and 0 < µ < λ, then µ ∈ L.
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Proof. Since λ ∈ L, there is uλ ∈ S(λ) ⊆ D+ (see Proposition 3.1). We consider
the following truncation of the reaction in problem (Pµ)

(19) kµ(z, x) =

{
µf(z, x+) + g(z, x+) if x ≤ uλ(z),

µf(z, uλ(z)) + g(z, uλ(z)) if uλ(z) < x.

This is a Carathéodory function. We set Kµ(z, x) =
∫ x

0
kµ(z, s)ds and consider

the C1-functional ϕ̂µ : W 1,p(Ω) → R defined by

ϕ̂µ(u) =

∫

Ω

Ĝ(∇u)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

Kµ(z, u)dz

for all u ∈ W 1,p(Ω).

As before we have that

ϕ̂µ(·) is coercive (see (19)),

ϕ̂µ(·) is sequentially weakly lower semicontinuous.

So, we can find uµ ∈ W 1,p(Ω) such that

(20) ϕ̂µ(uµ) = inf{ϕ̂µ(u) : u ∈ W 1,p(Ω)}.

Reasoning as in the proof of Proposition 3.2, using the cut-off function ĥ, we
show that

ϕ̂µ(uµ) < 0 = ϕ̂µ(0),

⇒ uµ 6= 0.

From (20) we have

ϕ̂′
µ(uµ) = 0,

⇒ 〈A(uµ), h〉+

∫

Ω

ξ(z)|uµ|
p−2uµhdz +

∫

∂Ω

β(z)|uµ|
p−2uµhdσ =

∫

Ω

kµ(z, uµ)hdz

(21)

for all h ∈ W 1,p(Ω).

In (21) we first choose h = −u−µ ∈W 1,p(Ω) and infer that

uµ ≥ 0, uµ 6= 0.

Next, in (21) we choose h = (uµ − uλ)
+ ∈W 1,p(Ω). We have

〈A(uµ), (uµ − uλ)
+〉+

∫

Ω

ξ(z)up−1
µ (uµ − uλ)

+dz +

∫

∂Ω

β(z)up−1
µ (uµ − uλ)

+dσ

=

∫

Ω

[µf(z, uλ) + g(z, uλ)](uµ − uλ)
+dz (see (19))

≤

∫

Ω

[λf(z, uλ) + g(z, uλ)](uµ − uλ)
+dz (since λ > µ)

= 〈A(uλ), (uµ − uλ)
+〉+

∫

Ω

ξ(z)up−1
λ (uµ − uλ)

+dz +

∫

∂Ω

β(z)up−1
λ (uµ − uλ)

+dσ

(since uλ ∈ S(λ)),

⇒ uµ ≤ uλ.

So, we have proved that

uµ ∈ [0, uλ], uµ 6= 0,



NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS 13

⇒ uµ ∈ S(µ) ⊆ D+ (see (19), (21) and Proposition 3.1),

⇒ µ ∈ L.

�

This proposition shows that L is an interval. An interesting byproduct of the
above proof is the following corollary.

Corollary 3.1. If hypotheses H̃ hold, λ ∈ L, uλ ∈ S(λ) ⊆ D+ and 0 < µ < λ,
then µ ∈ L and we can find uµ ∈ S(µ) ⊆ D+ such that uλ − uµ ∈ C+ \ {0}.

We can improve the conclusion of this corollary.

Proposition 3.4. If hypotheses H̃ hold, λ ∈ L, uλ ∈ S(λ) ⊆ D+ and 0 < µ < λ,

then µ ∈ L and we can find uµ ∈ S(µ) ⊆ D+ such that uλ − uµ ∈ int Ĉ+.

Proof. From Corollary 3.1, we already know that µ ∈ L and we can find uµ ∈
S(µ) ⊆ D+ such that

(22) uλ − uµ ∈ C+ \ {0}.

