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Abstract
The most common computational methods used for the  investigation of molecular and periodic
systems will  be  briefly  described,  with particular  emphasis  on  those  approaches  that  could  be
employed for the study of clay structures at the  atomistic level. The first  part of the chapter  is
mainly dedicated to the conceptual basis of density functional theory and its implementation  for
molecular and periodic systems. The tight binding approximation to density functional theory and
its modern variants, particularly suitable for atomistic studies of large systems, are treated as well.
Classical molecular mechanics and molecular dynamics methods, as well as the definition of force
fields suitable for clay  materials, are discussed. In the second part,  case studies of application of
computational approaches for the characterization of structures and properties of clay materials (in
particular, the halloysite nanotube) are reported.
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Introduction
The extraordinary evolution of computational methods [1-2], in particular those based on Density
Functional Theory (DFT), combined with the power and technology of modern computers, as well
as with the implementation of efficient algorithms into optimized codes, allows today the atomistic
level investigation of systems having dimensions that were unimaginable even twenty years ago [3-
4]. Despite all this, those who want to study complex systems with a certain degree of confidence
still must face are still many challenges, the first of them being to gain the experience needed to
discriminate reliable computational results from useless numbers. Clearly this experience cannot be
aquired by merely reading this chapter but I hope it will still be a pleasant reading that can stimulate
the interested scientists to deepen the many aspects and formalisms that will be just mentioned, so
that, if he/she wants, he/she can use them in the context of his own research or to better understand
the research of others in this constantly evolving field. In what follows, after a brief introduction to
the  definition  and  calculation  of  molecular  properties,  to  wavefunction-based  computational
methods and to the concepts behind density functional theory, some emphasis will be given to the
computational approaches that can be used for the investigation of large systems, which could be of
particular interest for the material scientists.

The energy and the Born-Oppenheimer surface
In  the  Born-Oppenheimer  approximation  the  total  energy of  a  molecular  system formed  by N
electrons and M nuclei is given by the energy of its electronic state plus the Coulomb repulsion
energy between its nuclei

E({R}) = Eel (N , {R ,Z}) +∑
A=1

M

∑
B≠A

M ZA ZB

|RA−RB|
(1)

where ZI is the atomic number of nucleus I and atomic units are used. The value of the molecular
energy depends on the position in space of all its nuclei,  {R}, i.e. what we commonly call the
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molecular geometry; equation (1) defines thus a hypersurface, known as Born-Oppenheimer (BO)
potential  energy surface,  which forms not only the basis for the calculation of (not too exotic)
molecular  properties,  but  also  the  scenario  from where  extremely  important  chemical  concepts
originate, including just the concept of molecular geometry.
Years of  research have shaped the abstract  chemical  intuition:  chemists  can get  an idea of the
geometry  even  for  the  weirdest  compounds.  Unfortunately,  an  idea  is  not  enough  in  order  to
calculate the vast majority of chemical and chemico-physical properties of molecular species; for
this the researcher needs the exact values of distances, plane and dihedral angles between the atomic
nuclei in the molecule, where the “exact” term was used with the meaning “accurate enough, such
that a larger accuracy does not affect the conclusion”. As a matter of fact, the first thing to do before
tackling any calculation is to find the possible molecular geometries. In practice, by starting from
some educated guess of the geometry, which correpond to a point in the BO surface, one can find
the stationary point in the surface which is closer to that guess. If this point is a local or global
minimum, a molecular conformation was achieved; a stationary point of the first order (a maximum
along one direction, a minimum along all the others) is interpreted as a transition state (TS), while
still  no conventional  meaning has been given to  higher  order  stationary points.  The search for
minima and TSs is conceptually simple: they are points of the surface where no resulting forces act
on the nuclei, so one can merely find those points where the nuclear gradients of the energy (1) is
below a certain threshold close to  zero.  The algorithm, called  geometry optimization, proceeds
according  to  the  flowchart  reported  in  Figure  1: the  energy  is  calculated  in  the  point  {R}
corresponding to the geometry starting guess, followed by the calculation of the nuclear gradient on
the same point; if the gradient along all direction of minimization is smaller than a predefined value,
the geometry is optimized; otherwise, the geometry is relaxed following the information on the
forces acting on the nuclei obtained from the gradients and a new iteration starts. Once an optimized
molecular geometry has been achieved, one must be sure that the nature of the stationary point is
the one searched for. This information is readily given by the nuclear Hessian, i.e. the matrix of the
second derivatives of the energy with respect to the nuclear coordinates: if the Hessian is definite
positive,  the geometry is  a  minimum on the BO surface;  if  the Hessian has only one negative
eigenvalue,  the stationary point is a transition state.  Once calculated the Hessian,  the harmonic
vibrational normal modes frequencies are available, which have a threefold role: i) must be used to
add the zero-point vibrational energy (EZPV) to the molecular energy (1); ii) can be used to simulate
the IR spectrum of the investigated molecule (IR intensities are easily obtained) and iii) can be used
to  calculate  the  vibrational  partition  function  (QV),  which  together  with  the  translational  and
rotational ones (QT, QR), allows to evaluate the absolute values of the thermodynamic quantities of
formation, referred to the ideal state where all the nuclei and all the electrons forming the molecule
are at infinite distance one from the other. The value of EZPV in the case of TSs is used to estimate
the  activation  energy  barrier  of  the  elementary  steps  of  chemical  reactions,  that  could  be
transformed to rate constants by means of the Eyring model (but beware of large error propagation).
Those listed here and reported in Figure 1 are only routinary molecular properties available from
calculations; many others can be obtained as derivative of the molecular energy with respect to
perturbing physical entity.

Needless to say that, in order to use equation  (1) for the calculation of molecular properties, one
must have some way to evaluate the energy of, at least, the ground electronic state of the system:
this is just the problem that quantum chemistry aims to solve.

