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Abstract
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Doctor of Philosophy

Reduction procedures for hyperbolic equations: applications to nonlinear wave
problems

by ALESSANDRA RIZZO

Partial differential equations (PDEs) play a key role in the description of a wide
range of complex phenomena such as the propagation of heat or sound, fluid flow,
elasticity, electrostatics, electrodynamic and so on. For this reason, determining so-
lutions of PDEs is a great challenge in applied mathematics and mechanics.
Motivated by this viewpoint, the aim of this thesis is to briefly review some of the
most useful procedures for solving PDEs and to develop new approaches to con-
struct exact solutions for this kind of models. Both the cases of partial differential
equations of higher order and of systems of first order are treated.
Hyperbolic PDEs of higher order are studied in the framework of the intermediate
integrals method: a reduction procedure to simplify the problem of solving a sec-
ond order equation to the one of studying a first order equation is developed and
an algorithm that under appropriate circustances permits to determine the general
integral of linear equations is proposed.
On the other hand, hyperbolic systems are approached through the method of dif-
ferential constraints: the well known Riemann problems (RP), Riemann problems
with structure (RPS) and the generalised Riemann problems (GRP) are considered.
At the state of art, a general theory for solving this type of problems for non ho-
mogeneous systems does not exist: in this thesis, we provide results concerning the
solution of a Riemann problem for a traffic flow model and of GRP and RPS for the
non homogeneous p-system.
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Introduction

Determining exact solutions of partial differential equations (PDEs) is of great inter-
est not only for its theoretical meaning but also for possible applications. Given a
mathematical model, their exact solutions permit to describe real processes, to val-
idate the model, to predict new behaviours. Furthermore the knowledge of exact
solutions is useful to compare and to test numerical integration procedures.
Along the years many mathematical approaches have been proposed for determin-
ing exact solutions of PDEs. Most of them are concerned with degenerate hodograph
and differential constraints methods.
The degenerate hodograph method requires the existence of some finite relation be-
tween the dependent field variables. The related exact solutions are called multiple
waves and they are classified depending on the rank of the jacobian matrix of the
dependent variables. For instance, the famous simple waves and double waves are,
respectively, multiple waves of rank 1 and multiple waves of rank 2. Furthermore,
within the theoretical framework of group analysis, it can be proved that multiple
waves are partial invariant solutions.
Some fundamental results concerning simple and double waves are given in [44]
(and references therein).
The Method of Differential Constraints was proposed in 1964 by Yanenko [65] for
the gas-dynamics model. In general, exact solutions satisfy their own PDEs along
with further differential relations. For instance, travelling waves u(x − ct) are also
solution of the transport equation ut + cux = 0. Starting from such a remark, the
main idea proposed by Yanenko is to add to the governing system under interest
some further differential equations which play the role of constraints because they
select classes of particular exact solutions admitted by the overderdetermined set of
equations consisting of the original ones along with the additional differential con-
straints. The method is developed on different steps: first we have to choose the form
of the differential constraints; then the compatibility of the related overdetermined
system must be studied; finally exact solutions of the full set of equations must be
determined. Such solutions will be given in terms of arbitrary functions whose num-
ber depends on the number of the constraints and therefore classes of initial and/or
boundary conditions can be solved. Usually the presence of some constraints facili-
tate the procedure of solving the equations at hand. The method has a high degree
of freedom and in fact it includes many of the approaches developed along the years
for characterizing exact solutions of PDEs. Unfortunately, because of its generality,
without any further hypotesis, it is not always useful in the applications. Therefore,
in order to overcome this limitation, in [16, 55, 59], the involutiveness of the resulting
overdetermined system is required (for more details see [44]). A special case of the
method of differential constraints is the approach based on the use of the intermedi-
ate integrals for determining exact solutions of higher order PDEs. A first order PDE
is called an intermediate integral of a given higher order PDE if all its solutions are
also solutions of the higher order PDE under interest. Therefore, in order to solve
the original PDE we are led to integrate a first order (eventually nonlinear) PDE. In
such a case the obtained solution are given in terms of al least one arbitrary function.
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Both the degenerate hodograph method and the differential constraints methods
require a compatibility analysis of a resulting overdetermined system. The algebraic
approaches useful for studying such a compatibility are based on the Cartan and
Riquier theories. In particular, the Cartan theorem proves that after a finite number
of prolongations, any analytical system becomes involutive or incompatible. Unfor-
tunately, it is not possible to know a priori how many steps are needed to get to this
result.
Among partial differential equations, the hyperbolic equations distinguish them-
selves for their capability of describing nonlinear waves propagation. Exact regular
solutions of such models usually exist locally and after a critical time they produce
discontinuity solutions like shock waves, acceleration waves, sub-shocks. Within
such a theoretical framework, a famous problem is the Riemann Problem (RP).

In 1860 B. Riemann [57, 58] studied a situation in which a tube filled by a fluid
is divided by a wall. On both side of the wall the fluid is at rest and it has con-
stant but different values for mass density and pressure. At t = 0 the wall is bro-
ken and the problem is to study the resulting wave phenomenon. Riemann proved
that the corresponding solution involves rarefaction waves, shock waves and con-
tact discontinuities [12]. After the Riemann’s paper, a RP is defined as an initial
value problem characterized by two constant states separated by a discontinuity in
a point. In the fundamental paper of Lax [31] it has been proved that in the case of
homogeneous hyperbolic systems written in a conservative form, if the initial con-
stant states are not “far”, the general solution of a RP is given in terms of constant
states separated by rarefaction waves, shock waves and/or contact discontinuities
(see also [60], [12]). In particular, rarefaction waves are exact smooth solutions which
are characterized by simple wave solutions. Unfortunately, nonhomogeneous sys-
tems, in general, do not admit simple wave solutions and, in turn, they do not admit
rarefaction waves so that the general solutions of a RP is still an open problem for
such a class of models.
An even more complex nonlinear wave problem to solve is the generalized Riemann
problem (GRP), where two initial non constant states are assigned with a disconti-
nuity in a point. The general solution of GRP is not known and usually such a class
of problems is studied numerically [63], [64]. The main difficulties lie in characteris-
ing rarefaction waves capable of connecting continuously the solutions to the initial
value problem with non constant states.
In the end, a more precise description of nonlineare wave propagation is given by
Riemann Problems with Structure (RPS), consisting in initial value problems with
continuous initial data that connect at infinity with two constant states. Also in
this last case, determining exact solutions is a hard task. Quite recently, within the
framework of the differential constraints method, an approach has been developed
in order to solve RP, GRP and RPS also for nonhomogeneous first order hyperbolic
systems.
In the following, we consider different approaches based on the degenerate hodo-
graph method and on the method of differential constraints useful for determining
exact solutions of hyperbolic PDEs. Such solutions allow to study different prob-
lems of interest in nonlinear waves propagation. In particular, the thesis is divided
into two main chapters: the first one dedicated to exact solutions of partial differen-
tial equations of higher order and the second one dealing with first order hyperbolic
systems.
In particular, in the first part a brief summary of the more common approaches for
solving partial differential equations is presented. Among them, the Intermediate
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Integral Method is widely discussed and original results are given. In fact, it is de-
veloped a systematic reduction procedure for determining intermediate integrals of
second order hyperbolic equations so that exact solutions of the second order PDEs
under interest can be obtained by solving first order PDEs. The conditions for which
such a procedure holds are given and it is also characterized a class of linear second
order hyperbolic equations for which the general solution can be found. Several ex-
amples are provided.
In the second chapter, the focus is on hyperbolic systems of first order partial dif-
ferential equations. The approaches discussed to obtain exact solutions are the Dif-
ferential Constraints and the Degenerate Hodograph methods and different appli-
cations are proposed. First, the Aw Rascle model for the vehicular traffic flow is con-
sidered. Within the framework of the method of differential constraints, a suitable
reduction procedure is developed for solving a class of Riemann problems which are
of interest in traffic flows theory: for a given source term, the general solution of the
Riemann problem in terms of shock waves, contact discontinuities and generalized
rarefaction waves is provided. The interaction between a shock wave and a general-
ized rarefaction wave is also studied and a related Generalized Riemann Problem is
solved.
After that, a section is dedicated to the celebrated p-system. All the possible dif-
ferential constraints compatible with the original governing system are classified.
In solving the compatibility conditions between the original governing system and
the appended differential constraint, several model laws for the pressure p(v) are
characterised. Therefore, the analysis developed is carried out in a case of physical
interest and an exact solution that generalises simple waves is determined. This al-
lows to study and to solve a class of generalised Riemann problems. In particular,
a proof that the solution of the GRP can be discussed in the (p, v) plane through
rarefaction-like curves and shock curves is presented. Finally, a Riemann problem
with structure is studied, proving the existence of a critical time after which a GRP is
solved in terms of non-constant states separated by a shock wave and a rarefaction-
like wave.
As a last result, it is showed a reduction procedure aimed at determining exact so-
lutions to a first order hyperbolic system which describes nerve pulse propagation.
The main idea is to look for particular double wave solutions and to reduce the in-
tegration of the full system to that of a suitable 2× 2 sub-system. The outcoming
solutions are determined in terms of arbitrary functions.
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Chapter 1

Reduction Methods for higher
order equations

In this Chapter, we will focus our attention on higher order hyperbolic equations.
As a first step, will briefly review some of the classical methods used in literature to
solve this kind of equations. Among them, we will in particular discuss the Interme-
diate Integral Method, applying this procedure to a particular class of second order
hyperbolic equations.

1.1 Riemann Method

Among the methods known in literature to solve secord order hyperbolic equations,
one of the most important is surely that of Riemann [58].
In order to explain this method, we will first analyse the simple Cauchy problem





uξη = 0
u|γ = u0
du
dn |γ

= u1,
(1.1)

where ξ and η are the characteristics variables, γ is a smooth curve, not tangential to

the characteristics and u0 , u1 are the initial functions assigned for u and
du
dn

, where
n is the normal to γ.
Let P = (x, y) of the ξη-plane be a point with the property that the characteristics
ξ = x and η = y passing by it intersect the curve γ. Let A = (ξA, y), B = (x, ηB) be
the two point of intersection. We will define DP as the domain of dependence of the
solution delimited by the arc ÂB and by the two segments AP, BP (as in Figure 1.1).
Since uξη = 0 for ξ, η > 0 , we can integrate our equation in the domain DP, trough
Green formulas, obtaining

∮

∂DP

uξdξ =
∮

∂DP

uηdη = 0, (1.2)
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Poiché uξ η = 0 per ξ ,η > 0, vale uξ η = 0 in DP. Integrando l’equazione in DP e

applicando le formule di Green, otteniamo
∮

∂DP

uξ dξ =
∮

∂DP

uηdη = 0, (1.39)

essendo
∮

∂DP

uξ dξ =
∫

PA
uξ dξ +

∫

ÂB
uξ dξ +

∫

BP
uξ dξ =

[
u(ξ ,y)

]ξA
x +

∫

ÂB
uξ dξ

= u(A)−u(P)+
∫

ÂB
uξ dξ ,

∮

∂DP

uηdη =
∫

PA
uηdη +

∫

ÂB
uηdη +

∫

BP
uηdη =

∫

ÂB
uηdη +

[
u(x,η)

]y
ηB

=
∫

ÂB
uηdη +u(P)−u(B),

dalla (1.39) si deduce

u(P) = u(A)+
∫

ÂB
uξ dξ , u(P) = u(B)−

∫

ÂB
uηdη ,

sommando le due espressioni si ottiene la formula di rappresentazione integrale

della soluzione

u(P) =
1
2
[
u(A)+u(B)

]
+

1
2

∫

ÂB

(
uξ dξ −uηdη

)
, (1.40)

che costituisce la generalizzazione della formula di D’Alembert. Nella (1.40) le

derivate uξ e uη sulla curva portante i dati sono calcolabili perché questa non è

caratteristica.

49

FIGURE 1.1: Domain of dependence DP

where
∮

∂DP

uξdξ =
∮

PA
uξdξ +

∮

ÂB
uξdξ +

∮

BP
uξdξ = [u(ξ, y)]ξA

x +
∮

ÂB
uξdξ =

= u(A)− u(P) +
∮

ÂB
uξdξ,

∮

∂DP

uηdη =
∮

PA
uηdη +

∮

ÂB
uηdη +

∮

BP
uηdη =

∮

ÂB
uηdη + [u(x, η)]yηB

=

=
∮

ÂB
uηdη + u(P)− u(B).

From relation (1.2), one can deduce

u(P) = u(A) +
∮

ÂB
uξdξ, u(P) = u(B)−

∮

ÂB
uηdη (1.3)

and summing the two expressions one obtains the formula of integral representation

u(P) =
1
2
[u(A) + u(B)] +

1
2

∮

ÂB
(uξdξ − uηdη), (1.4)

that represents the generalization of the famous of D’Almbert’s formula. Notice that
the derivative uξ and uη can be evaluated along γ, because it’s not a characteristic
curve.
We can now analyze the more general case of a complete hyperbolic equation. We
consider the following Cauchy problem





L(u) = 0
u|γ = Φ
du
dn
|γ = Ψ

, (1.5)

where γ is a smooth curve, not tangential to the characteristics, Φ , Ψ are the initial

functions assigned for u and
du
dn

, where n is the normal to γ, while L is the operator
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defined as

L(u) = uξη + M(ξ, η)uξ + N(ξ, η)uη + Q(ξ, η)u− E(ξ, η) (1.6)

with con M, N ∈ C1, while E, Q ∈ C0.
We introduce the adjoint operator L⋆(·) of L(·), requiring that ∀ u, v ∈ C2 there exists
a vector field W = (W1, W2), with W1, W2 ∈ C1, satysfying

vL(u)− uL⋆(v) = ∇ ·W. (1.7)

In particular, we can define

L⋆(v) = vξη − (Mv)ξ − (Nv)η + Qv. (1.8)

and we can compute

vL(u)− uL⋆(v) = (Muv− uvη)ξ + (Nuv + vuξ)η =

= (Muv− uvη + f η)ξ + (Nuv + vuξ − fξ)η ,

with f ∈ C2 arbitrary function, introduced in order to generalise the procedure. We
integrate the above expression on the domain DP and we get
∫∫

DP

vL(u)− uL⋆(v) =
∮

∂DP

[Muv− uvη + fη ]dη −
∮

∂DP

[Nuv + vuξ − fξ ]dξ. (1.9)

We evaluate the integrals at the second member
∮

∂DP

[Muv− uvη + fη ]dη =
∫

ÂB
[Muv− uvη + fη ]dη +

∫

BP
[Muv− uvη + fη ]dη =

=
∫

ÂB
[Muv− uvη + fη ]dη +

∫ y

ηB

[(Mv− vη)u + fη ]ξ=xdη =

=
∫

ÂB
[Muv− uvη + fη ]dη +

∫ y

ηB

[(Mv− vη)u]ξ=xdη + f (P)− f (B).
∮

∂DP

[Nuv + vuξ − fξ ]dξ =
∫

ÂB
[Nuv + vuξ − fξ ]dξ +

∫

PA
[Nuv + vuξ − fξ ]dξ =

=
∫

ÂB
[Nuv + vuξ − fξ ]dξ +

∫ ξA

x
[(Nv− vξ)u + (uv− f )ξ ]η=ydξ.

In order to simplify the above integrals, we introduce supplementary conditions on
v. In particular, we require





L⋆(v) = 0
(Mv− vη)ξ=x = 0
(Nv− vξ)η=y = 0
v(P) = 1

. (1.10)

In this way, we can rewrite
∮

∂DP

[Muv− uvη + fη ]dη ==
∫

ÂB
[Muv− uvη + fη ]dη + f (P)− f (B).

∮

∂DP

[Nuv + vuξ − fξ ]dξ =
∫

ÂB
[Nuv + vuξ − fξ ]dξ +

∫ ξA

x
[(uv− f )ξ ]η=ydξ.
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We also assume f =
1
2

uv, so that

∮

∂DP

[Muv− uvη + fη ]dη =
∫

ÂB
[Muv− 1

2
uvη +

1
2

vuη ]dη + f (P)− f (B).
∮

∂DP

[Nuv + vuξ − fξ ]dξ =
∫

ÂB
[Nuv +

1
2

vuξ −
1
2

uvξ ]dξ + f (A)− f (P).

In (1.9), we get
∫∫

DP

vL(u) =
∫∫

vE(ξ, η)dξdη = 2 f (P)− f (A)− f (B)+

+
∫

ÂB
[Muv− 1

2
uvη +

1
2

vuη ]dη −
∫

ÂB
[Nuv +

1
2

vuξ −
1
2

uvξ ]dξ.

In the end, taking into account the form of f and the fact that v(P) = 1, we obtain

u(P) =
1
2
[u(A)v(A) + u(B)v(B)] +

∫

ÂB
[Nuv +

1
2

vuξ −
1
2

uvξ ]dξ+

−
∫

ÂB
[Muv− 1

2
uvη +

1
2

vuη ]dη +
∫∫

vEdξdη,

that is the formula for the integral representation of the solution of (1.5). The con-
ditions (1.10) that guarantee the existence of the Riemann function v represent a
Goursat Problem, that differs from the Cauchy Problem because the data are as-
signed along the characteristic curves.
Let us consider equation (1.10)2: it is an ODE and it can be integrated taking the
condition v(P) = 1 into account. Hence, we have

v(x, η) = exp
(∫ η

y
M(x, χ)dχ

)
. (1.11)

Similarly, from (1.10)3,

v(ξ, y) = exp
(∫ ξ

x
N(χ, y)dχ

)
. (1.12)

Just to give an example of a solution of a Goursat Problem, we consider the par-
ticular case M = N = 0, P = (0, 0), with the further assumption Q = λ ∈ R+.
Summarizing, we have 




uxy + λu = 0
v(x, 0) = v(0, y) = 1
v(0, 0) = 1

. (1.13)

We notice that v assumes the same value for x = 0 and for y = 0, so we look for a
solution in the form

v = U(ρ(ξ)) ξ = xy. (1.14)

We try to characterize the dependence of ρ with respect to ξ in order to obtain a
Bessel equation of order 0 for U(ρ), knowning that a Bessel equation of order p is an
equation of the form

x2y′′ + xy′ + (x2 − p2)y = 0, p ∈ R.
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We remark that a Bessel equation is a whole family of differential equations (one for
each value of p). We also notice the unfortunate terminology since for each order p
the Bessel equation is always a second order ODE.
The general solutions of this kind of equations are called "Bessel functions" of order
p. In particular, the first specie, identified with Jp(x), expressed as series as

Jp(x) =
+∞

∑
k=0

(−1)k x2k+p

k!(k + p)!
. (1.15)

When p = 0

J0(x) =
+∞

∑
k=0

(−1)k x2k

(k!)2 , J0(0) = 1. (1.16)

and the resolutive Bessel equation is

xy′′ + y′ + xy = 0.

We can compute

vx = U′ρ̇y,

vxy = (U′′ρ̇x)(ρ̇y) + U′(ρ̈x)y + U′ρ̇ = (ρ̇)2U′′xy + (ρ̇ξ).U′.

