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Abstract
Point processes on linear networks are increasingly being considered to analyse events
occurring on particular network-based structures. In this paper, we extend Local Indi-
cators of Spatio-Temporal Association (LISTA) functions to the non-Euclidean space
of linear networks, allowing to obtain information on how events relate to nearby
events. In particular, we propose the local version of two inhomogeneous second-
order statistics for spatio-temporal point processes on linear networks, the K - and the
pair correlation functions. We put particular emphasis on the local K -functions, deriv-
ing come theoretical results which enable us to show that these LISTA functions are
useful for diagnostics of models specified on networks, and can be helpful to assess the
goodness-of-fit of different spatio-temporal models fitted to point patterns occurring
on linear networks. Ourmethods do not rely on any particularmodel assumption on the
data, and thus they can be applied for whatever is the underlying model of the process.
We finally present a real data analysis of traffic accidents in Medellin (Colombia).
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1 Introduction

Point processes on linear networks are increasingly being considered to analyse events
occurring on particular network structures, such as traffic accidents, street crimes or
ambulance calls and interventions. Such locations inherently live on the correspond-
ing network structure, and considering such geometry as the support of data results
in defining a more realistic scenario. Nevertheless, geometrical complexities of linear
networks give rise to different mathematical and computational challenges. Point pro-
cesses on linear networks were first introduced in the spatial context and then extended
to the spatio-temporal case, focusing on the analysis of first- and second-order sum-
mary statistics (Ang et al. 2012; McSwiggan et al. 2017; Rakshit et al. 2017; Moradi
et al. 2019; Rakshit et al. 2019; Moradi and Mateu 2020; D’Angelo et al. 2021).
However, none of these approaches have considered local properties of the introduced
second-order statistics to measure local structure and to further provide local diag-
nostics to fitted point process models on network-based structures. In general, local
extensions of spatio-temporal statistics on networks are very welcome in many sci-
entific fields, such as epidemiology, criminology, or sociology, where one could be
interested in identifying those events that most contributed to the fitting of the model
while accounting for the geometry of the underlying network.

D’Angelo et al. (2021) have extend local indicators of spatio-temporal association
(Siino et al. 2018), known as LISTA functions, for spatio-temporal point processes
occurring on linear networks. As the proposed local second-order statistics can be
used for obtaining further insight into the local structure of the analysed point pattern,
and on the characteristics of individual points, D’Angelo et al. (2021) have used the
LISTA homogeneous versions to build a local test allowing to assess local differences
between the spatio-temporal second-order structure of two point patterns occurring
on the same linear network. This paper aims at developing inhomogeneous versions
of two local second-order statistics for spatio-temporal point processes occurring on
networks, namely the K -function and the pair correlation function (Moradi andMateu
2020). In particular, following Adelfio et al. (2020) for the Euclidean case, we use
LISTA functions based on local inhomogeneous second-order statistics on networks
to assess the goodness-of-fit of general spatio-temporal models. Indeed, the peculiar
lack of homogeneity in a network structure discourages the use of traditional spatial
and spatio-temporal methods based on stationary processes (Baddeley et al. 2021).
Therefore, weighted second-order statistics are appropriate diagnostic tools since they
directly apply to data without assuming homogeneity (Adelfio et al. 2020).

We provide several simulation studies by weighting the contribution of each
observed point by the inverse of the intensity function coming from several types
of inhomogeneous point processes on the network. In particular, we consider Poisson,
self-exciting and log-Gaussian spatio-temporal processes, and detail the correspond-
ing simulation procedures on a linear network.

We finally provide an application of our methodology to traffic data. All the anal-
yses are carried out through the software R Core Team (2020) and the codes are
currently available upon request to the authors, although they will be published soon
in a dedicated package.
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The paper is structured as follows. Section 2 is devoted to the introduction of
basic definitions of spatio-temporal point processes, and reports the LISTA functions
for the Euclidean case. Section 3 reviews some basics about the analysis of spatio-
temporal point patterns occurring on linear networks, focusing on their second-order
characteristics. These first two sections are also aimed at defining the notation used
throughout the paper. In Sect. 4 the proposed LISTA functions are defined and, through
some simulation studies, in Sect. 5 we show how these can be used as diagnostic tools
for different fitted models. Further, an application to a case study is presented in Sect.
6. Conclusions are drawn in Sect. 7.

2 Second-order properties of spatio-temporal point processes on
Euclidean spaces

We consider a spatio-temporal point process with no multiple points as a random
countable subset X of R2 × R, where a point (u, t) ∈ X corresponds to an event
at u ∈ R

2 occurring at time t ∈ R. A typical realisation of a spatio-temporal point
process X on R

2 × R is a finite set {(ui , ti )}ni=1 of distinct points within a bounded
spatio-temporal region W × T ⊂ R

2 × R, with area |W | > 0 and length |T | > 0,
where n ≥ 0 is not fixed in advance. In this context, N (A × B) denotes the number
of points of a set (A × B) ∩ X , where A ⊆ W and B ⊆ T . As usual (Daley and
Vere-Jones 2007), when N (W × T ) < ∞ with probability 1, which holds e.g. if X is
defined on a bounded set, we call X a finite spatio-temporal point process.

For a given event (u, t), the events that are close to (u, t) in both space and time, for
each spatial distance r and time lag h, are given by the corresponding spatio-temporal
cylindrical neighbourhood of the event (u, t), which can be expressed by the Cartesian
product as

b((u, t), r , h) = {(v, s) : ||u − v|| ≤ r , |t − s| ≤ h}, (u, t), (v, s) ∈ W × T ,

where || · || denotes the Euclidean distance inR2. Note that b((u, t), r , h) is a cylinder
with centre (u, t), radius r , and height 2h.

Product densities λ(k), k ∈ N and k ≥ 1, arguably the main tools in the statistical
analysis of point processes, may be defined through the so-called Campbell Theorem
(see Daley and Vere-Jones 2007), which states that, given a spatio-temporal point
process X , for any non-negative function f on (R2 × R)k

E

[ 	=∑
ζ1,...,ζk∈X

f (ζ1, . . . , ζk)

]
=

∫
R2×R

. . .

∫
R2×R

f (ζ1, . . . , ζk)λ
(k)(ζ1, . . . , ζk)

k∏
i=1

dζi ,

that constitutes an essential result in spatio-temporal point process theory. In particular,
for k = 1 and k = 2, these functions are respectively called the intensity function λ

and the (second-order) product density λ(2). Broadly speaking, the intensity function
describes the rate at which the events occur in the given spatio-temporal region, while
the second-order product densities are used when the interest is in describing spatio-
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temporal variability and correlations between pair of points of a pattern. They represent
the point process analogues of the mean function and the covariance function of a real-
valued process, respectively. Then, the first-order intensity function is defined as

λ(u, t) = lim|du×dt |→0

E[N (du × dt)]
|du × dt | ,

where du×dt defines a small region around the point (u, t) and |du×dt | is its volume.
The second-order intensity function is given by

λ(2)((u, t), (v, s)) = lim|du×dt |,|dv×ds|→0

E[N (du × dt)N (dv × ds)]
|du × dt ||dv × ds| .

Finally, the pair correlation function

g((u, t), (v, s)) = λ(2)((u, t), (v, s))
λ(u, t)λ(v, s)

can be interpreted formally as the standardised probability density that an event occurs
in each of two small volumes, du × dt and dv × ds, in the sense that for a Poisson
process, g((u, t), (v, s)) = 1.