Let ρ = ‖uλ‖∞, B = [µ, λ] and let ξ̂Bρ > 0 as postulated by hypothesis Ĥ0 (ii).
We have

− div a(∇uµ(z)) + [ξ(z) + ξ̂Bρ ]uµ(z)
p−1

= µf(z, uµ(z)) + g(z, uµ(z)) + ξ̂Bρ uµ(z)
p−1

≤ µf(z, uλ(z)) + g(z, uλ(z)) + ξ̂Bρ uλ(z)
p−1 (see (22) and hypothesis Ĥ0 (ii))

= λf(z, uλ(z)) + g(z, uλ(z)) + ξ̂Bρ uλ(z)
p−1 + [µ− λ]f(z, uλ(z)) for a.a. z ∈ Ω.

(23)

Recall that uλ ∈ D+. Therefore sλ = minΩ uλ > 0. Then using hypothesis
H(f) (iii), we have

(24) f(z, uλ(z)) ≥ ηsλ > 0 for a.a. z ∈ Ω.

Using (24) in (23) and recalling that µ < λ, we obtain

− div a(∇uµ(z)) + [ξ(z) + ξ̂Bρ ]uµ(z)
p−1

≤ λf(z, uλ(z)) + g(z, uλ(z)) + ξ̂Bρ uλ(z)
p−1 + [µ− λ]ηsλ

< −div a(∇uλ(z)) + [ξ(z) + ξ̂Bρ ]uλ(z)
p−1 for a.a. z ∈ Ω,

⇒ uλ − uµ ∈ int Ĉ+ (see Proposition 2.3).

�

We set λ∗ = supL.

Proposition 3.5. If hypotheses H̃ hold, then λ∗ < +∞.

Proof. Let µ > ‖ξ‖∞ (see hypothesis H(ξ)). We claim that we can find λ̂ > 0 such
that

(25) λ̂f(z, x) + g(z, x) ≥ µxp−1 for a.a. z ∈ U and all x ≥ 0.
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To this end, notice that for any λ > 0 on account of hypothesis H(f) (iii) we
have
(26)

λf(z, x) ≥ µxp−1 for a.a. z ∈ U , all 0 ≤ x ≤ δ̂ ≤ δ0 (recall q < p and δ0 ≤ 1).

Also, hypothesis H(g) (ii) implies that we can find M1 > 0 such that

(27) g(z, x) ≥ µxp−1 for a.a. z ∈ Ω and all x ≥M1.

According to hypothesis H(f) (ii), we have

(28) λf(z, x) ≥ ληδ̂ for a.a. z ∈ Ω and all x ≥ δ̂.

Choose λ̂ > 0 such that

(29) ληδ̂ ≥ µM
p−1
1 .

Then from (26), (27), (28), (29) and since f, g ≥ 0, we conclude that (25) is true.

Now let λ > λ̂ and assume that λ ∈ L. Then we can find uλ ∈ S(λ) ⊆ D+. We
set mλ = minU uλ > 0. For δ > 0 let mδ

λ = mλ + δ. We set ρ = ‖uλ‖∞, B = {λ}

and consider ξ̂Bρ > 0 as postulated by hypothesis Ĥ0 (ii). We have

− div a(∇mδ
λ) + [ξ(z) + ξ̂Bρ ](mδ

λ)
p−1

= [ξ(z) + ξ̂Bρ ](mδ
λ)

p−1

≤ [ξ(z) + ξ̂Bρ ]mp−1
λ + χ(δ) with χ(δ) → 0+ as δ → 0+

< [µ+ ξ̂Bρ ]mp−1
λ + χ(δ) (recall that µ > ‖ξ‖∞)

≤ λ̂f(z,mλ) + g(z,mλ) + ξ̂Bρ m
p−1
λ + χ(δ) (see (25))

= λf(z,mλ) + g(z,mλ) + ξ̂Bρ m
p−1
λ + [λ̂− λ]f(z,mλ) + χ(δ)

≤ λf(z,mλ) + g(z,mλ) + ξ̂Bρ m
p−1
λ + [λ̂− λ]ηmλ

+ χ(δ)

(30)

(see hypothesis H(f) (ii) and recall that λ̂ < λ).

