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Abstract: 

Accurate estimations of crop water requirements are necessary to improve 

water use in agriculture and to optimize the use of available freshwater 

resource. To this aim, the Agro-Hydrological models represent useful tools 

to quantify the crop actual evapotranspiration.  

To define the upper boundary condition of the Agro-Hydrological models it 

is essential to assess the atmospheric water demand, expressed as crop 

reference evapotranspiration, ETo. In literature several methods, different in 

terms of input data requirement and climate variables combinations, have 

been developed to estimate ETo. Among these methods it is commonly used 

the well-known FAO56 Penman-Monteith (FAO56-PM) thermodynamic 

approach. Implementing this method requires access to climate data usually 

measured by ground weather stations. Unfortunately, these instruments are 

not always available, in this case recent climate reanalysis databases are 

useful solution to overcome this limitation.  

Direct measurements of actual evapotranspiration, ETa, are important to 

validate the results of the model’s application. These measurements, 

especially for large scale use, can be time consuming and economically 

expensive. Moreover, improper installation of the sensors or incorrect 

calibrations could cause outliers in time series or compromise the continuity 

of the data time series. Recently Machine Learning (ML) algorithm have 

been developed to predict and fill the gaps in time series of ETa.  

The joint use of Agro-Hydrological models with proximity and remotely 

sensed data is one of the possible ways to accurately estimate crop water 

requirements. The remote observations of the land surface represent a 

reliable strategy to identify the spatial distribution of vegetation biophysical 

parameters, such as, crop coefficient Kc under actual field conditions.  

The general objective of the research was to assess the crop water 

requirements in two typical crops (citrus and olive) of the Mediterranean 

region, using FAO56 Agro-Hydrological model based on functional 

relationships Kc(VIs) between crop coefficient, Kc, and Vegetation Indices 

(VIs) calibrate using in situ measurements and VIs obtained by multispectral 

remotely sensed data. Moreover, it was evaluated the reliability of the 

reanalysis climate variables provided by ERA5-Land database to assess ETo 

in Sicily (Italy).  

The performance of the ERA5-Land reanalysis weather data to estimate 

ETo, was assessed considering 39 ground weather station distributed in 
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Sicily region. The ETo values estimated on the basis of climate variables 

from ERA5-L database encourage the use of reanalysis database to assess 

ETo. In general, the results were in agreement with those obtained from 

ground measurement, with average Root Mean Square Error (RMSE) equal 

to 0.73 mm d-1 and corresponding Mean Bias Error (MBE) equal to -0.36 

mm d-1. 

The research activities were carried out in two experimental fields. 

The first experimental field is a citrus orchard located near the Villabate 

town whereas the second one was the irrigation district 1/A, managed by 

“Consorzio di Bonifica della Sicilia” ex “Consorzio di Bonifica Agrigento 

3”, Castelvetrano, Sicily (Italy), characterized mainly by olives orchards.  

The time series of ETa, acquired by the Eddy Covariance (EC) tower 

installed in the citrus experimental field was processed using the Gaussian 

Process Regression (GPR) algorithm in order to fill the gaps. The 

performances were evaluated in terms of Nash Sutcliffe Efficiency (NSE) 

coefficient and RMSE. The values of NSE ranging between 0.74 and 0.88, 

whereas the RMSE values lower or equal to 0.55 mm d-1 confirm the 

suitability of the GPR model, to predict time ETa series. 

FAO56 Agro-Hydrological model was applied for the irrigation seasons 

2018, 2019 and 2020 (Villabate) and for the irrigation seasons 2018 and 

2019 (Castelvetrano). For each study areas, using VIs obtained from 

Sentinel-2 Multi Spectral Images (MSI) level 2A, a Kc(VIs) relationship was 

developed and then implemented in the model. The model was used to 

estimates spatial and temporal variability of the actual evapotranspiration, 

soil water content (SWC), in the root zone, crop coefficient and stress 

coefficient, as well as, to irrigation scheduling. 

For the citrus orchard a non-linear Kc(VIs) relationship was identified after 

assuming that the sum of two VIs, such as Normalized Difference 

Vegetation Index (NDVI), and Normalized Difference Water Index 

(NDWI), is suitable to represent the spatio-temporal dynamics of the 

investigated environment. The application of the FAO56 Agro-

Hydrological model indicated that the estimated ETa was characterized by 

RMSE, and MBE, of 0.48 and -0.13 mm d−1 respectively, while the 

estimated SWC, were characterized by RMSE = 0.01 cm3 cm−3 and the 

absence of bias, then confirming that the suggested procedure can produce 

highly accurate results in terms of dynamics of SWC and ETa under the 

investigated field conditions. 
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In the Castelvetrano irrigation district 1/A, a linear Kc(VI) relationship was 

identified following the Allen and Pereira (A&P) procedure which was 

based on the height of the canopy and the fraction of vegetation cover, the 

last was estimated by the NDVI. The differences between simulated and 

measured seasonal values was encouraging for the 2018, with value equal 

to 3%, while for the 2019 it was equal to 17%. These results highlight that 

the proposed model, with further improvements, and more accurate 

information such as the effective depth of root zone and the real volumes 

delivered by the hydrants, can be a useful tool for supporting the decision in 

the management of the irrigation demands in the irrigation district. 

Keywords: Remote sensing, FAO56 Agro-Hydrological model, crop 

coefficient, actual evapotranspiration, irrigation scheduling, reanalysis 

database, machine learning algorithm.  
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Chapter 1: Introduction 

1.1 Water uses in agriculture: General overview 

The increase of the global surface temperature caused by global warming 

and climate change, is having important ecological consequences, such as 

changing of the precipitation regime and the distribution of the vegetation 

species. The evidence and the scenarios shown in the Intergovernmental 

Panel on Climate Change (IPCC) reports, indicate that the surface 

temperature has increased of about 1°C from 1850 to the first two decades 

of the 21st century (2001–2020) (IPCC, 2022). These data are alarming; 

especially for the possible effect that, climate change may have on 

ecosystems, on populations and on economic sectors that depend by the 

climate conditions such as the agro-food sector. According to the World 

Population Prospects 2022 (UN DESA/POP, 2022), recently released by 

United Nations Educational, Scientific and Cultural Organization 

(UNESCO), although in the 2020 the growth rate of the global population 

fell under 1%, the projections suggest that world’s population could grow to 

around 8.5 billion in 2030 until to reach a peak of 10.40 billion during the 

2080. This produces an increase of natural resource use, such as food and 

fresh water. The freshwater resources are not infinite, especially for the 

water used in agriculture which represents about 70% of the available 

freshwater (UNESCO, 2021).  

Italy is among the European countries with the highest demand on irrigation. 

In the irrigation season 2009-2010, 11,618 Mm3 were used about 

2,489,914.70 ha (ISTAT, 2014). However, irrigation efficiency is low and 

about 50% of the water is wasted (ISTAT, 2014). For this reason, is very 

important to develop strategies to increase water use efficiency and reduce 

water demand. The optimization of water use efficiency is one of the main 

challenges of the 21st century, as discussed at the global level by politicians 

and the scientific community.  

Agriculture 4.0 is the last advancement in farming technology, based on four 

main pillars: increasing productivity, sustainable use of natural resources, 

resilience to climate change and reducing food waste (Zhai et al., 2020). 

Technological innovation in irrigation aims to improve the use of water in 
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agriculture thus, irrigation systems are characterized by devices that ensure 

high uniformity of distribution and reduce water demand. If from one on 

side the technological innovation contributes to reducing water and energy 

consumption, on the other side it is necessary to implement political actions 

finalized to regulate the pricing policies, in order to guarantee to farmers an 

efficient service. 

Water management for irrigation generally involves many different 

professional figures distributed on several levels and connected to each other 

by a dense network of structures and offices distributed throughout the 

territory. 

In Italy, the irrigation distribution is managed by the “Associazione 

Nazionale Bonifiche Irrigazioni miglioramenti fondiari” (ANBI) through 

141 territorial structures named “reclamation consortium”, which covers a 

surface equal to 59% of the total national surface characterized by different 

agricultural systems suitable for the different climate conditions. The main 

activities of the reclamation consortiums are building and management of 

defence and hydraulic regulation structures, as well as the distribution and 

pricing of water for irrigation scope. 

In Sicily (D.P.R n. 467 of 12/09/2017) locate two actual reclamation 

consortiums named “Consorzio di Bonifica della Sicilia Occidentale” and 

“Consorzio di Bonifica della Sicilia Orientale”, that incorporating the 

previous 11 consortiums divided as 5 (Trapani 1, Palermo 2, Agrigento 3, 

Caltanissetta 4, Gela 5) and 6 (Enna 6, Caltagirone 7, Ragusa 8, Catania 9, 

Siracusa 10, Messina 11), respectively. The main crops in both areas are 

those typical of the Mediterranean basin such as olives, citrus, vineyards and 

open field vegetables and arable fields, with the sporadic presence of 

floriculture plants.  

Water supply is conveyed by pressure pipes in almost the totality of the 

“Consorzio di Bonifica della Sicilia Occidentale”, while in the “Consorzio 

di Bonifica della Sicilia Orientale” they alternate with open channels. The 

last, need more control and maintenance activities than the other in order to 

guarantee sustainable distribution efficiency. 
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1.2 Strategies for sustainable water use in agriculture 

Managing the water resources in a sustainable way means finding new 

equilibriums among human needs, technological progress, and environment 

quality. The improvement of water use efficiency, by innovative 

technologies and irrigation techniques, will reduce water waste. It can 

represent a reliable solution to optimize water use and increase production, 

especially in areas where water resources are limited, and water scarcity 

characterizes most part of the year climate.  

Low pressure localized irrigation can be a reasonable choice to achieve high 

water use efficiency levels. In this field, Subsurface Drip Irrigation (SDI) 

may provide an improvement in irrigation water use efficiency. Ayars et al. 

(2015) identified the SDI main advantages such as: increased yield, 

improved crop quality, reduction in applied water and reduced agronomic 

costs for weed control, fertilization, and tillage. Furthermore, the pipeline’s 

position under the soil surface avoids the contact between irrigation water 

with operators and products; this allows the use of reclaimed wastewater for 

irrigation purposes (Palacios-Díaz et al., 2009). On the one hand SDI is a 

suitable method to optimize water use efficiency, on the other hand, the 

significant initial installation cost, suggests that the application of SDI can 

be really advantageous if the system efficiency is guaranteed for at least 15-

20 years (Lamm et al., 2015). The possibility to automate the system, 

combined with the capacity to apply small volumes, allow the adoption of 

Deficit Irrigation (DI) strategies.  