In this paper, the focus is on second-order characteristics of spatio-temporal point
patterns, with an emphasis on the K -function (Ripley 1976). This is a measure of the
distribution of the inter-point distances and captures the spatio-temporal dependence of
a point process. Gabriel and Diggle (2009) extend the second-order methods provided
by Baddeley et al. (2000) to the spatio-temporal setting, defining the spatio-temporal
inhomogeneous K -function and proposing a nonparametric estimator.

Definition 1 Gabriel and Diggle (2009) A spatio-temporal point process is second-
order intensity reweighted stationary and isotropic if its intensity function is bounded
away from zero and its pair correlation function depends only on the spatio-temporal
difference vector (r , h), where r = ||u − v|| and h = |t − s|.
Definition 2 Gabriel and Diggle (2009) For a second-order intensity reweighted
stationary, isotropic spatio-temporal point process, the space-time inhomogeneous
K -function takes the form

K (r , h) = 2π
∫ r

0

∫ h

0
g(r ′, h′)r ′dr ′dh′ (1)

where g(r , h) = λ(2)(r , h)/(λ(u, t)λ(v, s)), r = ||u − v||, h = |t − s|.
The simplest expression of an estimator of the spatio-temporal K -function is given as

K̂ (r , h) = 1

|W ||T |
n∑

i=1

∑
j>i

I (||ui − u j || ≤ r , |ti − t j | ≤ h). (2)
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For a homogeneous Poisson process E[K̂ (r , h)] = πr2h, regardless of the intensity
λ.

Both the K -function and the pair correlation function can be used as a measure
of spatio-temporal clustering and interaction (Gabriel and Diggle 2009; Møller and
Ghorbani 2012). Usually, K̂ (r , h) is compared with the theoretical E[K̂ (r , h)] =
πr2h. Values K̂ (r , h) > πr2h suggest clustering, while K̂ (r , h) < πr2h points to a
regular pattern.

Inhomogeneous second-order statistics can be constructed and used for assessing
goodness-of-fit of fitted first-order intensities. Nevertheless, it is widespread practice
in the statistical analysis of spatial and spatio-temporal point pattern data to focus pri-
marily on comparing the data with a homogeneous Poisson process, which is generally
the null model in applications, rather than the fitted model. Indeed, when dealing with
diagnostics in point processes, often two steps are needed: the transformation of data
into residuals (thinning or rescaling (Schoenberg 2003)) and the use of tests to assess
the consistency of the residuals with the homogeneous Poisson process (Adelfio and
Schoenberg 2009). Usually, second-order statistics estimated for the residual process
(i.e. the result of a thinning or rescaling procedure) are analysed. Essentially, to each
observed point a weight inversely proportional to the conditional intensity at that point
is given. This method was adopted by Veen and Schoenberg (2006) in constructing a
weighted version of the K -function of Ripley and Kelly (1977); the resulting weighted
statistic is in many cases more powerful than residual methods (Veen and Schoenberg
2006).

The spatio-temporal inhomogeneous version of the K -function in (2) is given by
Gabriel and Diggle (2009) as

K̂ I (r , h) = |W ||T |
n(n − 1)

n∑
i=1

∑
j>i

I (||ui − u j || ≤ r , |ti − t j | ≤ h)

λ̂(ui , ti )λ̂(u j , t j )
, (3)

where λ(·, ·) is the first-order intensity at an arbitrary point. We know that
E[K̂ I (r , h)] = πr2h, that is the same as the expectation of K̂ (r , h) in (2), when
the intensity used for the weighting is the true generator model. This is a crucial result
that allows to use theweighted estimator K̂ I (r , h) as a diagnostic tool, for assessing the
goodness-of-fit of spatio-temporal point processes with generic first-order intensity
functions. Indeed, if the weighting intensity function is close to the true one λ(u, t),
the expectation of K̂ I (r , h) should be close toE[K̂ (r , h)] = πr2h for the Poisson pro-
cess. For instance, values K̂ I (r , h) greater than πr2h indicates that the fitted model
is not appropriate, since the distances computed among points exceed the Poisson
theoretical ones.

2.1 Local Indicators of Spatio-Temporal Association functions

Definition 3 Siino et al. (2018) Local Indicators of Spatio-Temporal Association
(LISTA) are a set of functions that are individually associated with each one of the
points of the point pattern, and can provide information about the local behaviour of
the pattern.
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This operational definition of local indicators was introduced by Anselin (1995)
for the spatial case, and extended by Siino et al. (2018) to the spatio-temporal context.
If λ(2)i (·, ·) denotes the local version of the spatio-temporal product density for the
event (ui , ti ), then, for fixed r and h, it holds that

λ̂
(2)
ε,δ(r , h) = 1

n − 1

n∑
i=1

λ̂
(2)i
ε,δ (r , h), (4)

where λ̂
(2)i
ε,δ (r , h) = n−1

4πr |W×T |
∑

j 	=i κε,δ(||ui −v j ||−r , |ti −s j |−h),with r > ε > 0
and h > δ > 0, and κ a kernel function with spatial and temporal bandwidths ε and
δ, respectively.

Definition 4 Siino et al. (2018) Any second-order spatio-temporal summary statistic
that satisfies the operational definition in (4), which means that the sum of spatio-
temporal local indicator functions is proportional to the global statistic, can be called
a LISTA statistic.

In Adelfio et al. (2020), local versions of both the homogeneous and inhomoge-
neous spatio-temporal K -functions on the Euclidean space are introduced. Defining
an estimator of the overall intensity by λ̂ = n/(|W ||T |), they propose the local version
of (2) for the i-th event (ui , ti ) as

K̂ i (r , h) = 1

λ̂2|W ||T |
∑

(ui ,ti ) 	=(v,s)

I (||ui − v|| ≤ r , |ti − s| ≤ h) (5)

and the local version of (3) as

K̂ i
I (r , h) = 1

|W ||T |
∑

(ui ,ti ) 	=(v,s)

I (||ui − v|| ≤ r , |ti − s| ≤ h)

λ̂(ui , ti )λ̂(v, s)
, (6)

with (v, s) being the spatial and temporal coordinates of any other point. The authors
extended the spatial weighting approach of Veen and Schoenberg (2006) to spatio-
temporal local second-order statistics, proving that the inhomogeneous second-order
statistics behave as the corresponding homogeneous ones, basically proving that the
expectation of both (5) and (6) is equal to πr2h. In our paper, we follow the same
reasoning, extending the results to the setting of spatio-temporal point processes occur-
ring on particular network structures. Therefore, next section is devoted to the review
of some basics about point processes occurring on linear networks.

3 Point processes on linear networks and their second-order
characteristics

Point processes on linear networks are recently considered to analyse events occurring
on particular network structures such as the traffic accidents on a road network that we

123



Local inhomogeneous second-order characteristics for…

analyse in this paper (see Fig. 13). Spatial patterns of points along a network of lines
are indeed found in many applications. The network might reflect a map of railways,
rivers, electrical wires, nerve fibres, airline routes, irrigation canals, geological faults
or soil cracks (Baddeley et al. 2021). Observations of interest could be the locations
of traffic accidents, bicycle incidents, vehicle thefts or street crimes, and many others.