Since χ(δ) → 0+ as δ → 0+, for δ > 0 small we have

(31) χ(δ) < [λ− λ̂]ηmλ
(recall that λ̂ < λ).

Using (31) in (30), we see that for δ > 0 small, we have

− div a(∇mδ
λ) + [ξ(z) + ξ̂Bρ ](mδ

λ)
p−1

< λf(z, uλ(z)) + g(z, uλ(z)) + ξ̂Bρ uλ(z)
p−1

(see hypothesis Ĥ0 (ii) and recall that mλ = minU uλ)

= −div a(∇uλ(z)) + [ξ(z) + ξ̂Bρ ]uλ(z)
p−1 for a.a. z ∈ U

⇒ uλ −mδ
λ ∈ int Ĉ+(U) for δ > 0 small (see Proposition 2.3).

This contradicts the fact that mλ = minU uλ. It follows that λ 6∈ L and so we

conclude that λ∗ ≤ λ̂ < +∞. �

Proposition 3.6. If hypotheses H̃ hold and 0 < λ < λ∗, then problem (Pλ) has at
least two positive solutions u0, û ∈ D+, u0 6= û.
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Proof. Let 0 < λ1 < λ < λ2 < λ∗. We know that λ1, λ2 ∈ L. According to
Proposition 3.4, we can find uλ2

∈ S(λ2) ⊆ D+ and uλ1
∈ S(λ1) ⊆ D+ such that

uλ2
− uλ1

∈ intC+.

We consider the following truncation of the reaction in problem (Pλ)

(32) ĵλ(z, x) =





λf(z, uλ1
(z)) + g(z, uλ1

(z)) if x < uλ1
(z),

λf(z, x) + g(z, x) if uλ1
(z) ≤ x ≤ uλ2

(z),

λf(z, uλ2
(z)) + g(z, uλ2

(z)) if uλ2
(z) < x.

This is a Carathéodory function. We set Ĵλ(z, x) =
∫ x

0 ĵλ(z, s)ds and consider the

C1-functional τ̂λ : W 1,p(Ω) → R defined by

τ̂λ(u) =

∫

Ω

Ĝ(∇u)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

Ĵλ(z, u)dz

for all u ∈ W 1,p(Ω). Evidently, τ̂λ(·) is coercive (see (32) and Lemmata 2.2 and
2.3) and sequentially weakly lower semicontinuous. So, we can find u0 ∈ W 1,p(Ω)
such that

τ̂λ(u0) = inf{τ̂λ(u) : u ∈W 1,p(Ω)},(33)

⇒ τ̂ ′λ(u0) = 0,

⇒ 〈A(u0), h〉+

∫

Ω

ξ(z)|u0|
p−2u0hdz +

∫

∂Ω

β(z)|u0|
p−2u0hdσ =

∫

Ω

ĵλ(z, u0)hdz

for all h ∈W 1,p(Ω).

Choosing h = (uλ1
−u0)+ ∈W 1,p(Ω) and h = (u0−uλ2

)+ ∈ W 1,p(Ω) and reasoning
as before, we obtain that

u0 ∈ [uλ1
, uλ2

],

⇒ u0 ∈ S(λ) ⊆ D+ (see (32)).

In fact, using Proposition 2.3 (the strong comparison principle) as in the proof of
Proposition 3.4, we obtain

(34) u0 ∈ intC1(Ω)[uλ1
, uλ2

].

Consider the following Carathéodory function

(35) jλ(z, x) =

{
λf(z, uλ1

(z)) + g(z, uλ1
(z)) if x ≤ uλ1

(z),

λf(z, x) + g(z, x) if uλ1
(z) < x.

We set Jλ(z, x) =
∫ x

0 jλ(z, s)ds and consider the C1-functional τλ : W 1,p(Ω) → R

defined by

τλ(u) =

∫

Ω

Ĝ(∇u)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

Jλ(z, u)dz

for all u ∈W 1,p(Ω).
From (32) and (35) it is clear that

τ̂λ

∣∣∣
[uλ1

,uλ2
]
= τλ

∣∣∣
[uλ1

,uλ2
]
.
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From (33) and (34) we infer that

u0 is a local C1(Ω)-minimizer of τλ,

⇒ u0 is a local W 1,p(Ω)-minimizer of τλ (see Proposition 2.2).(36)

Using (35), we can easily check that

(37) Kτλ ⊆ [uλ1
) ∩D+.