We require ρ̇ξ = 1, that is ρ = 2
√

ξ. In this way,

(ρ̇ξ). =
1

2
√

ξ
=

1
ρ

(1.17)

and the equation becomes
ρU′′ + U′ + λρU = 0. (1.18)

In order to recover a Bessel equation of order zero, one needs to rescale the variable

ρ. We define z = aρ, from which ρ =
z
a

.
We compute

U′ = a
dU
dz

, U′′ = a2 d2U
dz2 . (1.19)

Substituting (1.19) into the transformed equation (1.18), we get

az
d2U
dz2 + a

dU
dz

+ λ
z
a

U = 0 (1.20)

and requiring that it has the same form of (1.1), we obtain λ/a = a, that is a =
√

λ.
Hence z = 2

√
λxy and dividing by a we have

z
d2U
dz2 +

dU
dz

+ zU = 0, (1.21)

whose solution is the Bessel function of order zero

v(x, y) = J0(2
√

λxy) =
∞

∑
k=0

(−1)k (2
√

λxy)2k

(k!)2 . (1.22)

Then, the Riemann function is expressed through a series and satisfies the condition
v(x, 0) = v(0, y) = J0(0) = 1.
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1.2 Euler and Laplace Methods

In this section, we will discuss two approaches that permit to obtain exact solutions
to linear hyperbolic partial differential equations: Euler and Laplace methods. In
order to do that, it could be useful to review the preliminary definitions in A.1.

1.2.1 Euler Method

We consider the hyperbolic differential equation

uxt + A(x, t)ux + B(x, t)ut + C(x, t)u = 0. (1.23)

Euler proved that if the above equation can be integrated by solving two first order
ODEs if one of its Laplace invariants is equal to zero (See Appendix A.1 for defini-
tions of Laplace invariants).
We notice that equation (1.23) can be rewritten under the form.

(
∂

∂x
+ B

)
(ut + Au)− h0u = 0,

where h0 = Ax + AB− C is one of the Laplace invariants. If h0 = 0, the equation
reduces to (

∂

∂x
+ B

)
(ut + Au) = 0. (1.24)

We denote u1 = ut + Au, so that the above becomes a first order relation

u1x + Bu1 = 0, (1.25)

that can be easily integrated and gives us the solution

u1 = q1(t)e−
∫

B(x,t)dx. (1.26)

Substituting in u1 = ut + Au and solving the resulting linear ODE

ut + Au = q1(t)e−
∫

B(x,t)dx (1.27)

the solution of (1.23) when h0 = 0 is

u =

[
p(x) +

∫
q(t)e

∫
Adx−Bdt

]
e−
∫

Adt, (1.28)

where p and q are arbitrary functions.

1.2.2 Laplace Cascade Method

Euler method was generalised by an approach proposed in 1773 by Laplace. This
method is known as Cascade Method and also in this case the invariants h0 and
k0 play a key role. Indeed, Laplace proposed two equivalent trasformations that
preserve the differential structure of equation (1.23). The two trasformations are

u1 = ut + Au u−1 = ux + Bu. (1.29)
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We assume h0, k0 ̸= 0 and we consider the trasformation (1.29)1. If u is solution of
(1.23), then it is easy to verify that u1 satisfies

u1x + Bu1 = h0u. (1.30)

On the other hand, if we obtain u from (1.30) and we substitute its expression in
(1.23), we notice that u1 verifies

u1xt + A1u1x + B1u1t + C1u1 = 0, (1.31)

with coefficients

A1 = A− (ln h0)t, B1 = B, C1 = A1B + Bt − h0 (1.32)

and Laplace invariants

h1 = 2h0 − k0 − (ln h0)xt, k1 = h0 (1.33)

If h1 = 0, it is possible to solve (1.31), by applying the Euler method explained in
the previous section.
The form of u is then obtained from (1.30) as

u =
u1x + Bu1

h0
. (1.34)

Instead, if h1 ̸= 0 , we apply (1.29)1 to the quation for u1 and so on. The result is a
chain of equations

uixt + Aiuix + Biuit + Ciui = 0, i ∈N (1.35)

with coefficients

Ai = Ai−1 − (ln hi−1)t, Bi = B, Ci = AiB + Bt − hi−1 (1.36)

and invariants
hi = 2hi−1 − hi−2 − (ln hi−1)xt, ki = hi−1. (1.37)

In the above relations, A0 = A and C0 = C.
If we repeat the procedure choosing the transformation (1.29)2 we get to the chain
of equations

u−ixt + A−iu−ix + B−iu−it + C−iu−i = 0, i ∈N, (1.38)

with coefficients

A−i = A, B−i = B−i+1 − (ln h−i+1)x, C−i = AB−i + Ax − h−i+1 (1.39)

and invariants

h−i = k−i+1, k−i = 2h−i − h−i+1 − (ln h−i)xt. (1.40)
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The set of Laplace invariants of equations (1.35) (1.38) is univocally defined by the
recursive relations

hi = 2hi−1 − hi−2 − (ln hi−1)xt, i ∈N,
k−i = 2h−i − h−i+1 − (ln h−i)xt, i ∈N

and by the initial data

h0 = Ax + AB− C h−1 = Bt + AB− C. (1.41)

The first transformation maps the Laplace invariants as

(h0, k0)→ (h1, h0)→ (h2, h1)→ (h3, h2)→ . . . , , (1.42)

while the second follows the mapping rule

(h0, k0)→ (k0, k−1)→ (k−1, k−2)→ (k−2, k−3)→ . . . , (1.43)

so that in the end one obtains the series

. . . ; (k−1, k−2); (k0, k−1); (h0, k0); (h1, h0); (h2, h1); . . . , (1.44)

that is called Laplace series.
Starting from (h0, k0), the shift to the right is made through the first Laplace trans-
formation, while for the shift to the left the second one is applied. This series results
to be very helpful, because if there exits a value of n for which hn = 0 or k−n = 0,
the general solution of the initial equation can be recovered by quadrature in terms
of two arbitrary functions. In fact, if n is the minimum index for which one the two
invariants vanishes (for example, hn = 0), the equation with invariants (0, hn−1) is
factorizable and the general solution un = un(x, t) of this equation is obtained by
quadrature applying Euler method. After that, we compute

ui−1 =
uix + Bui

hi−1
i = n, n− 1, . . . , 2, 1, (1.45)

till the solution of the initial equation u0(x, t).
The procedure is analogue if we assume k−n = 0 and we consider the equation with
invariants (k−n+1, 0).

1.3 Intermediate Integral Method

The Intermediate Integral Method permits to solve partial differential equations by
reducing their order. This idea can be explained by considering a second order PDE

F(x, t, u, ux, ut, uxx, uxt, utt) = 0. (1.46)

Definition 1 An intermediate integral for the second order PDE (1.46) is a first order dif-
ferential equation

Φ(x, t, u, ux, ut) = 0 (1.47)

such that each solution of (1.47) is also solution of (1.46).
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The analysis of the conditions that guarantee the existence of an intermediate inte-
gral can be performed through the use of the Poisson Brackets (A.2) .
As an example, we can consider the second order hyperbolic equation

s + A(x, t, u)q + B(x, t, u)p + C(x, t, u) = 0, (1.48)

where s = uxt, p = ut, q = ux , r = utt and z = uxx.
We look for an intermediate integral in the form

Φ(x, t, u, p, q) = 0. (1.49)

Differentiating the (1.49) with respect to x and t and considering the equations ob-
tained along with (1.48), we determine a linear algebraic system for the second order
derivatives 




s + A(x, t, u)q + B(x, t, u)p + C(x, t, u) = 0
Φx + Φuq + Φqz + Φps = 0
Φt + Φu p + Φqs + Φpr = 0

(1.50)

Since the general solution of (1.49) depends on one abitrary function, equation (1.49)
is an intermediate integral only if the solution of system (1.50) has the same level of
arbitrariness. This implies that the rank of the matrix

A =




0 1 0 −Aq− Bp− C
Φq Φp 0 −Φx −Φuq
0 Φq Φp −Φt −Φu p




is less than three. As a consequence, we obtain

ΦpΦq = 0. (1.51)

We consider the case
Φq ̸= 0 Φp = 0. (1.52)

Taking into account the condition on the rank of the matrix A, the following must
hold ∣∣∣∣∣∣

0 1 −Aq− Bp− C
Φq Φp −Φx −Φuq
0 Φq −Φt −Φu p

∣∣∣∣∣∣
= 0. (1.53)

As a result
p(Φu − BΦq)−Φq(Aq + C) + Φt = 0. (1.54)

Since u(x, t) is an arbitrary solution of (1.49), from the previous relation it follows

Φu − BΦq = 0 (1.55)
Φt −Φq(Aq + C) = 0 (1.56)

We notice that if (1.52), (1.55) and (1.56) are satisfied, then the last condition of
system (1.50) is a linear combination of the first and the second one. At this point, we
compute the Poisson brackets of (1.52), (1.55) and (1.56). The only Poisson bracket
that is not identically equal to zero is the one involving equations (1.55) , (1.56). In
this last case, we obtain

AB + Bt − Auq− Cu = 0. (1.57)
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This gives us only two options: the first possibility is that (1.57) is the desired inter-
mediate integral, the second one is that (1.57) is linearly independent of (1.49).
In the first case, substituting Φ = AB + Bt − Auq − Cu = 0 into the compatibility
conditions (1.55), (1.56) we have

2AuB + ABu + Btu − Auuq− Cuu = 0
AtB + ABt + Btt − Autq− Cut + (Aq + C)Au = 0.

In order to conclude the procedure in this case, we just need to require that these
two last conditions depend on (1.57). This leads us to the following system of two
equations into the three unknown functions A, B and C





AB + Bt − Cu

Au
=

2AuB + ABu + Btu − Cuu

Auu

AB + Bt − Cu

Au
=

AtB + ABt + Btt + CAu − Cut

Aut − AAu

.

On the other hand, if (1.57) is linearly independent of (1.49), the two conditions

Au = 0 AB + Bt − Cu = 0 (1.58)

are enough to prove the existence of an intermediate integral. In fact, if (1.58) are
satisfied, it follows that (1.57) is an identity and then the system of compatibility
conditions (1.52), (1.55) and (1.56) is complete and its solutions are defined up to
an arbitrary function.
The case Φp ̸= 0 and Φq = 0 is treated analogously.

1.3.1 Application to wave-type equations

In this subsection, we develop a procedure for characterizing intemediate integrals
for a class of second order hyperbolic equations [40, 43]. After that, we present some
examples of wave type hyperbolic equations for which the approach developed is
helpful for characterizing their exact solutions. In the end, we apply our procedure
to determine the general solution of a class of linear second order hyperbolic equa-
tions.
First of all, the hyperbolic equations under interest are of the form

utt − a2(x, t, u)uxx = f (x, t, u, ux, ut) (1.59)

where a(x, t, u) is the wave speed and f (x, t, u, ux, ut) is a given function. We append
to (1.59) the constraint

F(x, t, u, ux, ut) = 0. (1.60)

We are able to prove the following

Theorem 1 The relation (1.60) is an intermediate integral of the equation (1.59) if F as-
sumes the form

F = ut − λux − g(x, t, u) (1.61)

and the following condition is satisfied

(λt + λλx + 2λgu + gλu) ux + 2λλuu2
x + gt + λgx + ggu = f (1.62)

where λ = ∓a(x, t, u) and g(x, t, u) is a function to be determined.
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Proof 1 Setting ux = q, ut = p, uxx = z, utt = r and uxt = s, in order to study the
compatibility between (1.60) and (1.59), we differentiate (1.60) so that, taking (1.59) into
account, we have the following linear system in z, r and s

Fps + Fqz = −Fx − qFu (1.63)
Fpr + Fqs = −Ft − pFu (1.64)

r− a2z = f (1.65)

The solution of the equation (1.61) is obtained in terms of one arbitary function. There-
fore (1.61) is an intermediate integral of (1.59) only if the solution of (1.59) has the same
arbitrariness so that we are led to require that

det

∥∥∥∥∥∥

Fp Fq 0
Fq 0 Fp
0 −a2 1

∥∥∥∥∥∥
= 0. (1.66)

In fact, if the system (1.63)-(1.65) admits one and only one solution (i. e. if the second order
derivatives of u can be calculated univocally from (1.63)-(1.65)), then the solution of (1.59)
should be given in terms of arbitrary constants. Condition (1.66) gives

Fq − λFp = 0, λ = ±a

whose integration leads to
F = p− λq− g(x, t, u) (1.67)

Finally, by substitution (1.67) into (1.63)-(1.65), we obtain the condition (1.62).

Remark 1 Using Theorem 1, since the relation (1.60) is an intermediate integral only if F
assumes the form (1.61), in order to determine exact solutions of (1.59), we have to integrate
the first order equation

ut − λ(x, t, u)ux = g(x, t, u) (1.68)

where the function g must be determined according to (1.62). Therefore, the solution of (1.59)
will be given in terms of one arbitrary function. We will show later that, in some cases, the
procedure here developed leads to obtain the solution in terms of two arbitrary functions (i.
e. we find the general solution of the equation under interest). This happens, for instance,
when the second order equation is linear.

Remark 2 As consequence of Theorem 1, using condition (1.62) and taking (1.68) into ac-
count, we notice that the function f involved in the equation (1.59) can adopt one of the
following forms

f = A0 + B0ux + C0u2
x (1.69)

f = A1 + B1ut + C1u2
x (1.70)

f = A2 + B2ut + Ctu2
t (1.71)

f = A3 + B3ut + C3uxut + D3ux (1.72)
f = A4 + B4ux + C4ut + D4u2

t (1.73)
f = A5 + B5ux + C5uxut (1.74)
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where Ai(x, t, u), Bi(x, t, u), Ci(x, t, u) and Di(x, t, u) are suitable functions given in terms
of the coefficients involved in the equation at hand. Therefore, the class of second order
hyperbolic equations admitting intermediate integrals is given by (1.59) supplemented by f
defined according to one of the forms (1.69)-(1.74).

Remark 3 Using Theorem 1, since λ = ∓a(x, t, u), from (1.68) we have two intermediate
integrals of (1.59). Thus, two different particular solutions of (1.59) are obtained by inte-
grating the two reductions (1.68).
The key point of the reduction procedure described in the previous section is the condition
(1.62). In fact, once the function f is specified, we have to require that relation (1.62) is sat-
isfied for all solutions of (1.68) (i. e. ∀ ux). Such a requirement leads to a set of compatibility
conditions involving the coefficients of the equation at hand as well as the unknown function
g(x, t, u). Once the compatibility conditions are solved and, in turn, g is determined, we can
integrate (1.68).

1. As first example we consider the equation

utt − a2(u)uxx = 2aa′u2
x + Φ(u)ux + h(x, t) + q(u) (1.75)

which was widely studied in the literature. In fact when Φ = 0 and h = 0 or when
q = 0 and h = 0 equation (1.75) has been considered in [24] while when Φ = 0 and
q = 0 it was studied in [67]. In the present case the function f adopts the form

f = 2aa′u2
x + Φ(u)ux + h(x, t) + q(u)

so that from (1.62) the following compatibility conditions are obtained

2λgu + λug = Φ(u) (1.76)
gt + λgx + ggu = h(x, t) + q(u) (1.77)

where λ = ±a(u). In what follows we consider the case λ = a because a similar
reduction can be obtained when λ = −a.

Thus, integration of (1.76) leads to

g =
1√
a
(φ(u) + G(x, t)) , φ =

∫ Φ(u)
2
√

a
du (1.78)

where G(x, t) is a function to be specified. By substitution of (1.78) in (1.77), after
some calculations, we get the following two cases

1.1) If G ̸= const., we have

d
du

(
1√
a

)
= β0

√
a− α0a− γ0 (1.79)

d
du

(
φ√

a

)
+ φ

d
du

(
1√
a

)
= β1

√
a− α1a− γ1 (1.80)

q
√

a = φ
d

du

(
φ√

a

)
− β2
√

a + α2a + γ2 (1.81)

h = β0G2 + β1G + β2 (1.82)
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where αi, βi, γi are constants. Furthermore G(x, t) must satisfy the relations

Gx = α0G2 + α1G + α2 (1.83)
Gt = γ0G2 + γ1G + γ2 (1.84)

whose compatibility conditions require

α0γ1 = α1γ0, α0γ2 = α2γ0, α1γ2 = α2γ1. (1.85)

1.2) If G = k0 = const., we find

h = h0 = const., q =
1
2

d
du

(
φ + k0√

a

)2

(1.86)

while a(u) is unspecified. Therefore, once a(u), q(u), Φ(u), h(x, t) are assigned ac-
cording to (1.79)-(1.82) or to (1.86), exact solutions of (1.75) can be obtained by solv-
ing equation (1.68) supplemented by (1.78) where G must be calculated from (1.83),
(1.84) (in the case 1.1)) or G = k0 (in the case 1.2)). In what follows we consider
the three model equations arising from (1.75) when q = Φ = 0 or q = h = 0 or
h = Φ = 0.

i) When q = Φ = 0, it is simple matter to verify that from (1.80)-(1.82) and (1.83),
(1.84) we obtain

g = − 1√
a (α0x + γ0t)

, h =
β0

(α0x + γ0t)2 (1.87)

while a(u) must be given according to (1.79). Therefore, taking (1.87) into account,
integration of (1.68) will give an exact solution of (1.87) parameterized by one arbi-
trary function. For instance, if we assume α0 = 0, from (1.68) we find

∫ u

u0(σ)

√
a(u) du = − 1

γ0
ln
(

t
t0

)
, x = −

∫ t

t0

a (u (σ, t)) dt + σ

where t0 is a constant while u0(σ) denotes an arbitrary function.
As far as the case 1.2) is concerned, it is simple matter to verify that it is not

compatible with the assumption q = Φ = 0 unless a = const.

ii) When q = h = 0, we find that the case 1.2) leads to

g = k1, Φ = k1a′(u) (1.88)

where k1 is an arbitrary constant. Therefore, integration of (1.68) gives

u = k1t + u0(σ), x = −
∫ t

0
a (u (t, σ)) dt + σ (1.89)

where u0(σ) is an arbitrary function. Relation (1.89) characterizes a solution of (1.75)
(with q = h = 0, Φ = k1a′(u) and a(u) unspecified) in terms of one arbitrary func-
tion. Moreover we notice that, using (1.88)2, the equation (1.75) is equivalent to the
first order system

ut − vx = 0
vt − a2(u)ux = k1a(u)
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which is the well known non-homogeneous p-system. Furthermore it is not difficult
to ascertain that the case 1.1) is consistent with the procedure here developed only
if a = const.

iii) When h = Φ = 0, in the case 1.2) we deduce that

g =
k0√

a
, q =

k2
0

2
d

du

(
1

a(u)

)
(1.90)

while a(u) is unspecified. In such a case, using to (1.90)1, from (1.68) we have

∫ u

u0(σ)

√
a(u) du = k0t, x = −

∫ t

0
a (u (σ, t)) dt + σ (1.91)

where u0(σ) is an arbitrary function. Therefore, once a(u) is given, relation (1.91)
gives a solution of (1.75) supplemented by (1.90)2.