The latter consists in applying an amount of water less than the total plant 

water needs. When DI is applied during specific phases of crop growth, the 

DI strategy is named Regulated Deficit Irrigation (RDI) (Chalmers et al., 

1981). This strategy has been studied by several authors (Castel, 2000; 

Gonzalez-Altozano and Castel, 2000; Rallo et al., 2017; Puig-Sirera et al., 

2021), asserting that the application of RDI during the stage II of crop 

growth allows the water-saving without determining significant effects on 

crop yield. However, the application of DI strategies requires monitoring of 

soil and plant water status to determine the amount of irrigation necessary 

to fulfil the actual plant water requirement and to avoid severe crop water 

stress, which can produce a decline in crop yield and/or irreversible effects 

on crop growth. 
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1.3 Models and remotely sensed data to assess crop water 

requirements 

To estimate crop water requirements over large spatial scales, quasi-

continuous over-time and spatially distributed meteorological information 

are necessary. 

Several gridded weather and climate dataset have been generated and are 

freely downloadable at global scale. These offer different temporal 

resolution and moderately high spatial resolution. The European Centre for 

Medium-Range Weather Forecasts (ECMWF), coupling weather forecast 

models and data assimilation systems, periodically ‘reanalyse’ available 

past observations to create global data sets of atmospheric and land surface 

variables represented in ‘maps’ without gaps. Reanalysis data, based on data 

assimilation, are among the most used to study weather and climate (Parker, 

2016). Reanalysis method combines model and data based on past 

observations from across the world, for monitoring and forecasting climate 

change, for research, education, and commercial applications. 

The latest ERA5-Land (ERA5-L) product released in 2019 as the evolution 

of previous ERA5 dataset, aimed at enhancing the resolution of the spatial 

grid to 0.1° latitude and 0.1° longitude. The usability of ERA-L to assess 

ETo, was studied by Pelosi et al. (2021), who found that in absence of 

ground weather data the ERA5-L database is a suitable resource to replace 

missing weather data. Recently also Araújo et al. (2022), using the air 

temperature, Ta, (°C) retrieved from ERA5-L, found that in some zone of 

Pernambuco state where ground weather data are not always available, the 

reanalysis database represents a good alternative. 

Based on the evaluation of sensitivity coefficients, Sc, sensitivity analysis 

allows us to understand the effect on the model's output because of changing 

the value of the inputs. Several applications of sensitivity analysis are 

described in literature considering different reanalysis database, different 

theoretical approaches, and weather condition (Gong et al. 2006; Liang et 

al. 2008; Koudahe et al. 2018; Anderton et al. 2002). This approach allows 

to identify which variables need greater precision in measurement or 

estimation. 

The results with the above-mentioned methods depend on the quality and 

the continuity of the available data time series. The occurrence of acquisition 
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gaps of one or more sensors compromises the continuity of the records; 

anomalies are generally due to failure, improper installation of the sensors 

or incorrect calibration, as well as the poor maintenance of sensors or data 

logger. Moreover, the occurrence of outliers in time series can also 

compromise the output quality and could generate inconsistent results 

mainly when model simulations are applied. 

Machine learning (ML) techniques have recently been proposed as suitable 

methods for time series gap-filling. Bellido‐jiménez et al. (2021) assessed 

the performance of three different ML models such as MultiLayer 

Perceptron (MLP), Support Vector Machine (SVM) and Random Forest 

(RF), to fill the gaps in daily rainfall series. Moreover, ML models have 

been often used in agriculture applications to simulate crop reference 

evapotranspiration (Chen et al., 2022; Kim et al., 2020) with Root Mean 

Square Error (RMSE) values ranging between 0.28 to 1.14 mm d-1 as well 

as a Mean Absolute Error (MAE) between 0.18 to 0.87 mm d-1.   

Among other ML models, the Gaussian Process Regression (GPR) 

associated with Sentinel-2 Multi Spectral Images (MSI) level 2A has been 

used to investigate the possibility to assess the Leaf Area Index (LAI) at the 

field scale and support farmers’ management (Amin et al., 2021). The GPR 

is a non-parametric model based on statistical Bayesian theory, 

characterized by a mean and a kernel function, that can be used to solve 

supervised multivariate regression and classification issues such as high-

dimensional, small-sample, and nonlinear problems (Rasmussen et al., 

2006; Murphy, 2012). 

Despite several authors have been investigated the suitability of ML models 

to predict daily actual evapotranspiration, in most cases; they have the 

availability of long temporal series of data for training and validating the 

models. However, when the availability of training data is limited, the GPR 

model can allow to retrieval of synthetic temporal series (Rasmussen et al., 

2006), representing a reasonable choice to fill gaps in the considered time 

series of actual evapotranspiration. Moreover, the use of reanalysis climate 

data as well as Remote Sensing (RS) data, to estimate ETa, can be a useful 

solution to predict ETa in those areas where ground measurements are not 

available. 

The monitoring of the soil and plant water status is crucial to estimates the 

crop water requirement of the plant. A widely accepted practical approach 
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to estimate crop water requirement is the FAO56 (Allen et al. 1998), in 

which crop potential evapotranspiration, ETc, is calculated as the product of 

crop reference evapotranspiration, ETo, and a single or dual crop coefficient 

(Kc or Kcb + Ke), where ETo represents the meteorological evaporative 

demand (Allen et al. 1998). The standard method to estimate ETo is the 

FAO56 Penman–Monteith (PM) equation (Allen et al. 1998). Due to its 

simplicity, the FAO56 approach has been widely applied to various crops to 

estimate water requirements and to compute all the terms of Soil Water 

Balance (SWB) in the root zone, based on a simplified reservoir scheme. 

Actual crop evapotranspiration, ETa, can be, therefore, estimated as the 

product of ETo and the term (Kcb Ks + Ke), where Ks is the stress coefficient.  

Based on the first publication of the tabulated values of crop coefficients 

(Allen et al. 1998), in the last decade, the scientific community has revised 

the crop coefficients values considering the specific crop varieties or climate 

conditions and adding Kc values for crops not originally considered (Pereira 

et al. 2015; Rallo et al. 2021). However, these coefficients are generally 

referred to specific conditions, such as the presence or the absence of active 

ground cover or weeds, and are assumed valid during the entire irrigation 

season, without including the possibility of time-variable conditions. 

Despite the RS technique has not been considered in the FAO56 method, it 

represents an useful tool to quantify various vegetation parameters such as 

albedo, surface temperature, crop coefficients, and LAI, with the advantage 

to capture their spatial and temporal variability at different scales. Regarding 

the crop coefficient Kc, two different RS techniques have been proposed in 

literature. The first one is analytical, and based on the direct application of 

the PM equation in which input data for crop characterization (LAI, height 

and albedo) are estimated using multispectral images operating in the 

Visible and Near-Infrared (VIS–NIR) domain (D’Urso, 2001; Minacapilli 

et al. 2008); the second technique is based on a Vegetation Indices (VIs) 

approach, based on the assumption of a direct relationship between Kc(VIs) 

and various vegetation spectral indices (i.e., NDVI, SAVI, EVI, etc.) 

derived from reflectances in the VIS–NIR, domain (Alam et al., 2018; Er-

Raki et al., 2013; Gontia and Tiwari, 2010; Kamble et al., 2013). An 

overview of the RS data and missions mostly used to implement the Kc(VIs)  

approaches, running from satellite missions with long imagery archives to 

new satellite programs and constellations, has been recently proposed by 
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Pocas et al. (2020). The main advantage of the Kc(VIs) approach is that the 

VIs operating in the VIS–NIR domain are readily available; on the other 

hand, the Kc(VIs) approach is based on crop-specific statistical regressions, 

whose assessment requires calibration and validation procedures. 

1.4 Thesis objectives 

The planning of irrigation water uses through strategies that meet 

environmentally sustainable policies is one of the main challenges of the 21st 

century.  

The availability of climate and RS data characterized by accurate spatial and 

temporal resolution, joint with the innovative proximity represents reliable 

support to achieve the environmental sustainability objectives planned by 

the governments. The general objective of the thesis was to assess crop 

water requirements using models based on proximal and remotely sensed 

data at different spatial scales. In two study areas, characterized by typical 

Sicilian crops and Mediterranean climate, the temporal and spatial 

variability of the VIs has been used to compute functional relationship 

between crop coefficient and VIs. While the atmospheric evaporative 

request was evaluated through the main climate variables, retrieved from 

ground weather station and reanalysis data.  

The specific objectives of this thesis work can be summarized in four main 

lines: 

• Evaluate the ERA5-L climate variables quality, to predict daily crop 

reference evapotranspiration in Sicily, Italy, and by means of sensitivity 

analysis identify the main variables that most influence the estimation of 

ETo by the FAO56 Penman-Monteith (FAO56-PM) equation. 

 

• Assess the suitability of the ML algorithm, based on proximal and RS 

data, to fill gaps in daily time series of actual evapotranspiration acquired 

in Mediterranean citrus and olive orchards. 

 

• Estimate, for typical Sicilian crops (citrus and olives) reliable crop 

coefficient Kc values with VIs retrieved by remotely sensing using a 

specific relationship Kc(VIs). 
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• Evaluate the suitability of the proposed Kc(VIs) relationship combined 

with the FAO56 Agro-Hydrological model to estimate soil water 

contents(SWC) and actual crop evapotranspiration. 

Regarding the first point, the scope of the analysis allows to assess the 

quality of the ERA5-L climate variables in a region like Sicily 

characterized by a heterogeneous morphology and the presence of the 

sea that could influence the climate variable; likewise, it identifies 

which climate variables need to be estimated more accurately. 

Finally, the second point allows to test the prediction capability of the 

GPR algorithm when the availability of training data is limited. 

The third and fourth points focus the attention on the estimation of 

crop water requirements based on predictive relationships Kc(VIs). In 

the literature this approach has been applied for herbaceous crops that 

uniformly cover the soil surface, while only a few investigations have 

been carried out on sparse vegetation; for these cases, experimental 

research is still necessary to develop reliable predictive relationships 

Kc(VIs), especially for sparse tree crops such as citrus and olives 

orchards, characterized by sporadic presence of active ground weeds 

that can temporarily spread over the soil surface. 

1.5 Thesis Structure  

The thesis is organised into 6 chapters, the first and the last ones report the 

introduction and conclusion of the thesis work. The other chapters are 

subdivided in four main parts: ii) theoretical background, iii) materials, iv) 

methods, v) results and discussion.  

Chapter 1: Introduction 

This chapter is divided into five parts: the first summaries the importance of 

the water saving in agriculture and the institutions responsible of the 

agricultural water management at national (Italy) and regional (Sicily) 

levels. The second part explains the advantages in terms of water use 
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efficiency and water saving achievable using innovative systems and 

unconventional irrigation strategies. The third part reports the contribution 

of the remotely sensed data joint with the Agro-Hydrological models to 

assess crop water requirements. The fourth and fifth parts report the 

objectives and the thesis structure. 