A (very) brief survey of wavefunction-based methods
The elementary unit of modern computational methods based on the wavefunction is the Slater
determinant (SD); it is the determinant of a matrix whose elements are monoelectronic functions
called spinorbitals, each spinorbital being the product of a molecular orbital and a spin function. For
an  N-electron  system,  a  SD  is  formed  by  N  occupied  spinorbitals,  with  the  electron  label
representing the row indexes and the spinorbital label representing the column indexes of a matrix. 



In  the  Full  Configuration  Interaction  (FCI)  method  the  wavefunction  is  written  as  a  linear
combination  of  all  the  unique,  same-spin,  same-symmetry  NxN SD which  can  be  obtained by
distributing N electrons in K spinorbitals. If K tends to infinity the FCI wavefunction tends to the
exact solution of the Schroedinger equation, and the associated energies would represent the exact
not-relativistic  energy  values  of  the  electronic  states  for  the  investigated  system.  Due  to  the
extremely unfavourable scaling of the FCI computational cost with respect to N and K, up to date
this method can be applied to nothing but the smallest  molecules (diatomics of the first period
elements)  and  it  is  commonly  used  as  benchmark  for  approximated  approaches.  There  are
essentially  two  ways  to  obtain  approximations  to  the  FCI  wavefunction.  In  the  first  series  of
methods, the number of electrons and of spinorbitals to which the FCI is applied is reduced by the
appropriate  definition  of  an  active  space  (CAS-based methods);  in  the  second,  which  includes
historical methods like CISD, the number of determinant is reduced instead by truncation of the FCI
expansion. One of the approaches with the largest accuracy/cost ratio,  the CCSD(T) method, is
within this second series; it is based on the so-called coupled cluster ansatz and is dubbed as the
golden rule of computational chemistry.  In this second series we can find also the most drastic
approximation, the Hartree-Fock (HF) method, according to which the wavefunction is expressed as
a single SD. The method due to Douglas Hartree and Vladimir Fock is essentially the “father” of all
ab initio approaches and, even if it is described here as an approximation to FCI, it is actually the
method which gives the reference SD upon which all other approximations to FCI are constructed.
Due  to  its  monodeterminantal  nature,  which  essentially  means  that  the  wavefunction  is  a
antisymmetrized product of monoelectronic functions, the HF method suffers of the mean field
approximation, where electrons motion is not correlated (the probability of finding an electron in a
certain point of the space does not depend on the probabilities associated to the other electrons); the
difference between the exact non-relativistic energy and the HF one,  always negative,  is  called
correlation  energy.  HF method  can  be  applied  to  very  large  systems (hundreds  of  atoms)  but,
because of the lacking of electron correlation, the HF results have an accuracy that is out of the
modern standards. So a problem, common in computational science, appears: accurate method can
be applied  only  to  small  systems,  while  large  systems can  only  be treated  with  low accuracy.
Density functional theory (DFT) solves this problem to some extent, allowing to obtain satisfactory
results even on moderately large systems. 

Density functional theory
Following the DFT formalism, the system energy is obtained as a sum of contributions determined
from the integral over all space of some function of the ground state electron density, ρ(r), which,
according to the first Hohenberg-Kohn theorem, contains all the information about the electronic
states  of  the  system  at  hand.  The  energy  is  exactly  and  rigourosly  defined  as  the  sum  of  a
contribution due to the interaction of the N-electron system with  the nuclear charges, V[ρ(r)], plus
another contribution called Hohenberg-Kohn functional, FHK[ρ(r)]. The form of FHK is unknown and
the strategy for DFT implementation is to extract from it all contributions that can be expressed as
an integral involving ρ(r), i.e. the Coulomb repulsion energy between two electron charge densities,
J[ρ(r)], and the kinetic energy of an idealized reference system of N not-interacting electrons which
has, in every point of the space, the very same electron density of the real system, TS[ρ(r)]. All other
unknown contributions, namely the Coulomb and exchange correlation energies and the correlation
part of the kinetic energy, are collected in a new functional of the density, called the exchange-
correlation functional, EXC[ρ(r)]. The final expression for DFT energy is

EDFT [ρ(r )] = V [ρ(r)] + TS[ρ(r )] + J [ρ(r )] + EXC[ρ(r )]

=−∑
A=1

M

ZA∫ ρ(r )
|r−RA|

d r + TS[ρ(r )] +
1
2∫∫

ρ(r1)ρ(r2)
|r1−r2|

d r1d r2 + EXC[ρ(r )]
(2)

In the implementation of DFT due to Walter Kohn and Lu Jeu Sham, the electron density of a N-
electron system is written as a sum of one-electron charge probabilities



ρ(r )=∑
i=1

N

|θi
KS (r )|2 (3)

where the  θKS(r) functions, called Kohn-Sham orbitals, are the DFT counterpart of the molecular
orbitals of the Hartree-Fock theory. With this choice

TS[ρ(r )]=−
1
2∑i=1

N

∫θi(r ) ∇
2θi(r )d r (4)

In order to find the best Kohn-Sham orbitals, the variational theorem is used, according to which the
best θKS(r) functions are those giving an electron density to which corresponds the minimum energy
for the investigated system in its electronic ground state. Then, the problem is solved by applying a
minimization of the energy (2) with respect to the  θKS functions, with the constraints that these
functions  remain  always  orthogonal  to  each  other.  This  constrained  functional  minimization
procedure lead to the following pseudo-eigenvalue Kohn-Sham equations

[−1
2
∇ 2−∑

A=1

M ZA

|r−RA|
+∫ ρ(r 2)

|r−r2|
d r 2 +

δEXC

δρ(r ) ]θi
KS(r )= εkiθi

KS(r) (5)

which, since the operator within square brackets (called Kohn-Sham operator, fKS) depends on the
electron density, must be solved iteratively. Therefore, a form for the Kohn-Sham orbitals is guessed
and the electron density is calculated from equation  (3); knowing  ρ(r), fKS is defined and Kohn-
Sham equations  can  be  solved to  give  updated  forms for  θKS.  The  iterations  proceed until  the
variations in all the Kohn-Sham orbitals from a cycle to the next are under a given threshold. In
practice, this procedure involving the solution of a integro-differential equation is substituted by an
algebraic  one simply by expanding the Kohn-Sham orbitals  in  terms of linear  combinations  of
known functions, those collectively forming the basis set, 