Furthermore, in the case 1.1) we obtain

q =
γ2√

a
+ α2
√

a, g =
G(x, t)√

a
(1.92)

where, assuming a(u) ̸= const. (i. e. α2
0 + γ2

0 ̸= 0), using (1.83), (1.84) we find

G = c0 tan (c0σ + c1) if
α2

α0
= c2

0 (1.93)

G = c0
1 + e2c0σ+c1

1− e2c0σ+c1
if

α2

α0
= −c2

0 (1.94)

G = − 1
σ + c1

if α2 = γ2 = 0 (1.95)

while, from (1.79) we obtain

1√
a
− c2 arctan

(
1

c2
√

a

)
= −γ0u if γ0 ̸= 0 and

α0

γ0
= c2

2 (1.96)

1√
a
− c2

2
ln
(

1 + c2
√

a
1− c2

√
a

)
= −γ0u if γ0 ̸= 0 and

α0

γ0
= −c2

2 (1.97)

a =
1

γ2
0u2

if α0 = 0 (1.98)

a = (−3α0u)−
2
3 if γ0 = 0 (1.99)

In (1.93)-(1.99) ci are constants while σ = α0x + γ0t. In such a case, integration of
(1.68) can be accomplished once a(u) is given according to (1.96)-(1.99) and taking
(1.92)2 into account supplemented by (1.93)-(1.95). For instance if α0 = α2 = γ2 = 0
the functions a and G are given, respectively, by (1.98) and (1.95), so that from (1.68)
the following solution of (1.75) is obtained

u =
u0(z)
t + t0

, x = − 1
3γ2

0u2
0(z)

(
(t + t0)

3 − t3
0

)
+ z

where u0(z) is an arbitrary function and we set t0 = c1
γ0

.
As final case, we assume h = Φ = q = 0 so that equation (1.75) specializes to

utt = ∂x
(
a2(u)ux

)
. (1.100)
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which by setting vx = ut and vt = a2ux is equivalent to the homogeneous p-system.
Furthermore, if we require g = 0, the compatibility conditions (1.76), (1.77) are iden-
tically satisfied and from (1.68) we obtain

u = u0(ξ), ξ = x + a(u0(ξ))t (1.101)

with u0(ξ) denoting an arbitrary function. Therefore, relation (1.101) gives a solution
of (1.100) ∀a(u).

Remark 4 We notice that when a(u) = 1
u , h = 2, Φ = q = 0, then equation (1.75)

specializes to the constant astigmatism equation considered in [39] where different new so-
lutions of such equation have been obtained. It is simple to verify that the results determined
in [39] can be recovered by means of the more general approach here developed starting from
the compatibility conditions (1.76), (1.77). Furthermore it is also of interest to remark that
a parametric solution of equation (1.100) depending of two arbitrary functions was obtained
in [27] when the coefficient a(u) adopts the form

a = u
4n

1−2n

for any integers n.

2. A second example is given by the equation

utt = u2uxx − ut +
2
u

u2
t (1.102)

which was considered in [2]. In the present case we have λ = ∓u while

f = −g +
2
u

g2 + (4g− u) ux + 2uu2
x.

In what follows we will consider the case λ = u. Therefore, from (1.62) we obtain

2ugu − 3g = −u, gt + ugx + ggu = −g +
2
u

g2

whose integration leads to g = u, so that from (1.68) the following solution of (1.102)
is given

u = u0(σ) et, (1.103)

where the characteristic variable σ is given by

x = −u0(σ)
(
et − 1

)
+ σ,

with u0(σ) arbitrary function.

3. Here, we consider the equation

utt = c2uxx + q1(x)ut + q2(x)u (1.104)

which was studied in [34]. It results that λ = ∓c, with c = const., while

f = q2u + q1g− λq1ux
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so that from (1.62) we get

2gu = q1, gt + λgx + ggu = q1g + q2u. (1.105)

Integration of (1.105) leads to

g =
q1(x)

2
u + γ(x, t) (1.106)

γt + λγx =
q1(x)

2
γ (1.107)

q2(x) =
λ

2
q′1(x)− q2

1(x)
4

(1.108)

Therefore, once q1(x) and q2(x) are given according to (1.108), taking (1.107) into
account, integration of (1.68) supplemented by (1.106) leads to an exact solution of
(1.104). For instance, if we assume γ = 0, by integration of (1.68) we have, in the
case λ = −c,

u1 = û0(σ)e
∫ q1(x)

2c dx, σ = x− ct (1.109)

while, when λ = c, we obtain

u2 = ũ0(ξ)e−
∫ q1(x)

2c dx, ξ = x + ct. (1.110)

where û0(σ) and ũ0(ξ) are arbitrary functions.
In passing we notice that when q1 = 2k0 (where k0 is a constant) so that q2 = −k2

0,
equation (1.104) specializes to the linear telegraph equation studied in [61], while
when q1 = −1 and q2 = − 1

4 , equation (1.104) is the hyperbolic Cahn-Allen equa-

tion with free energy under the form ϵ =
(

u2

8Mu
− c
)

where Mu denotes the mobility
parameter of the order parameter u [50]. In the next paragraph, we will study such
linear cases.

4. Now we put our attention to the equation

utt − uxx = −c0ut + h(x, t, u) (1.111)

which has been considered in [1]. Since here f = −c0ut + h, from (1.62) we find

2gu = −c0 (1.112)
gt + λgx + ggu = −c0g + h (1.113)

where λ = ∓1. Integration of (1.112) and (1.113) gives

g = − c0

2
u + γ(x, t) (1.114)

h = − c2
0

4
u + h0(x, t) (1.115)

where h0(x, t) is an unspecified function, while γ(x, t) must satisfy the equation

γt + λγx = − c0

2
γ + h0(x, t). (1.116)
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Because of the form of the function h(x, t) given in (1.115), the equation (1.111) as-
sumes a linear form. In the next paragraph we will give the general solution of such
linear equation.

5. As a last case, we consider the wave equation with non constant speed

utt − a2(x, t, u)uxx = 0. (1.117)

Since f = 0, we obtain

λu = 0
λt + λλx + 2λgu = 0 (1.118)
gt + λgx + ggu = 0

After some simple algebra, integration of (1.118) gives

λ =
1

(A(η)t + B(η))2 (1.119)

g =
√

λ (A(η)u + C(η)) (1.120)

where, if A(η) ̸= 0, η is given by

x = − 1
A(η) (A(η)t + B(η))

+ η (1.121)

while, if A(η) = 0, η is defined by

x =
t

B2(η)
+ η (1.122)

In (1.119), (1.120) A(η), B(η) and C(η) are unspecified functions. Therefore, using
(1.60) and (1.61), exact solutions of (1.117) are obtained by solving the first order
semilinear equation

ut − λux =
√

λ (A(η)u + C(η)) . (1.123)

It is of relevant interest to notice that, since the integration of (1.123) is parameterized
by one arbitrary function and moreover the function C(η) is arbitrary, by solving
(1.123) by the method of characteristics, an exact solution of (1.117) is obtained in
terms of two arbitrary functions. Therefore we were able to prove the following
theorem:

Theorem 2 If the function a(x, t) assumes the form

a(x, t) =
1

(A(η)t + B(η))2

with η given by (1.121) or (1.122), then the solution of (1.117) can be obtained in terms of
two arbitrary functions by integrating the first order equation (1.123).

According to Theorem 2, the wave speed a2(x, t) is defined in implicit form by (1.121)
or (1.122) so that, once a(x, t) is given, the general solution of (1.117) will be deter-
mined by integrating (1.123). Hereafter, in order to give some explicit forms of a(x, t)
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which allow the solution of the wave equation (1.117) in a closed form, we will con-
sider some different cases.

Case 1. Here, in the case where A(η) ̸= 0, we assume

A =
1√
c0η

, B =
t0√
c0η

where t0 and c0 are arbitrary constants. In such a case, from (1.119) and (1.121) we
obtain

a2(x, t) =
c2

0x2

(t + t0)
2 (t + t1)

2 , η =
x(t + t0)

t + t1
(1.124)

where we set t1 = t0 − c0. Moreover, integration of (1.123) gives the following solu-
tion of the wave equation (1.117)

f =
√

x (t + t0) (t + t1) (θ1(η) + θ2(σ)) (1.125)

where θ1(η) and θ2(σ) are arbitrary functions, while

σ =
x (t + t1)

t + t0
.

Case 2. We require A(η) = 0 and B(η) =
t0

η
, where t0 is an arbitrary constant. In

such a case, from (1.119) and (1.122) we get

a2 =
x2

(t + t0)2 , η =
t0 x

t + t0
(1.126)

while integration of (1.123) gives

u =
√

x(t + t0) (θ1(η) + θ2(σ)) (1.127)

where θ1(η), θ2(σ) are arbitrary functions and

σ = x(t + t0). (1.128)

Case 3. Here, we assume a(x, t) = p(t) q(x). Therefore, using to the analysis above,
from (1.118) we find that p(t) and q(x) must satisfy the relations

2
d
dt

(
p′

p

)
= p2

(
p′

p2

)2

+ k0 p2 (1.129)

2
q′′

q′
− q′

q
= − k0

qq′
(1.130)

where k0 is an arbitrary constant. Equations (1.129) and (1.130) can be easily inte-
grated when k0 = 0. In such a case we have

p(t) =
c0

(t + t0)2 , q(x) = c1(x + x0)
2 (1.131)



1.3. Intermediate Integral Method 23

where c0, c1, v0 and u0 are constants, so that the wave speeds a2(x, t) assumes the
form

a2 = a2
0

(
x + x0

t + t0

)4

(1.132)

with a0 = c0c1. Finally, by integrating (1.123) we obtain

u = (x + x0)(t + t0) (θ1(η) + θ2(σ)) (1.133)

where θ1(η) and θ2(σ) are arbitrary functions, while

η =
1

x + x0
+

a0

t + t0
, σ =

1
x + x0

− a0

t + t0
. (1.134)

Finally, as particular cases, we first consider q = 1, so that the function a(t) adopts
the form

a2(t) =
k2

0
t4 (1.135)

with k0 an arbitrary constant, while the solution of (1.117) is given by

u = t (θ1(η) + θ2(σ)) (1.136)

where θ1(η) and θ2(σ) are arbitrary functions and

η = x +
k0

t
, σ = x− k0

t
.

Next, if we require p = 1, we soon get

a2(x) = k4
1x4 (1.137)

where k1 is an arbitrary constant, while integration of (1.123) gives

u = x (θ1(η) + θ2(σ)) (1.138)

with θ1(η) and θ2(σ) arbitrary functions, while

η = t +
1

k2
1x

, σ = t− 1
k2

1x
.

Remark 5 Notice that the last two cases are equivalent. Indeed, using the change of de-
pendent variables x ↔ t and renaming k0 = 1/k2

1, we map the second case into the third.
Indeed, after the chosen change of variables we obtain

uxx −
1

k4
1x4

utt = 0←→ utt − k4
1x4uxx = 0 (1.139)

Remark 6 The solutions of the wave equation (1.117) given in cases 1, 2, 3, are obtained
iff the coefficient a(x, t) assumes one of the form (1.132), (1.135) or (1.137). If we want to
determine solutions of (1.117) with arbitrary coefficient a(x, t) a different strategy must be
adopted. For instance, in the case a(t), looking for solution under the form

u(x, t) = F(x)G(t) (1.140)
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we find

F′′(x)− k̂F(x) = 0 (1.141)
G′′(t) + k̂2a2(t)G(t) = 0 (1.142)

where k̂ is an arbitrary constant. Therefore, once the coefficient a(t) is specified, from (1.141),
(1.142) different exact particular solutions of (1.117) can be determined depending if the
constant k̂ is positive or negative. Of course similar results can be obtained in the case a(x).

Remark 7 The solutions obtained for the wave equation with non constant speed can be
useful also in the applications. An interesting example is given by the case of Hamiltonian
systems.
Let us focus on 2 components Hamiltonian quasilinear systems , i.e. hydrodynamic type
systems of the form

(
u
v

)

t
=

(
0 1
1 0

)
∂x

(
hu
hv

)
,
(

u
v

)

y
=

(
0 1
1 0

)
∂x

(
fu
fv

)
(1.143)

whose Hamiltonian functionals are

H =
∫

h(u, v) dx F =
∫

f (u, v) dx.

Relevant examples of this type in physics are the shallow water equations in Eulerian and
Lagrangian coordinates, the gas dynamic systems and the Hamiltonian systems describing a
nonlinear elastic medium. It can be proved that this kind of systems commute if and only if
their hamiltonian densities satisfy

huu fvv − hvv fuu = 0, (1.144)

that, avoiding the trivial cases, and setting

a2(u, v) =
hvv

huu

can be rewritten under the form of the wave equation

fvv − a2(u, v) fuu = 0. (1.145)

Therefore, for a given wave speed a2(u, v), any pair of functions f (u, v), h(u, v) determined
from the above relations ensure that the Hamiltonian systems under consideration commute.
We remark that the idea of commuting flows is of extreme importance in the theory of hamil-
tonian systems: indeed, if a system has infinitely many commuting flows than it has the
integrability property.
Just to give a more practical idea, as an example it is possible to consider the Hamiltonian
density (inserire cit)

h(u, v) = −1
2

u2v− s(v), (1.146)

which generates the isoentropic gas dynamics system. In such a case u denotes the velocity,
v the mass density and s′′(v) = σ′(v)/v, where σ(v) is the pressure. It is easy to verify
that the Hamiltonian (1.146) is solution of the wave equation with speed a2(u, v) given by
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(1.135) if the we adopt for the pressure ρ(v) the Von-Kármán law

ρ(v) = − k2
0

v
+ p0,

where p0 is a constant. Therefore, in such a case, the gas dynamics system associated with
(1.146) admits infinitely many commuting flows given by (1.136).

1.3.2 General solution for linear equations

The main aim of this subsection is to characterize classes of linear second order hy-
perbolic equations for which the procedure here considered permits to determine
their general solution. The idea is based on the fact that the equation (1.59) admits
the intermediate integrals

ut ∓ aux = g±(x, t, u) (1.147)

provided that the condition (1.62) is satisfied for both reductions. Thus, when the
equation (1.59) is linear, its general solution will be given by the linear combination
of the solutions of (1.147).

Here we consider the equation (1.59) with a(x, t) and f = A(x, t)ux + H(x, t)u +
B(x, t) + G(x, t)ut. Taking (1.147) into account, from the compatibility condition
(1.62) we get

±at + aax ± 2ag±u = A± aG (1.148)
g±t ± ag±x + g±g±u = Hu + B + Gg± (1.149)

After some algebra, from (1.148), (1.149), we obtain

g+ = γ(x, t)u + α(x, t), g− = η(x, t)u + β(x, t) (1.150)

where

γ =
1
2a

(A + aG− (at + aax)) , η = − 1
2a

(A− aG + (at − aax)) (1.151)

while the functions α(x, t) and β(x, t) are determined by

αt + aαx = B + (G− γ) α (1.152)
βt − aβx = B + (G− η) β (1.153)

Furthermore, the following structural conditions must be satisfied

γt + aγx = H + Gγ− γ2 (1.154)
ηt − aηx = H + Gη − η2 (1.155)

Therefore, we are able to give the following

Theorem 3 The general solution of the equation

utt − a2(x, t)uxx = A(x, t)ux + H(x, t)u + B(x, t) + G(x, t)ut

is given by the linear combination of the solutions of the first order equations (1.147) supple-
mented by (1.150), provided that the conditions (1.154) and (1.155) are satisfied.
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In the following we will give some examples for which such an approach has been
useful for determining the general solution of some linear equations.

i) As first example, we consider the equation (1.104). From (1.151) we have

γ = η =
q1

2
(1.156)

while from (1.154) and (1.155) we deduce

q1 = const. and q2 = −q2
1

4
. (1.157)

Furthermore, integration of (1.152) and (1.153) gives

α = α0(σ)e
q1
2 t, β = β0(ξ)e

q1
2 t (1.158)

where
σ = x− ct, ξ = x + ct

while α0 and β0 are arbitrary functions. Finally, by solving equations (1.147) supple-
mented by (1.150) along with (1.156) and (1.158), we have

u1 = e−
q1
4c σ

(
−e

q1
4c ξ
∫

α0(σ)

2c
dσ + u0

1(ξ)

)
, u2 = e

q1
4c ξ

(
e−

q1
4c σ
∫

β0(ξ)

2c
dξ + u0

2(σ)

)

where u0
1, u0

2 are arbitrary functions. Therefore, the general solution of (1.104) with
(1.157) is

u = u1 + u2 = u0
1(ξ) e−

q1
4c σ + u0

2(σ) e
q1
4c ξ

where, without loss of generality, we set α0 = β0 = 0.

ii) Now we consider the equation

utt − a(x)uxx = a′(x)ux − c(x)u + h(x, t) (1.159)

which was studied in [51]. In the present case

γ =
a′(x)
4
√

a
, η = − a′(x)

4
√

a
(1.160)

while, from (1.154) and (1.155) we obtain the condition

c(x) = − a′′

4
+

(
a′

4
√

a

)2

. (1.161)

Integration of (1.152) and (1.153) leads to

α = a−
1
4

(∫
h (x, t (x, ξ)) a−

1
4 dx + α0(ξ)

)
(1.162)

β = a−
1
4

(
−
∫

h (x, t (x, σ)) a−
1
4 dx + β0(σ)

)
(1.163)

where
ξ = t−

∫ dx√
a(x)

, σ = t +
∫ dx√

a(x)
.
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while α0 and β0 are arbitrary functions. Therefore, once h(x, t) is given, the linear
combination of the solutions of (1.147) gives the general solution of (1.159). For
instance, if we assume

h = h0(x)e−k0t (1.164)

where k0 is a constant, taking (1.162) and (1.163) into account and setting α0 = β0 =
0, by integrating (1.147) we obtain

u1 = a−
1
4

(
h1(x)e−k0σ + u0

1(σ)
)

, u2 = a−
1
4

(
h2(x)e−k0ξ + u0

2(ξ)
)

where u0
1, u0

2 are arbitrary functions, while

h1(x) = −
∫

 e2k0

∫ dx√
a

√
a

∫
h0(x)a−

1
4 e−k0

∫ dx√
a dx


 dx,

h2(x) = −
∫

 e−2k0

∫ dx√
a

√
a

∫
h0(x)a−

1
4 ek0

∫ dx√
a dx


 dx.