Chapter 2: Theoretical Background 

The second chapter describes the theoretical background. It is divided into 

four main sections. The first outlines the concept of the crop water 

requirement in agriculture, whereas the second part describes the 

schematization of the energy and mass balances approaches in the Soil-

Plant-Atmosphere (SPA) system. The third section shows the theoretical 

basis of the FAO56 Agro-Hydrological model implemented in the thesis 

work. Moreover, the section 2.3.1 explores the possibility to derive the crop 

parameters by means the analysis of the vegetation spectral response. The 

last part describes the techniques to monitor the different components of the 

SPA system. 

Chapter 3: Materials  

The third chapter initially describes the position of the 39 weather stations, 

managed by the “Servizio Informativo Agrometeorologico Siciliano” 

(SIAS), and the variables considered for the further analysis. The second 

and the third section describes the citrus orchard located near to the Villabate 

town and the irrigation district 1\A managed by “Consorzio di Bonifica della 

Sicilia Occidentale”, located in Castelvetrano, Sicily (Italy), respectively. 

Overall, the chapter three describes instruments and tools used for the 

research activities in both the case studies, such as weather station, Eddy 

Covariance (EC) flux towers and RS satellite images. 

Chapter 4: Methods  

This chapter reports the methodologies used in the research application, as 

well as the models and the algorithms implemented. The first and second 

sections report the FAO56-PM equation to estimate crop reference 

evapotranspiration, ETo, and the GPR algorithm to predict actual 
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evapotranspiration, ETa. The third and fourth parts describe the approaches 

used to calibrate the functional relationships Kc(VIs) and the boundary 

condition set to run the FAO56 Agro-Hydrological model, respectively for 

the citrus orchard and the irrigation district 1\A. In particular, the fourth part 

describes the possibility to use the FAO56 Agro-Hydrological model in two 

different modes: Water Use Mode (WUM) and Water Requirement Mode 

(WRM). Finally, the last section details the statistical indicators used to 

quantify the quality of the results obtained. 

Chapter 5: Results and Discussion 

In this part, results are outlined and critically analysed. The chapter focuses 

mainly on the application of the ERA5-L climate variables to estimate crop 

reference evapotranspiration, ETo, the use GPR algorithm to predict actual 

evapotranspiration, ETa, and on the assessment of crop water requirements 

and irrigation scheduling using the FAO56 Agro-Hydrological model in a 

spatially distributed way. The result obtained by the application of FAO56 

Agro-Hydrological model in the citrus orchard are compared to flux tower 

and SWC measurements, whereas in the irrigation district the results are 

compared to the irrigation volumes delivered by the hydrants. 

Chapter 6: Conclusion 

The chapter summarizes main results obtained in the thesis work. The 

potentials and limits of the applied methodology are highlighted. Moreover, 

future developments in this researcher line are suggested. 
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Chapter 2: Theoretical background 

2.1 Crop water requirement assessment in agriculture: General 

overview 

The correct quantification of the water resource availability becomes largely 

important for agricultural, civil and industrial activities. Under the evident 

reduction in water availability the competition among the different 

demanding sectors, drastically increases. In the Mediterranean regions, 

irrigation practices are the highest water consume activities especially 

during the irrigation season. Therefore, accurate assessments of Crop Water 

Requirement (CWR) are necessary to improve and optimize the irrigation 

water use in agricultural. 

The CWR in absence of irrigation can be summarized as the difference 

between evapotranspiration (ET) and net precipitation (Pn). 

CWR = 𝐸𝑇 − 𝑃𝑛 (2.1) 

The net precipitation, Pn can be easily calculated, as reduction of the gross 

precipitation of the canopy interception, by means empirical methods 

(Braden, 1985). While the ET represents the sum of two different 

components: Evaporation (E) from the soil and Transpiration (T) from the 

plant canopy. Evaporation explains the physical process in which liquid 

water is converted to vapor and removed from the evaporating surface. 

The transpiration describes the process of vaporization of water contained 

in plant tissue, converted from the liquid state to vapor. 

The assessment of the amount of water loss from the soil (through 

evaporation) and vegetation (through transpiration) (Pereira et al., 2015), in 

fact, is fundamental to improve agricultural water irrigation saving. 

The evaporation and transpiration process are simultaneous and difficult to 

be distinguished (Allen et al., 1998), therefore is necessary to use theoretical 

schematization to simplify the complex environmental systems. 

One of the early approaches to estimate the amount of the evapotranspiration 

fluxes was developed by Penman (1948) with the “big-leaf” approach, for 

surfaces characterized by wet surface-atmosphere interface. This approach 
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was further elaborate by Penman (1956), introducing the concept of stomatal 

resistance, rs (s m-1), representative of the resistance of the stomata to the 

flux vapour, joint with the aerodynamic resistance, rah (s m-1). 

The up scaling from leaf to canopy of the conceptualization provided by 

Penman (1956) was realised by Monteith (1965) introducing the big-leaf 

approach. The approach is based on hypothesis that the canopy is modelled 

as a single large leaf placed at a fixed height inside the crop, where the latent 

heath flux or evapotranspiration, λET, is expressed by the know formulation 

named Penman-Monteith (PM) equation: 

𝜆𝐸𝑇 =
∆(𝑅𝑛−𝐺0)+𝜌𝑐𝑝

(𝑒𝑠−𝑒𝑎)

𝑟𝑎ℎ

∆+𝛾(1+
𝑟𝑐

𝑟𝑎ℎ
)

 (2.2) 

Where: Δ(kPa °C-1) is the slope of vapor pressure curve, Rn (MJ m−2 d−1) is 

the net radiation at the crop surface, G0 (MJ m−2 d−1) is the soil heat flux 

density, ρ (kg m-3) is the air density, cp (J kg-1 K-1) is the specific heat of air 

at constant pressure, es and ea (kPa) are the saturation and actual vapor 

pressure, rah and rc (s m-1) are aerodynamic and canopy stomatal resistance, 

γ (kPa °C-1) is the air psychrometric constant. 

The above approach, although very rigorous, is complex due to the need of 

estimations of crop-specific rah and rc. In order to provide a solution to this 

limitation, Allen et al. (1998), introduced the concept of crop reference 

evapotranspiration, ETo. This quantity is defined as “the rate of 

evapotranspiration from a hypothetical reference crop, characterized by 

height of 0.12 m, surface resistance of 70 s m−1 and albedo of 0.23, closely 

resembling the evapotranspiration from an extensive surface of green grass 

of uniform height, actively growing, well-watered, and completely shading 

the ground”. 

To compute the value of potential evapotranspiration, ETc for every crop 

type, in well-watered unstressed condition, Allen et al. (1998) introduced 

the concept of crop coefficient, Kc. This coefficient represents an integration 

of the effects of the main characteristics that distinguish the crop reference 

from a generic crop (Allen et al., 1998). 

The Kc can be defined as the ratio between, ETc and ETo. 
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𝐾𝑐 =
𝐸𝑇𝑐

𝐸𝑇𝑜
 (2.3) 

For several crop these values are cataloged in specific table in the FAO56 

paper (Allen et al., 1998) and recently updated by Rallo et al. (2021). 

Moreover, in the FAO56 paper, there is the methodology to adapt the Kc 

values to different weather conditions. 

Combining ETc from eq. (2.3) and replacing ETc in eq. (2.1) it is possible to 

obtain the crop water requirement for every crop type. 

CWR = (𝐸𝑇𝑜𝐾𝑐) − 𝑃𝑛 (2.4) 

Therefore, in agricultural applications and for irrigation purposes, CWR can 

be estimated using equation (2.4). When more accurate estimates are 

needed, it is necessary to consider approaches based on the physical 

resolution of complex environmental systems.  

2.2 Soil-Plant-Atmosphere (SPA) system: Energy and Soil water 

balance approach 

The schematization of the complex environmental systems is based on the 

identification of blocks named “compartments” these can be ideal or real 

regions of the space. An environmental system is defined by the 

interconnection between different compartments (Vismara, 1992). 

In agricultural ecosystems, Philip (1957) suggests that hydraulic interactions 

can be conceptualized with the SPA system.  

The hydraulic relationships in the SPA system can be studied by resolving 

the Energy Balance (EB) or SWB. Whose terms are shown in figure 2.1. 

In the EB, the Rn, is in part transferred in the soil, G0, while the main amount 

is transformed in sensible, H, (W m-2) and latent, L, (W m-2) heat or 

(evapotranspiration). 

In the EB approach, ET is obtained as residual term of EB 

𝜆𝐸𝑇 = 𝑅𝑛 − 𝐻 − 𝐺0 (2.5) 

Where: λET is latent heat flux or evapotranspiration, Rn is net radiation, H 

is sensible heat flux and G0 soil heat flux. 
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The models based on the resolution of the EB, in general use two different 

schematizations: the first is the “one source” or “big leaf” (Monteith, 1965), 

this consider the vegetation as an homogeneous, semi-transparent surface in 

which the phenomena of soil evaporation and plant transpiration are 

considered jointly. On the other hand, the second approach known as “two-

layer” or “two-source” considers the two previous phenomena separated 

through a partition between energy fluxes in the soil and energy fluxes in 

the canopy alone (Shu’itleworth and Wallace, 1985). 

 
Figure 2.1: Schematic representation of the two main approaches used to schematize the 

SPA system. The red box shows the energy balance components, while the blue box shows 

the hydrological balance terms. The intersection of the box indicates the evapotranspirative 

component, which is common to the two approaches. 

The resolution of the WB between the incoming flux (precipitation, P, 

irrigation, I and capillary rise, CR) and exiting (ETa, and dep percolation, 

DP), allows to estimate, the SWC dynamic, in the SPA system. 

∆SWC = 𝑃 + 𝐼 + 𝐶𝑅 − 𝐸𝑇 − 𝐷𝑃 (2.6) 

The WB models can be divided in two categories: the first, considers the 

SPA system as a single reservoir in which the terms of the SWB are 

described through simple schematizations often based on empirical 

equations. 
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The other category is based instead on a more complex schematization that 

uses physics-based laws for the study of water fluxes in unsaturated systems 

coupled with equations or models describing root drawdown in the soil. 

For both categories, in case of fully availability of water in soil, potential 

crop evapotranspiration, ETc can be calculated as product between crop 

coefficient Kc and crop reference evapotranspiration, ETo.  

The first category of models, includes the FAO56 Agro-hydrological model 

presented in FAO56 paper (Allen et al., 1998), while in the second one are 

included HYDRUS-2D/3D, SWAP, ACRUS etc. models, in which the 

equations that describes physical phenomena are solved to compute the 

balance terms. 