θi
KS (r )=∑

μ=1

K

cμ iφμ(r ) (6)

The basis set {φ} is the second, fundamental ingredient which characterizes a quantum chemistry
calculation. It is outside the scope of the present chapter to discuss deeply of basis sets, nor in
treating the concepts defining their quality neither to give hints about the system characteristics one
must take into account for a proper choice between one set or another. It suffices to say that, in the
vast majority of molecular calculations, the basis set is formed by a certain number of contracted
Gaussian-type orbitals (CGTO), consisting of linear combinations of normalized atom-centered real
solid harmonic Gaussian-type functions (called primitive), whose angular part defines the “angular
momentum” of the CGTO and is taken from the corresponding atomic one-electron wavefunction

φ(r ;RA , l , m) =∑
i=1

Lc

dμi gi(r ;RA , l , m) g i(r ;RA , l ,m)= Ni|r−RA|
l e−αi|r−RA|

2~Yl ,m (7)

Here Ni is the normalization factor, RA is the position vector of the nucleus A and Ỹ is the real or
imaginary part (depending on m) of a spherical harmonic. The contraction coefficients dμi and the
best “contraction scheme” (i.e. the number Lc of primitives for each function in the basis set) are
commonly determined by means of dedicated atomic calculations, from where also the optimal
Gaussian  exponents,  αi,  defining  the  radial  part  of  each  primitive,  are  obtained.  Basis  set  are
catalogued  depending  on  the  number  and  the  role  of  the  functions  they  contain.  In  strictly



variational methods a larger number of functions in the basis set assures a more accurate value of
the molecular energy (an infinite number is needed to reach the “limit” of a given method), but this
assertion is not rigorously true in DFT. Large basis sets are essentially employed only for highly
accurate post-Hartree-Fock calculations, while in common usage DFT approaches are joined to the
so-called double zeta plus polarization (DZP) basis sets. Even if smaller basis sets exist, DZP ones
represent the minimum level accepted in today standards; if we use the concept of atomic orbital as
can be found in standard chemistry textbooks, the DZP basis set are formed by one function for
every core orbital and two functions for every valence orbital, plus one or more sets of additional
functions having high angular moment, which are meeded for the correct description of the electron
cloud deformation (polarization) when an atom is within a molecular context. The most common
DZP basis sets are those included in the families developed by Pople, Dunning, Ahlrichs, but many
basis sets were proposed also for specific purposes, like the calculation of electric or magnetic
properties, NMR shielding tensors, and so on. In material science it is common to deal with heavy
elements,  like  those  from the  fourth  period  onwards:  in  this  case,  based  on  the  rationale  that
chemistry  properties  are  mostly  determined  by  valence  electrons,   the  common  choice  is  to
substitute the inner electron density with an effective core potential (ECP) and to use an explicit
basis set only for the outermost electrons; the ECP will screen the nuclear charge and their effect is
included in the nuclear attraction one-electron integrals (see expressions (11) below).

Returning to DFT, the linear combination coefficients cμi of the  expansion (6) now become the
variational  parameters  and  the  Kohn-Sham  equations  (5) reduce  to  the  corresponding  matrix
equation form

FKS C= S C ε (8)

where FKS is the representative matrix of the Kohn-Sham operator in the {φ} basis

Fμν
KS =∫φμ(r )f KSφν(r )d r (9)

S is the overlap matrix

Sμ ν=∫φμ(r )φν(r )d r (10)

C is the matrix whose i-th column contains the linear combination coefficients and ε is the diagonal
matrix of the Lagrange multipliers εKS. Equation (8) can be solved just like an eigenvalue equation
(but iteratively) by using well defined and very efficient algorithms, involving the calculation of
one-electron integrals

−1
2∫φμ (r)∇

2φν(r)d r ∫φμ(r)
ZA

|r−RA|
φν (r)d r ∫φμ(r) δEXC

δρ(r)
φν(r)dr (11)

i.e. the kinetic energy, nuclear attraction and exchange-correlation integrals, respectively, and the
more expensive Coulomb repulsion two-electron integrals

∫φμ(r 1)φν(r1)
1

|r1−r2|
φλ (r2)φσ(r2)d r1d r2 (12)

Who already knows the Hartree-Fock theory, or who is willing to study it from standard textbooks,
will recognize that, even if they are based on different concepts, there is a strict analogy between the
Kohn-Sham implementation  of  DFT and  the  Hartree-Fock  formalism,  and  this  is  why the  old
computer programs able to calculate the HF energy were readily extended to DFT. As a matter of



fact, the Kohn-Sham equations are very similar to the HF ones, with an important difference: the
exact exchange energy contribution appearing in the Fock operator is replaced,  in the Kohn-Sham
operator, by the functional derivative of the exchange-correlation functional, introducing de facto
Coulomb electron correlation, hence higher accuracy, in DFT. The equivalent of the matrix equation
(8),  in  HF,  are  the  famous  Roothaan  equations  (of  outmost  importance  for  the  historical
development of computational chemistry) while, as a consequence of what said above, the third
kind of one-electron integrals in (11) are replaced in HF by the exchange integrals, i.e. two-electron
integrals  that  must  be  obtained  from  the  Coulomb  repulsion  integrals  by  means  of  specific
permutations. Just about the exchange-correlation integrals in DFT, it must be said that it has to be
evaluated by means of some numerical quadrature tecnique, based on atom-centered grids of points
and employing the numerical values of the basis set functions in these points.