Thus, the general solution of (1.159), supplemented by (1.164) and c(x) characterized
by (1.161), is given by

u =
1
2
(u1 + u2) =

a−
1
4

2

(
h1(x)e−k0σ + u0

1(σ) + h2(x)e−k0ξ + u0
2(ξ)

)
(1.165)

whatever function a(x) is given. Furthermore, if h = 0 and c = 0, equation (1.159)
assumes the form

utt = ∂x (a(x)ux) . (1.166)

In such a case, from (1.161) we have

a(x) = c0 x 3
√

x (1.167)

where c0 is a constant, so that, using to (1.165), the general solution of (1.166) as-
sumes the form

u =
1

3
√

x
(
u0

1(σ) + u0
2(ξ)

)
, σ = t +

3√
c0

3
√

x, ξ = t− 3√
c0

3
√

x. (1.168)

Remark 8 It could be of some interest to notice that in [53] a transformation mapping the
equation (1.166) to the Klein Gordon equation

vtt = vξξ + µ(ξ)v (1.169)

is found. Therefore, the general solution of (1.166) characterized by (1.168) can be also useful
for solving equations like (1.169).

iii) The equation
utt − uxx = A(x)ux + B(x, t, u) (1.170)

when A = α0
x and B = h(x, t) was considered in [46], while when A = c0

x and
B = − k0

x2 u was studied in [29]. First, we point out our attention to the case A = α0
x
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and B = h(x, t), where α0 denotes a constant. In the present case we have

γ =
α0

2x
, η = − α0

2x
(1.171)

while conditions (1.151) requires

α0 = 0 or α0 = 2.

Integration of (1.152) and (1.153) gives

α = (σ + ξ)−
α0
2

(∫ h(ξ, σ)

2
(σ + ξ)

α0
2 dξ + µ(σ)

)
(1.172)

β = (σ + ξ)−
α0
2

(
−
∫ h(ξ, σ)

2
(σ + ξ)

α0
2 dσ + ν(ξ)

)
(1.173)

where
σ = x− t, ξ = x + t.

while µ and ν are arbitrary. Next, by solving (1.147), we find

u1 = (σ + ξ)−
α0
2

{
−1

2

(∫
µ(σ)dσ +

1
2

∫ (∫
h(ξ, σ) (σ + ξ)

α0
2 dξ

)
dσ

)
+ u0

1(ξ)

}

u2 = (σ + ξ)−
α0
2

{
1
2

(∫
ν(ξ)dξ − 1

2

∫ (∫
h(ξ, σ) (σ + ξ)

α0
2 dσ

)
dξ

)
+ u0

2(σ)

}

where the functions u0
1, u0

2 are arbitrary. Therefore, the general solution of (1.170)
with A = α0

x and B = h(x, t) is given by

u =
1
2
(u1 + u2) =

(σ + ξ)−
α0
2

2

(
u0

1(ξ) + u0
2(σ)−

1
2

∫ (∫
h(ξ, σ) (σ + ξ)

α0
2 dξ

)
dσ

)

if α0 = 0 or α0 = 2 and where we set, without loss of generality, µ = ν = 0.

Now we consider (1.170) with A = c0
x and B = − k0

x2 u, where c0 and k0 are constants.
In such a case equation (1.170) specializes to the Klein-Gordon-Fock (KGF) equation
with central symmetry. It results that

γ =
c0

2x
, η = − c0

2x
, (1.174)

while from (1.151) we have

k0 =
c0

2
− c2

0
4

. (1.175)

By solving (1.152) and (1.153) we obtain

α = µ(σ) (σ + ξ)−
c0
2 , β = ν(ξ) (σ + ξ)−

c0
2

where
σ = x− t, ξ = x + t.

and µ and ν are arbitrary functions. Integration of (1.147) gives

u1 = (σ + ξ)−
c0
2

(
−
∫

µ(σ)

2
dσ + u0

1(ξ)

)
, u2 = (σ + ξ)−

c0
2

(∫
ν(ξ)

2
dξ + u0

2(σ)

)
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with u0
1 and u0

2 arbitrary functions. By setting without loss of generality µ = ν = 0,
the general solution of (1.170) when A = c0

x and B = − k0
x2 u is given by

u = u1 + u2 = x−
c0
2
(
u0

1(ξ) + u0
2(σ)

)

provided that condition (1.175) is satisfied.

iv) Finally we consider the equation (1.111) with h = − c2
0
4 u + h0(x, t). It follows that

γ = η = − c0

2

while (1.154) and (1.155) are identically satisfied. Next, integration of (1.152) and
(1.153) gives

α = e−
c0
4 σ

(∫ h0(ξ, σ)

2
e

c0
4 σdσ + α0(ξ)

)
(1.176)

β = e
c0
4 ξ

(
−
∫ h0(ξ, σ)

2
e−

c0
4 ξdξ + β0(σ)

)
(1.177)

where
σ = x + t, ξ = x− t

while α0 and β0 arbitrary. Taking (1.176), (1.177) into account, the solution of the
equations (1.147) is

u1 = e
c0
4 ξ

(
−
∫

α(ξ, σ)

2
e−

c0
4 ξdξ + u0

1(σ)

)
, u2 = e−

c0
4 σ

(∫
β(ξ, σ)

2
e

c0
4 σdσ + u0

2(ξ)

)

Finally, the general solution of the equation (1.111) with h = − c2
0
4 u + h0(x, t) is given

by

u =
u1 + u2

2
=

e
2

− c0
4 t (

e
c0
4 x u0

1(σ) + e−
c0
4 x u0

2(ξ)
)
− e

2

− c0
4 t ∫ (∫ h0(ξ, σ)

2
e

c0
4 (σ−ξ)dξ

)
dσ

where u0
1(σ) and u0

2(ξ) are arbitrary functions, while, without loss of generality, we
set α0 = β0 = 0.
In this section, we developed a reduction procedure for determining exact solutions
of second order hyperbolic equations. The approach considered permits to reduce
the integration of a second order equation to that of a first order PDE called interme-
diate integral. The solutions obtained, apart from their theoretical value, can be also
useful for testing numerical integration methods. We proved that any second order
hyperbolic PDE admits two intermediate integrals so that two particular solutions
given in terms of one arbitrary function can be calculated. We characterized the com-
patibility conditions in order that such intermediate integrals exist. The procedure
here developed is particularly useful in the case of linear second order hyperbolic
equations. In fact, in such a case, the linear combination of the solutions of the two
intermediate integrals gives the solution of the second order governing equation in
terms of two arbitrary functions. Therefore any initial value problems can be solved.
In the end, characterized the class of the linear second order hyperbolic PDEs for
which it is possible to obtain the general solution by means of the procedure here
considered. The reduction method here developed could be applied, in principle,
to any second order or higher order PDE but, as far as we know, such a procedure
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has been applied only for hyperbolic equations. Therefore it could be of some in-
terest to look for intemediate integrals, for instance, for parabolic reaction-diffusion
equations.
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Chapter 2

Reduction Methods for hyperbolic
systems

———————————————————————————
In this Chapter, we approach the study of hyperbolic systems of first order partial
differential equations. In order to do so, we present two possible approaches to
obtain exact solutions to this kind of models: the differential constraints and the
degenerate hodograph methods. For both the procedures, we present original re-
sults. First, we show how the method of differential constraints allowed us to solve
different Riemann Problems. After that, within the framework of the Degenerate
Hodograph approach, we develop a reduction procedure aimed at determining ex-
act solutions to a first order hyperbolic system which describes nerve pulse propa-
gation.

2.1 Method of Differential Constraints

The Method of Differential Constraints has been proposed by the russian mathemati-
cian Yanenko in 1964 [65, 44] as a tool to search exact solutions of systems of PDEs.
The method is non gruppal and very general, so that a large amount of the methods
used to solve partial differential equations can be obtained from it as a particular
case. This generality makes the method very interesting but of difficult application
in the general case.
The idea of the method is to append to a system of N partial differential equations

Fi(x, t, u, ux, ut, uxx, uxt, utt, . . . ) = 0 i = 1 . . . N, (2.1)

M more differential relations

Gj(x, t, u, ux, ut, uxx, uxt, utt, . . . ) = 0 j = 1 . . . M, (2.2)

that play the role of differential constraints and select a class of exact solutions of the
initial system, depending on N −M arbitrary functions.

Definition 2 Equations (2.2) are called differential constraints.

At this point, one needs to

• choose the form and the number of the constraints;

• study the compatibility of the overdetermined system given by (2.1) and (2.2);

• solve the overdetermined system.
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It is clear to see that, in order to obtain an effective application of this method, it is
necessary to make some further assumption. In [16, 55, 59] the involutiveness of the
resulting overdetermined system is required (for more details see [44]).
In particular, in the case of a strictly hyperbolic system, the following theorem holds:

Theorem 4 ([65], [66]) Let us consider a strictly hyperbolic system

Ut + A(U)Ux = B(U), (2.3)

where U, B(U) ∈ RN and A(U) ∈ RN×N denote, respectively, the vector field, the matrix
coefficients and the vector source. System (2.3) is involutive if and only if the more general
first order constraints that can be appended to the system are quasilinear and take the form

lk(x, t, U) ·Ux = pk(x, t, U) k = 1 . . . M, M < N, (2.4)

where the functions lk are the left eigenvectors of the matrix A(u), while the functions pk

need to be determined studying the compatibility of the overdetermined system.

Particularly significant is the case in which N − 1 constraints of the type (2.4) are
added to system (2.3). In this case, assuming, without loss of generality, the choice
of the first N - 1 constraints (k = 1 . . . N− 1), it is easily verified that the solutions of
(2.3) that also satisfy the relations (2.4) can be determined by solving the system

Ut + λNUx = B +
N−1

∑
k=1

pk(λN − λk)dk, (2.5)

where dk identify the right eigenvectors of the system. Furthermore, the constraints
are satisfied for all t > 0 provided that the following condition holds:

lk(U0(x)) ·U ′
0(x) = pk(x, 0, U0), U0(x) = U(x, 0). (2.6)

Notice that, in this way, the constraints select the class of the initial data that ad-
mit solutions through this approach. In system (2.5), we find the derivative of the
vector U along the characteristic curves associated to the eigenvalue λN . Therefore,
in principle, the system (2.5) can be integrated using the method of characteristics.
Ultimately, since the initial datum U0(x) must satisfy the N− 1 constraint equations
(2.6), the obtained solutions are determined up to an arbitrary function. These solu-
tions are called Generalized Simple Wave solutions because, in the case where B = 0
and pk = 0, they specialize into the well-known Simple Waves solutions, admitted
by homogeneous hyperbolic systems. In (2.1.1), we show how these solutions can
be useful facing wave propagation matters.

2.1.1 Application to Riemann Problems

Within the theory of wave propagation, one of the most important problems is that
of Riemann. A Riemann Problem (RP) is an initial data problem with constant states,
exhibiting a discontinuity at a point. This problem is an extension of the question
arised by Georg Bernhard Riemann about the study of the time-evolution of a gas
under the initial condition that the gas is divided into two regions by a thin di-
aphragm. In the two regions the gas is mantained under different values of ther-
modynamic quantities (temperature, density and pressure). At a certain time, the
diaphragm is removed and the evolution of the gas is analysed.
It is well known that, at least in one-space dimension, the Riemann Problem has
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been completely solved for systems of conservation laws ([12], [31], [30], [64], [60])
and its unique solution is expressed in terms of constant states separated by rarefac-
tion waves, shock waves, and/or contact waves. In particular, a rarefaction wave
is a simple wave of the homogeneous system. This theory breaks down in the case
of non-homogeneous systems since these models, in general, do not admit simple
wave solutions and, therefore, rarefaction waves.
An even more complex problem is represented by the Generalized Riemann Prob-
lem (GRP), characterized by an initial data problem with non-constant states that
exhibit a discontinuity at a point. For this problem, few results are known, mostly
of a numerical nature [64] , as the main difficulties lie in determining solutions to
non-constant initial data problems and in characterizing rarefaction waves that can
smoothly connect such solutions.
Finally, of great interest for a more detailed description of shock wave propagation
is the Riemann Problem with Structure (RPS), consisting of a continuous initial data
problem that smoothly connects two constant states at infinity. In some cases, it is
a more realistic description of problems given by RP. In fact a RPS can take into ac-
count small thickness of initial shocks or oscillations in a narrow zone between two
initial constant states. In this case as well, the main difficulty lies in determining ex-
act solutions to this initial problem. In ([36], [37]), it has been proved that in the case
of hyperbolic conservation laws a RPS converges to the corresponding RP for large
time for non degenerate waves, while, in the case of exceptional waves, it tends to
travelling waves. In the nonhomogeneous case there exists a conjecture for which a
RPS tends to a combination of shock structures and rarefaction waves of a suitable
equilibrium subsystem [4], [45]. Such a conjecture until now was verified numeri-
cally but it still needs an analytical proof.
The method of differential constraints can have an important role in solving such
problems: in fact, the solutions of generalized simple waves obtained through the
analytical method previously discussed can be used to obtain a generalization of the
classical rarefaction waves in the non-homogeneous case.
In the following, we show an application of this idea to Riemann problems assigned
for the Aw- Rascle describing traffic flow ([26]) and for the celebrated p-system [42].

2.1.2 Single and double Riemann Problem for the non-homogeneous Aw-
Rascle Model

Riemann problems and generalized Riemann problems describe issues of interest in
traffic flows as, for instance, situations where discontinuities in the car density must
be taken into account.
In the framework of fluid mechanics-like traffic flow models, the first order models
are characterized by a single hyperbolic equation for car density. The prototype of
this class is the famous Lighthill-Witham-Richards equation [33], [56]. In the second
order models a further equation for the car velocity is added. The prototype of this
class is the Payne-Witham system [52] which, as remarked in [13], predicts some non
physical effects. Therefore, Aw and Rascle proposed a new second order model [3],
which led to many interesting applications in traffic flow theory [20, 18, 17, 19, 32].
The second order model proposed in [3] by Aw and Rascle is homogeneous and, as
noted by the same authors, it provides an undesiderable effect consisting in the fact
that the maximal velocity of the cars depends on the initial data. Therefore, in order
to avoid such a weakness, in [54] and [21] a source term has been introduced so that
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the following system is obtained




∂ρ

∂t
+

∂

∂x
(ρv) = 0

∂ρS
∂t

+
∂

∂x
(ρvS) = ρG (ρ, S)

(2.7)

where ρ (x, t) and v (x, t) denote, respectively, the density and the velocity of the
cars located at position x and at time t, S = v + p (ρ) where the increasing function
p (ρ) was introduced in order to take into account driver’s reactions to the state of
the traffic in front of them. Moreover p(ρ) must satisfy the conditions

p (0) = 0, lim
ρ→0

ρp′(ρ) = 0,
d2

dρ
(ρp(ρ)) > 0 (2.8)

Finally G (ρ, S) is a relaxation function which takes into account possibile entries or
exits on the road . The prototypes of the functions p(ρ) and G(ρ, S) considered in
[54] and [21] are :

p(ρ) = ργ; G =
S
τ

(2.9)

where γ > 0 and the relaxation time τ are constants.
The system (2.7) is hyperbolic, its characteristic wave speeds are

λ(1) = v− ρp′(ρ); λ(2) = v (2.10)

while the corresponding left eigenvectors are

l(1) = (0; 1) ; l(2) =
(

p′(ρ); 1
)

(2.11)

so that, according to (2.4), the possible differential constraints assume, respectively,
the form

vx = q(1)(x, t, ρ, v) (2.12)

or
p′(ρ)ρx + vx = q(2)(x, t, ρ, v). (2.13)

For further convenience, we notice that the characteristic wave speed λ(2) results
to be exceptional (linearly degenerate) so that the corresponding shock wave is a
contact discontinuity. In [11] an exaustive analysis of system (2.7) subjected to the
constraints (2.12) or (2.13) has been worked out and also particular solutions of some
RP and GRP has been obtained.

Here, in order to discuss the general solution of the RP, we consider the Aw-
Rascle system (2.7) along with the constraint (2.13). The resulting overdetermined
system is compatible if

q(2) = (k0ρ + c0) g(S); G = (c0v + c1) g(S) (2.14)

where c0, c1 and k0 are constants while g(S) is an unspecified function (see [11]).
Furthermore the anticipation factor p(ρ) is not subjected to any restrictions. We
notice that if c0 = 0 and g(S) = S, then the model law for the relaxation term G(ρ, S)
proposed by Rascle and Greenberg is found [54], [21]. Moreover, taking (2.5) into
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account, using (2.13) along with (2.14), the system (2.7) assumes the form




∂ρ

∂t
+ λ(1) ∂ρ

∂x
= −ρ(k0ρ + c0)g(S)

∂v
∂t

+ λ(1) ∂v
∂x

= (c0v + c1)g(S)

(2.15)

Therefore exact solutions of (2.7) can be obtained by solving (2.15) along with the
constraint (2.13).

Let us consider the RP

ρ(x, 0) =





ρL, for x < 0

ρR, for x > 0
; v(x, 0) =





vL for x < 0

vR for x > 0
(2.16)

where the constants ρL, ρR, vL, vR characterize an equilibrium state of (2.7) so that

g(SL) = 0, g(SR) = 0 (2.17)

with SL = vL + pL and SR = vR + pR. Moreover, here and in the following, for a
given function f (ρ) we set fL = f (ρL) and fR = f (ρR). In order to give the general
solution of (2.16), as first step we look for solutions given in terms of generalized
rarefaction waves. Integration of (2.15) with the initial datum for x < 0 and after for
x > 0 gives, respectively, the left state





ρ = ρL
for x < xL(t)

v = vL

(2.18)

and the right state 



ρ = ρL
for x > xR(t)

v = vR

(2.19)

where
xL(t) =

(
vL − ρL p′L

)
t, xR(t) =

(
vR − ρR p′R

)
t. (2.20)

denote, respectively, the left and the right limiting characteristics starting from the
point (0, 0).

In order to calculate the central state which connects smoothly the left state with
the right one, we solve the initial value problem

ρ(0, 0) = ρ̂(a), v(0, 0) = v̂(a), a ∈ [0, 1] (2.21)

requiring that

ρ̂(0) = ρL, ρ̂(1) = ρR, v̂(0) = vL, v̂(1) = vR. (2.22)

In (2.21) a is a real parameter characterizing the family of characteristics starting
from (0, 0). It can be easily verified that, in virtue of (2.21), using (2.6), from (2.13)
and (2.14) we obtain

dp̂
da

+
dv̂
da

= 0
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which, in turn, gives

v̂(a) + p̂(a) = vL + pL = vR + pR. (2.23)

Therefore, taking (2.17) into account, integration of (2.15), supplemented by (2.13),
(2.21), (2.22) and (2.23), leads to





ρ = ρ̂(a)

v = v̂(a) = vL + pL − p̂(a)

x = (vL + pL − p̂(a)− ρ̂(a) p̂′(a)) t

(2.24)

Once p(ρ) is prescribed, then from (2.24)3 the function ρ̂(a) is determined in terms
of x and t so that (2.24)1 and (2.24)2 determine the central state which is defined in
the domain

xL(t) ≤ x ≤ xR(t). (2.25)

Moreover, in order to xL(t) < xR(t), ∀t > 0 we require

ρR < ρL (2.26)

which, taking (2.23) into account, gives vR > vL. Finally from (2.23), in the (p, v)
plane, using (2.26), the following generalized rarefaction curve is obtained

v = R(p, pL, vL) = −p + vL + pL, with p < pL (2.27)

which defines all the initial right states (p (ρR) , vR) that can be connected smoothly
with the initial left one through the generalized rarefaction wave defined in (2.24).