2.3 Water exchange modelling in the SPA system: FAO56 Agro-

hydrological model 

In the FAO56 Agro-hydrological model (Allen et al., 1998) the soil is 

considered as a bucket characterized by a specific capacity, that depend by 

root depth and the hydraulic soil proprieties (fig. 2.2).  

 
Figure 2.2: schematization of the SPA system in the FAO56 Agro-hydrological model 

(Rallo et al., 2008). 

Specifically, in this model the SWC dynamic is expressed through an 

exhaustion function.  
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𝐷𝑖 = 𝐷𝑖−1 − (𝑃𝑖 − 𝑅𝑜𝑖) − 𝐼𝑖 − 𝐶𝑅𝑖 + 𝐸𝑇𝑎,𝑖 + 𝐷𝑃𝑖 (2.7) 

where: Di and Di−1 (mm) are the root zone depletions at the end of the day i 

and i-1, Pi (mm) is the net precipitation, Roi (mm) is the surface runoff, Ii 

(mm) is the irrigation depth, CR (mm) is the capillary rise from underground 

aquifer, ETai (mm) is the actual crop evapotranspiration, and DPi (mm) is 

the deep percolation of water moving out of the root zone. 

The depletion function domain ranges between zeros, corresponding to the 

field capacity, θfc to a maximum value expressed by the Total Available 

Water (TAW) (mm). 

TAW = 1000(𝜃𝑓𝑐 − 𝜃𝑤𝑝)𝑧𝑟 (2.8) 

where θfc (cm3 cm-3) and θwp (cm3 cm-3) are the SWC at field capacity and at 

wilting point, respectively, and zr is the root depth (m). 

As proposed by Allen et al. (1998) the FAO56 model can be implemented 

following the single or dual crop coefficient approach. Specifically in the 

single crop coefficient approach the relationship between daily potential 

evapotranspiration, ETc, and daily crop reference evapotranspiration is 

described trough the crop coefficient, Kc. 

𝐸𝑇𝑐 = 𝐾𝑐𝐸𝑇𝑜 (2.9) 

where ETc is the potential evapotranspiration referred a hypothetic surface 

cultivated in well-watered condition in absence of stress condition. 

In the dual crop coefficient approach the Kc is separate into the basal crop 

coefficient, Kcb, and soil water evaporation coefficient, Ke, including a 

corrective coefficient, Ks, expressive of actual crop water stress condition. 

𝐸𝑇𝑎 = (𝐾𝑐𝑏𝐾𝑠 + 𝐾𝑒)𝐸𝑇𝑜 (2.10) 

where: ETa and ETo are expressed in mm d-1. 

The Kcb coefficient is representative of the ratio between the potential 

transpiration Tp, and ETo. The Kcb coefficient considers the factors referred 

to the ground cover condition, crop characteristics and rah. In particular, Kcb 

depends on the height of the crop, hcrop, which influences the rah, as well as, 

on the albedo, α, on which the amount of available solar radiation for 
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transpiration processes and finally on the rc, on which the exchanges of 

water vapor between plant and atmosphere. 

In the table 17 of the FAO56 paper are reported typical values of Kcb referred 

to many crops in specific environmental conditions with minimum relative 

air humidity, RHmin (%) at least equal to 45% and wind speed at 2 meter 

above the soil, U2, equal to 2 (m s-1). Therefore, when the real conditions are 

different from the theoretical ones it is necessary to correct the values using 

the following expression. 

𝐾𝑐𝑏 =  𝐾𝑐𝑏(𝑡𝑎𝑏.) + [0.04(𝑈2 − 2) − 0.004(𝑅𝐻𝑚𝑖𝑛 − 45)] (
ℎ𝑐𝑟𝑜𝑝

3
)

0.3

 (2.11) 

where Kcb(tab.) is the basal crop coefficient tabulated. 

The temporal dynamic of Kcb changes according to the phenological cycle 

of the crops, for this reason, the authors of the FAO56 paper suggest a 

division of the phenological cycle into four periods, each with different 

specific duration for the crop considered.  

 

Figure 2.3: Temporal dynamic of the basal crop coefficient Kcb for a dry bean crop (Allen 

et al., 1998). 

Such as an example, figure 2.3 shows the Kcb temporal dynamic during the 

four phenological phases, for a dry bean crop. 

The water stress coefficient, Ks, is representative to the real SWC condition, 

therefore the actual transpiration, Ta, can be obtained as product between Ks 

and potential transpiration Tp. 
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𝑇𝑎 = 𝑇𝑝𝐾𝑠 (2.12) 

Figure 2.4 shows the relationship between Ks and SWC, as well as, the 

relation between the Ks values and matrix potential, expressed as the height 

of the water column, obtained considering the soil retention curve. 

The relationship between Ks and SWC, numerically can be evaluated 

through a linear relation. 

𝐾𝑠 =
TAW−𝐷𝑖

TAW−RAW
 (2.13) 

where: Di is the depletion at i-th day and Readily Available Water (RAW). 

The RAW is expressed as the product between TAW and the depletion 

factor, p. 

RAW = 𝑝 TAW (2.14) 

where the depletion factor, p, is the rate of TAW that a crop can extract from 

the root zone without suffering water stress, to which corresponds a value 

of SWC > critical threshold of soil water content, θ*, (cm3 cm-3) while when 

the SWC< θ* the Ks value is under the unit. Values of p are listed in table 22 

of the FAO56 and are specific for the different crops, they generally varies 

from 0.30 (crops with shallow roots) to 0.70 (deep rooted crops) is possible 

considering a value equal to 0.50 for many crops (Allen et al., 1998). When 

the atmospheric water demand conditions are different from those where the 

listed values were obtained, the authors of the FAO56 paper suggest a linear 

correction relationship in function of the crop reference evapotranspiration. 

𝑝 = 𝑝𝑡𝑎𝑏 + 0.04(5 − 𝐸𝑇𝑜) (2.15) 

where ptab is the depletion factor tabulated and ETo is the crop reference 

evapotranspiration. 
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Figure 2.4: Relationship between water stress coefficient Ks and soil water content (SWC) 

(Allen et al., 1998) readapted. 

The evaporative coefficient, Ke, represent the potential evaporation Ep, and 

ETo ratio.  

This coefficient depends on the SWC condition and can be evaluated 

numerically as minimum of two functions. 

𝐾𝑒 = 𝑚𝑖𝑛{𝐾𝑟(𝐾𝑐_𝑚𝑎𝑥 − 𝐾𝑐𝑏); 𝑓𝑤𝐾𝑐_𝑚𝑎𝑥} (2.16) 

where Kr is a dimensionless reduction coefficient ranging between 0, when 

the soil is dry, and 1 during the periods after rain or irrigation events; Kc_max 

is the maximum value of the sum Kcb + Ke and fw is the fraction of soil wetted 

not covered by the vegetation. 

2.3.1 Crop coefficient estimation based on spectral data 

It is possible to conceptualize in three components the energetic interactions 

between a generic surface, S, to the incident Electroagnetic (EM) energy: Ei, 

reflected energy, Er, absorbed energy, Ea, and transmitted energy Et (fig. 

2.5). 
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Figure 2.5: Conceptual schematization of the interaction between incident energy Ei and a 

generic surface S (Lechi Giovanmaria, 2001). 

The ratio between each component and Ei, defines three different optical 

properties: reflectance, ρ, absorbance α and transmittance, τ, specific for 

every material and dependent only on the chemical-fiscal proprieties of the 

surface of the material. The sum of these components expresses the principle 

of energy conservation. 

𝜌 + 𝜏 + 𝛼 = 1 (2.17) 

The values of the three coefficients, for the same surface change in function 

of the wavelength, λ, of the incident EM energy, Ei. The reflectance, ρ, 

variation in function of the different wavelengths of the solar spectrum, λ, is 

represented in a graph called spectral signature. Based on the analysis of the 

spectral signature acquired from a vegetated surface (fig.2.6) (Moroni et al., 

2019), it is possible to observe different regions of the EM spectrum 

representative of the plant water status. 

In the region of the VIS spectrum (400-750 nm) almost the energy is 

absorbed especially by the chlorophyll, in fact, there are two evident 

minimums values of ρ in correspondence the pigment absorption peaks 

(420-490 nm) and in the red region (660 nm). While in correspondence of 

the 540 nm and 690-720 nm wavelengths, there are two peaks named green 

peak and red edge, respectively. The region of the NIR (750-1350 nm) is 

characterized by high values of ρ representative of the morph-anatomical 

characteristics of the leaf (M. Boyer et al., 1988).  
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Moreover, in the 970 nm and 1200 nm wavelengths, there are two 

minimums due to the absorption of water (Jacquemoud et al., 2003). Other 

characteristic peaks of absorption of water can be seen in the Short-Wave-

Infrared (SWIR) region (1400-2500 nm) centred around the 1450 nm, 1940 

nm and 2200 nm. 

 
Figure 2.6: Typical vegetation spectral signature (Moroni et al., 2019). 

The analysis of the vegetation spectral signature can provide information 

about the plant’s health state and water status  (Rallo et al., 2014; Sims and 

Gamon, 2003). 

In the NIR region, high values of reflectance can indicate healthy vegetation 

(Moroni et al., 2019). With reference to the analysis of the plant water status, 

Bal et al. (2021) observed that in the VIS region the reflectance values were 

more accentuated in the vegetation with high degree of desiccation (line 17), 

rather than in the well-watered vegetation (line 11) (fig 2.7). 
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Figure 2.7: Vegetation spectral signature in different water status condition: absence of 

stress (line 11), high water stress (line 17) (Bal et al., 2021). 

The spectral signature analysis can be supported introducing VIs (Moroni et 

al., 2013). Regarding the plant water status detection, the stressing agents 

affect reflectances in certain wavelengths representative to the physiological 

characteristics of plants, the appropriate combination of these bands allows 

to monitor plant’s health state (Moroni et al., 2019). The VIs tries to assess 

the possible changes in reflectances values in specific bands of the EM 

spectrum, as these can be a symptom of biological alteration. Many VIs has 

been empirically obtained combining bands associated to specific 

wavelengths of the vegetation spectral signature. Xue and Su, (2017) 

published an interesting review of VIs available in the literature, showing 

their specific application field according to the vegetation of interest and 

environmental condition. Among the VIs based on the variation of the 

biochemical and morpho-anatomical characteristics the Normalized 

Difference Vegetation Index (NDVI) (Rouse et al., 1974) is commonly used 

to monitor plant vigour, amount of green biomass, plant stress, 

photosynthetic and agricultural crop yield (Asrar et al., 1984; Moriondo et 

al., 2007; Sellers, 1987). 