At this  point it  should be clear that the DFT problem can be solved only after having found a
suitable description of EXC, an issue that is at the heart of density functional theory; but how can one
achieve  a  suitable  description  of  something  unknown?  Apart  from  the  knowledge  of  some
characteristics the exact exchange-correlation functional must have, its form is commonly chosen
and adapted to reproduce well defined experimental or highly accurately calculated data for variuos
property. This introduce some empiricism in DFT, that can be applied ab initio only after having
defined possible  parameters  inside  EXC,  but  did  not  prevent  this  approach to  become the  most
widely used in computational chemistry, being it applicable with confidence to large size systems
(more or less those treatable with the Hartree-Fock method). The forms for EXC, firstly proposed in
the early 60s, were collected in two families:  those functionals depending only on the electron
density (local density approximation, LDA) and those including also a dependence on the gradient
of the electron density (generalized gradient approximation, GGA). However, the routinary use of
DFT within the framework of molecular structure calculations can be traced back to the beginning
of the 90s when Becke found the way to introduces a portion of the exact Hartree-Fock exchange
within the formalism, devising the so-called hybrid exchange-correlation functionals. Since then
researchers in the field proposed a lot of new functionals, most of them dedicated to alleviate some
problems within DFT. As a matter of fact, DFT is plagued by two major problems: it does not
reduce the accuracy problem on the description of dispersion interaction, already present in the HF
method and whose solution would require the use of expensive highly correlated methods, and it
fails to describe charge transfer electronic excitations. While some attempt was proposed to mitigate
the  second  problem  (e.g.  range-separated  functionals),  new  generation  exchange-correlation
functionals (meta-GGA, with empirical corrections, etc.) seem to be fruitful on solving the first one,
that can be important in computational material science. In particular, the very cheap and efficient
correction due to Grimme is becoming an essential ingredient of all functionals. 

The trend today  is  to  relegate  the  use  of  post-Hartree-Fock method  to  very  small  systems,  in
particular when one wants to investigate properties requiring high (chemical or more) accuracy,
such as spectroscopic constants, atomization energies, etc.; coupled cluster is the method of choice
if the static correlation (that due to the fact that two or more electron configurations are equivalent
or nearly-equivalent) in the investigated molecule can be regarded as negligible, otherwise some
CAS-based approach, followed by a multireference method, must be applied. For medium-large
molecules, reaction kinetics, periodic calculations, ab initio molecular dynamics simulations and
such,  density  functional  theory,  preferably  with  a  dispersion-corrected  exchange-correlation
functional, is the only formalism to employ, at least until some new coupled cluster variant becomes
usable for large molecules.

Density functional tight binding
But what if the system size are so large that even DFT becomes not affordable? This is indeed
common in material science and it is clear that in these cases some compromise must be accepted in
terms of the desired accuracy. This said, one can wonder what computational approach could be



used  for  very  large  systems.  In  the  first  years  of  quantum chemistry,  when  calculations  were
prohibitive also for medium size molecules, a pletora of empirical and semiempirical methods arise.
Starting  from the  simple  Huckel  method,  from where  chemists  presumably  developeded  their,
sometimes too naive, vision of molecular electronic structure, in these kind of approaches, together
with  the  introduction  of  crude  approximations  within  the  Hartree-Fock  theory,  there  is  the
substitution of the expensive computation of most electronic integrals, in particular the two-electron
ones,  with  some  kind  of  atomic  parameters.  The  implementation  of  these  methods,  therefore,
required tables containing the atomic and atomic-type parameters, obtained in a number of ways but
always outside from the method itself  (which was therefore never  ab initio).  The ideas  behind
semiempirical methods developed enormously and those approaches which still survive (most of
them  are  used  no  more)  reached  a  remarkable  degree  of  sophistication,  which  allows  some
confidence for their application to large size systems. Hovewer, just as Hartree-Fock method was
superseded  by  density  functional  theory,  so  semiempirical  methods  based  on  approximate  HF
treatments have left the place to approximate DFT descriptions, one and for all the so-called density
functional tight binding (DFTB) approach. In the DFTB formalism [5], a reference electron density
is defined as a superposition of the electron densities of the isolated neutral atoms forming the
investigated molecule and the molecular energy is expanded at a given order in the electron density
fluctuation,  δρ(r).  As happened for DFT, also the DFTB method was for a long mainly confined
within applications to solid state, until a newly proposed variant made it successfully applicable for
molecular systems. This variant is the self-consistent-charge density functional tight binding (SCC-
DFTB) approach, according to which the system energy is expressed as the following expansion to
second order in δρ(r)

EDFTB =∑
i

ni∫θi(r )H0
KSθi(r )d r + EREP

+ 1
2∫

δρ(r )δρ(r ')
|r−r '|

d r d r ' + 1
2∫δρ(r )

δ2EXC

δρ(r )δρ(r ')
δρ(r ')d r d r '

(13)

where ni is the occupation number of the i-th θ orbital and H0
KS is the tight binding Hamiltonian. A

number of approximations leads to the parameterized expression

EDFTB =∑
iμν

ni cμ i cν iHμν
0 +∑

ab
Uab +

1
2∑ab

γabΔqaΔqB (14)

where the first term is obtained from the corresponding term in (13), after the θ functions have been
substituted by a linear combination of atomic orbitals (obtained by solving the so-called pseudo-
atom  equation,  containing  a  confinement  parameter).  The  sum  of  Uab terms  approximate  the
repulsive EREP energy contribution; the Uab pair potentials, depending on the distance between the
centers  a  and b,  are  parameters  specific  to  every  possible  couple  of  atoms in  the  investigated
molecule and are onbtained by a fitting procedure based on the difference between EDFTB and DFT
reference energies calculated as a function of the distance of atoms a and b in simple interacting
molecules. Finally, the last term in  (14) collects the last two terms in  (13) and describes them as
fluctuations of the atomic Mulliken charges q as a function of molecular geometry, with the  γaa

parameters correlated to the difference between the ionization potential and the electron affinity of
atom a, and the γab parameters expressed in analytic form by a damped Coulomb potential.
In further developments, the energy is expanded to third order, which seems to give better results
for dispersion interactions. Apart this, however, the DFTB approach is plagued by the need of too
specific parameters, whose transferability is hardly guaranteed. One could get around this obstacle
by generating parameters  appropriate  only for specific  systems and purposes,  which is  what  is
generally done, but this generation is too involved and arbitrary to some extent. It is true that the
Extended Tight Binding (XTB) formalism and all its variants, recently proposed by Grimme, is free
from atomic-pair-specific parameters, and therefore is the optimal candidates to achieve the leading



position between the semiempirical approaches, but this method still need some testing for general
applicability.