A linear network L = ∪n
i=1li ⊂ R

2 is commonly taken as a finite union of line
segments li ⊂ R

2 of positive length. A line segment is defined as li = [ui , vi ] =
{kui + (1 − k)vi : 0 ≤ k ≤ 1}, where ui , vi ∈ R

2 are the endpoints of li . For any
i 	= j , the intersection of li and l j is either empty or an endpoint of both segments. A
spatio-temporal linear network point process is a point process on the product space
L × T , where L is a linear network and T is a subset (interval) of R.

We hereafter focus on a spatio-temporal point process X on a linear network L with
no overlapping points (u, t), where u ∈ L is the location of an event and t ∈ T (T ⊆
R

+) is the corresponding time occurrence of u. Note that the temporal state-space
T might be either a continuous or a discrete set. A realisation of X with n points is
represented by x = (ui , ti ), i = 1, . . . , n where (ui , ti ) ∈ L × T .

A spatio-temporal disc with centre (u, t) ∈ L × T , network radius r > 0 and
temporal radius h > 0 is defined as

b((u, t), r , h) = {(v, s) : dL(u, v) ≤ r , |t − s| ≤ h}, (u, t), (v, s) ∈ L × T

where | · | is a numerical distance, and dL(·, ·) stands for the appropriate distance in
the network, typically taken as the shortest-path distance between any two points. The
cardinality of any subset A ⊆ L × T , N (X ∩ A) ∈ 0, 1, . . ., is the number of points
of X restricted to A, whose expected value is denoted by

ν(A) = E[N (X ∩ A)], A ⊆ L × T ,

where ν, the intensity measure of X , is a locally finite product measure on L × T
(Baddeley et al. 2006).

We now recall Campbell’s theorem for point processes on linear networks (Cronie
et al. 2020). Assuming that the product densities/intensity functions λ(k) exist, for any
non-negative measurable function f (·) on the product space Lk , we have

E

[ 	=∑
ζ1,...,ζk∈X

f (ζ1, . . . , ζk)

]
=

∫
Lk

f (ζ1, . . . , ζk)λ
(k)(ζ1, . . . , ζk)

k∏
i=1

dζi , (7)

where 	= indicates that the sum is over distinct values. Assume that X has an intensity
function λ(·, ·), hence Eq. (7) reduces to

E[N (X ∩ A)] =
∫
A

ν(d(u, t)) =
∫
A

λ(u, t)d2(u, t), A ⊆ L × T ,

where d2(u, t) corresponds to integration over L × T .
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The second-order Campbell’s theorem is obtained from (7) with k = 2

E

[ 	=∑
(u,t),(v,s)∈X

f
(
(u, t), (v, s)

)]

=
∫
L×T

∫
L×T

f
(
(u, t), (v, s)

)
λ(2)((u, t), (v, s)

)
d2(u, t)d2(v, s).

(8)

Assuming that X has a second-order product density function λ(2)(·, ·), we then obtain

E[N (X∩ A)N (X∩B)] =
∫
A

∫
B

λ(2)((u, t), (v, s))d2(u, t)d2(v, s), A, B ⊆ L×T .

Finally, an important result concerns the conversion of the integration over L × T to
that over R × R (Rakshit et al. 2017). For any measurable function f : L × T → R

∫
L×T

f (u, t)d2(u, t) =
∫ ∞

0

∫ ∞

0

∑
(u,t)∈L×T :
dL (v,u)=r ,
|s−t |=h

f (u, t)drdh. (9)

Letting f (u, t) = η(dL(u, v), |t − s|) then
∫
L×T

η(dL(u, v), |t − s|)d2(u, t) =
∫ ∞

0

∫ ∞

0
η(r , h)M((u, t), r , h)drdh

whereM((u, t), r , h) is the number of points lying exactly at the shortest-path distance
r ≥ 0 and the time distance h ≥ 0 away from (u, t).

3.1 Global second-order characteristics for spatio-temporal point processes on
networks

Following the work ofMoradi andMateu (2020), we first recall the concept of second-
order pseudostationary point processes, and then we turn to the inhomogeneous case.

Definition 5 Moradi and Mateu (2020) Assume X is a spatio-temporal point process
on L × T with constant intensity function λ ≥ 0. Let the homogeneous K -function
be given by

KL((u, t), r , h) = 1

λ
E

[ ∑
(u,t)∈X

I (dL(u, v) ≤ r , |t − s| ≤ h)

M((u, t), dL(u, v), |t − s|)
∣∣∣∣(u, t ∈ X)

]
.

Then, X is called second-order pseudostationary and isotropic if KL((u, t), r , h) does
not depend on the point (u, t), and we then write KL((u, t), r , h) = KL(r , h).

Definition 6 Moradi and Mateu (2020) For a homogeneous Poisson point process on
L × T with constant intensity function λ, KL(r , h) = rh.
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The authors proposed a nonparametric estimator of both the homogeneous K -
function

K̂L(r , h) = |L||T |
n(n − 1)

n∑
i=1

∑
i 	= j

I {dL(ui ,u j ) < r , |ti − t j | < h}
M((ui , ti ), dL(ui ,u j ), |ti − t j |) ,

and pair correlation function

ĝL(r , h) = |L||T |
n(n − 1)

n∑
i=1

∑
i 	= j

κ(dL(ui ,u j ) − r)κ(|ti − t j | − h)

M((ui , ti ), dL(ui ,u j ), |ti − t j |) ,

where |L| > 0 and |T | > 0 are the total length of the network L and of the time
interval T , respectively, and κ is a one-dimensional kernel function.

As in the Euclidean case, for a Poisson process on the linear network L , these
second-order statistics can be used to indicate clustering and inhibition, if compared
to their Poisson process values rh. Both the global homogeneous K -function and pair
correlation functions are used inMoradi andMateu (2020) for detecting departure from
homogeneity of spatio-temporal point patterns occurring on different linear networks.

Motivated by practical situations where homogeneity is not a realistic assumption,
Moradi andMateu (2020) further proposed the corresponding inhomogeneous second-
order characteristics, namely the inhomogeneous K -function

K̂L,I (r , h) = 1

|L||T |
n∑

i=1

∑
i 	= j

I {dL(ui ,u j ) < r , |ti − t j | < h}
λ̂(u, t)λ̂(v, s)M((u, t), dL(u, v), |t − s|) , (10)

and the inhomogeneous pair correlation function

ĝL,I (r , h) = 1

|L||T |
n∑

i=1

∑
i 	= j

κ(dL(ui ,u j ) − r)κ(|ti − t j | − h)

λ̂(ui , ti )λ̂(u j , t j )M((ui , ti ), dL(ui ,u j ), |ti − t j |)
,

(11)
where λ̂(·, ·) is an estimate of the intensity function, and M((u, t), r , h) is the number
of points lying exactly at the shortest-path distance r ≥ 0 and the time distance h ≥ 0
away from the point (u, t).

Moradi and Mateu (2020) recommend using some normalisation factor of the form
D(X) = 1

(|L||T |)2
∑n

i=1
∑

i 	= j
1

λ̂(ui ,ti )λ̂(u j ,t j )
in such a way that the updated estimates

of the inhomogeneous K - and pair correlation functions 1
D(x) K̂ (r , h) and 1

D(x) ĝ(r , h)

provide estimators with low bias and variance. They also prove that for Poisson pro-
cesses, and for any r , h > 0, it holds that K̂L,I (r , h) = rh and ĝL,I (r , h) = 1, which
is useful in model selection and hypothesis testing.