NDVI =
𝜌860−𝜌640

𝜌860+𝜌640
 (2.18) 
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where ρ860 and ρ640 are the reflectance of the NIR and red, respectively. The 

reflectance in the red wavelength, ρ640, is representative of the absorption of 

light by chlorophyll, while the wavelength of the NIR, ρ860, is sensitive to 

changes in the internal structure of the leaves (Petropoulos and Kalaitzidis, 

2012). Usually, NDVI assume values ranging between -1 to +1. In general, 

water surface has typical values less than 0, bare soils between 0 to 0.30 and 

vegetation over 0.35 until 0.75 -0.80 (Kriegler et al., 1969). 

However, when a specific vegetated surface is fully covered and chlorophyll 

content is saturated, NDVI is not able to describe the real amount of 

chlorophyll and increase of this variable does not result in proportional 

increase of the NDVI (Huete et al., 1997). 

The VIs can be useful also to monitor the surface humidity; in this way, the 

Normalized Difference Water Index (NDWI) is sensitive to monitor the 

surface humidity (Gao, 1996). 

NDWI =
𝜌860−𝜌1240

𝜌860+𝜌1240
 (2.19) 

where ρ860 and ρ1240 are the wavelengths of NIR and SWIR respectively. 

Ceccato et al., 2001) demonstrated that NDWI is able to remove the 

variation caused by leaf internal structure and leaf dry matter content, 

improving the reliability in assessing the vegetation water content.  

The evident similarities between the temporal patterns of Kc and VIs 

encouraged the scientific communities to find alternative approaches to 

estimate the crop coefficients.  

The onset of approaches based on predictive relationship Kc(VIs) are 

described in pioneering studies (Bausch, 1993; Neale et al., 1989; Bausch 

and Neale, 1987). Calera et al. (2017) and Pôças et al. (2020) in recent 

studies highlighted that Kcb is most correlated, through linear or non-linear 

Kcb(VIs) functional relationships, with VIs based on VIS and NIR 

wavelengths, such as NDVI and SAVI. 
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2.3.2 Estimation of basal crop coefficient based on fraction ground 

cover and crop height 

The Allen and Pereira (A&P) approach, proposed in Allen and Pereira 

(2009) estimates Kcb by means observed fraction of ground cover, fc, and 

crop height, hcrop. 

𝐾𝑐𝑏 = 𝐾𝑐𝑏𝑐𝑜𝑣𝑒𝑟 + 𝐾𝑑 (max [𝐾𝑐𝑏𝑓𝑢𝑙𝑙 − 𝐾𝑐𝑏𝑐𝑜𝑣𝑒𝑟,
𝐾𝑐𝑏𝑓𝑢𝑙𝑙−𝐾𝑐𝑏𝑐𝑜𝑣𝑒𝑟

2
]) (2.20) 

where: Kcbcover is the value of Kcb referred to the ground cover and, in absence 

of weeds, can be assumed equal to zero, Kd is the density coefficient, Kcbfull 

is the basal crop coefficient referred to intermediate phase of the 

phenological cycle of the plant. 

To implement the equation 2.20 is necessary to compute Kcbfull and Kd. For 

Kcbfull it is possible to use the following formula. 

𝐾𝑐𝑏𝑓𝑢𝑙𝑙 = 

𝐹𝑟  (
min(1 + 𝐾ℎ  ℎ𝑐𝑟𝑜𝑝, 1.20) +

+[0.04(𝑈2 − 2) − 0.004(𝑅𝐻𝑚𝑖𝑛 − 45)] (
ℎ𝑐𝑟𝑜𝑝

3
)

0.3) (2.21) 

where Fr is a correction parameter representative of the vegetation stomatic 

control; Kh indicates the effects due by the height of the crop by means the 

sum (1+Kh hcrop), for tree crops Kh can be assumed equal to 0.10 while for 

herbaceous crops equal to 0.20; hcrop represents the  crop height; U2 is the 

wind speed at 2 m above the soil and RHmin is the average minimum relative 

air humidity and hcrop is the height of the crop. 

The Fr parameter changes according to the type of crop analyzed and can be 

evaluated as suggested in the FAO56 paper (Allen et al., 1998) 

𝐹𝑟 ≈
𝛥+𝛾(1+0.34 𝑈2)

𝛥+𝛾(1+0.34 𝑈2
𝑟𝑙

100
)
 (2.22) 

where: Δ(kPa°C-1) is the slope of vapor pressure curve, γ (kPa°C-1) is the 

psychrometric constant, rl (s m-1) is the mean leaf resistance for the 

vegetation considered. 



  Chapter 2: Theoretical background 

 

  

M. Ippolito 27 

 

The values of density coefficient, Kd, can be calculated as suggested in the 

A&P approach. 

𝐾𝑑 = min (1, 𝑀𝐿  𝑓𝑐 , 𝑓𝑐

(
1

1+ℎ𝑐𝑟𝑜𝑝
)
) (2.23) 

where: ML is a corrective coefficient on fc describing the effect of canopy 

density on shading and on maximum relative ET per fraction of ground 

shaded (the values suggest in the A&P approach ranging 1.5 to 2), and hcrop, 

is the height of the canopy. 

The A&P approach was validated by Pereira et al. (2020) by ground and RS 

data. Specifically, the authors used fc, retrieved by RS data, to define a Kd 

coefficient that was used to directly estimate annual Kc and Kcb values for 

perennial crops. The same authors for perennial crops (peach and wine 

grapes) used the Kcb values, retrieved by RS, to estimate, ETc, that was 

compared with ETc-SIMS obtained from Satellite Irrigation Management 

Support (SIMS). The comparison shows values of slope of regression line, 

b, and determination coefficient, R2, equal to 1.08 and 0.91, respectively. 

These results show the utility of the A&P approach joined with RS data for 

eventual application in irrigation scheduling and management. However, the 

authors specify that it is opportune to test the A&P approach for a variety of 

herbaceous and tree species with a specific attention on the parameterization 

of the A&P equations. 

2.4 Monitoring of SPA system components 

2.4.1 Techniques for soil water status monitoring 

To understand the dynamics in the compartments of the SPA system, it is 

necessary to identify the appropriate physical indicators and accurate 

monitoring techniques. 

Several techniques are available to monitoring SWC status, based on the 

direct or indirect measurements of physical quantities correlated to SWC. 

The thermo-gravimetric method is the most frequently applied direct 

method since it is simple and allows precise measurements of water content 

(Topp and Ferré, 2002). Indirect methods instead are based on the 

measurements of the physical or chemical properties of the analysed soil 
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(e.g., dielectric constant, electrical conductivity, heat capacity, content of 

hydrogen atoms). 

Among the indirect methods to measure SWC in continuous, the most 

recognized are those based on the Time Domain Reflectometry (TDR) and 

Frequency Domain Reflectometry (FDR) (Robinson et al., 2008). 

The first method is based on the measurement of the soil’s dielectric 

constant εb, knowing this value through empirical methods or conceptual 

models is possible to obtain the SWC value (Roth et al., 1990), referred to 

the sensor installation point. Such as an example, Topp and Reynolds (1998) 

based on the value of εb suggested an empirical expression to derive the 

SWC values in soil with different textures. 

In the FDR method, the soil is considered as a portion of a capacitor, in 

which the dipoles in the dielectric medium are polarized under the action of 

an electric field, F. The capacitive probes allow the measure of εb that 

depends on the amount of water in the soil. In particular, an high value of 

water content in the soil corresponds to an high value of dielectric constant 

and consequently a low frequency of oscillation of the F, measured by the 

sensor (Williams et al., 2003). Therefore, given the frequency and the 

electrode configuration, the relation between dielectric constant εb and total 

capacity, C can be expressed as follow: 

𝐶 =  𝑔𝑓 𝜀𝑏 (2.24) 

where 𝑔𝑓 is a constant that depends on the geometric configuration of the 

electrode (size, shapes, and distance between the electrode). 

The frequency of oscillation of the F, for a fixed value of inductance, L, 

depends only on the C, of the capacitor identified by the electrode-field 

system. 

𝐹 =  (2𝜋√𝐿 𝐶)
−1

 (2.25)  

specifically, F is proportional only to the ratio of air and water present in the 

soil. The values of F are stored in a datalogger, and processed using a 

normalized equation to obtain a Scaled Frequency (SF): 

SF =  
𝐹𝑎−𝐹𝑠

𝐹𝑎−𝐹𝑤
 (2.26) 
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where 𝐹𝑎, 𝐹𝑠 and 𝐹𝑤 are the frequency measured by the sensor in air, soil and 

water respectively. Finally, the values of SF are converted in SWC through 

a calibration equation, specific to each type of soil. 

Among the commercially available sensors based on the FDR technique to 

evaluate SWC, the “Drill & Drop” probes (fig. 2.8) manufactured and 

commercialized by SentekTM Sensor Technologies, Australia, are one of the 

most used.  

 
Figure 2.8: SentekTM “Drill & Drop” probe to measure soil water content and temperature 

(https://sentektechnologies.com/products/soil-data-probes/).  

The SentekTM Drill & Drop probes are fully sealed soil probes, designed for 

insertion into the ground, to measure SWC, temperature and optionally, 

salinity. To involve water intrusion the sensors are encapsulated with a resin 

in the probe plastic. To allow the perfect contact between soil and probe, the 

shape of the probe is tapered, with a diameter equal to 2.5 cm at the bottom 

and 3.0 cm at the top. 

The probes come in different lengths from 30 cm (3 sensors) to 120 cm (12 

sensors), one sensor for each 10 cm of depth (SENTEK, 2001), with the first 

sensor centred at 5 cm from the top of the device. The number of sensors 

inside the probe allows monitoring the dynamic of the SWC profile. 

The measurement of the dielectric constant acquired by the probes can be 

affected by the presence of roots or air gaps between soil and the sensors. 

These two effects were recently studied by Dainese et al. (2022), who 

concluded that, among the two problems, the major is the formation of air 

gaps between the probe and the soil. Specifically, they found that the 

presence of air gaps between the probe and sensors can cause an 

overestimation in the SWC measurement equal to 2.2 mm, which in some 

cases when is requested high precision, it is not acceptable. 

https://sentektechnologies.com/products/soil-data-probes/
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2.4.2 Techniques for plant water status monitoring 

The plant water status can be monitored by using direct and indirect methods 

(Turner and Thomas, 1998). A reliable direct method to assess plant water 

status is the measure of leaf or stem water potential (Jones, 1990; Koide et 

al., 1989). These measurements allow to consider at the same time 

environmental conditions (e.g., SWC and evaporative demand) and plant 

physiological processes (e.g., root water uptake, lymph transport and 

stomatal regulation) (Jain et al., 2021). The Scholander pressure chamber is 

the classical instrument to measure the leaf or water potential (fig. 2.9). 