Hybrid methods
If a molecular system is formed by hundreds or thousands of atoms, it is in some cases possible that
the property we are interested in is localized in a determined portion of the molecule, while the
influence of the remaining part can be viewed as a substituent effect. Clearly, this is not the case if
one wants to investigate the secondary structure of a small protein, but some useful informations
can be acquired on the local interactions determining that secondary structure. The approach to use
in such cases was pioneered by Morokuma in the 90s, when, by collecting and improving earlier
ideas, he proposed the ONIOM method. According to this approach, the system to investigate is
divided in two or more well defined regions which are related one to the other by an inclusion
relationship. One of these region (the “model system” M) is the molecular portion considered the
most responsible of a given property of interest; in the 2-layer version of ONIOM, M is included in
the entire molecule (indicated as “real system”, R), while in the 3-layer version, M is included in a
intermediate  system,  I,  which  is  in  turn  embedded in  R.  Now,  a  high  accuracy  computational
method H is chosen which can be applied to the model system, followed by a medium accuracy
method, m, that can be applied to the intermediate system, if any, and a low level method, L, that
can treat the entire real system. By indicating with E(A,B) the energy of a system A treated with the
computational  method  B,  the  energy  E(R,H)  which  is  the  uncomputable  energy  of  the  whole
molecule  at  high  accuracy,  is  extrapolated  as  E(M,H)+E(R,L)-E(R,L),  for  Oniom-2layer,  or  as
E(M,H)+E(I,m)+E(R,L)-E(M,m)-E(I,L) for the 3-layer variant, i.e. E(R,H) is evaluable by means of
affordable  only  calculations.  The  expression  of  the  target  energy  as  a  sum  of  independent
contributions, joined to a proper treatment of the link atoms, i.e. those atoms (generally hydrogen)
introduced on the edge of model and intermediate systems in order to saturate the dangling bonds
originated from the cut and make them suitable for a standalone calculation, make possible the
evaluation of ONIOM energy nuclear derivatives, essential for the analytical geometry optimization
and vibrational frequency calculation, thus allowing a very fruitful employment of this approach. 
A specific, somehow crafty usage of the ONIOM concept is the building of a necessary framework
around a portion of a very large molecule or even of a periodic system. The issue is better explained
with an example. Consider one wants to investigate the adsorption of a given molecule on the inner
wall of a zeolite cage, let's say the wall of the larger channel in the beta zeolite. Taking into account
the wall thickness, the region of this channel is defined by ca. 80 silicon tetrahedra, giving a total of
ca. 250 atomic centers. Such a supercell hardly can be the subject of accurate calculations; but the
problem becomes prohibitive if one wants to avoid spurious interactions of the adsorbed molecule
with its periodic images, so that the supercell must be doubled. A way to treat the problem could be
to define a minimal inner surface, i.e. the smallest surface that can accomodate the molecule whose
adsorption characteristic are desired, and cut it from the zeolite structure, having care to saturate
with hydrogen the dangling bonds originated from the cutting. The system so created should be
subjected  at  least  to  geometry  optimization,  to  discover  the  adsorption  geometry.  Doing  so,
however, the adsorbing surface would relax, and it will be no more representative of the zeolite
largest  channel  wall.  Indeed,  that  portion  of  the  surface  has  the  correct  geometry  only  if  it  is
embedded in the zeolite framework. Being the use of a larger supercell prohibitive, it could be a
natural choice to couple the DFT approach employed for the portion of interest to a semiempirical,
or  better  a  molecular  mechanics  force field,  according to  ONIOM prescription,  the embedding
assuring to some extent no spurious distortion of the channel surface. It is trivial to say that, just as
in all other cases in which computational chemistry approaches are used, preliminary investigations
must be afforded to test the reliability of the model and have some confidence with the results
obtained.

The approaches for periodic systems



Let's take a look now to the quantum chemical approaches that can be used to treat the solid state.
According to Bloch theorem, a function which approximately describes the probability amplitude of
finding an electron in a certain point of the space, when it is subjected to a the periodic potential
generated by an infinite lattice of positive charges and to the mean field repulsion of all  other
electrons, can be expressed in the form

ξμ k (r )= Uμk(r) e ik⋅r (15) 

where the U functions have the same periodicity of the crystal lattice, represented by the vector
L=n1a1+n2a2+n3a3, being a1, a2,a3 the three lattice vectors, and k is a reciprocal space vector inside
the so-called first Brillouin zone (BZ). In the DFT context, this means that the solutions of the
Kohn-Sham equations (5) must satisfy the following constraint

ξμk (r+L) = eik⋅rξμ k (r ) (16)

The most natural choice for the expansion of the ξ functions is a linear combination of plane waves

ξμ k (r )=∑
G

ak(G)e
i(k+G)⋅r

(17)

where the summation is extended to all the reciprocal space vectors  G selected from a grid and
includes  all  the  plane  waves  having  kinetic  energy  below  a  certain  cutoff.  Since  in  order  to
reproduce  the  local  form of  the  ξ functions  prohibitively  high  values  of  the  cutoff  should  be
necessary, only the valence regions of the atoms are explicitely considered, inner regions being
described by appropriate pseudopotentials. Finally, the electron density needed in the KS equations
is defined and calculated on a grid of points belonging to the first Brillouin zone, according to the
sampling proposed by Monkhorst and Pack:

ρ(r )= 1
VBZ
∑
μ=1

n

∫
BZ
ξμ k

* (r )ξμ k(r )d k ≃ 1
VBZ
∑
μ=1

n

∑
k∈BZ

ξμ k
* (r )ξμ k(r) (18)

The expansion in terms of plane waves according to equation (17) is certainly the most used, and is
implemented in  the most common softwares for  periodic DFT calculations,  such as  VASP and
AbInit, but is not the only possible choice. In the Crystal program, gaussian basis sets are employed
while the SIESTA code, which implements the homonym computational method and in the first
years  of  2000s  represented  a  breakthrough  in  this  field,  efficiently  uses  appositely  generated
numerical atomic orbitals whose quality can be tuned. From a periodic calculation on a crystal
lattice (whose symmetry characteristics commonly come from the experiment) useful informations
can be obtained: electronic bands, energy gap and conducting properties, cell geometries, density of
states (from which one can extract information such as the number of mobile states for electric
conductivity), phonon dispersion relations, elastic properties, etc. However there are very important
chemical processes (one and for all, heterogeneous catalysis) which do not occur in the infinitely
self-replicating bulk of the crystal, but on regions where lattice periodicity is broken: the crystal
surfaces.  What  is  the approach to  use in  order  to  investigate  a  portion which is  located at  the
interface between a semi-infinite periodic crystal and the vacuum? In the most intuitive approach,
the system is still periodic in three dimensions, but the cell vector  normal to the surface object of
investigation  is  artificially  elongated  to  assure a  vacuum (tipically  30  Å);  along the  other  two
directions and the direction opposite to the vacuum the unit cell is replicated, with unchanged lattice
constants, a number of times sufficient to create a slab, which is treated as a supercell to replicate
periodically. In this slab approach care should be taken to have some issues always under control: i)
the  slab  should  be  large  enough  to  avoid  spurios,  unwanted  interactions  between  a  molecule
adsorbed or reacting on the surface and its periodic replicas; ii) the slab should be thick enough to



mimic the semi-infinite bulk below the surface and its polarizing effect; iii) for semiconductors it is
necessary to saturate the dangling bonds in the underneath surface; iv) energy should be corrected
to eliminate the fictitious dipole-dipole interaction originated by slab creation. Alternatively, the
cluster,  not periodic,  approach can be employed. In this  case,  the vacuum above the surface is
guaranteed and lateral interactions cannot occur; further, being outside from the field of periodic
calculations,  one  can  take  advantage  of  the  wider  choice  of  methods  proper  of  molecular
calculations (e.g. hybrid exhange-correlation functionals and taylored basis sets), not to mention the
availability of energy gradients which greatly facilitates the quest for transition states in chemical
reactions (for transition states in periodic investigations numerical approaches must be used instead,
such those based on the Nudged Elastic Band method). However, the cluster approach has its own
problematic deficiencies, such the possible occurrence of strong border effects and the unnatural
structural  relaxation  of  the  whole  system.  Obviously,  the  last  sentence  is  true  if  one  wants  to
describe  a  crystal  surface  by  using  a  cluster  as  model,  but  those  mentioned  become  physical
characteristics of the system if the object of the investigation is a true, physical cluster of atoms. 

Molecular dynamics simulations
Just some rows above, the word "force field" comes into play. Even if it could be applied in a wider
context, this term was used here to introduce the models of classical molecular mechanics (CMM)
and molecular dynamics (CMD) and explore if there is some room for their use in material science.
By using the term "classic" it is intended that the treatment of the molecular systems occurs outside
the realm of quantum mechanics; so, electrons are no more considered explicitely but their presence
is incorporated inside fictitious parameters, representing e.g. the force of a given chemical bond.
Energy is here calculated as a sum of parameterized contributions, commonly grouped in internal
(bond stretch, bending, etc.) and external (Coulomb, van der Walls interactions and son on) to the
molecular entity. The union between i) the nature of the contribution to the energy, ii) the formula
chosen  for  the  calculations  of  each  contribution  and  iii)  the  set  of  all  the  atom-type  and
contribution-type specific parameters, form a force field. As an example, one of the most diffuse
force field is the AMBER one, which defines the energy of a M-atoms molecule as
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where the first term defines the contribution of bonds stretching, written as a harmonic potential
depending on the interatomic distance r and containing two parameters: the harmonic force constant
for the given bond, Kb, and its equilibrium length, r0. Similarly, the second contribution is that due
to bond angles bending, with obvious symbols, while the third collects the energetic terms related to
variations  in  the  torsional  angles.  Electrostatic  interactions  between  atoms  in  the  same  or  in
different molecules are described by a simple Colomb potential between  fictitious atom-centered
partial charges q, and dispersion interactions are entrusted to a 12-6 Lennard-Jones potential, with
its famous pair parameters  ε and  σ. These last two contributions run over all possible couples of
atomic centers in the investigated system. The atom-type and pair parameters are to be determined
by  some  procedures  which  could  involve  well  defined  experimental  data,  equation  of  state,
dedicated  experiments,  ab  initio  calculations,  and  so  on.  Transferability  is  sometimes  assured
between parameters for molecules belonging to classes of homologue systems (e.g. proteins, DNA,
sugars), but commonly a force field cannot be considered of general applicability, so that a very
large number  of  new force fields  (as  well  as  extension/variation/recalibration of  existing ones)
suitable for particular purposes are continuously proposed to the scientific community. For example,
based on the AMBER force field but without the torsional term, the CLAYFF is parameterized on
purpose for the investigation of the clay-water interface.