So, we may assume that Kτλ is finite (otherwise we already have an infinity of
positive solutions in D+, see (35)). Then this property of Kτλ and (36) imply that
we can find ρ ∈ (0, 1) small such that

(38) τλ(u0) < inf{τλ(u) : ‖u− u0‖ = ρ} = mλ
ρ

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29).
Given u ∈ D+, on account of hypothesis H(g) (ii), we have

(39) τλ(tu) → −∞ as t→ +∞.

Claim: τλ satisfies the C-condition.
Let {un}n∈N ⊆W 1,p(Ω) be a sequence such that

(40) |τλ(un)| ≤M2 for some M2 > 0 and all n ∈ N,

(41) (1 + ‖un‖)τ
′
λ(un) → 0 in W 1,p(Ω)∗ as n→ +∞.

From (41) we have

|〈τ ′λ(un), h〉| ≤
εn‖h‖

1 + ‖un‖
for all h ∈W 1,p(Ω), with εn → 0+,

⇒
∣∣∣〈A(un), h〉+

∫

Ω

ξ(z)|un|
p−2unhdz +

∫

∂Ω

β(z)|un|
p−2unhdσ −

∫

Ω

jλ(z, un)hdz
∣∣∣

≤
εn‖h‖

1 + ‖un‖
, for all h ∈ W 1,p(Ω), n ∈ N.

(42)

In (42) we choose h = −u−n ∈W 1,p(Ω). Using Lemma 2.1, we have

c1

p− 1
‖∇u−n ‖

p
p +

∫

Ω

ξ(z)(u−n )
p dz +

∫

∂Ω

β(z)(u−n )
pdσ ≤ c19‖u

−
n ‖

for some c19 > 0 and all n ∈ N (see (35)),

⇒ ‖u−n ‖
p−1 ≤ c20 for some c20 > 0 and all n ∈ N (see Lemmata 2.2 and 2.3),

⇒ {u−n }n∈N ⊆W 1,p(Ω) is bounded.

(43)

Using (43) in (40), we obtain
(44)∫

Ω

pĜ(∇un)dz+

∫

Ω

ξ(z)(u+n )
pdz+

∫

∂Ω

β(z)(u+n )
pdσ−

∫

Ω

p[λF (z, u+n )+G(z, u
+
n )]dz ≤M3,

for some M3 > 0 and all n ∈ N (see (35)).
On the other hand, if in (42) we choose h = u+n ∈ W 1,p(Ω), then

−

∫

Ω

(a(∇u+n ),∇u
+
n )RN dz −

∫

Ω

ξ(z)(u+n )
pdz −

∫

∂Ω

β(z)(u+n )
pdσ

(45)
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+

∫

Ω

[λf(z, u+n ) + g(z, u+n )]u
+
n dz ≤ c21, for some c21 > 0 and all n ∈ N (see (35)).

We add (44) and (45) and using hypothesis H(a) (iv), we obtain

(46)

∫

Ω

eλ(z, u
+
n )dz ≤M4, for some M4 > 0 and all n ∈ N.

We will show that {u+n }n∈N ⊆ W 1,p(Ω) is bounded. Arguing by contradiction,
suppose that ‖u+n ‖ → +∞ as n→ +∞.

We set yn =
u+n

‖u+n ‖
, n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. We may

assume that

(47) yn
w
−→ y in W 1,p(Ω) and yn → y in Lp(Ω), and in Lp(∂Ω), y ≥ 0.

First, assume that y 6= 0 and let Ω+ = {z ∈ Ω : y(z) > 0}. We have |Ω+|N > 0
(recall that y ≥ 0, see (47)). Then

(48) u+n (z) → +∞ for all z ∈ Ω+.