 

Figure 2.9: Scholander chamber for measurements of leaf water potential 

(https://www.skyeinstruments.com/digital-system/) and (Awad-Allah, 2020). 

The pressure chamber is equipped with a steel cylinder connected to a 

pressure gauge and a tank of inert gas (nitrogen). The operator inserts inside 

the steel cylinder, from the side of the cutting surface, the vegetation 

material for conduct the trial, then close hermetically the cylinder and begins 

to introduce inert gas (nitrogen). The leaf water potential measurement is 

equal to the pressure value that occurs when the lymph flux returns to the 

severed ends.  

For the plant water status based on the water potential measurements, it is 

possible use the parts of the canopy that allows observing the cutting 

surface. The most used parts are the single leaves or small twigs. The 

dynamic of leaf water potential shows a daily temporal variability according 

to the environmental request. Several authors have studied, in different 

crops, the possibility to monitoring the plant water status by using “pre-

dawn”, pd, (MPa) and “midday”, md, (MPa) leaf water potential values 

https://www.skyeinstruments.com/digital-system/
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(Jones, 2004; Tuccio et al., 2019). Specifically, the pd is representative of 

the soil water potential, s, assuming that during the night the plant 

transpiration is close to zero (Rallo and Provenzano, 2013), while the md 

measured on a non-transpiring steam mainly depends on the soil water status 

(Begg’ And and Turner, 1970). Despite the leaf water potential is considered 

an affordable variable for direct determinations of plant water status, these 

measurements require specific skills of the operators, are destructive and 

expensive in terms of time consuming (Rallo et al., 2017). 

The study of the plant’s optical properties can be considered a useful 

solution for indirect evaluations of plant’s water status (Garnon and Qiu, 

1999). Depending on the distance between sensor and target (land surface o 

plant) is possible identify two different data acquisition systems proximal 

and RS. Moreover, the manner to acquire electromagnetic signals can 

distinguish active and passive sensors. 

An example of passive proximity sensor, for plant water status detection is 

the spectroradiometer; these instruments return the values of reflectance 

referred to the wavelength interval ranging between 350-2500 nm. This 

instrument is most used for research purposes at plant or leaf scale, but over 

large areas, the spectroradiometric measurements are labour-intensive and 

time-consuming, due to the large number of observations necessary to 

characterize a single plot. Moreover, the high cost of the instruments and the 

necessity of proper calibration limit their usability. 

As already highlighted, the techniques of monitoring through remote 

sensors are also based on passive and active sensors (fig.2.10). 

 
Figure 2.10: Schematization of functioning of passive a) and active b) remote sensors (M 

Boyer et al., 1988). 
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A typical active remote sensor is the RADAR, that measures the amount of 

energy or backscattering coefficient, σ0, reflected by the target hit by the EM 

wave generated by the sensor.  

𝜎0 = 10 log
𝑃𝑟

𝑃𝑠
 (2.27) 

where Pr and Ps are the received and emitted power, respectively. In some 

cases, Pr
 can have a very low value, for this reason, σ0 is expressed in (dB) 

and the working wavelength range is in the microwave range (17.2-0.4 

GHz). 

Light detection and ranging (LIDAR) system is also an active sensor that 

provide information about the concentration of chemical species in 

atmosphere, as well as the Synthetic Aperture Radar (SAR) systems that 

provide accurate measurements of altitude useful for interferometric 

application. 

Passive sensors use solar radiation and measure the amount of energy 

reflected from the earth surface. These sensors, usually acquire the EM 

energy in the range of VIS, NIR and sometimes in SWIR region of the EM 

spectrum. 

The passive remote sensors are installed on the specific satellites named 

“payloads”; which play a significant role in the sense of the number of 

information that a single satellite can provide. The first RS systems were 

based on a single sensor, but with new technology and computers 

advancement processes, the multisensory platform has become more 

affordable and economically advantageous (Nagai et al., 2009; Paparoditis 

et al., 2012).  

The characteristics and the quality of the RS data depends by the spectral 

resolution, radiometric resolution, spatial resolution, and temporal 

resolution. 

The spectral resolution indicates, for fixed wavelength range, the number of 

spectral bands available from a given sensor. The spectral band is an area of 

the EM spectrum centred in a specific wavelength. The sensitivity of a single 

spectral band is defined by the relative spectral response function (fig. 2.11). 

Based on the number of spectral bands present in the sensors, this can be 

identified as hyperspectral or multispectral sensor. The ability of the sensor 
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to discriminate the energy differences between different surfaces depends 

by the radiometric resolution. 

 
Figure 2.11: Example of relative spectral response of the band 1 (costal aerosol) 

characteristic of the operational land imager (OLI) sensor installed on the Landsat 8 and 

Landsat 9 mission (https://landsat.gsfc.nasa.gov/article/preliminary-spectral-response-of-

the-operational-land-imager-in-band-band-average-relative-spectral-response/).  

The most sensitive sensors are those able to detect the small differences in 

reflected energy. The memory space storage express in terms of Binary 

digiT (bit) depends also by the radiometric resolution. Remotely sensed data 

are represented by positive Digital Numbers (DN) which vary from 0 to a 

fixed power of 2. This range corresponds to the number of bit used for 

coding numbers in binary format. Each bit records an exponent of power 2. 

The maximum number of radiance levels detectable depends on the number 

of bits used in representing the energy recorded. If a sensor uses an 8 bits 

coding to record the data, this means that there are 256 DN values, ranging 

from 0 to 256 to represent the different energy levels. Figure 2.12 shows the 

comparison between images characterized by different radiometric 

resolution from 8- bit to 1- bit image. 

 
Figure 2.12: Comparison between images characterized by different radiometric resolution 

from 1 to 8 bit. 

https://landsat.gsfc.nasa.gov/article/preliminary-spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response/
https://landsat.gsfc.nasa.gov/article/preliminary-spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response/
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There is an evident difference in the level of detail discernible between 8-

bit and 1-bit image which is dependent on their radiometric resolutions. 

The spatial resolution represents the portion of geographical area interested 

in the survey, also known as pixel. In RS application, the spatial resolution 

is defined using angular characteristics: Field Of View (FOV) and Instant 

Field Of View (IFOV) (fig. 2.13). 

 
Figure 2.13: Geometric representation of field of view (FOV) and instantaneous field of 

view (IFOV) for optical system. 

The FOV is defined as an angle of vision of the whole swath width A  

𝐴 = 𝑆 ∙ FOV (2.28) 

where S is the flight altitude or earth-sensor distance, and IFOV is the angle 

of vision of one pixel expressed as Ground Simple Distance (GSD). 

GSD = 𝑆 ∙ IFOV (2.29) 

The value of IFOV for a specific band defines the amount of reflected 

energy that the sensor can acquire. In the VIS region, the amount of 

available reflected energy is greater than in the SWIR region, thus the spatial 

resolution in this region will be worse than in the VIS region. 

Temporal resolution represents the frequency with which a sensor revisits 

the same part of the earth’s surface. This value depends on the design of the 

satellite sensor and its orbit pattern. For earth observation purposes, there 

are two main types of orbits geostationary and sun-synchronous (fig. 

2.14a,b) 

(https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_or

bits).  

https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_orbits
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The satellites with a geostationary orbit are synchronous with the earth’s 

rotation. In particular, the satellites that need to stay constantly above a 

specific zone, such as telecommunication, weather or radar, use this kind of 

orbit. Whereas the satellites with sun-synchronous orbit travel past earth 

from north to south, synchronous with the sun. Thus, the satellite always 

visits the same zone at the same local time.  

 a)   b) 

Figure 2.14a, b: Geostationary orbit (a) and sun-synchronous orbit (b) 

(https://www.esa.int/ESA_Multimedia/Images/2020/03/Geostationary_orbit). 

The time interval between one acquisition and the next one is the temporal 

resolution. The possibility to monitor the same place at different time instant 

is very important to detect the possible changes in the environment. For this 

reason, the satellites for earth observation and environmental applications 

are generally sun synchronous. 

Earth observation, through satellite platforms, begins about 50 years ago, 

with the Landsat-1 launched by National Aeronautics and Space 

Administration (NASA) in 1972, with the intent to monitor the landmasses, 

until the last earth observation mission Landsat 9 launched by NASA in 

2021. The “eoPortal” (https://directory.eoportal.org/web/eoportal/home) is 

an useful database developed by ESA aimed at providing detailed 

information, on the number of earth observation missions, currently in 

operation, and also on the historical missions.  

The choice of the best available RS products, for a specific purpose is a very 

important question. Many satellites provide RS products characterized da 

different performances in terms of spatial, temporal, spectral and 

radiometric resolution. 

In the frame of the Copernicus, (https://www.copernicus.eu) programme, 

managed by the European Commission, aimed to offer information about 

https://www.esa.int/ESA_Multimedia/Images/2020/03/Geostationary_orbit
https://directory.eoportal.org/web/eoportal/home
https://www.copernicus.eu/
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satellite earth observation and in-situ data. Sentinel-2A and Sentinel-2B 

together with other six satellites complete the Sentinel satellite constellation 

(fig. 2.15) 

(https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_S

entinel_missions). 

The objective of the Sentinel-2 mission is provide global acquisition of MSI 

with high spatial and temporal resolution, to allow land monitoring and 

detection of environmental changes.  

The twin satellites Sentinel-2A and Sentinel-2B launched by European 

Space Agency (ESA) in June 2015 and in March 2017, respectively, operate 

simultaneously, phased at 180° to each other, in a sun-synchronous orbit at 

a mean altitude of 786 km from the earth’s surface. 

 

 

Figure 2.15: Sentinel satellite constellation (https://atmosphere.copernicus.eu/copernicus-

moves-forward-monitoring-human-carbon-dioxide-emissions).  

The temporal resolution referred to each single satellite is 10 days, while 

combined the two satellites is 5 days. Both satellites are equipped with a 

passive multispectral sensor that allows a swath width equal to 290 km, with 

a radiometric resolution of 12-bit, able to acquire light intensity (radiance) 

values ranging between 0 to 4095.  

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions
https://atmosphere.copernicus.eu/copernicus-moves-forward-monitoring-human-carbon-dioxide-emissions
https://atmosphere.copernicus.eu/copernicus-moves-forward-monitoring-human-carbon-dioxide-emissions
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The data are acquired on 13 bands distributed between VIS and SWIR. The 

spatial resolution depends on the specific spectral band (fig. 2.16). 