Next, we look for solution of the initial data (2.16) given by shock waves or contact
discontinuities. The Rankine-Hugoniot conditions for (2.7) are




−s (ρR − ρL) + ρRvR − ρLvL = 0

−s (ρRSR − ρLSL) + ρRvRSR − ρLvLSL = 0
(2.28)

where s denotes the shock velocity, so that two possible cases arise.

i) s = vL = vR, while the jump of the anticipation factor p(ρ) is arbitrary. In such a
case we have a contact discontinuity whose line in the (p, v) plane is

v = vL (2.29)

ii)

s =
ρRvR − ρLvL

ρR − ρL
(2.30)

vR + pR = vL + pL (2.31)

Here, in order to guarantee the stability of the initial shock, the Lax conditions

vR − ρR p′R < s < vR, s < vL − ρL p′L (2.32)
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must be fulfilled, which is tantamount to require that

ρL < ρR. (2.33)

Of course, using to (2.31), condition (2.33) leads to the relation vL > vR. Moreover,
from (2.31), the corresponding shock curve in the (p, v) plane assumes the form

v = H(p, pL, vL) = −p + vL + pL, pL < pR (2.34)

The curves (2.29) and (2.34) characterize all the initial right states which are sepa-
rated with the initial left one, respectively, by a contact discontinuity or by a shock
wave. It is simple matter to verify that, taking (2.30) into account, the shock wave
characterized by (2.31) propagates forward or back if vL > ρR p′(ρξ) or vL < ρR p′(ρξ),
where ρL < ρξ < ρR. In passing we notice also that the rarefaction curve (2.27) and
the shock curve (2.34) coincide so that model (2.7) is a Temple-like system [62].

Therefore, by referring to fig. 1, if the initial right state belongs to one of the
curves (2.27), (2.29) or (2.103), then the RP is solved, respectively, by means of a
generalized rarefaction wave, a contact discontinuity or a shock wave. Furthermore,
if in the (p, v) plane we consider the curve FL = R(p, pL, vL) ∪ H(p, pL, vL), it results
soon that ∀(p⋆, v⋆) ∈ FL there exists one and only one curve v = v⋆ passing on
it. Therefore, if the initial right state belongs to one of the regions I, II or III, the
solution of the RP is given by three constant states separated by a shock wave and
a contact discontinuity in regions I or II, by a generalized rarefaction wave and a
contact discontinuity in region III. If the initial right state belongs to region IV, the
solution is given by three constant states separated by a generalized rarefaction wave
and a contact discontinuity if vR ≤ vL + pL, otherwise a vacuum zone between a
rarefaction wave and a contact discontinuity is formed. In fact if vR = v⋆ > vL +
pL, a generalized rarefaction wave connects smoothly the constant states (pL, vL)
and (0, vL + pL), after, a vacuum zone between the states (0, vL + pL) and (0, v⋆)
is formed and finally a contact discontinuity characterized by v = v⋆ propagates.
Furthermore we notice that when pL = 0 (i. e. ρL = 0), the corresponding initial
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FIGURE 2.1: Generalized rarefaction curve R(p, pL, vL) (in green),
shock curve H(p, pL, vL) (in blue) and contact discontinuity curve (in
red) through the point (pL, vL) in the (p, v) plane. In violet the contact

discontinuity v = v⋆.
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datum vL results to be the maximum velocity. In such a case, the RP is solved by
a shock wave and a contact discontinuity if (pR, vR) belongs to regions I or II, by
a shock if (pR, vR) ∈ H(p, 0, vL), by a contact discontinuity if vR = vL. As a final
remark we notice that the general solution of the RP (2.16) here determined for the
nonhomogeneous Aw-Rascle system (2.7) has the same qualitative behaviour of that
admitted by the homogeneous one [3].

The procedure that we just showed can be applied aldo to solve the following
double Riemann problem

ρ(x, 0) =





ρ1 for x < 0

ρ2 for 0 < x < L

ρ3 for x > L

; v(x, 0) =





v1 for x < 0

v2 for 0 < x < L

v3 for x > L

(2.35)

where the constants ρi and vi are such that ρ1 < ρ2, ρ3 < ρ2, v1 > v2 and v3 > v2.
The initial data (2.35) can model a situation where at t = 0 a queue of cars localized
in [0, L] starts to move. To this class of problems it belongs, for instance, the famous
traffic light problem where in x = L there is a red traffic light which a t = 0 switches
to green.

Using the general analysis developed in section 3, the initial discontinuities in
x = 0 and in x = L can lead to different solutions through shock waves, generalized
rarefaction waves and contact discontinuities. Hereafter, for the sake of simplicity
and in order to show the flexibility of the approach outlined in the previous section,
we limit ourselves to the case in which (p(ρ2), v2) ∈ H(p, p1, v1) and (p(ρ3), v3) ∈
R(p, p2, v2) so that the initial shock at x = 0 is stable while the shock in x = L results
to be unstable. Therefore, along the line of the procedure developed in the previous
section, the following solution of the initial value problem (2.35) is obtained

ρ =





ρ1 for x < xs(t)

ρ2 for xs(t) < x < xl(t)

ρ̂(a) for xl(t) ≤ x ≤ xr(t)

ρ3 for x > xr(t)

(2.36)

and

v =





v1 for x < xs(t)

v2 for xs(t) < x < xl(t)

v2 + p2 − p̂(a) for xl(t) ≤ x ≤ xr(t)

v3 for x > xr(t)

(2.37)

provided that
v1 + p1 = v2 + p2 = v3 + p3. (2.38)

In (2.36) and (2.37) we denote by x = xs(t) = s1t the shock line, while by x = xl(t) =
(v2 − ρ2 p′2) t + L and x = xr(t) = (v3 − ρ3 p′3) t + L, respectively, the left and the
right limiting characteristics delimiting the generalized rarefaction wave. Moreover
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we set p̂(a) = p (ρ̂(a)), while the function ρ̂(a) is defined implicitely by

x =
(
v2 + p2 − p̂− ρ̂ p̂′

)
t + L (2.39)

and the shock velocity s1 assumes the form

s1 = v1 +
ρ2

ρ2 − ρ1
(p1 − p2) . (2.40)

Next, , taking (2.32) into account, it is simple to verify that the shock line x = s1t and
the left limiting characteristic line xl(t) meets at the point

xc =
s1L

s1 + ρ2 p′2 − v2
, tc =

L
s1 + ρ2 p′2 − v2

. (2.41)

Therefore the solution (2.36), (2.37), (2.39) exists for t < tc and in the point xc, at the
critical time tc, a new discontinuity is given which characterizes the following GRP

ρ(x, tc) =





ρ1 for x < xc

ρ̂(x, tc) for xc < x ≤ x̂
(2.42)

v(x, tc) =





v1 for x < xc

v̂ = v2 + p2 − p̂ (ρ̂ (x, tc)) for xc < x ≤ x̂
(2.43)

where x̂ = (v3 − ρ3 p′3) tc + L. The solution of (2.42) and (2.43) is given by a new
shock. In fact, it is simple to verify that the "initial" states given in (2.42), (2.43)
satisfy the relation (2.31) as well as the Lax condition (2.32). In order to calculate
explicity such a new shock, here and in the following we assume p = k1ρ, where k1
is a positive constant. In such a case from (2.39) we get

ρ̂ =
1

2k1

(
v1 + k1ρ1 −

x− L
t

)
(2.44)

while the new shock velocity s2 is given by

s2 = v1 − k1ρ̂ (2.45)

so that the corresponding shock curve starting from the point (xc, tc) assumes the
form

x = x̂s(t) = (v1 − k1ρ1) t− 2L√
tc

√
t + L. (2.46)
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Therefore the solution here characterized for t ≥ tc is

ρ =





ρ1 for x < x̂s(t)

ρ̂(x, t) for x̂s(t) < x ≤ xr(t)

ρ3 for xr(t) ≤ x

(2.47)

v =





v1 for x < x̂s(t)

v̂(x, t) for x̂s(t) < x ≤ xr(t)

v3 for xr(t) ≤ x

(2.48)

where ρ̂(x, t) is given in (2.44), while, taking (2.43)2 into account, v̂(x, t) = v2 +
k1 (ρ2 − ρ̂(x, t)). Moreover, using (2.44) and (2.46), the shock velocity (2.45) special-
izes to

s2 = v1 − k1ρ1 −
L√
tct

(2.49)

so that s2 results to be upper bounded. Therefore, taking into account that the second
shock propagates for t > tc, the following four cases arise, depending on the initial
left velocity v1 and on the anticipation factor p = k1ρ calculated on the left or on the
central initial state.

1. If v1 ≤ k1ρ1, it results xc < 0 and the new shock propagates back.

2. If v1 = k1ρ2 so that v1 > k1ρ1, then s1 = 0 and xc = 0. In the present case
the shock originated in x = 0 is stationary while the second shock formed at
t = tc propagates forward. To this case it belongs the traffic light problem
where ρ1 = ρ3 = 0, ρ2 = ρM, v1 = v2 = vM, v2 = 0, with ρM and vM denoting,
respectively, the maximum density and the maximum velocity.

3. If v1 > k1ρ2 so that v1 > k1ρ1, then we find xc > 0 and the second shock
propagates forward.

4. If k1ρ2 > v1 > k1ρ1, we have xc < 0 and the shock starting at t = tc propagates
back, then at t = t⋆ it stops and finally it moves forward, where we set

t⋆ =
k1L (ρ2 − ρ1)

(v1 − k1ρ1)
2 .

The behaviour in the (x, t) plane of the full solution of the double Riemann problem
(2.35) in the four cases above is given in fig. (2.2).

Remark 9 In the cases (ii)-(iv), it can be verified that the shock line x̂s(t) and the right
limiting characteristic xr(t) meet at a new critical time defined by

√
t̂c =

L
k1
√

tc (ρ3 − ρ1)
(2.50)

if ρ3 > ρ1. In such a case, since the new discontinuity is characterized by the left state
(ρ1, v1) and the right state (ρ3, v3) ∈ H(ρ, ρ1, v1), the solution of the resulting new RP is
determined in terms of a new third shock. Such a situation is represented in figure (2.3),
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shock propagates forward, while if k1ρ2 > v1 then the shock starting at t = tc propagates

back, then at t = t? it stops and finally it moves forward, where

t? =
k1L (ρ2 − ρ1)
(v1 − k1ρ1)2

.

In the last case the behaviour in the (x, t) plane of the full solution of the double

Riemann problem (34) is given in fig. 2.

1

1

2 3

4

tc

t

xs xl

xr

x̂s

Figure 2. Behaviour in the (x, t) plane of the solution of the (34). In green the shock

line xs(t), in red the left and right limiting characteristics xl(t) and xr(t), in black

the new shock line x̂s(t). Until the time tc the solution is given by (35), (36) while

for t ≥ tc the solution is determined in (46), (47). In regions 1, 2 and 3 we find,

respectively the constant states (ρ1, v1), (ρ2, v2) and (ρ3, v3). In region 4 we have the

generalized rarefaction wave defined in (35)3 and (36)3.

Remark 2. It can be verified that the shock line x̂s(t) and the right limiting

characteristic xr(t) meet at a new critical time defined by
√
t̂c =

L

k1
√
tc (ρ3 − ρ1)

(49)

if ρ3 > ρ1. In such a case, since the new discontinuity is characterized by the left state

(ρ1, v1) and the right state (ρ3, v3), the solution of the resulting new RP is determined

in terms of a shock along with a contact discontinuity if (ρ3, v3) belongs to region I or

II of fig. 1 or by a shock if (ρ3, v3) ∈ H(ρ, ρ1, v1). In the last case the plot of the car

density versus x at different time is given in fig. 3 where it can be seen that the initial

shock as well as the generalized rarefaction wave propagate back until they meet. Then

a new shock with non constant velocity starts propagating initially back, at t = t? it

stops and, after, it propagates forward with decreasing amplitude. Finally a new third

shock is formed and it propagates forward.

FIGURE 2.2: Behaviour in the (x, t) plane of the solution of the (2.35)
in the cases (i)-(iv). In green the shock line xs(t), in red the left and
right limiting characteristics xl(t) and xr(t), in black the new shock
line x̂s(t). Until the time tc the solution is given by (2.36), (2.37) while
for t ≥ tc the solution is determined in (2.47), (2.48). In regions 1,
2 and 3 we find, respectively the constant states (ρ1, v1), (ρ2, v2) and
(ρ3, v3). In region 4 we have the generalized rarefaction wave defined

in (2.36)3 and (2.37)3.

where the plot of the car density versus x at different time is given in the case (iv). It can
be seen that the initial shock as well as the generalized rarefaction wave propagate back until
they meet. Then a new shock with non constant velocity starts propagating initially back, at
t = t⋆ it stops and, after, it propagates forward with decreasing amplitude. Finally the new
third shock is formed and it propagates forward.

Remark 10 From (2.47), a direct inspection shows that

lim
t→+∞

(ρ̂ (xs(t), t)− ρ1) = 0 (2.51)

so that the amplitude of the second shock tends to zero. In particular, for large time, when
ρ1 = ρ3 the car density ρ tends to the equilibrium state ρ1 = ρ3; when ρ1 > ρ3 the solution
in point tends to a rarefaction wave connecting smoothly ρ1 with ρ3; when ρ1 < ρ3, after t̂c
the third shock propagates forward with constant amplitude ρ3 − ρ1 .

In this section, we applied to the nonhomogeneous Aw-Rascle system describing
traffic flows a strategy based on the use of the method of differential constraints for
solving different Riemann problems. In particular, for a specific source term which
generalizes a known source function widely adopted in the literature, we were able
to give a general analysis for the RP and we proved that the corresponding solution
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Figure 3. Plot of ρ versus x at different times given by (35) for t < tc and by (46) for

t ≥ tc in the case where k1ρ2 > v1 > k1ρ1 and ρ3 > ρ1 (i.e. case (iv)).

or a generalized rarafaction wave or by a combination of such wave profiles. After,

we considered a double Riemann problem which models the evolution of a car’s queue.

In particular we cosidered a general case where a queu of cars is moving with a small

velocity while before and after the queu a slight car’s flow is on the road. Such a situation

generalizes the famous traffic light problem where the queu is stopped while before and

after it the road is empty. The resulting solution exists until a critical time in which a

shock wave and a generalized rarefaction wave collides. Therefore a new discontinuity is

formed and a GRP must be considered. In a particular case, the solution of such a GRP

is given by a shock with non constant velocity whose amplitude tends to zero for large

time. Such a new shock propagates back or forward depending if v1 < k1ρ1 or v1 ≥ k1ρ1,

where v1 and k1ρ1 are, respectively, the car velocity and the anticipation factor p = k1ρ

calculated in the initial left constant state. Further, we proved that if the initial right

state ρ3 of such a double RP is greater than the left one ρ1, then the line shock meets

the characteristics curve limiting on the right the generalized rarefaction wave and a

new third shock can propagate. The solution obtained, for large time, evolves to an

equilibrium state or to a rarefaction wave or to a shock wave. In fact, if ρ1 = ρ3, then

the car’s density tends to such an equilibrium state while if the initial traffic on the left

is more heavy than that on the right (i. e. ρ1 > ρ3) then the car’s wave density tends to

a rarefaction wave. Finally, if after the queue the traffic is more heavy than that before

FIGURE 2.3: Plot of ρ versus x at different times given by (2.36) for
t < tc and by (2.47) for t ≥ tc in the case where k1ρ2 > v1 > k1ρ1 and

ρ3 > ρ1 (i.e. case (iv)).

is determined in terms of constant states separated by a shock or a contact disconti-
nuity or a generalized rarefaction wave or by a combination of such wave profiles.
After, we considered a double Riemann problem which models the evolution of a
car’s queue. In particular we considered a general case where a queue of cars is
moving with a small velocity while before and after the queue a slight car’s flow is
on the road. Such a situation generalizes the famous traffic light problem where the
queue is stopped while before and after it the road is empty. The resulting solution
exists until a critical time in which a shock wave and a generalized rarefaction wave
collides. Therefore a new discontinuity is formed and a GRP must be considered. In
a particular case, the solution of such a GRP is given by a shock with non constant
velocity whose amplitude tends to zero for large time. Such a new shock propagates
back or forward depending if v1 < k1ρ1 or v≥k1ρ1, where v1 and k1ρ1 are, respec-
tively, the car velocity and the anticipation factor p = k1ρ calculated in the initial left
constant state. Further, we proved that if the initial right state ρ3 of such a double
RP is greater than the left one ρ1, then the line shock meets the characteristics curve
limiting on the right the generalized rarefaction wave and a new third shock can
propagate. The solution obtained, for large time, evolves to an equilibrium state or
to a rarefaction wave or to a shock wave. In fact, if ρ1 = ρ3, then the car’s density
tends to such an equilibrium state while if the initial traffic on the left is more heavy
than that on the right (i.e. ρ1 > ρ3) then the car’s wave density tends to a rarefaction
wave. If after the queue the traffic is more heavy than that before (ρ1 < ρ3), the solu-
tion tends to a new third shock which propagates forward with constant amplitude.

2.1.3 Generalised Riemann problem for the p-system

In this section, within the framework of the Method of Differential Constraints, the
celebrated p-system is studied. In particular, our aim is to outline a procedure for
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solving GRP and RPS for the following 2× 2 homogeneous system
{

vt − ux = 0
ut + (p (v))x = 0

(2.52)

along with the conditions

p′(v) < 0, p′′(v) > 0. (2.53)

In (2.53) and in the following, the prime means for ordinary differentiation. The
equations (2.52) can describe an isentropic ideal gas in lagrangian coordinates. In
such a case, v = 1

ρ denotes the specific volume, ρ the mass density, u the velocity,
while t is the time and x the lagrangian spatial coordinate. Furthermore, for a perfect
gas

p = p0v−γ, (2.54)

where p(v) denotes the pressure, while γ > 1 is the adiabatic gas constant (i.e. the
ratio between the specific heats) and p0 > 0 is a constant. Under the hypotesis (2.53),
system (2.52) is strictly hyperbolic. The characteristic speeds are

λ1 = −
√
−p′(v), λ2 =

√
−p′(v), (2.55)

while the corresponding left eigenvectors are

l1 = (λ1(v), 1) , l2 = (λ2(v), 1) . (2.56)

The pair of equations (2.52), along with (2.53), is the celebrated p-system for which
a large amount of results are known in litterature, mainly for nonlinear wave propa-
gation problems [49, 48, 35, 38]. In particular an exaustive description of the solution
of the RP for the homogeneous p-system is given in [60]. Following the steps of the
method of differential constraints, we look for generalised simple waves for the ho-
mogeneous p-system. Taking (2.4) into account, the possible differential constraints
which can be appended to (2.52) are

ux − λ(v)vx = q(x, t, v, u), (2.57)

where we set
λ = ±

√
−p′ (v). (2.58)

while the function q(x, t, v, u) must be determined later along the reduction proce-
dure. By requiring the differential compatibility between (2.52) and (2.57), the fol-
lowing consistency conditions are obtained

{
2λ (λqu + qv) + λ′q = 0
qt + λqx + q (λqu + qv) = 0.