Hypotheses H(f) (ii) and H(g) (ii) imply that

(49) lim
x→+∞

F (z, x)

xp
= 0 and → lim

x→+∞

G(z, x)

xp
= +∞ uniformly for a.a. z ∈ Ω.

Then (48), (49) imply that

F (z, u+n (z))

‖u+n ‖p
→ 0 for a.a. z ∈ Ω+,

G(z, u+n (z))

‖u+n ‖p
→ +∞ for a.a. z ∈ Ω+.

Using Fatou’s lemma, we have
∫

Ω+

λF (z, u+n ) +G(z, u+n )

‖u+n ‖p
dz → +∞ as n→ +∞

⇒

∫

Ω

λF (z, u+n ) +G(z, u+n )

‖u+n ‖p
dz → +∞ as n→ +∞ (recall F,G ≥ 0).(50)

Recall that from (40) and (43), we have
∣∣∣∣
∫

Ω

pĜ(∇u+n )dz +

∫

Ω

ξ(z)(u+n )
pdz +

∫

∂Ω

β(z)(u+n )
pdσ

−

∫

Ω

p[λF (z, u+n ) +G(z, u+n )]dz

∣∣∣∣ ≤M5, for some M5 > 0 and all n ∈ N

⇒

∫

Ω

p[λF (z, u+n ) +G(z, u+n )]dz ≤

∫

Ω

pĜ(∇u+n )dz +

∫

Ω

ξ(z)(u+n )
pdz

+

∫

∂Ω

β(z)(u+n )
pdσ +M4 for all n ∈ N

⇒

∫

Ω

p[λF (z, u+n ) +G(z, u+n )]

‖u+n ‖p
dz ≤

1

‖u+n ‖p

∫

Ω

pĜ(∇u+n )dz +

∫

Ω

ξ(z)ypndz

+

∫

∂Ω

β(z)ypndσ +
M4

‖u+n ‖p
for all n ∈ N.

(51)
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Corollary 2.1 and hypothesis H(a) (iv) imply that

Ĝ(y) ≤ c22(|y|
q + |y|p) for some c22 > 0 and all y ∈ R

N .

Therefore we have

(52)
1

‖u+n ‖p

∫

Ω

pĜ(∇u+n )dz ≤
p c22

‖u+n ‖p−q
‖∇yn‖

q
q + p c22‖∇yn‖

p
p ≤M6

for some M6 > 0, all n ∈ N (recall p > q). Returning to (51) and using (52), we
obtain

(53)

∫

Ω

p[λF (z, u+n ) +G(z, u+n )]

‖u+n ‖p
dz ≤M7 for some M7 > 0 and all n ∈ N.

Comparing (50) and (53), we have a contradiction.
Next, we assume that y = 0. We introduce the C1-functional τ∗λ :W 1,p(Ω) → R

defined by

τ∗λ(u) =
c1

p(p− 1)
‖∇u‖pp +

1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

Jλ(z, u)dz

for all u ∈W 1,p(Ω).
Let k > 0 and define

vn = (kp)1/pyn ∈ W 1,p(Ω) for all n ∈ N.

We have
(54)

vn
w
−→ 0 in W 1,p(Ω) and vn → 0 in Lp(Ω) and in Lp(∂Ω), (see (47) and recall y = 0).

Hypotheses H(f) (i), (ii) imply that

0 ≤ F (z, x) ≤ c23(1 + xp−1) for a.a. z ∈ Ω, all x ≥ 0, and some c23 > 0,

⇒

∫

Ω

F (z, vn)dz → 0 (see (54)).

Let c24 = supn∈N
‖vn‖

p∗

p∗ (see (54)). Hypotheses H(g) (i), (ii) imply that given
ε > 0, we can find c25 = c25(ε) > 0 such that

(55) 0 ≤ G(z, x) ≤
ε

2c24
xp

∗

+ c25 for a.a. z ∈ Ω and all x ≥ 0.

Let E ⊆ Ω be a measurable set with |E|N ≤
ε

2c25
. Then we have

∫

E

G(z, vn)dz ≤
ε

2c24
‖vn‖

p∗

p∗ + c25|Ω|N ≤ ε for all n ∈ N (see (55)).