Specifically, as showed in fig. 2.16, there are four bands with spatial 

resolution equal to 10 m, centred on wavelengths equal to 490 nm (B2), 560 

nm (B3), 665 nm (B4) and 842 nm (B8). Six bands with spatial resolution 

equal to 20 m, centred on wavelengths equal to 705 nm (B5), 740 nm (B6), 

783 nm (B7), 865 nm (B8a), 1610 nm (B11) and 2190 nm (B12) and three 

bands at 60 m, centred on wavelengths equal to 443 nm (B1), 945 nm (B9) 

and 1 375 nm (B10). 

The last product MSI level 2A, acquired by twin satellites Sentinel-2A and 

Sentinel-2B, released by ESA and free downloaded through the open access 

hub portal (https://scihub.copernicus.eu/dhus/#/home), provides bottom of 

atmosphere (BOA) reflectance atmospheric corrected (Main-Knorn et al., 

2017), orthorectified and georeferenced with cartographic geometry 

(UTM/WGS84 EPSG:32633). 

 
Figure 2.16: Spectral resolution referred to spatial resolution 10 m, 20 m and 60 m of the 

data acquired by the multispectral sensor (de Marinis et al., 2019) readapted. 

Thanks to the high spatial resolution joint with the good revisiting time, this 

product is able to monitor, at large scale, eventual quick changes in the plant 

chemical-physical system, as well as, to monitor and estimate plant water 

status and crop water requirement (el Hachimi et al., 2022; Rozenstein et al., 

2018). 

https://scihub.copernicus.eu/dhus/#/home
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2.4.3 Techniques for crop reference evapotranspiration monitoring 

The measurement of ET can be performed by means empirical models or 

thermodynamic based models, as well as trough micrometeorological 

system. Crop reference evapotranspiration, ETo, can be considered a climate 

parameter and represent the atmospheric water demand referred to a water 

unlimited evaporative surface. 

The estimation of ETo needs climate variables acquired by standard weather 

station, properly installed (fig. 2.17). 

The climate variables, generally measured by standard weather station, are 

Ta, relative air humidity, RH, (%) wind speed, U, (m s-1) and global solar 

radiation, Rs, (MJ m-2d-1). 

In literature there are several computational methods to estimate ETo, 

different in terms of input data requirement and climate variables 

combinations (Djaman et al., 2015). 

 
Figure 2.17: Standard weather station for the measure of clime variables 

(https://www.campbellsci.de/wxpro). 

Among these methods, it is commonly used the thermodynamic approach 

proposed by Monteith (1965) and subsequently modified by Allen et al. 

(1998) where ETo depends only on climate variables. The latter method is 

considered as one of the most accurate and assumed as the reference to 

calibrate other more simplified procedures (Gavilán et al., 2006; Jensen et 

al., 1990; Ravelli and Rota, 1999; Zhao et al., 2005). 

https://www.campbellsci.de/wxpro
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𝐸𝑇𝑜 =
0.408∆(𝑅𝑛−𝐺0)+𝛾

900

(𝑇𝑎𝑣𝑔+273)
𝑈2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑈2)
 (2.30) 

where: G0 (MJ m−2 d−1) is the soil heat flux density, Tavg (°C) is the average 

daily air temperature at 2 m height, es and ea (kPa) are the saturation and 

actual vapor pressure, Δ (kPa °C-1) is the slope of vapor pressure curve and, 

finally, γ (kPa °C-1) is the air psychrometric constant. For daily ETo 

estimations the heat flux density, G0, can be neglected, because the 

magnitude is relatively small (Allen et al., 1998). To assess ETo the FAO56-

PM equation (2.30) can be used by means hourly or daily climate variables. 

When hourly climate variables are available, it is recommended obtaining 

daily ETo as sum of hourly ETo values, in this way, is considered the hourly 

variability of the climate variables involved. 

An alternative source of the ground weather data is represented by the 

reanalysis database. Several gridded weather and climate database, with 

relatively high spatial resolution but different temporal resolution have been 

generated and are freely downloadable at global scale. The European center 

for medium-range weather forecasts (ECMWF), coupling weather forecast 

models and data assimilation systems, periodically ‘reanalyse’ available 

past observations to create global data sets of atmospheric and land surface 

variables represented in ‘maps without gaps. Reanalysis data, based on data 

assimilation are among the most used to study weather and climate variables 

(Parker, 2016).  

Reanalysis method monitors and forecasts climate change by combing 

model data based on past observations from across the world for monitoring 

and forecasting climate change, for research, education, and commercial 

applications. 

ERA5 and ERA5-L, provided by the ECMWF, are the last generation of the 

global reanalysis climate database. These databases are freely downloadable 

from the portal https://cds.climate.copernicus.eu/#!/home. The first dataset, 

ERA5, covers the entire globe from 1959 with a spatial resolution of 0.25° 

latitude and 0.25° longitude (about 30 km depending on the latitude) (fig. 

2.18a).  

The ERA5 reanalysis dataset, replacing the previous version of ERA5-

Interim, produced by the Copernicus Climate Change Services (C3S). 

Among the available variables an estimate of the uncertainty of the database 

https://cds.climate.copernicus.eu/#!/home
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is also available from the Copernicus program under the products “ensemble 

mean” and “ensemble spread” having a spatial resolution of 60 km and 

temporal resolution of three hours. 

The second dataset, ERA5-L released in 2019 as the evolution of ERA5 

dataset, aimed at enhancing the resolution of the spatial grid to 0.1° latitude 

and 0.1° longitude (fig. 2.18b) with a temporal cover from 1950 to present. 

This new version is obtained by correcting the simulated ERA5 land 

atmospheric variables (Ta, air humidity and pressure) using atmospheric 

forcing (i.e., air temperature, air humidity and atmospheric pressure) 

influenced by direct observations, as well as of the difference between the 

altitude of the forcing grid and the altitude of the higher ERA5-L resolution 

grid. For this new database, the uncertainty estimates are not available and 

then the values indicated in the original ERA5 dataset must be considered. 

2.4.4 Techniques for potential and actual evapotranspiration 

monitoring 

The potential evapotranspiration, ETc, can be directly measured trough 

lysimetric techniques. This instrument simulates, at small scale, the 

cultivation system studied. The evapotranspirative flux measurements joint 

to the application of the balance mass equation allows to monitor the crop 

water consumption. Despite these measurements can be expensive and time 

consuming, historically they are considered a reliable method to obtain 

direct measurement of ETc (Aboukhaled et al., 1982; Tanner, 1967). The 

estimation of actual evapotranspiration, ETa, can be supported by micro-

a) b) 

Figure 2.18: Overall vision of the ERA5 a) 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

levels?tab=overview) and ERA5-Land b) hourly database 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview). 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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weather measurements, provide by EC method. The EC method allows 

measuring the exchanges of heat, mass and momentum between a horizontal 

homogeneous surface and the overlying atmosphere (Foken Thomas and 

Aubinet, 2012). 

Historically, the method was proposed by Montgomery, (1948), Swinbank, 

(1951), and Obukhov, (1951) under the hypothesis that the net transport 

between surface and atmosphere is one-dimensional and can be calculate as 

covariance between turbulent fluctuations of the vertical wind and the 

quantity if interest (water vapor, Ta, carbon dioxide, etc.).  

The essential instruments necessary for an EC tower are a gas analyzer and 

a tridimensional sonic anemometer. In general, in a flux tower two auxiliary 

instruments such as 4-components net radiometer and self-calibrated soil 

heat flux plates are also installed (fig. 2.19). 

 

Gas analyzer and tridimensional sonic anemometer provide high frequency 

(10-20 Hz) measurements of the concentration of water vapor and carbon 

dioxide in atmosphere and three components of wind speed and sonic 

temperature, respectively. While the 4-components net radiometer and self-

calibrated flux plates provide the low frequency measurements (one data 

every 30 min) of net radiation, Rn (W m− 2), and soil heat flux, G0 (W m− 2), 

respectively. Starting from the high frequency raw data, at the end of a long 

data processing, the data available are the sensible, H, (W m− 2) and the 

latent, λET (W m−2) heat fluxes expressed as: 

Figure 2.19: Example of Eddy covariance (EC) installation with net radiometer a) sonic 

anemometer b) and gas analyzer c) 

(https://ibis.geog.ubc.ca/~achristn/infrastructure/oakridge.html) readapted.  

https://ibis.geog.ubc.ca/~achristn/infrastructure/oakridge.html
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where: ρ (g m-3) is the air density, cp (J g−1 K−1) is the air specific heat 

capacity at constant pressure and σWT (m s−1 K) is the covariance between 

vertical wind speed and air temperature, λ (J g−1) is the latent heat of 

vaporization and σwq (g m−2 s−1) is the covariance between vertical wind 

speed and the water vapor density.  

Before using EC data, it is necessary to assess the quality and reliability of 

these data (Masseroni et al., 2013). The EB closure ratio (CR) is the method 

widely used for EC data quality assessment (Cammalleri et al., 2013b; 

Ippolito et al., 2022; Prueger et al., 2005; Wilson et al., 2002). The CR can 

be computed as: 

CR =  
𝐻+𝐿𝐸

𝑅𝑛−𝐺0
 (2.33) 

where (H+LE) are the turbulent fluxes and (Rn-G0) is the available energy. 

The CR represents the slope of the regression line passing through the origin 

in the scatterplot between the turbulent heat fluxes, H+LE, and available 

energy, Rn-G0. Ideal closure is represented by a slope equal to one, but in 

literature are considered acceptable CR values higher than 0.80 (Autovino 

et al., 2016; Er-Raki et al., 2009; Kustas et al., 1999; Saitta et al., 2020). The 

quality of these measurements can be compromised by anomalies generally 

due improper installation of the sensors or incorrect calibration, as well as 

the poor maintenance of sensors or data logger. Moreover, the occurrence 

of outliers in time series can also compromise the output quality and could 

generate inconsistent results mainly when model simulations are applied. 

2.4.5 Machine learning algorithms to assess actual 

evapotranspiration  

In the informatics application the ML algorithms are based on the principle 

of simulating human learning activities. Artificial neural networks (ANNs) 

are a typical ML models that can be used to solve classification and 

𝐻 = 𝜌𝑐𝑝𝜎𝑊𝑇 (2.31) 

𝜆𝐸𝑇 = 𝜆𝜎𝑤𝑞 (2.32) 
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prediction problems. The neurons are the primary element of the ANNs; 

these are distributed on different layers. Generally, in the ANNs there is an 

input and an output layer, and among these, there are the hidden layer. Based 

on the types of connection between neuros in the layers the ANNs can be 

distinguished as feedback and feedforward architecture (fig. 2.20). 