Therefore, a relevant result is that the expectation of K̂L,I (r , h), when the intensity
used for the weighting is the true generator model, is the same as the expectation
of K̂L(r , h) for the Poisson process, that is E[K̂L(r , h)] = rh. Therefore, as in the
Euclidean case, the weighted estimator K̂L,I (r , h) can be used as a diagnostic tool, for
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assessing the goodness-of-fit of spatio-temporal point processes occurring on a linear
network with generic first-order intensity functions. Consequently, if the weighting
intensity function is close to the true one λ(u, t), the estimated value K̂L,I (r , h) should
be close to E[K̂L(r , h)] = rh.

In D’Angelo et al. (2022a), the inhomogeneous global K -function in (10) is used
as a diagnostic tool for comparing the goodness-of-fit of different spatio-temporal
parametric models fitted to a point pattern of visitors’ stops by touristic attractions in
Palermo (Italy).

4 Local Indicators of Spatio-Temporal Association on linear networks

In this section, we propose the local versions of the previously reviewed global sum-
mary statistics for spatio-temporal point processes occurring on a network.

Therefore, we propose the local spatio-temporal inhomogeneous K -function for
the i-th event (ui , ti ) on a linear network as

K̂ i
L,I (r , h) = 1

|L||T |
∑

(ui ,ti ) 	=(v,s)

I {dL(ui , v) < r , |ti − s| < h}
λ̂(ui , ti )λ̂(v, s)M((ui , ti ), dL(ui , v), |ti − s|) ,

(12)
and the corresponding local pair correlation function

ĝiL,I (r , h) = 1

|L||T |
∑

(ui ,ti ) 	=(v,s)

κ(dL(ui , v) − r)κ(|ti − s| − h)

λ̂(ui , ti )λ̂(v, s)M((ui , ti ), dL(ui , v), |ti − s|) ,
(13)

weighted by the reciprocal of the normalising factor

D(X) = n − 1

|L||T |
n∑

i=1

∑
i 	= j

1

λ̂(ui , ti )λ̂(u j , t j )
, (14)

obtaining 1
D(X)

K̂ i
L,I (r , h) and 1

D(X)
ĝiL,I (r , h). Basically, we avoid summing up all the

points as in the global statistics counterparts, andwe denote the individual contribution
to the global statistics with the index i .

The homogeneous versions are computed by weighting the second-order summary
statistics by the constant intensity λ̂ = n/(|L||T |), obtaining

K̂ i
L(r , h) = 1

λ̂2|L||T |
∑

(ui ,ti ) 	=(v,s)

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL(ui , v), |ti − s|) , (15)

and

ĝiL(r , h) = 1

λ̂2|L||T |
∑

(ui ,ti ) 	=(v,s)

κ(dL(ui , v) − r)κ(|ti − s| − h)

M((ui , ti ), dL(ui , v), |ti − s|) . (16)
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Following the Euclidean case, D’Angelo et al. (2021) provide the operational defini-
tion based on the local second-order spatio-temporal summary statistics on a linear
network.

Definition 7 D’Angelo et al. (2021) Any local second-order spatio-temporal sum-
mary statistic λi2,L((u, t), (v, s)) computed on an observed point pattern x =
(ui , ti ), i = 1, . . . , n on a linear network L , where (ui , ti ) ∈ L × T , that satisfies
the following operational definition

λ̂2,L((u, t), (v, s)) = 1

n − 1

∑
(ui ,ti )∈x

λ̂i2,L((ui , ti ), (v, s)), (17)

where λ̂2,L is an estimator of the global second-order intensity function, can be called
a LISTA function on a linear network.

Knowing that the sum of the individual contributions given by the local estimator
of the K -function in Eq. (15) are actually equal to the global statistics, Eq. (17) is
satisfied, and therefore it can be called LISTA function on a linear network.

Throughout the paper we will only focus on the K -function, but of course also the
pair correlation function can serve as an alternative.

Theorem 1 For a Poisson process, we have E[K̂ i
L(r , h)] = rh.

Proof

E[K̂ i
L(r , h)] = 1

λ2|L||T |E
[ ∑

(ui ,ti ) 	=(v,s)

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL(ui , v), |ti − s|)

]

(By theorem (8) and since λ(2) ≡ λ2 for a Poisson process)

= 1

λ2|L||T |
∫
L×T

∫
L×T

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL(ui , v), |ti − s|)λ

2d2(v, s)

= 1

λ2|L||T |λ
2
∫
L×T

∫
L×T

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL(ui , v), |ti − s|)d2(v, s)

= 1

|L||T |
∫
L×T

∫
L×T

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL(ui , v), |ti − s|)d2(v, s)

(By the change of variables in (9))

= 1

|L||T |
∫ ∞

0

∫ ∞

0

∑
(v,s)∈L×T :
dL (ui ,v)=r ,

|ti−s|=h

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL(ui , v), |ti − s|)drdh

= 1

|L||T |
∫ ∞

0

∫ ∞

0

∑
(v,s)∈L×T :
dL (ui ,v)=r ,

|ti−s|=h

I {(||ui − v||) < r , |ti − s| < h}
M(ui , ti )

drdh
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= 1

|L||T |
∫ ∞

0

∫ ∞

0

I {(||ui − v||) < r , |ti − s| < h}M(ui , ti )
M(ui , ti )

drdh

= 1

|L||T |
∫ ∞

0

∫ ∞

0
I {(||ui − v||) < r , |ti − s| < h}drdh

(taking the conditional expectation with respect to its filtration)

= 1

|L||T | |L||T |rh
= rh

��
Theorem 2 If the process is weighted by the true intensity function, the expectation of
K̂ i

L,I (r , h) is the same as the expectation of K̂ i
L(r , h).

Proof

E[K̂ i
L,I (r , h)]

= 1

|L||T |E
[ ∑

(ui ,ti ) 	=(v,s)

I {dL (ui , v) < r , |ti − s| < h}
λ(ui , ti )λ(v, s)M((ui , ti ), dL (ui , v), |ti − s|)

]

(Second − order Campbell′s theorem in (8))

= 1

|L||T |
∫
L×T

∫
L×T

I {dL (ui , v) < r , |ti − s| < h}
λ(ui , ti )λ(v, s)M((ui , ti ), dL (ui , v), |ti − s|)λ(v, s)d2(v, s)

= 1

|L||T |
1

λ(ui , ti )

∫
L×T

∫
L×T

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL (ui , v), |ti − s|)

1

λ(v, s)
λ(v, s)d2(v, s)

= 1

|L||T |
1

λ(ui , ti )

∫
L×T

∫
L×T

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL (ui , v), |ti − s|)d2(v, s)

(Change of variables in (9))

= 1

|L||T |
1

λ(ui , ti )

∫ ∞

0

∫ ∞

0

∑
(v,s)∈L×T :
dL (ui ,v)=r ,

|ti−s|=h

I {dL(ui , v) < r , |ti − s| < h}
M((ui , ti ), dL (ui , v), |ti − s|)drdh

= 1

|L||T |
1

λ(ui , ti )

∫ ∞

0

∫ ∞

0

∑
(v,s)∈L×T :
dL (ui ,v)=r ,

|ti−s|=h

I {(||ui − v||) < r , |ti − s| < h}
M(ui , ti )

drdh

= 1

|L||T |
1

λ(ui , ti )

∫ ∞

0

∫ ∞

0

I {(||ui − v||) < r , |ti − s| < h}M(ui , ti )
M(ui , ti )

drdh

= 1

|L||T |
1

λ(ui , ti )

∫ ∞

0

∫ ∞

0
I {(||ui − v||) < r , |ti − s| < h}drdh

(taking the conditional expectation with respect to its filtration)

= 1

|L||T |
1

λ(ui , ti )
λ(ui , ti )|L||T |rh

= rh ��
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We know that the expectation of K̂L,I (r , h), when the intensity used for the weight-
ing is the true generator model, is the same as the expectation of K̂L(r , h) for the
Poisson process, that is E[K̂L(r , h)] = rh.