(2.59)

After some algebra, the general solution of (2.59) is given by

q =

{
(c0t + c1x + k0)

√
|λ|
}−1

(2.60)

provided that
dλ

dv
+ 2λ

√
|λ| (c0 + c1λ) = 0, (2.61)
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where c0, c1 and k0 are arbitrary constants. By integrating (2.61), the following cases
are obtained.

i) If c1 = 0, we find √
|λ| = 1

c0v
, (2.62)

so that, taking (2.58) into account, we get

p =
1

3c4
0v3

. (2.63)

ii) If c0 = 0, we obtain
|λ| = (±3c1v)−

2
3 , (2.64)

which, in turn, gives

p = p0v−
1
3 , p0 =

1
3
√

3 (±c1)
4
3

. (2.65)

iii) If c2
0 + c2

1 ̸= 0 and c0c1 > 0, then, in the case λ =
√
−p′ we have

1
ϵ3

(
ϵ

Λ
+ arctan

(
Λ
ϵ

))
= c1v, (2.66)

while, if λ = −
√
−p′, we obtain

1
2ϵ3

(
2ϵ

Λ
+ ln

(
Λ− ϵ

Λ + ϵ

))
= c1v, (2.67)

where we set c0
c1
= ϵ2 and Λ =

√
|λ|.

iv) If c2
0 + c2

1 ̸= 0 and c0c1 < 0, then in the case λ = −
√
−p′ we have

1
ϵ3

(
ϵ

Λ
+ arctan

(
Λ
ϵ

))
= −c1v, (2.68)

while, if λ =
√
−p′ we obtain

1
2ϵ3

(
2ϵ

Λ
+ ln

(
Λ− ϵ

L + ϵ

))
= −c1v, (2.69)

where we set c0
c1
= −ϵ2 and Λ =

√
|λ|.

In order to consider a case of possible physical interest, in the following we deal
with the case i). Therefore, using (2.60), the equations (2.5) assume the form





vt − λvx = v
t+k

ut − λux = ∓ 1
c2

0(t+k)v

(2.70)
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where, without loss of generality, we set k = k0c0 and we assume k > 0. Integration
of (2.70) by the method of characteristics leads to

v =
t + k

k
v0 (σ) (2.71)

u = u0 (σ)∓
t

c2
0 (t + k) v0 (σ)

(2.72)

where the functions v0(x) = v(x, 0) and u0(x) = u(x, 0) denote the initial data, while
the characteristic variable σ is given implicitely by

x = ∓ kt
c2

0(t + k)v2
0(σ)

+ σ (2.73)

which define the family of characteristics associated, respectively, to λ2 or to λ1.
Finally, substituting (2.71) and (2.72) in the constraint (2.57), we get

u′0(x) = ± v′0(x)
c2

0v2
0(x)

+
v0(x)

k
(2.74)

which selects the class of initial value problems that can be solved by means of the
present approach.

Therefore, the relations (2.71)-(2.73), along with (2.74), characterise a generalised
simple wave for the p-system (2.52) supplemented by (2.63). We remark that when
the constraint (2.57) is homogeneous (i. e. k → +∞), the solution (2.71)-(2.73) spe-
cializes to the classical simple wave solution. Finally it could be of a certain interest
to look for a critical time tc in which the characteristic curves meet and the corre-
sponding solution loses its regularity. In the present case, from (2.73), by requiring
that dx

dσ = 0, we obtain

t = − c2
0k

c2
0 ∓ k d

dσ

(
1

v2
0(σ)

) , (2.75)

so that, if the following condition holds

− c2
0
k
≤ d

dx

(
1

v2
0(x)

)
≤ c2

0
k

, (2.76)

a critical time tc does not exist and the solution in point exists smooth ∀t ≥ 0.

Remark 11 In [10] some exact solutions for the nonhomogeneous p-system have been ob-
tained through the method of differential constraints. In particular it was proved that when
the relaxation term goes to zero as well as the source involved in the constraint, the exact
solution there obtained tends to the corresponding solution of the homogeneous p-system.
Such a solution is different from that given in (2.71)-(2.73). In fact the differential con-
straint (2.57) here considered characterizes a class of initial value problems different from
those taken into account in [10]. Of course when in (2.71)-(2.74) we take k → +∞ the
solutions of the homogeneous system and of the nonhomogeneous one coincide because they
specialize to simple waves.
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Using the analysis developed in the i) case,we first approach the following GRP

v(x, 0) =
{

vl(x) for x < 0
vr(x) for x > 0

, u(x, 0) =
{

ul(x) for x < 0
ur(x) for x > 0,

(2.77)

where vl(x), vr(x), ul(x) and ur(x) are smooth functions such that

vL = lim
x→0−

vl(x), vR = lim
x→0+

vr(x), (2.78)

uL = lim
x→0−

ul(x), uR = lim
x→0+

ur(x) (2.79)

with vL ̸= vR and uL ̸= uR. According to the approach outlined in section 2, since
the initial data must satisfy the constraint (2.57), by substitution of (2.77) into (2.57)
and by a further integration we find

ul(x) = uL ∓
1
c2

0

(
1

vl(x)
− 1

vL

)
+

1
k

∫ x

0
vl(z) dz, (2.80)

ur(x) = uR ∓
1
c2

0

(
1

vr(x)
− 1

vR

)
+

1
k

∫ x

0
vr(z) dz. (2.81)

Therefore, if we consider the initial data assigned for x < 0, from (2.71) and (2.72),
we obtain

v =
t + k

k
vl (σl) , (2.82)

u = ul (σl)∓
t

c2
0 (t + k) vl (σl)

, (2.83)

where
x = ∓ kt

c2
0(t + k)v2

l (σl)
+ σl , with σl < 0, (2.84)

while, taking the initial data for x > 0 into account, we have

v =
t + k

k
vr (σr) , (2.85)

u = ur (σr)∓
t

c2
0 (t + k) vr (σr)

, (2.86)

where
x = ∓ kt

c2
0(t + k)v2

r (σr)
+ σr, with σr > 0. (2.87)

Because the characteristic parameters σl < 0 and σr > 0, the solution given by (2.82),
(2.83) is defined in the region x < xL(t), while the solution (2.85), (2.86) exists in
x > xR(t), where

xL(t) = lim
σl→0−

(
∓ kt

c2
0(t + k)v2

l (σl)

)
= ∓ kt

c2
0(t + k)v2

L
, (2.88)

xR(t) = lim
σr→0+

(
∓ kt

c2
0(t + k)v2

r (σr)

)
= ∓ kt

c2
0(t + k)v2

R
. (2.89)

Then, in (2.88), (2.89) x = xL(t) and x = xR(t) denote, respectively, the left and the
right limiting characteristics starting from the discontinuity point (0, 0) of the (x, t)
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plane.
In order to determine a central state solution which connects smoothly the left

state (2.82), (2.83) with the right one (2.85), (2.86), we integrate the system (2.70),
along with the constraint (2.57), with the initial data

v(0, 0) = v̄(a), u(0, 0) = ū(a), with a ∈ [0, 1] , (2.90)

subjected to the conditions

v̄(0) = vL, v̄(1) = vR, ū(0) = uL, ū(1) = uR. (2.91)

In (2.90) we indicate with a the parameter characterizing the fan of characteristics
starting from the origin of the (x, t) plane. Then, after some algebra, in the central
region xL(t) ≤ x ≤ xR(t), the following solution is obtained

v =

√
∓ t(t + k)

kc2
0x

, (2.92)

u = uL ±
1

c2
0vL
∓ 2t + k

c0

√
∓ x

kt(t + k)
, (2.93)

along with the condition

uR ±
1

c2
0vR

= uL ±
1

c2
0vL

. (2.94)

Finally, by requiring xL(t) < xR(t) we find the further conditions

vL < vR in the case where λ =
√
−p′, (2.95)

vL > vR in the case where λ = −
√
−p′. (2.96)

Therefore, provided that conditions (2.94) and (2.95) or (2.96) are sastisfied, the cen-
tral state (2.92), (2.93) connects smoothly the left state (2.82), (2.83) with the right one
(2.85), (2.86) and it characterises a generalised rarefaction wave which solves the
GRP (2.77). More in general, from (2.94), we find the generalised rarefaction curves

u = R(1)(v, vL, uL) = uL −
1
c2

0

(
1
v
− 1

vL

)
, with vL < v, (2.97)

u = R(2)(v, vL, uL) = uL +
1
c2

0

(
1
v
− 1

vL

)
, with vL > v, (2.98)

which in the (v, u) plane characterize all the initial right states whose limiting values
(vR, uR) defined in (2.78) and (2.79), by belonging to the curve u = R(1)(v, vL, uL) or
u = R(2)(v, vL, uL), permit to solve the GRP (2.77) by means of the generalised rar-
efaction wave determined in (2.92) and (2.93).

The smooth exact solution of (2.52), supplemented by (2.77), here obtained is
given in implicit form depending on the initial data v(x, 0) considered. In order to
obtain an explicit solution which will be useful in the following, we chose the initial
condition (2.77) as

v(x, 0) =
{

vL for x < 0
vR for x > 0,

(2.99)
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where the constants vL and vR are such that vL ̸= vR, so that from (2.80), (2.81) we
obtain

u(x, 0) =





ul(x) = uL +
vL
k x for x < 0

ur(x) = uR + vR
k x for x > 0.

(2.100)

In such a case the corresponding left state solution (2.82)-(2.84) assumes the form

v = ṽl(t) =
t + k

k
vL, u = ul(x) in x < xL(t), (2.101)

while the right state solution (2.85)-(2.87) specializes to

v = ṽr(t) =
t + k

k
vR, u = ur(x) in x > xR(t). (2.102)

Furthermore, the central state connecting smoothly (2.101) with (2.102) is still char-
acterised by (2.92), (2.93). Next, in order to discuss the general solution of the GRP
here considered, we look for shock wave solutions for the p-system (2.52) with (2.99)
and (2.100). Such an analysis is well known for the p-system, so that we refer to [60]
for more details. Therefore, by solving the Rankine-Hugoniot conditions for (2.52),
we find

s = −ur − ul

ṽr − ṽl
, ur = ul ∓

√
(ṽr − ṽl) (p (ṽl)− p(ṽr)), (2.103)

where (ṽl , ul) is the state on the left of the shock determined by (2.101), (ṽr, ur) is the
state on the right of the shock characterized by (2.102) and s is the shock velocity.
Now, by requiring that the Lax conditions are satisfied, after some algebra, we find
two shock families. The 1−shocks in which vR < vL and s < 0 and the 2− shock
family where vR > vL and s > 0. In both cases, using (2.101) and (2.102), we easily
find the shock curve

x = xs(t) = −
uR − uL

vR − vL

kt
t + k

(2.104)

so that, from (2.103)1 with (2.101) and (2.102), the shock speed specializes to

s = s(t) = −uR − uL

vR − vL

(
k

t + k

)2

. (2.105)

Finally, using (2.103)2 and taking (2.63), (2.101), (2.102) and (2.104) into account, for
1−shocks the following shock curve is obtained

u = S(1)(v, vL, uL) = uL −
1√
3c2

0

√
(v− vL)

(
1
v3

L
− 1

v3

)
with v < vL, (2.106)

while for 2−shocks we find

u = S(2)(v, vL, uL) = uL −
1√
3c2

0

√
(v− vL)

(
1
v3

L
− 1

v3

)
with v > vL. (2.107)

The curves (2.106), (2.107) characterize in the (v, u) plane all the right initial states
which allow to solve the GRP (2.99), (2.100) by a 1−shock or by a 2−shock. It is rel-
evant to notice that both the generalised rarefaction curves (2.97) and (2.98) as well
the shock curves (2.106) and (2.107) involve the limiting values of the initial data for
x → 0 (i. e. vL, vR, uL, uR). Therefore, such a curves coincide with those of the RP
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for the p-system (see [60]). It follows that the general discussion of the solution of
the RP for the p-system is useful here for characterizing the general solution of the
GRP given in (2.99), (2.100). In fact, by referring to Figure 2.4, if (vR, uR) belongs
to one of the curves R(1,2), S(1,2), then the solution is given in terms of the non con-
stant states (2.101) and (2.102) separated, respectively, by the generalized rarefaction
wave (2.92), (2.93) or by a shock wave (1−shock or 2−shock). If, on the other hand,
(vR, uR) belongs to one the regions I, I I, I I I or IV, then, as in the case of the RP, the
solution of (2.99), (2.100) is determined in terms of three non constant states sepa-
rated by generalised rarefaction waves and/or shock waves (the interested reader
can find the detailed discussion corresponding to the RP in [60]). Finally, taking
(2.105) into account, we notice that, for large t, both the 1−shocks or the 2−shocks
tend to a stationary shock.

vvL

u

uL

R(1)
R(2)

S(1) S(2)

I

I I

I I I

IV

•

FIGURE 2.4: Generalised rarefaction curves and shock curves passing
through (vL, uL) in the (v, u) plane. In red the shock curves S(1,2)

given, respectively by (2.106) and (2.107). In green the generalised
rarefaction curves R(1,2) characterised by (2.97) and (2.98).

2.1.4 Riemann problem with structure for the p-system

The analysis conducted above can be useful also to study Riemann problems with
structure. In particular, we consider the following RPS

v(x, 0) =





vL for x < 0
v0(x) for 0 ≤ x ≤ L
vR for x > L

(2.108)
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where

v0(x) =
vL√

1 + αx
, with α =

v2
L − v2

R
Lv2

R
. (2.109)

Taking (2.163) into account, from (2.108) we find

u(x, 0) =





uL +
vL
k x for x < 0

u0(x) for 0 ≤ x ≤ L

uR + vR
k (x− L) for x > L

(2.110)

with

u0(x) = uL +
1

c2
0vL

(
2c2

0v2
L

kα
∓ 1
)(√

1 + αx− 1
)

. (2.111)

Moreover, in order that the initial condition (2.110) is smooth, we require

uR = uL +
vL − vR

c2
0vLvR

(
2c2

0v2
L

kα
∓ 1
)

. (2.112)

In passing we notice that in both cases where α > 0 or α < 0, it results 1 + αx > 0.
Taking (2.71)-(2.73) into account, after some algebra, the solution of the initial value
problem (2.108), (2.110) is given by the left state

v =
t + k

k
vL, u = uL +

vL

k
x, for x < xl(t) = ∓

kt
c2

0(t + k)v2
L

, (2.113)

by the central state (xl(t) ≤ x ≤ xr(t))





v =
t + k

k
vL√

1 + αη

u = uL −
1

c2
0vL

(
2c2

0v2
L

kα
∓ 1
)
+

1
c2

0vL

(
2c2

0v2
L

kα
∓ 2t+k

t+k

)√
1 + αη

(2.114)

where

η =
v2

Lc2
0x(t + k)± kt

v2
Lc2

0(t + k)∓ αkt
, (2.115)

and by the right state

v =
t + k

k
vR, u = uR +

vR

k
(x− L), for x > xr(t) = ∓

kt
c2

0(t + k)v2
R
+ L. (2.116)

It is simple to verify that in the case λ =
√
−p′, if

vL > vR and
c2

0
k

<
α

v2
L

, (2.117)

the limiting characteristics xl(t) and xr(t) meet at the critical time tc given by

tc = −
c2

0kv2
L

c2
0v2

L − αk
, (2.118)
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while, in the case λ = −
√
−p′, under the conditions

vL < vR and
c2

0
k

< − α

v2
L

(2.119)

the curves xl(t) and xr(t) meet at the critical time

tc = −
c2

0kv2
L

c2
0v2

L + αk
. (2.120)

In both cases the the left and right characteristics xl(t), xr(t) meet in the point

xc = −
1
α

. (2.121)

Of course, if the condition (2.117) or (2.119) is not satisfied, then the solution (2.113)-
(2.116) exists smooth ∀t ≥ 0. In passing we notice that the initial data (2.108)1 and
(2.108)3 satisfy the relation (2.76) while, if condition (2.117) or (2.119) is satisfied,
then the initial datum (2.108)2 fulfills (2.76) until tc where all the characteristics of
the central region (2.114) meet in xc.

In the following we consider the case characterised by (2.117). Of course similar
results can be obtained in the remaining case. Since the solution (2.113)-(2.116) exists
regular until tc, we have now to study the following GRP

(v(x, tc), u(x, tc)) =





(
tc + k

k
vL, uL +

vL

k
x
)

for x < xc

(
tc + k

k
vR, uR + vR

k (x− L)
)

for x > xc

. (2.122)

In order to solve (2.122), it is convenient to set

τ = t− tc, ξ = x− xc, (2.123)

along with

k̂ = tc + k, v̂L =
tc + k

k
vL, v̂R =

tc + k
k

vR, (2.124)

ûL = uL +
vL

k
xc, ûR = uR +

vR

k
(xc − L), (2.125)

so that, in the variables (ξ, τ), the initial data (2.122) assume the form (2.99), (2.100).
As consequence, the results obtained in section 4 can be useful for solving the present
GRP. In particular, by referring to Figure 2.5, it is possible to prove that the point
(v̂R, ûR), which is obtained from the initial right state (2.122) when x → xc (or ξ → 0),
belongs to region I I I so that the solution of (2.122) is given by means of a back-shock
and a forward generalised rarefaction wave. In fact, because of (2.117), we have
v̂R < v̂L. Therefore, let (v̂R, û1) and (v̂R, û2) the points of abscissa v̂R which belong,
respectively to S(1) and R(2), since û1 = S(1)(v̂R, v̂L, ûL) and û2 = R(2)(v̂R, v̂L, ûL),
taking (2.112), (2.124) and (2.125) into account, after some algebra, it results û1 <
ûR < û2, so that (v̂R, ûR) belongs to region I I I.

The resulting solution after tc is given by three non constant state separated by
a shock and by a generalised rarefaction wave. In particular, by referring to Figure
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v

u

R(1)

R(2)

S(1)

S(2)

I

I I

I I I

IV

• (v̂L, ûL)

• (v0, u0)

•(v̂R, û1)

•(v̂R, ûR)

•(v̂R, û2)

FIGURE 2.5: Generalised rarefaction curves and shock curves passing
through (v̂L, ûL) in the (v, u) plane. In red the shock curves S(1,2) and
in green the generalised rarefaction curves R(1,2). The point (v0, u0) ∈

S(1) (v, v̂L, ûL) characterizes the central state (2.126).