Force field based approaches can be used for  geometry optimization by simply calculating the
energy of a certain molecular geometry and relaxing it according to the force on every atom, and
this  is  the  way  it  is  used  for  assuring  the  embedding  of  the  molecular  portion  in  ONIOM
calculation.  More often,  on the other  hand,  the  force fields  are  used for  the  time evolution of
systems (particularly  in  the  condensed phase),  by  discretizing  the  physical  time  in  appropriate
timesteps (in the order of femtoseconds) and exploiting the forces obtained from the force field in
efficient algorithms (e.g. velocity Verlet) which propagate the system according to classical Newton
or Lagrange equations.  One speaks in these cases of classical molecular dynamics simulations.
Dedicated calculation centers can afford CMD simulation for relatively long times (μs) or very large
system size (billion of atoms), but it clear that the results must be trusted in the view of ensemble
properties,  being  useless  here  to  search  for  accuracy  on  the  details.  The  quantum-mechanics
counterparts, like Born-Oppenheimer molecular dynamics or the Carr-Parrinello approach, where
the forces between atomic centers can be calculated ab initio from the potential due to the electrons,
are conversely full of details, but are applicable only to small systems for very short simulation
times.

Case studies: halloysite nanotubes
Halloysite nanotubes (HNTs) are natural clay materials first described in 1826 by Berthier. They
have peculiar spiral morphologies conferred by the rolling up of kaolinite-like sheets, composed by
a layer of SiO4 tetrahedra (which will form the outer surface of the nanotube) joined to a layer of
AlO6 octahedra  (representing  the  inner  surface).  The  HNT stoichiometry,  Al2Si2O5(OH)4·nH2O,
allows to distinguish a hydrated form (n = 2,  indicated as HNT-10Å), bearing interarms water
molecules,  and a  dehydrated one (n = 0,  HNT-7Å). Relegated for a  long time to a use almost
exclusively relevant  to  the  ceramics  industry,  in  the last  fifteen years  HNTs started  to  become
important  as  a  cheap  and  eco-friendly  material  for  a  number  of  applications,  ranging  from
controlled release to nanocarrier for active compounds, from design of polymeric nanocomposites
to catalysis.

The  computational  characterization  at  atomistic  level  of  HNT  composite  must  face  many
challenges. Let's imagine one wants to investigate the hydrogen bonds network which realizes in the
region comprised between the spiral arms of a halloysite-10Å nanotube. Here there are H-bond
interactions between the water molecules and between them and the two surfaces of HNT.  The
spiral structure of HNTs gives rise to serious problems for the simulation and the first of them is
merely the construction of the input system geometry. It may sound trivial, but every calculation
approach needs a molecular geometry to begin with: many free or commercial softwares are indeed
devoted to the graphical construction of molecules to be used as input geometry but when one treats
large size systems it is clear that some automatism must be devised. A vast number of codes are
dedicated to the building, visualization and analysis of unit cells of given symmetry for periodic
calculations, or for the construction of polypeptides given the list of the aminoacid residuals in the
chain, or the generation of carbon nanotubes and alike given the chirality. HNTs, however, cannot
be builded using codes for periodic systems, since they are periodic only in the direction of the
rolling axis. As a matter of fact, the spiral has a curvature which changes from point to point, so no
exact periodicity of a unit cell can occur along its arms. One artifact could be to forget the spiral
structure and use a multiwalled cylindrical model for HNT, but, as will be discussed below, this
could cause the missing of some features related just to the spiral architecture. It is better to assume
that HNT can be generated by starting from a reference regular lattice of points arranged on the
arms of an Archimedean spiral, whose polar equation is  . The lattice points can be
placed on the spiral by exploiting the formula for the spiral arc length

s(θ)= 1
2

b [θ √1+θ2 + ln (θ + √1+θ2 )] (20)



An appropriate repetition unit is now convoluted with every lattice point (see Figure 2), opportunely
rotated and slightly adjusted according to a correction angle determined from the spiral curvature in
that point (which decreases smoothly along the arms)

κ(θ)= 2+θ2

b(1+θ2)3 /2
(21)

This approach works well unless the curvature is too pronounced, but this should be never the case
since the HNT model must have a relatively large inner cavity, hence the phase of the spiral is never
too  small.  Clearly,  the  model  constructed  this  way  is  only  the  starting  point  for  geometry
optimization.  As a matter of fact,  after  having generated the HNT supercell,  one must face the
problems related to its dimension: even a small supercell corresponding to the section of a HNT-
10Å having a modest 5 nm inner cavity diameter, and formed by spiral arms that overlap for one
half, has ca. 1400 atoms if a armchair rolling is chosen, a number which increases to more than
2000 when the opposite limiting zig-zag rolling direction must be considered. Such a supercell can
be periodically replicated along the nanotube axis by using the appropriate cell vector length, while
vacuum must be assured in the other two perpendicular directions. This system is too large to be
treated with ab initio methods, but its dimension is within the applicability range of semiempirical
approaches like, e.g.,  SCC-DFTB. If this is the case, the  matsci set of Slater-Koster parameters
could be used, which was realized to treat systems containing common elements in material science.
Concerning the code to use to perform the calculation, as a guideline I suggest to employ whenever
possible softwares dedicated to the implementation of only one kind of computational approach
instead of general ones; so in this case the choice could be the DFTB+ program developed by Aradi
and coworkers.
Geometry optimization of the HNT-10Å supercell reveals some features connected to the intrinsic
disorder of the spiral architecture. In order to discuss these ones, let make a comparison with a
hypothetical system formed by water molecules sandwiched between two planar kaolinite layers,
i.e. let unroll the HNT-10Å. In this case a perfect periodicity is present in the system: all tetrahedral
silicon centers have equal geometry, the same holds true for the octahedral aluminum centers and,
from a structural point of view, a regular network of hydrogen bonds would occur between the
water molecules, and between them and the upper and lower surfaces. The transformation of this
system to the spiral  HNT-10Å causes non periodic distortions of the SiO4 and AlO6 geometries
along the arms and calculation revealed that (at least for the idealized system investigated) the less
amount of energy required seems to occur in spiral arrangements where relatively large distortions
are localized in a limited number of points along the arms, joined to very small distortions in all
other points. This sort of polygonal spiral would be preferred to a smoother one where distortions
would  be  distributed between all  the SiO4 and  AlO6 centers.  Further,  the characteristics  of  the
hydrogen bonds network in the unrolled HNT originated from the fact that the water layer was
comprised between a periodic SiO surface and a periodic AlO ones. In the spiral HNT-10Å, on the
other hand, the water molecules experience the disordered enviroment in which they are enclosed;
as a consequence, a large variety of hydrogen bond configurations can take place and the water
molecules would adapt in order to provide the best interactions. Still, at a given temperature, the H-
bonds configurations can change over time, giving rise to a dynamic linkage between the arms of
the halloysite nanotube,  whose characteristics could be investigated in terms of pair  correlation
functions after that a dedicated molecular dynamics simulation is performed. The occurrence of the
adaptive and dynamic H-bond network, originated from the natural disorder related to the spiral
structure, could be one of the reasons why  HNT-10Å exists instead of a lamellar kaolinite with
water between adjacent layers. 
After having investigated the HNT model in its interity, one could be interested to nanocomposites
involving modified or functionalized HNTs for specific applications,  and this constitutes another
challenge, to tackle which one must resort to the usual compromises. To alleviate the burden, it can
be considered that many applications of halloysite-based composites depend on the interactions or