We have proved that the same result holds for the local version K̂ i
L,I (r , h), meaning

that the our proposed local estimator K̂ i
L,I (r , h) for a general point process, weighted

by the true intensity function, has the same expectation of the local estimator K̂ i
L(r , h)

under the Poisson case.
Based on this result, we can use our proposed local estimator K̂ i

L,I (r , h) as a diag-
nostic tool for general spatio-temporal point processes occurring on a linear network.
Since the local inhomogeneous estimator behaves as the corresponding homogeneous
one of a Poisson process, we can follow the approach for diagnostics in a local scale in
Adelfio et al. (2020), and use our proposed LISTA functions based on the K -function
for assessing the goodness-of-fit of spatio-temporal point processes on linear networks
with any generic first-order intensity function λ(·, ·).

Basically, departures of the LISTA functions K̂ i
L,I (r , h) from the Poisson expected

value rh directly suggest the unsuitability of the intensity function λ(·) used in the
weighting of the LISTA functions. This means that, if the estimated intensity function
used for weighting in our proposed LISTA functions (15) is the true one, then the
LISTA functions should behave as the corresponding ones of a homogeneous Poisson
process (12), that corresponds to the reference model.

5 Local space-time diagnostics on networks

This section is devoted to the use of the proposed LISTA functions to assess the
goodness-of-fit of different spatio-temporal models fitted to point patterns occurring
on linear networks.

Following Adelfio et al. (2020) for the Euclidean case, we show some simulation
studies by generating different spatio-temporal point patterns, and then performing
diagnostics on different fitted intensities. By comparing the values of the LISTA
functions and their theoretical values, we evaluate whether the LISTA functions can
correctly identify the true intensity, when this is constrained on a network.

Since in simulations the weights are obtained by considering the real intensity
function, the inhomogeneous statistics are expected to behave as the ones of a homo-
geneous Poisson process. If departures from such behaviour were observed, that would
be an indication that the data comes from a model identified by a first-order intensity
function different from the one used in the weighting procedure.

5.1 Simulation set up

We simulate 100 space-time point patterns from 3 different inhomogeneous processes
with 150 number of points on average: (a) a spatio-temporal inhomogeneous Poisson
process on a linear network; (b) a spatio-temporal ETAS model; (c) a log-Gaussian
Cox process.
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For assessing the usefulness of the weighted LISTA functions also in network
domains, we carry out a simulation study considering three different scenarios, in
which the K -function is weighted by:

• The real intensity function, known in simulations
• The estimated intensity by a nonparametric kernel density function
• The intensity function estimated by an homogeneous Poisson intensity (wrong
model).

We expect that the expected value of the spatio-temporal LISTA K -function, when
weighting by the true or estimated intensity, resembles to that of a Poisson process,
and therefore, when a wrong model is used for the intensity, the expected value would
be far from the Poisson one.

5.2 Simulation schemes

Aswe simulate fromdifferent patterns on networks, we outline the simulation schemes
used for simulating such processes.

5.2.1 Inhomogeneous spatio-temporal point process

Togenerate inhomogeneous spatio-temporal point processes on a linear networkdriven
by the spatio-temporal intensity λ̂(u, t), we proceed with the following steps:

1. Define the generating intensity function λ0(u, t) = λ̂(u, t).
2. Set an upper bound λmax for λ0(u, t).
3. Simulate a homogeneous Poisson process with intensity λmax and denote by N the

number of the generated points, with coordinates (u′, t ′).
4. Compute p(u′, t ′) = λ(u′,t ′)

max(λ(u′,t ′)) for each point (u
′, t ′) of a homogeneous Poisson

process.
5. Generate a sample x′ of size N from the uniform distribution on (0, 1).
6. Thin the simulated homogeneous Poisson process x retaining the n ≤ N locations

for which x′ ≤ p.

The algorithm provides a point pattern xwith n points. This scheme follows the proce-
dure for simulating inhomogeneous point patterns outlined in Gabriel et al. (2013). In
the context of point patterns occurring on linear networks, the events are guaranteed
to be constrained on the network since each point (u, t) of the generating intensity
function λ̂(u, t) occurs only on the network line segments.

The simulation is performed through the function rpoistlpp() in the R package
stlnpp (Moradi and Mateu 2020). In Fig. 1, a simulated inhomogeneous spatio-
temporal Poisson process is depicted, with intensity

λ(x, y, t) = exp(8.25 − 4y − 2t), (18)

decreasing together with the y-axis and with time.
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Fig. 1 Spatio-temporal inhomogeneous Poisson process with intensity function as in (18). Left panel: The
projection of data onto the network. Right panel: The cumulative number of data points versus occurrence
time

5.2.2 Spatio-temporal Epidemic Type Aftershock Sequence point process

We now outline the generating scheme for simulating a pattern from an Epidemic Type
Aftershocks-Sequence (ETAS) process (Ogata and Katsura 1988) with conditional
intensity function as in Adelfio and Chiodi (2020) but adapting it on the network.
We do this by defining the space-time region in a fixed temporal range and a linear
network.

According to a branching structure, the conditional intensity function of the self-
exciting model is defined as the sum of a term describing the large-time scale variation
(spontaneous activity or background, generally assumed homogeneous in time but not
in space) and one relative to the small-time scale variation due to the interaction with
the events in the past (induced or triggered activity). The ETAS model can be written
as

λθ (t,u|Ht ) = μ f (u) +
∑
t j<t

κ0 exp(η j )

(t − t j + c)p
{(u − u j )

2 + d}−q , (19)

where Ht is the past history of the process, μ is the background general intensity,
and f (u) is the spatial density. Concerning the triggered component, η j = β ′Z j is a
linear predictor, withZ j the external known covariate vector, including themagnitude,
and θ = (μ, κ0, c, p, d, q,β) are the parameters to be estimated. In the usual ETAS
model, with the only external covariate representing the magnitude, β = α, as η j =
β ′Z j = α(m j −m0), wherem j is the magnitude of the j th event andm0 the threshold
magnitude, that is, the lower bound for which earthquakes with higher values of
magnitude are surely recorded in the catalogue.

The steps for the simulations are the following:

1. Input the true parameters values μ, κ0, c, p, d, q, the β parameters related to the
covariates. Also provide other control parameters such as the boundaries of the
space-time region, and parameter b of the Gutenberg-Richter distribution.
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2. Generate a random number n0 from a Poisson distribution with parameter E(N ) =
μt .