Also, from (53) we see that

{NG(vn)}n∈N ⊆ L1(Ω) is bounded.

It follows that

(56) {NG(vn)}n∈N ⊆ L1(Ω) is uniformly integrable

(see Gasiński-Papageorgiou [8], Problem 1.6, p. 36).
From (54) and by passing to a subsequence if necessary, we can say that

vn(z) → 0 for a.a. z ∈ Ω,

⇒ G(z, vn(z)) → 0 for a.a. z ∈ Ω,
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⇒

∫

Ω

G(z, vn)dz → 0 as n→ +∞,

using Vitali’s Theorem (see Gasiński-Papageorgiou [8], p. 5), we have
∫

Ω

[λF (x, vn) +G(z, vn)]dz → 0 as n→ +∞

Recall that ‖u+n ‖ → +∞. So, we can find n0 ∈ N such that

(57) 0 <
(kp)1/p

‖u+n ‖
≤ 1 for all n ≥ n0.

Let tn ∈ [0, 1] be such that

(58) τ∗λ(tnun) = max{τ∗λ(tun) : 0 ≤ t ≤ 1}.

It follows from (57) and (58) that

τ∗λ(tnun) ≥ τ∗λ(vn)

=
c1k

p− 1
‖∇yn‖

p
p + k

[∫

Ω

ξ(z)|yn|
pdz +

∫

∂Ω

β(z)|yn|
pdσ

]
−

∫

Ω

Jλ(z, vn)dz

≥ kc26 − c27 for some c26, c27 > 0 and all n ≥ n0 (see Lemmata 2.2 and 2.3).

Since k > 0 is arbitrary, we infer that

(59) τ∗λ(tnun) → +∞ as n→ +∞.

From the definition of τ∗λ(·) and Corollary 2.1, we have

τ∗λ(u) ≤ τλ(u) for all u ∈W 1,p(Ω).

Therefore from (40) we have

(60) τ∗λ(un) ≤M2 for all n ∈ N.

Also, notice that

(61) τ∗λ(0) = 0.

Then (59), (60), (61) imply that we can find n1 ∈ N such that

(62) tn ∈ (0, 1) for all n ≥ n1.

It follows from (58) and (62) that

d

dt
τ∗λ(tun)

∣∣∣
t=tn

= 0,

⇒ 〈(τ∗λ)
′(tnun), tnun〉 = 0 (by the Chain rule),

⇒
c1

p− 1
‖∇(tnun)‖

p
p +

∫

Ω

ξ(z)|tnun|
pdz +

∫

∂Ω

β(z)|tnun|
pdσ =

∫

Ω

jλ(z, tnun)(tnun)dz

≤ c28 +

∫

Ω

[λf(z, tnu
+
n ) + g(z, tnu

+
n )](tnu

+
n )dz

(63)

for some c28 > 0 and all n ≥ n1 (recall f, g
∣∣∣
Ω×(−∞,0]

= 0).
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By hypothesis Ĥ0 (i) and (62), we have for B = {λ}
∫

Ω

eλ(z, tnu
+
n )dz ≤

∫

Ω

eλ(z, u
+
n )dz + ‖ηB‖1 ≤M4 + ‖ηB‖1 for all n ≥ n1 (see (46)),

⇒

∫

Ω

[λf(z, tnu
+
n ) + g(z, tnu

+
n )](tnu

+
n )dz

≤M8 +

∫

Ω

p[λF (z, tnu
+
n ) +G(z, tnu

+
n )]dz for some M8 > 0 and all n ≥ n1.

(64)

Returning to (63) and using (64), we have

c1

p− 1
‖∇(tnun)‖

p
p +

∫

Ω

ξ(z)|tnun|
pdz +

∫

∂Ω

β(z)|tnun|
pdσ

−

∫

Ω

Jλ(z, tnu
+
n )dz ≤M9 for some M9 > 0, all n ≥ n1 (see (35)),

⇒ pτ∗λ(tnun) ≤M9 for all n ≥ n1.