2.6 where, in the (x, t) plane, the solution of (2.108), (2.110) is given ∀t ≥ 0, after the
critical time tc we find the left state (2.113) which is separated by the central state

v = ṽc(t) =
t + k
tc + k

v0, u = ũc(x) = u0 +
v0

tc + k
(x− xc) (2.126)

by a back shock whose line, taking (2.123) into account, is given by

x = x̂s(t) = −
u0 − ûL

v0 − v̂L

k̂ (t− tc)

k + t
+ xc. (2.127)

The state (2.126) is connected smoothly to the right state (2.116) by a forward gener-
alised rarefaction wave which, using (2.92) and (2.93), in terms of the (ξ, τ) variables,
assumes the form

v =

√
τ(τ + k̂)

k̂c2
0ξ

, (2.128)

u = u0 −
1

c2
0v0

+
2τ + k̂

c0

√
ξ

k̂τ(τ + k̄)
. (2.129)
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Using (2.123), the left and the right characteristics limiting the generalised rarefac-
tion wave (2.128), (2.129) are

x = x̂l(t) =
k̂ (t− tc)

c2
0v2

0 (t + k)
+ xc, x = x̂r(t) =

k̂ (t− tc)

c2
0v̂2

R (t + k)
+ xc. (2.130)

Furthermore, since the point (v0, u0) ∈ S(1)(v, v̂L, ûL) and (v̂R, ûR) ∈ R(2)(v, v0, u0)
(see Figure 2.6), we have

u0 = ûL −
1√
3c2

0

√
(v0 − v̂L)

(
1
v̂3

L
− 1

v3
0

)
, (2.131)

ûR = u0 −
1
c2

0

(
1
v0
− 1

v̂R

)
. (2.132)

Therefore the values (v0, u0) which are involved in the central state (2.126) are de-
fined by (2.131) and (2.132).

x

t

3

3

5

2
1

1
4

tc

xl(t) xr(t)

x̂s(t) x̂l(t) x̂r(t)

FIGURE 2.6: Behaviour in the (x, t) plane of the solution of (2.108),
(2.110). In red the characteristics xl(t) and xr(t) given in (2.113) and
(2.116), respectively. In black the shock line x̂s(t) characterized in
(2.127). In blue the characteristic x̂l(t) and in green the characteristic
x̂r(t) determined in (2.130). In regions 1 and 3 the solution is given,
respectively, by (2.113) and (2.116), while in region 2 by (2.114). In
region 4 the solution is determined by (2.126), while in the region
5 we find the generalised rarefaction wave characterized in (2.128),

(2.129).

Summarizing, we have showed how the method of differential constraints has
been useful for solving nonlinear wave problems for the celebrated p-system. Such
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a model, apart from its physical meaning, has been considered as prototype of more
general hyperbolic systems for describing nonlinear wave propagation.

After classifying all the possible differential constraints which can be appended
to the governing model under interest, we solved the consistency conditions (2.59)
arising from the differential compatibility between (2.52) and (2.57). As a conse-
quence, the material law for the pressure p(v) must obey to one of the relations
for λ(v) characterized in cases i)–iv). Since for a perfect gas we have p = p0v−γ

with γ > 1, the unique case which has a physical meaning is determined by (2.62).
Therefore, we developed our analysis in the case i) and an exact solution which gen-
eralises the classical simple wave admitted by homogeneous systems is obtained.
In fact, when the source term q involved in the constraint (2.163) is zero, then the
solution (2.71)-(2.73) specializes to a simple wave. Such a solution was useful for
solving a class of generalised Riemann problems as well as of Riemann problems
with structure.

In fact we have been able to obtain the general solution of the GRP (2.99), (2.100)
in terms of non constant states separated by generalised rarefaction waves and/or
by shock waves. In characterizing such a solution the generalised rarefaction curves
u = R(1)(v, vL, uL), u = R(2)(v, vL, uL) play a prominent role as well as the shock
curves u = S(1)(v, vL, uL), u = S(2)(v, vL, uL). Indeed, the analysis in the (v, u) plane
which can be carried on for the Riemann problem can be developed also for the GRP
under interest and it involves the point (vR, uR) determined by the limiting values
for x → 0 of the initial data. Furthermore, using (2.63), we have

∫ ∞

vL

√
−p′(v)dv =

1
c2

0vL
, (2.133)

so that if the point (vR, uR) belongs to region IV of the (v, u) plane (see Figure 2.4),
then a vacuum zone can be formed as it happens for the RP.

A Riemann problem with structure was also solved by means of the generalised
simple wave determined in section 3. In such a case, it was interesting to notice
that, if the condition (2.117) or (2.119) is satisfied, then at a critical time tc a shock
is formed and, in turn, a new GRP must be solved. By means of the analysis of the
(v, u) plane (see Figure (2.5)), we have proved that such a GRP is solved by three
non constant states separated by a back shock and a forward generalised rarefaction
wave. The corresponding full solution is given in Figure (2.6).

2.2 Degenerate Hodograph Method

The Degenerate Hodograph Method deals with solutions characterized by finite re-
lations among the dependent variables and it has provided the majority of solutions
to systems of PDEs.
Solutions obtained through this approach are called "multiple waves".
Let us consider the following systems of N quasilinear PDEs involving m indepen-
dent variables (x1, ..., xm) and n dependent variables U = (u1, ..., un):

Aα(U)
∂uk

∂xα
= fk(U), α = 1, .., m; k = 1, .., n (2.134)

where x = (x1, . . . , xm) are the independent variables, Aα are N × n matrices with
elements with the elements aα

ij, fk denote source terms, that from now on we assume
equal to 0 for sake of simplicity. A particular exact solution uk(xα) of (2.134) is called
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multiple wave of rank r if the rank of the jacobian matrix
∣∣∣∣
∣∣∣∣

∂ (u1, ..., un)

∂ (x1, ..., xm)

∣∣∣∣
∣∣∣∣

is equal to r. In such a case the corresponding solutions of (2.134) assume the form

uk = uk (Φ1, ..., Φr) , k = 1, . . . , n (2.135)

where the functions Φj(xα) are wave parameters. If r is equal to 1, the solution is
called "simple wave", if it is equal to 2 we have a "double wave" and so on. Notice
that if r = n, we recover the case of nondegenerate solutions, while multiple waves
of rank r ≤ n − 1 give a class of solutions with a degenerate hodograph. These
solutions generalize the classical traveling wave solutions. The difference is that in
the case of an r-multiple travelling wave the wave parameters are linear forms of
the independent variables, while the wave parameters for an r-multiple wave are
unknown functions.
The main problem for this approach is that substituting the ansatz (2.135) into (2.134)
one gets an overdetermined system in the unknown Φj(xα).
In the case of simple waves, one looks for solutions of the form

uk = uk(Φ1), k = i, . . . , n

which substituted in the original system give

ckα(Φ)
∂Φ
xα

= 0, k = i, . . . , n, where ckα = aα
kβ

∂uβ

∂Φ1
. (2.136)

At this point, the structure of the solutions of (2.136) depends on the matrix C given
by the coefficients ckα. In fact, one is able to produce nontrivial solutions if the rank
r of the matrix C, satisfies

r < min(n.m). (2.137)

If (2.137) holds, then we can rewrite (2.136) as

∂Φ1

∂xα
= bαβ

∂Φ1

∂xβ
α = 1, . . . , r, β = r + 1, . . . , m. (2.138)

The solutions of (2.138) is defined implictly by

Φ1 = φ1(xr+1 +
r

∑
β=1

xβbβm +
r

∑
β=1

xβbβr+1,...,xm), (2.139)

where φ1 : Rm−r → R is an arbitrary mapping. While there is a large body of
litterature dedicated to the simple wave theory, very few results have been obtained
for double waves because the analysis of the overdetermined system is a very hard
task to carry on. In fact, substituting the ansatz

uk = uk(Φ1, Φ2), k = 1, . . . , n

in the initial system one gets

Aα

(
uΦ1

∂Φ1

∂xα
− uΦ2

∂Φ2

∂xα

)
= 0.
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This last system needs to be studied for compatibility and it is easy to notice that this
is almost impossible in the general case.
In order to overcome this issues, quite recently in [7] and [9], in the case of quasilin-
ear first order nonhomogeneous system, a possible strategy for determining double
waves was proposed within the theoretical framewok of the Differential Constraints
Method. We now sketch the idea of this procedure and, in the next section, we show
an application to a model describing nerve fiber propagation.
In the system (2.3), without loss of generality, we can set

U =

[
V
W

]
, B =

[
B1
B2

]
, A =

[
P Q
R S

]
, l(λ) =

[
l̂(λ), l

(λ)
]

(2.140)

where V, B1, l̂(λ) ∈ R2, W, B2, l
(λ) ∈ RN−2 and P, Q, R, S are suitable matrix coeffi-

cients
P = ∥Phk∥, Q = ∥Qhs∥, R = ∥Rrk∥, S = ∥Srs∥,
h, k = 1, 2; r, s = 3, .., N.

(2.141)

We look for double wave solutions of (2.3) under the form

U = U(V) =

[
V

W(V)

]
(2.142)

with W(V) smooth functions of V. By sustituting the ansatz (2.142) in the equations
(2.3), we get the following overdetermined system in the unknown V

∂V
∂t

+ (P+Q∇W)
∂V
∂x

= B1 (2.143)

(∇W)
∂V
∂t

+ (R+ S∇W)
∂V
∂x

= B2 (2.144)

where

∇W =

∥∥∥∥
∂Wr

∂Vk

∥∥∥∥ , r = 3, ..., N; k = 1, 2.

Of course depending on the choice of the variable V, N(N−1)
2 reduced systems (2.143)

can be characterized but the following theorem holds [9]

Theorem 5 Let U = U(V) a class of solutions of (2.3), then the hyperbolicity of (2.3)
induces the hyperbolicity of at least a 2× 2 reduced system in the new field variable V .

Therefore, without loss of generality, we can assume the system (2.143) to be strictly
hyperbolic so that the matrix coefficients P+Q∇W admits two real eigenvalues
λ̃1 ̸= λ̃2 with left l̃(λ̃k) and right d̃(λ̃k) (k = 1, 2) eigenvectors. The remaining N − 2
equations (2.144) can be rewritten [9] under the form

ωr1

(
l̃(λ̃1) · ∂V

∂x

)
+ ωr2

(
l̃(λ̃2) · ∂V

∂x

)
= Br −

2

∑
h=1

∂Wr

∂Vh
Bh (r = 3, . . . , N) (2.145)

where ωrh = ωrh(V, W(V)) are suitable functions of V. Therefore, an equation be-
longing to (2.145) is satisfied by any solutions of the reduced model (2.143) (i. e. it is

a supplementary law of (2.143)) iff ωr1 = ωr2 = Br −
2

∑
h=1

∂Wr

∂Vh
Bh = 0, where r is the

index characterizing the fixed equation in point. Furthermore, such a fixed equation
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is a differential constraint for the hyperbolic system (2.143) iff ωr1 = 0 or alterna-
tively ωr2 = 0. In fact in such a case the equation under consideration assumes the
form

l̃(λ̃2) · ∂V
∂x

=
1

ωr 2

(
Br −

2

∑
h=1

∂Wr

∂Vh
Bh

)
= q2 (V) (2.146)

or

l̃(λ̃1) · ∂V
∂x

=
1

ωr 1

(
Br −

2

∑
h=1

∂Wr

∂Vh
Bh

)
= q1 (V) . (2.147)

and, using the procedure sketched in the sub-section 2.1, it results to be a possible
differential constraint for the 2 × 2 reduced system (2.143). The main idea of the
procedure here considered is based on the requirement that one of the equations
(2.145) is a differential constraint of (2.143) while the remaining N − 3 relations are
identically satisfied for all solutions of (2.143). In such a case exact double wave solu-
tions of (2.3) can be obtained by solving the 2× 2 reduced system (2.143) along with
the differential constraint (2.146) or (2.147). According to the Method of Differential
Constraints, the resulting solutions be determined in terms of one arbitrary function
so that class of initial value problems can be solved. Of course since the procedure
here considered reduces the problem of characterizing exact solution of (2.3) to that
of the reduced sub-system (2.143), all the results concerning 2× 2 hyperbolic systems
supplemented by a differential constraint can be applied to the present case (see [5],
[6]). Finally it could be of interest to recall that in order to characterize a possible
differential constraint which can be appended to (2.143) the following proposition
can be proved (see [8]).

Proposition 1 Let λ̃(V) be a characteristic velocity associated to (2.143), and

Hj(λ̃) ̸= 0 ∀λ̃ (3 ≤ j ≤ N) (2.148)

where Hj(λ̃) is the determinant of the matrix of order N − 2 obtained from(
S−∇W Q−λ̃ I

)
when the j−th row is replaced by l̃(λ̃) Q. Then, under assumption

ωr1 = ωr2 = Br −
2

∑
h=1

∂Wr

∂Vh
Bh = 0 (r = 3, . . . , N, r ̸= j) (2.149)

the j − th condition (2.145) reduces to a first order differential constraint associated to λ̃k
iff λ̃k is not a characteristic velocity of the hyperbolic system (2.3) whereas the remaing
eigenvalue belongs to the spectrum of λ’s.

Remark 12 It can be proved [8] that in the case

Hj(λ̃1) = Hj(λ̃2) = 0 (2.150)

both characteristic velocities of the hyperbolic reduced system (2.143) belong to the spectrum
of λ′s and the j − th condition (2.145) may reduce to a first order differential constraint
associated both to λ̃1 or λ̃2.
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2.2.1 Application to a model describing nerve fiber propagation

In this section, we show an application of the Degenerate Hodograph Method for
determining a particular class of double wave solutions to a model describing nerve
fiber pulse propagation [41]. A nerve cell (neuron) receives and send output mes-
sages from other neurons through an axon which is a channel permeable to different
kinds of ions, mainly potassium (in the interior of the axon) and sodium (in the exte-
rior) [22], [28]. In order to describe nerve pulse transmission, along the years, many
mathematical models have been proposed. The most famous is due to Hodgkin and
Huxley (HH) [23], in which the nerve pulse propagatation is described in terms of
the membrane voltage and of three recovery variables that take into account of the
activation and inactivation of sodium and potassium ions. Unfortunately, the math-
ematical analysis of the HH equations is of great complexity so that, later, different
simplified systems have been proposed. One of the most studied was considered
first by FitzHugh [15] and by Nagumo et al. [47]. The FitzHugh-Nagumo (FN) sys-
tem involves the membrane voltage and only one recovery variable. Since it is based
on a diffusion-like equation, it results to be parabolic so that nerve pulses propagate
with an infinite speed. To avoid such a paradox and in order to model the nerve
pulse transmission within a well-posed wave theory, in [14] the following hyper-
bolic system has been proposed

ut + µ1vx = f (u, w) (2.151)
vt + µ3ux = ν0v (2.152)
wt + ϕ(u, w)vx = ψ(u, w) (2.153)

where x and t denotes, respectively, the distance along the axon and the time, u
the potential difference across the membrane, v the axon current, w a recovery vari-
able which takes into account the sodium inactivation and the potassium activation.
Moreover µ1 = 1

πa2C , µ3 = πa2

L , ν0 = −R
L , ϕ = Φ̄(u, w), ψ = Ψ̄(u, w) − f Φ̄(u, w),

f = − 2
aC I(u, w) where I is the ion current, Φ̄ and Ψ̄ denote material response func-

tions, a the axon radius, C the self-capacitance, L the specific silf-inductance and R
the specific resistance. In passing we notice that the equations (2.151)-(2.153) spe-
cialize to the FH model when L = Φ̄ = 0, Ψ̄ = c0 + c1u + c2w (c0, c1 and c2 are
constants), I = w + k1u + k3u3 (k1 and k3 are constants). Furthermore the equation
(2.153) can be rewritten under the form

wt + Φ̄(u, w)ut = Ψ̄(u, w)

which characterizes the so-called rate-type materials where a non-istantaneous re-
sponse of the material are taken into account because of short memory effects.

System (2.151)-(2.153) is hyperbolic and the characteristic wave speeds (eigen-
values of the matrix coefficients) are

λ1 = −√µ1µ3, λ2 = 0, λ3 =
√

µ1µ3. (2.154)

Our aim, here, is to develop the reduction procedure outlined in the sub-section 2.2
in order to find exact solutions of (2.151)-(2.153). Therefore, let us look for solutions
of (2.151)-(2.153) under the form

w = w(u, v) (2.155)
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Substituting the ansatz (2.155) into (2.151)-(2.153), we obtain

ut + µ1vx = f̂ (u, v) (2.156)
vt + µ3ux = ν0v (2.157)(
ϕ̂− µ1wu

)
vx − µ3wvux = ψ̂− f̂ wu − ν0vwv (2.158)

where f̂ = f (u, w (u, v)), ϕ̂ = ϕ (u, w (u, v)) and ψ̂ = ψ (u, w (u, v)). The 2 × 2
sub-system (2.156), (2.157) results to be hyperbolic. Its characteristics speeds are

λ̃1 = −√µ1µ3, λ̃2 =
√

µ1µ3 (2.159)

with left eigenvectors given by

l̃(1) =
[

1, −
√

µ1

µ3

]
, l̃(2) =

[
1,
√

µ1

µ3

]

so that the possible differential contraints which can be appended to (2.156), (2.157)
assume the form

ux −
√

µ1

µ3
vx = q̃(x, t, u, v) or ux +

√
µ1

µ3
vx = q̂(x, t, u, v). (2.160)

Since in the present case both the characteristic speeds of the reduced 2× 2 system
(2.156), (2.157) belong to the spectrum of the characteristic speeds of the full system
(2.151)-(2.153), the equation (2.158) can be reduced either to (2.160)1 or to (2.160)2 (see
the remark 12). Here we point out our attention to the case where (2.158) specializes
to (2.160)2 (of course a similar analysis could be developed in the remaining case).
After some simple algebra, it turns out that (2.158) assumes the form (2.160)2 if

ψ̂ = f̂ wu + ν0vwv − µ3wvq̂ (2.161)
ϕ̂ = µ1wu −

√
µ1µ3wv (2.162)

Next, by requiring the compatibility between (2.156), (2.157) and (2.160)2 we are led
to the consistency conditions

2
√

µ1µ3

(
q̂v −

√
µ1

µ3
q̂u

)
−
(

f̂v −
√

µ1

µ3
f̂u

)
= ν0

√
µ1

µ3
(2.163)

f̂ q̂u − q̂ f̂u + (ν0v− µ3q̂) q̂v +
√

µ1µ3 q̂ q̂u = 0 (2.164)

while, taking (2.160)2 into account, the equations (2.156), (2.157) reduce to

ut −
√

µ1µ3ux = f̂ −√µ1µ3q̂ (2.165)
vt −
√

µ1µ3vx = ν0v− µ3q̂ (2.166)

Therefore, once conditions (2.163), (2.164) are satisfied, the solution of (2.156), (2.157)
along with (2.158) can be obtained by solving the equations (2.165), (2.166) supple-
mented by (2.160)2.

To this end we first integrate (2.163) and we obtain

f̂ = 2
√

µ1µ3q̂ + ν0u + F(σ) (2.167)
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where F(σ) is an arbitrary function of the variable

σ = u +

√
µ1

µ3
v. (2.168)

Next, substituting (2.167) in (2.164), after some algebra, we find the following two
cases.

Case i) If F ̸= −ν0σ, integration of (2.164) leads to

q̂ = −ν0q0(ξ)
η(σ)

η′(σ)
(2.169)

where q0(ξ) is an arbitrary function, the variable ξ is defined implicitely in terms of
u and σ by

uη(σ) =
√

µ1µ3 q0(ξ)
∫

η(σ) dσ + ση(σ) + ξ (2.170)

while, for further convenience, we set

F(σ) + ν0σ = −ν0
η(σ)

η′(σ)

with η′(σ) ̸= 0. As far as the integration of (2.165) and (2.166) is concerned, it is
simply to verify that under the change of variables (u, v) ↔ (σ, ξ), the equations
(2.165), (2.166) assume the form

σt −
√

µ1µ3σx = −ν0
η(σ)

η′(σ)
(2.171)

ξt −
√

µ1µ3ξx = 0 (2.172)

whose integration gives

η(σ) = η0 (σ0 (z)) e−ν0t, ξ = ξ0 (z) (2.173)

where
z = x +

√
µ1µ3t.