3. Generate n0 triples of space-time uniform coordinates in the space-time region.
4. For each point x j , j = 1, . . . , n0:

(a) Generate a random number n j from a Poisson distribution with parameter
proportional to exp(η j ).

(b) Generate n j triples of space-time coordinates of aftershocks in the space-time
region.

(c) Add the n j new points to the set of events.

5. Proceed from step (2) until all the events inside the region are involved in the
simulation process as possible generators of further events.

The algorithm provides a point pattern x with n points. It also generates n magni-
tudes and other covariates’ values, if specified.

The simulation is performed through the function sim_ETASnet of the pack-
age LISTAnet. The simulation on the network is guaranteed by the homogeneous
spatial Poisson process being generated on the network. Figure 2 shows a simu-
lated ETAS process, with conditional intensity function as in (19) with parameters
θ = (μ, κ0, c, p, α, d, q) = (0.079, 0.004, 0.013, 1.2, 0.5, 0.424, 1.165), displaying
the typical epidemic structure, with very dense spatial and temporal clusters. We con-
sidered an ETAS process simulated with the only magnitude covariate, and therefore
β = α.

xy−locations on linear network

50 100 150 200
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1000

2000

3000

4000

5000

cumulative number

time

Fig. 2 Spatio-temporal ETASmodelwith conditional intensity function as in (19). Left panel: The projection
of data onto the network. Right panel: The cumulative number of data points versus occurrence time
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5.2.3 Spatio-temporal log-Gaussian Cox process

Following the inhomogeneous specification in Diggle (2013), a log-Gaussian Cox
process for a generic point in space and time has the random intensity

�(u, t) = λ(u, t) exp(S(u, t))

where S is aGaussianprocesswithE(S(u, t)) = μ = −0.5σ 2 and soE(exp S(u, t)) =
1 and with variance and covariance matrixC(S(u, t), S(v, s)) = σ 2γ (r , h), with γ (·)
the correlation function of the corresponding Gaussian random field (GRF).

For the generation of a spatio-temporal log-Gaussian Cox process on a linear net-
work we proceed with the following algorithm:

1.a Generate a realisation from a GRF S(u, t), with covariance function C((u, t),
(v, s)) and mean function μ(u, t).

1.b Define the generating intensity function λ0(u, t) = λ̂(u, t) exp(S(u, t)).
2. Set an upper bound λmax for λ0(u, t).
3. Simulate a homogeneous Poisson process with intensity λmax and denote by N

the number of the generated points, with coordinates (u′, t ′).
4. Compute p(u′, t ′) = λ(u′,t ′)

max(λ(u′,t ′)) for each point (u
′, t ′) of an homogeneous Pois-

son process.
5. Generate a sample x′ of size N from the uniform distribution on (0, 1).
6. Thin the simulated homogeneous Poisson process retaining the n ≤ N locations

for which x′ ≤ p.

This algorithm provides a point pattern x with n points. The Gaussian Random
Field is generated using the function RFsim of the CompRandFld (Padoan and
Bevilacqua 2015) package of R, and the overall simulation is performed thorugh the
function sim_LGCPnet of the package LISTAnet. A simulated log-Gaussian Cox
process is displayed in Fig. 3, with intensity function as in (18), but with discrete time
t = 0, . . . , 4. We consider a separable spatio-temporal exponential covariance with
parameters σ = 2, φ = 0.2 and θ = 1. This process exhibits a lower but still present
clustered structure, if compared to the ETAS process. The GRF is actually generated
on the whole plane and then the results are constrained on the network since there is
not a clear procedure for generating Gaussian Random Fields on networks. Therefore
for the log-Gaussian Cox process we use Euclidean distances (Baddeley et al. 2021;
D’Angelo et al. 2022a).

5.3 Results

For each of the 3 previously defined scenarios, we compute the chi-squared statistics
between the LISTA functions and their theoretical values K̂ i

L,Theo(r , h) = rh. In par-
ticular,we use theLISTA functions based on the inhomogeneous K -function,weighted
each time with a different fitted intensity. The χ2

i values are obtained following the
expression
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Fig. 3 Spatio-temporal log-Gaussian Cox process with parameters as in Sect. 5.2.3. Left panel: The projec-
tion of data onto the network. Right panel: The cumulative number of data points versus occurrence time

χ2
i =

∫
L

∫
T

((
K̂ i

L,I (r , h) − rh
)2

rh

)
dhdr ,

one for each point in the point pattern. We weight the LISTA functions K̂ i
L,I (r , h)

with different intensities: the true one, a kernel density function, and a constant one.
The latter of course is not a good fit, as we have simulated from inhomogeneous
processes. In Fig. 4, as expected, the lowest values are found in correspondence of the
true intensity and the non-parametric kernel-based estimation, while the largest values
are encountered for the constant intensity. The same holds for the ETAS process, and
for the log-Gaussian Cox process, in Figs. 5 and 6, respectively.

In summary, LISTA functions are able to correctly identify the true intensity and
to spot the best fit among candidate models.

We now report an example of application on a ETAS process, simulated through
the same procedure outlined in Sect. 5.2.2, to show further advantages of using LISTA
functions for carrying out diagnostics.

5.4 Motivating example: a simulated ETAS process

To show some advantages of using LISTA functions, instead of their global counter-
parts, we simulate an ETAS process on the network (under the same conditions as in
Fig. 5).

We then compute the LISTA functions weighting them with three different intensi-
ties: the true one, a fitted one, and a constant one. For assessing their goodness-of-fit,
the standard approach (Baddeley et al. 2015) would require the computation of the
global inhomogeneous second-order summary statistics in Sect. 3, weighted with their
respective intensities. In Fig. 7 we represent the difference between the global K -
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Fig. 4 Distributions of the χ2
i statistics computed for assessing the differences between the local LISTA

functions on the network and the theoretical expected value, calculated for each individual point from a
simulation of an inhomogeneous Poisson process with intensity as in (18)

Fig. 5 Distributions of the χ2
i statistics computed for assessing the differences between the local LISTA

functions on the network and the theoretical expected value, calculated for each individual point from a
simulation of an ETAS process with intensity as in (19)

Fig. 6 Distributions of the χ2
i statistics computed for assessing the differences between the local LISTA

functions on the network and the theoretical expected value, calculated for each individual point from a
simulation of an log-Gaussian Cox process process following the parameters in Sect. 5.2.3

functions and their theoretical values, weighted by the three considered intensities.
The surfaces whose values are closest to zero are the ones whose intensity best resem-
bles the true one. According to these results, the global second-order characteristic is
able to correctly identify the true intensity. This result in corroborated by the values
of the χ2, equal to 7.05, 8.32, and 19.26, for the true, the ETAS, and the constant
intensities, respectively. However, the main reason for using LISTA functions is that
the global summary statistics do not provide information on the individual points, and
thus cannot identify which points influence most the goodness-of-fit of the model.
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Fig. 7 Difference between the global K -functions and their theoretical values, weighted by: (a) the true
intensity; (b) the intensity estimated with the etasFLP (Adelfio and Chiodi 2015) package of R; (c) the
constant intensity given by λ̂ = n/|L||T |

Fig. 8 Distributions of the χ2
i statistics computed for assessing the differences between the local LISTA

functions on the network and the theoretical expected value, calculated for each individual point of the
simulated ETAS process