(65)

Comparing (59) and (65) we get a contradiction.
This proves that {u+n }n∈N ⊆W 1,p(Ω) is bounded, therefore

{un}n∈N ⊆W 1,p(Ω) is bounded (see (43)).

We may assume that

(66) un
w
−→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω).

Recall that

0 ≤ f(z, x) ≤ c28[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, and some c28 > 0,

⇒

∫

{un≥uλ1
}

f(z, un)(un − u)dz → 0 (see (66)).

(67)

As before, let c29 = supn∈N ‖un‖p∗ < +∞ (see (66)). Hypotheses H(g) (i), (ii)
imply that given ε > 0, we can find c30 > 0 such that

(68) g(z, x) ≤
ε

3cp
∗

29

xp
∗−1 + c30 for a.a. z ∈ Ω and all x ≥ 0.

Suppose that E ⊆ Ω is measurable. We have
∣∣∣∣
∫

E

g(z, u+n )(un − u)dz

∣∣∣∣

≤

∫

E

|g(z, u+n )||un − u|dz

≤
ε

3cp
∗

29

∫

Ω

(u+n )
p∗−1|un − u|dz + c30

∫

E

|un − u|dz (see (68)).(69)

Notice that (u+n )
p∗−1 ∈ L(p∗)′(Ω) (recall

1

p∗
+

1

(p∗)′
= 1) and un − u ∈ Lp∗

(Ω).

Using Hölder’s inequality, we have

(70)
ε

3cp
∗

29

∫

Ω

(u+n )
p∗−1|un − u|dz ≤

ε

3cp
∗

29

‖u+n ‖
p∗−1
p∗ ‖un − u‖p∗ ≤

2ε

3
for all n ∈ N.
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Assume that

|E|N ≤

[
ε

6c30c29

](p∗)′

.

Then we have

(71) c30

∫

Ω

|un − u|dz ≤
ε

3
for all n ∈ N.

Returning to (69) and using (70), (71), we obtain
∣∣∣∣
∫

E

g(z, u+n )(un − u)dz

∣∣∣∣ ≤ ε for all n ∈ N,

⇒
{
g(·, u+n (·))(un − u)(·)

}
n∈N

⊆ L1(Ω) is uniformly integrable,

⇒
{
χ{un≥uλ1

}(·)g(·, u
+
n (·))(un − u)(·)

}
n∈N

⊆ L1(Ω) is uniformly integrable.

(72)

From (66) and by passing to a subsequence if necessary, we can have

(73) χ{un≥uλ1
}(z)g(z, u

+
n (z))(un − u)(z) → 0 for a.a. z ∈ Ω, as n→ +∞.

Then (72), (73) and Vitali’s theorem, imply that
∫

{un≥uλ1
}

g(z, u+n )(un − u)dz → 0,

⇒

∫

Ω

jλ(z, u
+
n )(un − u)dz → 0 (see (35), (43), (67)).(74)

Therefore if in (42) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as
n→ +∞ and use (43), (66) and (74), we obtain

lim
n→+∞

〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(Ω) (see Proposition 2.1),

⇒ τλ satisfies the C-condition.

This proves the claim.
Then (38), (39) and the claim permit the use of Theorem 2.1 (the mountain pass

theorem). So, we can find û ∈W 1,p(Ω) such that

(75) û ∈ Kτλ ⊆ [uλ1
) ∩D+ (see (37)),

(76) mλ
ρ ≤ τλ(û) (see (38)).

From (35), (38), (75), (76) we conclude that û is the second positive smooth
solution of (Pλ) (0 < λ < λ∗) distinct from u0.

�

Next, we show that the critical parameter value λ∗ > 0 is admissible. In what
follows, ϕλ :W 1,p(Ω) → R is the energy (Euler) functional for problem (Pλ) defined
by

ϕλ(u) =

∫

Ω

Ĝ(∇u)dz +
1

p

∫

Ω

ξ(z)|u|pdz+

1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

[λF (z, u) +G(z, u)]dz,

for all u ∈W 1,p(Ω). Evidently, ϕλ ∈ C1(W 1,p(Ω),R) for all λ > 0.
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Proposition 3.7. If hypotheses H̃ hold, then λ∗ ∈ L and so L = (0, λ∗].