Moreover σ0(z) and ξ0(z) are unspecified functions which, according to the method
of differential constraints, must satisfy the constraint (2.160)2. In fact, substituting
(2.173) in (2.160)2, we obtain

d
dx

(ln (η0 (σ0 (x)))) = −ν0q0 (ξ0) . (2.174)

Therefore, once q0(ξ) and η(σ) are given, the functions u(x, t), v(x, t) solutions of
(2.151)-(2.152) can be obtained through (2.173) and (2.174), taking (2.168) and (2.170)
into account, while, using (2.167), w(x, t) can be determined from

f (u (x, t) , w (x, t)) = −ν0 (2
√

µ1µ3q0 (ξ0) + 1)
η (σ)

η′ (σ)
− ν0

√
µ1

µ3
v. (2.175)

We notice that, because of the constraint (2.174) such a solution is given in terms of
one arbitrary function.
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As an example, we make the simpler choice q0(ξ) = ξ. In such a case, after some
calculations, the function η(σ) must necessarily assumes the form

η =





c2

(1− c0)
√

µ1µ3
σ

c0
1−c0 if c0 ̸= 1

c2√
µ1µ3

ec2σ if c0 = 1

where c0 ̸= 0 and c2 ̸= 0 are constants, so that the following solution of (2.151)–
(2.153) is obtained

v =
µ3c0

ν0
σ′0(z) e

ν0(c0−1)
c0

t (2.176)

u =





(
σ0(z)− c0

ν0

√
µ1µ3 σ′0(z)

)
e

ν0(c0−1)
c0

t if c0 ̸= 1

σ0(z)−
√

µ1µ3
ν0

σ′0(z)− ν0
c2

t if c0 = 1

(2.177)

f (u (x, t) , w (x, t)) =





ν0
c0

(
(c0 − 1) u +

√
µ1
µ3

v
)

if c0 ̸= 1

− ν0
c2
+ ν0

√
µ1
µ3

v if c0 = 1
(2.178)

where
σ0(x) =

ν0

µ3c0

∫
v0(x) dx (2.179)

with v0(x) = v(x, 0).
Finally, as far as the constitutive functions Φ(u, w) and Ψ(u, w) are concerned,

from (2.161), (2.162) we find

Φ =
1
fw

(
ν0 (µ1 − fu)−

2ν0µ1

c0

)
(2.180)

Ψ =
1
fw

(
2

ν0

c0
(c0 − 1) f − f fu −

ν2
0

c2
0
(c0 − 1)2 u

)
(2.181)

while f (u, w) is still unspecified. Therefore, once f (u, w) is assigned, then the so-
lution of (2.151)-(2.153) is determined by (2.176)-(2.178) provided that Φ and Ψ as-
sume, respectively, the form (2.180) and (2.181). Such a solution is given in terms
of one arbitrary functions so that it is consistency with the arbitrary initial datum
v(x, 0) = v0(x) or, equivalently, u(x, 0) = u0(x).

Case ii) If F(σ) = −ν0σ, by solving (2.164) we find q̂ = q0(σ). In such a case, from
(2.156), (2.157) we have

σt −
√

µ1µ3 σx = 0 (2.182)

whose integration, along with that of (2.157), gives

v = v0(z)eν0t +
µ3

ν0

(
u′0(z) +

√
µ1

µ3
v′0(z)

) (
1− eν0t) (2.183)

u = u0(z)−
√

µ1

µ3

[
v0(z)−

µ3

ν0

(
u′0(z) +

√
µ1

µ3
v′0(z)

)] (
eν0t − 1

)
(2.184)
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where z = x +
√

µ1µ3t, u0(x) = u(x, 0), v0(x) = v(x, 0). Furthermore, from the
constraint (2.160)2 we find

du0

dx
+

√
µ1

µ3

dv0

dx
= q0 (σ0(x)) (2.185)

with σ0(x) = u0(x) +
√

µ1
µ3

v0(x). Finally, taking (2.167) into account, once f (u, w) is

given, the function w(x, t) can be calculated from

f (u (x, t) , w (x, t)) = 2
√

µ1µ3 q0 (σ0(z))− ν0

√
µ1

µ3
v (2.186)

Since q0(σ) is arbitrary, from (2.161), (2.162) a class of model laws for the functions
Φ(u, w) and Ψ(u, w) allowing the existence of the solution (2.183), (2.184), (2.186) are
characterized. As an example, if we choose q0 = c3σ, with c3 constant, we find

Φ =
µ1 (ν0 − fu)

fw
(2.187)

and

Ψ =





1
fw

[
(ν0 − fu) f + c3

√
µ1µ3( f − ν0u)

]
if c3 ̸=

ν0

2
√

µ1µ3

(ν0 − fu) f
fw

if c3 =
ν0

2
√

µ1µ3

(2.188)

Remark 13 In the case ii) the function q0(σ) involved in the constraint (2.185) is arbitrary.
Therefore, once q0(σ) is given, because of (2.185) we are dealing with only one arbitrary
initial datum (v0(x) or u0(x)) so that the solution in point is determined in terms of one
arbitrary function. Viceversa, if u0(x) and v0(x) are both arbitary and if it is possible to
calculate the inverse function of σ0(x), then from (2.185) we can determine q0(σ0) and the
corresponding solution is obtained in terms of two arbitrary functions (i.e. u0(x) and v0(x)).
As an example, if we choose u0(x) = û0e−kx and v0 = v̂0 where û0, v̂0 and k are constants,
from (2.185) we find q0 = −k

(
σ0 −

√
µ1
µ3

v̂0

)
. Therefore, in such a case, the solution given

by (2.183), (2.184) and (2.186) is obtained in terms of two arbitrary functions. In fact the
initial data u0(x) and v0(x) are arbitrary while, taking (2.186) into account, the initial
datum w0(x) = w(x, 0) must obey

f (u0(x), w0(x)) = −2kû0
√

µ1µ3 e−kx − ν0 v̂0

√
µ1

µ3
. (2.189)

In this section, we developed a reduction procedure for determining a particular
class of double wave solutions of the first order quasilinear hyperbolic system (2.151)-
(2.153) which describes nerve pulses propagation. In particular, following the idea
proposed in [9], we reduced the integration of the full system (2.151)-(2.153) to that
of a suitable 2× 2 reduced system supplemented by a differential constraint. There-
fore, within the theoretical framework of the method of differential constraints, all
the results known for 2 × 2 first order quasilinear hyperbolic systems with a first
order differential constraint can be applied to the nerve pulse model under interest.



2.2. Degenerate Hodograph Method 63

Since we are considering a system in the one-dimensional case, of course all the
solutions belong to the class of double wave solutions. However, the general anal-
ysis of the overdetermined system arising from the double wave ansatz is a very
hard task to accomplish. Therefore, our procedure is aimed at determing a class of
particular double wave solutions.

From (2.151)-(2.153) three possible reduced systems can be extracted depending
if we look for double wave solutions under the form u = u(v, w) or v = v(u, w)
or w = w(u, v). Of course a suitable change of variables can be connected all the
three cases. Here we chose the ansatz w = w(u, v) and we solved, in general, the
compatibility conditions arising from the reduced system (2.156), (2.157) and the
constraint (2.160)2. From such an analysis two cases arise. In the first we obtained
a solution in terms of one arbitrary function. In the second case, under a suitable
hypotesis, it is possible to determine a solution where the initial data for the potential
u(x, t) and the axon current v(x, t) are arbitary.

A far as the model laws for the functions f (u, w), Φ(u, w) and Ψ(u, w) are con-
cerned, the solutions characterized exist only if Φ and Ψ adopt some special form
while f is unspeficied. Furthermore, the recovery variable w(x, t) is determined
once f (u, w) is assigned. Therefore our procedure permitted to find double wave
solutions to a large class of models described by (2.151)-(2.153).
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Appendix A

Appendix

A.1 Properties of Laplace invariants of a second order hyper-
bolic equation

Let us consider a second order linear hyperbolic PDE.

uxt + A(x, t)ux + B(x, t)ut + C(x, t)u = 0 (A.1)

Definition 3 We define Laplace Invariants of (A.1) the quantities

h0 = Ax + AB− C k0 = Bt + AB− C (A.2)

Definition 4 We define equivalent transformations the more general trasformations that do
not affect the differential structure of (A.1). Their form is the following

x̄ = α(x)x t̄ = β(t)t ū = w(x, t)u, (A.3)

where α, β and w(x, t) ̸= 0.

Definition 5 We define equivalent equations two equations of form (A.1) that can be mapped
one into the other with a trasformation of the class (A.3).

At this point, we focus on equivalent trasformations with α(x) = β(t) = 1, so that
the independent variables remain untouched, while linear trasformations are possi-
ble for the dependent variable u:

x̄ = x t̄ = t ū = w(x, t)u. (A.4)

We can now give the following theorem.

Theorem 6 Two equations of form (A.1) with Laplace invariants (h0, k0) and (h̄0, k̄0) can
be mapped one into the other with a trasformation belonging to the class (A.4) if and only if

h0 = h̄0 k0 = k̄0. (A.5)

Proof 2 Let us consider equation (A.1) and the trasformation u = w(x, t)ū. We compute
the derivatives of u that appear in the equation:

ux = wxū + wūx (A.6)
ut = wtū + wūt (A.7)
uxt = wtxū + wxūt + wtūx + wūxt. (A.8)



66 Appendix A. Appendix

Substituting the above relations into (A.1), we get that ū must satisfy

ūxt + Āūx + B̄ūt + C̄ū = 0, (A.9)

where

Ā = A + (ln w)t, B̄ = B + (ln w)x, C̄ = C + w−1(Awx + Bwt + wxt). (A.10)

Performing an easy computation, it is possible to verify that the Laplace invariants of (A.1)
and (A.9) coincide.
Viceversa, if h̄0 = h0 and k̄0 = k0, then

Ax + AB− C = Āx + ĀB̄− C̄ Bt + AB− C = B̄t + ĀB̄− C̄. (A.11)

Hence, we can deduce
(A− Ā)x = (B− B̄)t (A.12)

that implied the existence of a function w(x, t) such that

Ā− A = (ln w)t B̄− B = (ln w)x. (A.13)

Substituting (A.13) into the equation h̄0 = h0, we recover the form of C̄,that is

C̄ = C + w−1(Awx + Bwt + wxt). (A.14)

Relations (A.13) and (A.14) prove that the transformation u = w(x, t)ū map the differen-
tial equation with coefficients A, B and C into the differential relation of coefficients Ā, B̄
and C̄.

Remark 14 ([25]) We notice that equation (A.1) can be mapped in

• utx = 0 if and only if h0 = k0 = 0;

• utx + C(x, t)u = 0 if and only if h0 = k0;

• utx + cu = 0, c = constant if and only if h0 = k0 = f (x)g(t).

Furthermore, equation (A.1) is factorable, i.e. the differential operator of the second order
L = ∂x∂t + A(x, t)∂x + B(x, t)∂t + C(x, t) can be expressed as a product of two operators
of the first order, if and only if one of the Laplace invariants vanishes. In particular, if h = 0,
it is possible to obtain

L = ∂x∂t + A∂x + B∂t + Ax + AB = [∂x + α(x, t)][∂t + β(x, t)],

while, if k = 0, we get
L = [∂t + β(x, t)][∂x + α(x, t)].

A.2 Poisson Brackets’ algorithm

One of the key points of the methods for solving partial differential equations is
the analysis of compatibility. Poisson brackets’ algorithm can be really helpful for
the study of compatibility of systems of first order linear homogeneous differential
equations as we have seen in the section of this thesis dedicated to the method of
intermediate integrals.
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For this reason, in this appendix we briefly sketch the steps of the algorithm.
We fix a system of partial differential equations in the unknown function u(x)

Xi(u) = aiα(x)
∂u
∂xα

= 0, i = 1, . . . m, α = 1, . . . n (A.15)

Definition 6 The first order differential operator

[
Xi, Xj

]
= bijα

∂

∂xα
=

(
aiβ(x)

∂ajα

∂xβ
− ajβ(x)

∂aiα

∂xβ

)
∂

∂xα
(A.16)

is defined Poisson bracket of the operators Xi and Xj.

Each solution u of Xi(u) = 0 and Xj(u) = 0 is also solution of
[
Xi, Xj

]
(u) = 0.

Hence, new linear homogeneous equations can be produced by means of Poisson
brackets and if they are linearly independent of the equations of system (A.15), then
it becomes necessary to append them to the initial system. On the other hand,

Definition 7 System (A.15) is complete if all of its Poisson Brackets are linearly dependent
of the initial system.

Remark 15 A complete system is compatible since it is not possible to obtain from the sys-
tem new first order equations independent of it.

If we consider system (A.15), in order to get a non constant solution, we need m < n.
Then the solution of the system depends on n−m arbitrary functions. Now,

• If from the study of the Poisson brackets we get m
′ −m new independent con-

ditions, we must append them to the system.

• In this way, we obtain an extendend system. The study of compatibility is
reduced to the study of the Poisson brackets of this new system.

This procedure is repeated until one gets to the complete system.

A.3 Involutive systems

The study of compatibility conditions is strictly related to the notion of involutive
systems. The main contributions in this field were given by E. Cartan and C. H.
Riquier.
The Cartan approach is a strictly geometric one and it relies on the calculus of exte-
rior differential forms. On the other hand, Riquier approach is a more algebric one
and it is based on the prolongations of a system od PDEs and on the study of rankes
of some matrices, so that the calculations turn out to be easier than the previous case.
For this reason, we will discuss only the Riquier approach.
Let us consider a system of s differential relations of order q

Φi(x, u, p) = 0, i = 1, . . . , s (A.17)

where x = (x1, x2, . . . , xn) ∈ RN are the independent variables, u = (u1(x), . . . , um(x))
are the dependent variables and p = (pj

α) identify the set of partial derivatives

pj
α =

∂|α|uj

∂xα
, j = 1, . . . , m, |α| ≤ q, |α| = α1 + α2 + · · ·+ αn.
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All the discussed properties are analysed locally, in fact all the constructions are
valid in the neighbourhood of a point X0 = (x0, u0, p0).
We define the following symbol

Definition 8 The simbol Gq of system (A.17) is defined as the vector space of the vectors of
coordinates ( ξ

j
α), where j = 1, 2, . . . , m, |α| = q and the ξ

j
α satisfy

m

∑
j=1

∑
|α|=q

ξ
j
α

∂Φi

∂pj
α

(X0) = 0 i = 1, 2, . . . , s. (A.18)

The subspace (Gq)k (k = 1, 2 . . . n− 1), contains the vectors with

ξ
j
β,l = 0 β = 1, 2, . . . , q− 1, l = 1, 2, . . . , k, j = 1, 2, . . . , m,

where β, l = (β1β2, . . . , βl−1, βl+1, . . . βn)

.
It is clear that (Gq)0 = Gq and (Gq)n = 0. We will call τk the dimension of the
subspace (Gq)k. For example

τ0 = m
(

n + q− 1
q

)
− rank

(
∂Φi

∂pj
α

(X0)

)
, τn = 0.

In general, it holds
τi+1 ≤ τi i = 0, 1, . . . , n− 1.

The sum
n−1

∑
k=0

τk

is called Cartan number, while we define the Cartan characters as follows:

σk+1 = τk − τk+1, k = 1, 2, . . . , n− 1.

We remark that τ0 = ∑n
k=1 σk and that the Cartan number can be expressed through

the Cartan characters. In fact,
n−1

∑
k=0

τk =
n

∑
k=1

kσk.

Furthermore, the Cartan characters are linked to the order of the variables (x1, x2, . . . , xn):
hence, each change in the order of the variables can modify the Cartan characters.
We now consider the prolonged system of order q + 1

DlΦi(x, u, p) = 0, l = 1, 2, . . . , n i = 1, 2, . . . , s, (A.19)

where the operator Dl is defined as the total derivative with respect to xl

Dl =
∂

∂xl
+ ∑
|α|

m

∑
j=1

pj
α,l

∂

∂pj
α

Definition 9 The system given by (A.17) and (A.19) is called a first prolongation of
(A.17).
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Let Gq+1 be the symbol of system (A.19), the it follows

dim(Gq+1) = m
(

n + q
q + 1

)
− rank

(
∂DlΦi

∂pj
α

)
|α = q + 1|.

It can be proved that

dim(Gq+1) ≤
n−1

∑
k=0

τk

Definition 10 A coordinate system for which

dim(Gq+1) =
n−1

∑
k=0

τk

is called a quasiregular coordinate system. If there exists a quasiregular coordinate system,
symbol Gq is defined involutive.

After studying the algebraic properties of (A.17), one has to analyse the differential
structure of the manifold defined by (A.19). From this system, one can recover N =
dim(Gq+1) derivatives of order q + 1, that are called main derivatives of order q + 1
of the system (A.19).
At this point, we can finally give the notion of involutive systems:

Definition 11 System (A.17) is involutive if

• it has an involutive symbol Gq;

• it has the property that after substituting the main derivatives of the prolonged system
(A.19) of order q + 1, the remaining equations of (A.19) are identities because of
system (A.17).

The idea of involutive system is extremely important in the theory of compatibility.
In fact, the following theorem holds:

Theorem 7 (Cartan) Any analytic system of partial differential equations after a finite
number of prolongations becomes either involutive or incompatible.

Hence, in order to clarify the compatibility of a system one can apply the following
alghorithm:

• the system is prolonged until its symbol becomes involutive;

• the system is prolonged again to verify if the new differential consequences are
independent of the equations of the system;

• if the new differential consequences are identities, the system is involutive. If
they are new independent relations, one has to go back to step one.

After a finite number of steps, one obtains the involutiveness or a contradiction.
Using Riquier’s approach, it is also possible to solve the inverse problem of the the-
ory of compatibility, that is the problem of determining the form of the functions
Φi(x, u, p), with the requirement that system (A.17) has a certain arbitrariness in the
solution.
We can distinguish three different inverse problems: in fact, referring to definition
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(11, there are cases in which only the first condition is violated, cases in which only
the second condition is not satisfied and cases in which both the conditions are not
fullfilled.
In order to solve, this kind of problems, one has to require that the system becomes
involutive. For example, if the second condition of definition (11 is satisfied, while
the first is violated it is necessary to increase the dimension of Gq+1, reducing the
rank of the matrix associated to system (A.19).
For what it concerns the solution of an analytic system, the following theorem holds:

Theorem 8 (Cartan-Khäler) If a system (A.17) of order q is analytic and involutive, then
there exists one and only one analytic solution of the Cauchy problem with assigned σk func-
tions depending on k arguments (k = 1, 2, . . . , n− 1).

Notice that the analyticity property is not a necessary condition for the existence of
a solution. In fact, theorems of existence for involutive systems of class C1 can be
given.
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