Therefore we compute the LISTA functions, and again compare them to their the-
oretical values, by computing the χ2

i values (see Fig. 8). Clearly, LISTA functions
help to identify the true intensity as well as the best fit, in a similar manner to their
global counterparts. Nonetheless, LISTA functions present further advantages. The
main usefulness of carrying out diagnostics with LISTA functions is to get an insight
into the local behaviour of the points of the analysed pattern, and therefore to identify
the influential points. We indeed identify influential points by retaining only those
points that exhibit χ2

i values larger than a fixed threshold. For instance, fixing the 75th
percentile of the distributions of the χ2

i values, and considering as influential points
those with a χ2

i larger than this percentile, we obtain the black points in Fig. 9.
We note that the influential points vary with the fitted intensity. In detail, we notice

that the influential points obtained for the constant intensity are mainly placed in the
clusters, and therefore indicate that we might need a better model in those areas, such
as an inhomogeneous one. Furthermore, the resemblance between the true intensity
and the kernel one (in terms of actual points, and not in the χ2

i values only), indicates
that the kernel achieves a better fit, if compared to the constant one. In Fig. 10, we
report the distributions of the χ2

i values of the influential points detected and shown
in Fig. 9. It is clear that the influential points of the wrong (constant) intensity are the
ones contributing most to the bad fit of the model, if compared to those of the true (or
the most suitable) intensity.

Figure 11 shows an additional advantage of using LISTA functions. Indeed, their
surfaces can be displayed and the different clustered structures of each individual
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Fig. 9 In black: Influential points for the three intensities, which exhibit the χ2
i values above the 75th

percentile. The triangles indicate the points with χ2
i values above the 95th percentile

Fig. 10 Distributions of the χ2
i

values above the 75th percentile
of the detected influential points
detected, and shown in Fig. 9 in
black
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20
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40
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point can be elicited. Of course, depending on the application, this can provide useful
information. It can be interesting to plot the LISTA functions of the influential points,
providing information on the clustered structure of individual points. Also, the degree
of the identified clustered structure canbe elicited and contextualised in the application.
In particular, Fig. 11 depicts the LISTA functions of the influential points, above the
95th percentile, detected and shown in Fig. 9 as triangles. Under the Poisson case,
we expect the K -function to take rh values. In graphical terms, we expect the LISTA
functions in Fig. 11 to increase with those two distances, namely, to have constantly
increasing values, from bottom-left to top-right. Points with different behaviour, such
as the 41st , indicate that the local structure around that point is somewhat deviating
from the Poissonian case. In particular, for that point, we expect neighbouring points to
start grouping together abruptly after a specific spatial distance. Overall, the temporal
distance does not seem to influence the local structure.

6 Application to traffic data

Weanalyse traffic accidents in the city ofMedellin (Colombia), a dataset containing the
locations of traffic accidents consisting of 1215 traffic accidents in 2019 in downtown
Medellin (see Fig. 12).
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Fig. 11 LISTA functions of the influential points, above the 95th percentile, detected and shown in Fig. 9
as triangles. From top to bottom: influential points of the true intensity, the ETAS one, and the constant one

We evaluate and compare an inhomogeneous intensity fitted with a kernel density
with a constant one. Figure 13 depicts the distribution of the χ2

i statistics computed
for assessing the differences between the local LISTA functions on the network and
the theoretical expected value, weighted by an inhomogeneous intensity, and by a
constant one. Clearly, the inhomogeneous one seems to report a much better fit.

We therefore separate the most influential points from the rest, retaining only those
who exhibit chi-squared values larger that the 99th percentile. We note in Fig. 14
that the two fitted intensities generally identify different influential points. It is also
possible to represent the individual LISTA functions, and look at the structures that
are more clustered (Fig. 15). We indeed can notice different behaviours. For instance
points 49 and 777 display a quite regular and common K -function with the lowest
values at the lowest spatial and temporal ranges; however, other points display peculiar
behaviours, with the largest values for some specific spatial and temporal ranges. The
same considerations can be drawn for the LISTA functions weighted by the constant
intensity (Fig. 16).

So, on the one hand, the constant intensity is not appropriate and this means that an
inhomogeneous intensity should be fitted to the data. Nevertheless, this information
could have been elicited from the inspection of the global statistics. On the other hand,
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Fig. 12 The dataset represents the spatio-temporal locations of traffic accidents in the downtown ofMedellin
(Colombia) in the period of 2019. Left panel: The projection of data onto the network. Right panel: The
cumulative number of data points versus occurrence time

Fig. 13 Distributions of the χ2
i statistics computed for assessing the differences between the local LISTA

functions on the network and the theoretical expected value, for theMedellin dataset. Left panel: The LISTA
functions are weighted by an inhomogeneous intensity. Left panel: The LISTA functions are weighted by
an inhomogeneous intensity. Right panel: The LISTA functions are weighted by a homogeneous intensity

using LISTA functions has allowed to identify the most influential points and this
result could lead to a further study on those particular points. This could be done by
treating the point patterns as marked, considering some available characteristics of
the events. Then, visual inspection of the areas where most of the influential points
occur may guide further analysis on these spatio-temporal areas. For instance, one
could think of fitting a parametric intensity that accounts for some characteristics of
the network, by means of some available spatial covariates.
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Fig. 14 In black: Influential points for the Medellin dataset, identified as those that exhibit chi-squared
values larger than the 99th percentile. Left panel: The LISTA functions are weighted by an inhomogeneous
intensity. Left panel: The LISTA functions are weighted by an inhomogeneous intensity. Right panel: The
LISTA functions are weighted by an homogeneous intensity
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Fig. 15 LISTA functions of the influential points associated to the inhomogeneous intensity, for theMedellin
dataset

7 Conclusions

In this work, we have extended Local Indicators of Spatio-Temporal Association
(LISTA) functions on linear network to their inhomogeneous versions proposing the
inhomogeneous version of the local spatio-temporal K and pair correlation functions
on the networks, introduced by D’Angelo et al. (2021). Through simulations, we have
shown that the LISTA functions are useful for diagnostics of models specified on the
networks. We have proved, and also shown by simulations, that the proposed meth-
ods do not rely on any particular model assumption on the data, and thus they can be
appliedwhatever is the generatormodel of the process. Therefore, an appealing feature
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Fig. 16 LISTA functions of the influential points associated to the homogeneous intensity, for the Medellin
dataset

of the method is that it can be used for assessing the goodness-of-fit of spatio-temporal
point processes occurring on linear networks characterised by any first-order intensity
function.

Given the growing availability of proposed models on the networks, we believe
that the proposed diagnostic approach could be of great interest. Just to cite some
recent papers using this methodology, D’Angelo et al. (2022a) dealt with parametric
intensity specification of inhomogeneous first-order intensities on networks to analyse
the spatio-temporal distribution of visitors’ stops by touristic attractions in Palermo
(Italy). The authors fitted a Gibbs point process model with mixed effects for the
purely spatial component, as well as a spatio-temporal log-Gaussian Cox process,
adapting them to the underlying road network. Then, Gilardi et al. (2021) proposed
a spatio-temporal model to analyse the ambulance interventions that occurred in the
road network of Milan (Italy) from 2015 to 2017, adopting a non-separable first-order
intensity function, based on a Poisson regression model for the temporal component,
and a network kernel function for the spatial dimension. Finally, D’Angelo et al.
(2022c) has taken into account the self-exciting behaviour of points, proposing a
spatio-temporal Hawkes point process model adapted to linear networks to analyse
crime data in Bucaramanga (Colombia).