Proof. Let {λn}n∈N ⊆ (0, λ∗) such that λn → (λ∗)− as n → +∞. We can find
un ∈ S(λn) ⊆ D+ for all n ∈ N. In fact, from Corollary 3.1 and the proof of
Proposition 3.3, we see that can have {un}n∈N increasing and

ϕλn
(un) < 0 for all n ∈ N.

Therefore we have
(77)∫

Ω

pĜ(∇un)dz +

∫

Ω

ξ(z)upndz +

∫

∂Ω

β(z)upndσ − p

∫

Ω

[λF (z, un) +G(z, un)]dz < 0

for all n ∈ N. Also we have

〈A(un), h〉+

∫

Ω

ξ(z)up−1
n hdz +

∫

∂Ω

β(z)up−1
n hdσ

=

∫

Ω

[λnf(z, un) + g(z, un)]hdz for all h ∈W 1,p(Ω), n ∈ N.(78)

Choosing h = un ∈ W 1,p(Ω) in (78), we obtain

−

∫

Ω

(a(∇un),∇un)RNdz−

∫

Ω

ξ(z)upndz −

∫

∂Ω

β(z)upndσ

+

∫

Ω

[λnf(z, un) + g(z, un)]undz = 0 for all n ∈ N.(79)

Adding (77), (79) and using hypothesis H(a) (iv), we have

(80)

∫

Ω

eλn
(z, un)dz < 0 for all n ∈ N.

From (80) and reasoning as in the proof of Proposition 3.6 (see the part of the
proof after (46)), we obtain that

{un}n∈N ⊆W 1,p(Ω) is bounded.

So, we may assume that

(81) un
w
−→ u∗ in W 1,p(Ω) and un → u∗ in Lp(Ω), and Lp(∂Ω).

In (78) we choose h = un − u∗ ∈W 1,p(Ω) and pass to the limit as n→ +∞. Then

lim
n→+∞

〈A(un), un − u∗〉 = 0 (see the part of the proof of Proposition 3.3 after (66)),

⇒ un → u∗ in W 1,p(Ω) (see Proposition 2.1).

(82)

In (78) we pass to the limit as n→ +∞ and use (82). Then

〈A(u∗), h〉+

∫

Ω

ξ(z)(u∗)p−1hdz +

∫

∂Ω

β(z)(u∗)p−1hdσ

=

∫

Ω

[λf(z, u∗) + g(z, u∗)]hdz for all h ∈W 1,p(Ω),

⇒ u∗ ∈ S(λ∗) ⊆ D+.

We conclude that λ∗ ∈ L and so L = (0, λ∗]. �

Proposition 3.8. If hypotheses H̃ hold and λ→ 0+, then we can find uλ ∈ S(λ) ⊆
D+ such that ‖uλ‖C1(Ω) → 0 as λ→ 0+.
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Proof. From the proof of Proposition 3.2, we know that for λ > 0 small we can find
uλ ∈ S(λ) ⊆ D+ such that

uλ ≤ u (see (18), (5)).

If η → 0+ (see (5)), then u = u(η) → 0 in C1(Ω) and so uλ → 0 in C1(Ω). �

Summarizing, we can state the following theorem describing the dependence of
the set of positive solutions on the parameter λ > 0.

Theorem 3.1. If hypotheses H̃ hold, then there exists λ∗ > 0 such that

(a) if 0 < λ < λ∗, then problem (Pλ) has at least two positive solutions u0, û ∈
D+, u0 6= û;

(b) if λ = λ∗, then problem (Pλ) has at least one positive solution u∗ ∈ D+;
(c) if λ > λ∗, then problem (Pλ) has no positive solutions;
(d) if λ→ 0+, then we can find positive solutions uλ ∈ D+ such that ‖uλ‖C1(Ω) →

0 as λ→ 0+.
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