reactions of its outer and inner surface with molecules of interest. Then, most of the cases can be
investigated by using local models of HNT instead of the whole nanotube. Conversely, it must be
taken into consideration that now we must go into the details of interactions, adsorption geometries,
local distortions,  bonds breakings and formations, activation barriers,  etc.,  therefore quantitative
informations are needed if one wants to be predictive, and resorting to accurate DFT approaches
cannot be avoided. Since this is expensive (or even impossible) both in terms of time and resources,
a suitable choice must be done. A common way to proceed could be to tailor a portion of surface
from the nanotube model. What could be a representative portion in terms of lateral extension and
thickness would heavily depend on the nature of the system and on the properties the investigator is
interested on but, again, the choice is sometimes restricted to what can be treated by DFT. One
could assume that a coronene-like surface portion formed by 24 silicon tetrahedra and the same
number of aluminum octahedra (depicted in Figure 3) could a good, minimax, choice for e.g. the
adsorption of one molecule, or the surface modification with one molecular fragment. It could be
treated as the model system of a ONIOM calculation or as a standalone molecule; in both cases the
DFT calculation would be performed using a HNT portion with Al24Si24O126H48 stoichiometry, where
the additional hydrogen atoms would come from the need to saturate the dangling bonds originated
by  the  cut  (which  is  the  role  of  the  linking  atoms  in  ONIOM).  In  order  to  obtain  a  reliable
description of dispersion forces one could use the B3LYP-D3 exchange correlation-functional, i.e. a
hybrid one with Grimme correction; however, if one wants to take advantage of the resolution of
identity approximation, a pure exchange-correlation functional should be used, in which case the
choice  could  fall  on  some  Minnesota  functional,  such  as  the  M06-L.  The  basis  set  must  be
obviously of double zeta quality plus polarization. If an ONIOM approach is employed, the high
level DFT method can be joined to a molecular mechanics force field (as CLAYFF, or the Universal
Force Field, UFF) as low level method. If instead the portion is investigated as a standalone unit,
the user should pay attention to freeze the positions of some non influent atomic centers (e.g. those
on the borders), otherwise the portion will distort and the spiral local curvature will be lost. Taking
into account that a molecule of, say, 20-30 atoms is to be adsorbed on the HNT portion, the DFT
geometry optimization of the entire system will take from 2 to 6 days on 32 shared-memory new
generation processors. 

Final remarks
Computational chemistry is an extremely important resource of modern science, which can work in
synergy with the experiment. It can be useful for developing basic knowledge, for the interpretation
of data and trends, for the prediction of the characteristics of new molecules or of the behavior of
already known molecules in new or unusual conditions. It can be applied in essentially all fields of
chemistry.  However,  before  starting  his/her  computational  work,  the  researcher  who intends  to
practice calculations should ask himself/herself the following set of questions: why do I want to
make calculations on this system? Have I well identified the problem I want to investigate? Can I
obtain the answers I need? What accuracy do I need? The one required to reproduce, for example,
the rotational spectrum of a molecule is far greater than that commonly used to describe a reaction
mechanism. In addition to being necessary to establish a correct way to proceed, having these issues
clear helps to understand which methods, among the many available, should be used. It must be
borne in mind that some types of computational investigations may be impossible, at least today,
and that sometimes one could be satisfied with evaluating trends: the exact value of a particular
quantity that refers to a physical property could be only a detail.
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Figure captions

Figure1: Flowchart  representing  the  cycle  of  the  geometry  optimization  algorithm  and  the
subsequent calculation of routine molecular properties

Figure 2: (a) An Archimedean spiral lattice of points defined by spiral parameters such that the
inner diameter-like distance is close to 10 nm and the interarms spacing is enough to give HNT-
10Å. (b) An appropriate repetition unit formed by a Si-O layer connected to a Al-O one and four
water molecule, with stoichiometry H15Si4Al4O24; color code: yellow = Si, cyan = Al, orange = O,
white = H. (c) The HNT-10Å input supercell as the result of the convolution of the repetition unit
with the spiral lattice, followed by a rotation whose entity depends on the lattice point. (d) The
HNT-10Å spiral nanotube obtained by periodic repetition of the supercell along the rolling axis.

Figure 3: The nanotube portion with Al24Si24O126H48 stoichiometry, which could be used as a model
to investigate the possible modification of the outer and inner surfaces of halloysite. Color code:
yellow = Si, cyan = Al, orange = O, white = H.