We note that the LISTA functions can be used to fit the first-order intensity function.
Namely, summary statistics such as the K -function or the pair correlation function are
commonly employed for some fitting procedures such as the minimum contrast for the
estimation of the correlation parameters of Cox processes. Considering the individual
contributions of such statistics could provide local estimates: see D’Angelo et al.
(2022b) for a recent application to local log-Gaussian Cox Processes. Consequently,
the LISTA functions proposed in our paper could be used to fit intensities on linear
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networks, even though, to the authors knowledge, no attempt has been made in this
direction so far.

Funding Open access funding provided by Universitá degli Studi di Palermo within the CRUI-CARE
Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adelfio G, Chiodi M (2015) Flp estimation of semi-parametric models for space-time point processes and
diagnostic tools. Spatial Stat 14:119–132

AdelfioG,ChiodiM (2020) Including covariates in a space-time point processwith application to seismicity.
Stat Methods Appl 1–25. https://doi.org/10.1007/s10260-020-00543-5

Adelfio G, Schoenberg FP (2009) Point process diagnostics based on weighted second-order statistics and
their asymptotic properties. Ann Inst Stat Math 61(4):929–948

Adelfio G, Siino M, Mateu J, Rodríguez-Cortés FJ (2020) Some properties of local weighted second-order
statistics for spatio-temporal point processes. Stoch Env Res Risk Assess 34(1):149–168

Ang QW, Baddeley A, Nair G (2012) Geometrically corrected second order analysis of events on a linear
network, with applications to ecology and criminology. Scand J Stat 39(4):591–617

Anselin L (1995) Local indicators of spatial association-lisa. Geogr Anal 27(2):93–115
Baddeley AJ, Møller J, Waagepetersen R (2000) Non-and semi-parametric estimation of interaction in

inhomogeneous point patterns. Stat Neerl 54(3):329–350
Baddeley A, Bárány I, Schneider R (2006) Stochastic geometry: lectures given at the CIME summer school

held in Martina Franca, Italy, September 13–18, 2004. Springer
Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R.

Chapman and Hall/CRC Press, London
Baddeley A, Nair G, Rakshit S, McSwiggan G, Davies TM (2021) Analysing point patterns on networks—a

review. Spatial Stat 42:100435 (Towards Spatial Data Science)
Cronie O, Moradi M, Mateu J (2020) Inhomogeneous higher-order summary statistics for point processes

on linear networks. Stat Comput 30(5):1221–1239
Daley DJ, Vere-Jones D (2007) An introduction to the theory of point processes. Volume II: General theory

and structure, 2nd edn. Springer, New York
D’Angelo N, Adelfio G, Mateu J (2021) Assessing local differences between the spatio-temporal second-

order structure of two point patterns occurring on the same linear network. Spatial Stat 45:100534
D’Angelo N, Adelfio G, Abbruzzo A, Mateu J (2022a) Inhomogeneous spatio-temporal point processes

on linear networks for visitors’ stops data. Ann Appl Stat 16(2):791–815. https://doi.org/10.1214/21-
AOAS1519

D’Angelo N, Adelfio, Mateu J (2022b) Locally weighted minimum contrast estimation for spatio-temporal
log-gaussian cox processes. Submitted

D’Angelo N, Payares D, Adelfio G, Mateu J (2022c) Self-exciting point process modelling of crimes on
linear networks. Stat Model. https://doi.org/10.1177/1471082X221094146

Diggle PJ (2013) Statistical analysis of spatial and spatio-temporal point patterns. Chapman and Hall/CRC,
Boca Raton

Gabriel E, Diggle PJ (2009) Second-order analysis of inhomogeneous spatio-temporal point process data.
Stat Neerl 63(1):43–51

Gabriel E, Rowlingson BS, Diggle PJ (2013) stpp: An R package for plotting, simulating and analyzing
Spatio-Temporal Point Patterns. J Stat Softw 53(2):1–29

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10260-020-00543-5
https://doi.org/10.1214/21-AOAS1519
https://doi.org/10.1214/21-AOAS1519
https://doi.org/10.1177/1471082X221094146


Local inhomogeneous second-order characteristics for…

Gilardi A, Borgoni R, Mateu J (2021) A non-separable first-order spatio-temporal intensity for events on
linear networks: an application to ambulance interventions. arXiv preprint arXiv:2106.00457

McSwiggan G, Baddeley A, Nair G (2017) Kernel density estimation on a linear network. Scand J Stat
44(2):324–345

Møller J,GhorbaniM (2012)Aspects of second-order analysis of structured inhomogeneous spatio-temporal
point processes. Stat Neerl 66(4):472–491

Moradi MM, Mateu J (2020) First- and second-order characteristics of spatio-temporal point processes on
linear networks. J Comput Graph Stat 29(3):432–443

Moradi MM, Cronie O, Rubak E, Lachieze-Rey R, Mateu J, Baddeley A (2019) Resample-smoothing of
voronoi intensity estimators. Stat Comput 29(5):995–1010

Ogata Y, Katsura K (1988) Statistical models for earthquake occurrences and residual analysis for point
processes. J Am Stat Assoc 83(401):9–27

Padoan SA, Bevilacqua M (2015) Analysis of random fields using CompRandFld. J Stat Softw 63(9):1–27
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna
Rakshit S, Nair G, Baddeley A (2017) Second-order analysis of point patterns on a network using any

distance metric. Spatial Stat 22:129–154
Rakshit S, Baddeley A, Nair G (2019) Efficient code for second order analysis of events on a linear network.

J Stat Softw 90(1):1–37
Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266
Ripley BD, Kelly FP (1977) Markov point processes. J Lond Math Soc 2(1):188–192
Schoenberg FP (2003) Multidimensional residual analysis of point process models for earthquake occur-

rences. J Am Stat Assoc 98(464):789–795
SiinoM, Rodríguez-Cortés FJ, Mateu J, Adelfio G (2018) Testing for local structure in spatiotemporal point

pattern data. Environmetrics 29(5–6):e2463
Veen A, Schoenberg FP (2006) Assessing spatial point process models using weighted k-functions: analysis

of California earthquakes. In: Case studies in spatial point process modeling. Springer, pp 293–306

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2106.00457

	Local inhomogeneous second-order characteristics  for spatio-temporal point processes occurring on linear networks
	Abstract
	1 Introduction
	2 Second-order properties of spatio-temporal point processes on Euclidean spaces
	2.1 Local Indicators of Spatio-Temporal Association functions

	3 Point processes on linear networks and their second-order characteristics
	3.1 Global second-order characteristics for spatio-temporal point processes on networks

	4 Local Indicators of Spatio-Temporal Association on linear networks
	5 Local space-time diagnostics on networks
	5.1 Simulation set up
	5.2 Simulation schemes
	5.2.1 Inhomogeneous spatio-temporal point process
	5.2.2 Spatio-temporal Epidemic Type Aftershock Sequence point process
	5.2.3 Spatio-temporal log-Gaussian Cox process

	5.3 Results
	5.4 Motivating example: a simulated ETAS process

	6 Application to traffic data
	7 Conclusions
	References