 

In the feedback, architectures allowed the connection among the neurons of 

the same layer or between neurons of the previous layer. In the feedforward, 

architectures allowed the connections only to the neurons belonging to the 

next layer. Independently of the type of the ANN, three preliminary steps 

precede the implementation of an ANN. In the first step, choose the data that 

will be used as training data. In the second, choose the structure and type of 

the ANN and in the third the training of the ANN. To train the ANNs there 

are two main methods supervised and unsupervised. The supervised method 

compares the outputs from the ANN with a part of the data used as input; 

trying to minimize the difference between the network outputs and the 

measured target (Palani et al., 2008). Differently the previous method, in the 

unsupervised method, the network outputs are compared with a synthetic 

target. 

Recently, several authors have been studied the possibility to assess ETa 

using ML algorithms (Izadifar and Elshorbagy, 2010; Mosre and Suárez, 

2021; Walls et al., 2020; Wang et al., 2023, 2022). For example, Izadifar et 

al. (2010) modelled ETa using ANN and GP-based models in a Canadian 

landscape covered by spontaneous vegetation; consequently, their study 

does not analyze water requirements in a specific crop. The use of artificial 

Figure 2.20: Example of feedforward artificial neural network (ANN). 
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intelligence has also been proposed to estimate ETa in ecosystem studies. 

For example, in wetland conservation for valuable and vulnerable 

ecosystems (Granata et al., 2020), or for studying the terrestrial water cycle 

in grassland ecosystems (Zhang et al., 2021). The possibility to estimate ETa 

in tree crops, trough ML models, was assessed by Rojas et al. (2021), the 

authors estimated ETa trough the Operational Simplified Surface Energy 

Balance Model (SSEBop) using as input LST with a spatial resolution of 10 

m, obtained from the downscaling of the Landsat-8 LST, by means two 

different ML models (cubist and RF). 

Among other ML models, the GPR can make predictions relying on a few 

parameters. The model establishes a relation between the independent input 

variables, xi and the dependent variable, y. Specifically, the regression 

model can be expressed by the following relation: 

𝑦(𝑥) = 𝑓(𝑥) + 𝜀 (2.34) 

where y(x) is the random variable underlying the observations, f(x) is the 

Gaussian process and 𝜀 is the noisy observations of the true function 

expressed as a normal distribution characterized by a mean equal to zero and 

variance 𝜎𝑛
2 estimated from the data.  

The 𝑓(𝑥) can be defined by its mean m(x) and covariance kernel k(x,x’) 

functions, represented respectively by a vector and a matrix in the form: 

𝑚(𝑥) = 𝐸[𝑓(𝑥)] (2.35) 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] (2.36) 

The mean function of the GPR model can be assumed constant, with a value 

set to zero, equal to the mean of the training dataset, or using a linear 

function. On the other hand, the covariance kernel function can be assumed 

as quadratic rational, squared exponential, exponential, or using a Matern 

kernel value equal to 3/2 or 5/2. More details on the GPR model can be 

found in (Rasmussen and Williams, 2006). The best combination of m(x) 

and k(x,x’) functions can be evaluated using the N-fold cross-validation 

(Mosteller and Tukey, 1968). Cross-validation is a statistical method in 

which the database is randomly divided into N different groups, each one 

containing the records corresponding to the natural number closest to 1/N. 
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Model validation follows an iterative procedure in which a group is used as 

a test set, while the other N-1 groups are used for training. The procedure is 

stopped after N iterations and, therefore, after using each group as the test 

set. This iterative statistical analysis reduces the possibility of overfitting 

problems (Nguyen et al., 2021) occurring when the model fits well the 

training data but fails in the prediction phase due to the noise or random 

fluctuations in the training data affecting negative the performance of the 

model (Namasudra et al., 2021). Thus, the model seems to make suitable 

predictions with the training data, while significant errors in the test data can 

be observed, due to the unsuitability of the model to predict new data. 
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Chapter 3: Materials  

3.1 Climate data 

The analysis was carried out considering a database of climate variables 

registered by a network of 39 spatially distributed ground weather stations 

operated by the SIAS (http://www.sias.regione.sicilia.it/) (fig. 3.1), in the 

decade from January 1st, 2006 to December 31st 2015, was considered, as 

well as corresponding data available in the ERA5-L database. 

 

The data were recorded by weather stations located in positions 

geographically representative of different environmental conditions. This 

database contains all the climate variables required for the application of the 

FAO-56 PM equation and, specifically, daily values of minimum and 

maximum air temperature Tmin, Tmax, (°C), RHmin, maximum relative air 

humidity, RHmax, (%), Rs and U2. Only 27 of the 39 weather stations 

contained the records of wind speed at 10 m height, U10, (m s−1). 

Figure 3.1: Map of Sicily with the position of SIAS weather stations and the grid of ERA5-

Land database. 

http://www.sias.regione.sicilia.it/
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For each ground weather station, table 3.1 reports the identification code 

(ID), the name of the station as indicated in the original database, the 

geographic coordinates and the elevation. 

 

ID Climate station
Latitude                          

(°N)

Longitude 

(°E)

Elevation                      

(m a.s.l.)

Available 

records

206 Cammarata 37.6205 13.6085 350 3530

208 Canicatti 37.3580 13.7740 475 3489

209 Licata 37.1550 13.8888 80 3540

213 Sciacca 37.5913 13.0398 90 3602

216 Gela 37.1580 14.3340 70 3095

220 Riesi 37.2750 14.0890 300 3450

222 Sclafani_Bagni (*) 37.7050 13.8600 497 3553

224 Bronte (*) 37.7550 14.7870 424 3483

228 Catania 37.4430 15.0680 10 3497

231 Maletto 37.8271 14.8732 1040 3494

232 Mazzarrone 37.0954 14.5617 300 3391

235 Pedara (*) 37.6436 15.0492 810 2708

242 Piazza Armerina 37.3170 14.3670 540 3421

245 Caronia Pomiere (*) 37.8961 14.4866 1470 2864

246 Cesarò Vignazza 37.8380 14.6800 820 3638

251 Messina (*) 38.2581 15.5611 421 3364

257 Patti 38.1405 15.0195 70 3566

258 Pettineo 37.9740 14.2900 210 3641

259 San Fratello (*) 37.9547 14.6239 1040 3439

262 Alia Porcheria 37.7418 13.7460 560 3381

264 Camporeale Azzolina (*) 37.9046 13.1010 460 3538

265 Castelbuono (*) 37.9741 14.0897 430 3481

267 Contessa Entellina (*) 37.7299 13.0436 200 3438

268 Corleone 37.8040 13.2510 450 3577

271 Lascari Lentina 38.0001 13.9201 55 3603

275 Monreale Vigna 38.0249 13.2031 630 3559

276 Palermo 38.1300 13.3280 50 3393

282 Acate 36.9740 14.4010 60 3456

286 Ragusa 36.9550 14.6770 650 3396

288 Scicili Palmentella 36.7606 14.6768 30 3618

292 Lentini 37.3410 14.9250 50 3588

298 Palazzolo Acreide 37.0620 14.8720 640 3445

301 Castellammare del Golfo (*) 38.0139 12.8896 90 3470

302 Castelvetrano 37.6470 12.8530 120 3532

305 Mazara del Vallo 37.6791 12.6750 30 3557

308 Trapani 37.9470 12.6620 180 3475

309 Montalbano Elicona (*) 37.9860 14.9670 1250 3476

311 Prizzi (*) 37.7240 13.4250 990 2889

312 Agira 37.6230 14.5020 467 3370

(*) climate stion without the measurement of wind speed at 10 m height

Table 3.1: Identification code (ID), name of SIAS climatic station, geographic coordinates 

and number of available records in the period 2006-2015. 
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For the same period, the ERA5-L database includes the entire climate 

variables mentioned above, except RH and U2. 

To maintain the coherency between the two databases hourly data of Ta, Rs, 

dew-point temperature, Tdew (°C), and the two components (vertical and 

horizontal) of wind speed at 10 m height Uv_10, UH_10, (m s-1) were 

downloaded. 

3.2 Experimental field – Villabate  

The experimental field is located in a citrus orchard of about 0.40 ha close 

to Palermo, Sicily (38°4′ 53.4’’ N, 13° 25′ 8.2’’ E) (fig. 3.2). The citrus 

orchard (Citrus reticulata Blanco, cv. Mandarino Tardivo di Ciaculli) is 

characterized by a planting spacing of 5.0 × 5.0 m (density of 400 trees ha-

1, fraction cover of 48%), with plant rows roughly oriented from North-East 

to South-West. The trees are characterized by an average height of about 

2.50 m and a maximum rooting depth of 0.50 m, with the highest root 

density at around 0.30 m depth. The study was carried out for the period 

2018-2020. 

 

Figure 3.2: Experimental field with location of the weather station (WS), flux tower (EC) 

and soil water content sensors, the spatial resolution of Sentinel-2 (L2A/L2B) multispectral 

images is also shown. 
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The climate of the investigated area is the typical Mediterranean, with 

annual rainfall ranging between 600 and 800 mm, most of which is 

concentrated in fall and winter, and with cumulated crop reference 

evapotranspiration generally higher than 1000 mm. The average daily air 

temperature ranges from about 4°C in winter to a maximum of around 35°C 

in summer. The dominant textural class of the top soil is sandy-clay-loam 

with average clay, silt and sand content of 22.2%, 18.0% and 59.8%, 

respectively. Soil water contents at field capacity, θfc, and permanent wilting 

point, θwp, are equal to 0.28 cm3cm−3 and 0.15 cm3cm−3, respectively. During 

the irrigation seasons, generally after the rainfall events, the field was 

characterized by the presence of temporary ground weeds (mainly Cynodon 

Dactylon, and Boerhavia Coccinea). 

The temporal dynamic of SWC was monitored with four 0.60 m long “drill 

& drop” probes (Sentek Pty Ltd, Stepney, Australia), installed at a distance 

of 0.80 m from the tree trunks and 30 cm far from an emitter (fig. 3.2). These 

sensors, based on the FDR technique let to monitor SWC and temperature 

at 0.10 m depth intervals, up to 0.60 m, with a time-step of about 30 min. 

The average SWC values between the soil surface and 0.50 m depth was 

assumed representative of the entire root domain. 

Agrometeorological data were collected by a WatchDog (WD) 2000 series 

weather station (Spectrum Technologies, Inc., Aurora, IL, USA) installed 

nearby the experimental field (fig. 3.2), which contained the sensors to 

measure (with a time-step of 30 min) air temperature, Rs, relative air 

humidity, wind speed and direction at 2 m height, and rainfall. 

In 2019, an EC flux tower was also installed in the field to measure actual 

evapotranspiration, ETa (fig. 3.2). The tower was equipped with a 4-

component net radiometer (CNR4, Campbell Scientific Inch., Logan, Utah) 

installed at 3.0 m height to measure low-frequency (30 min) Rn, (W m−2), a 

three-dimensional sonic anemometer (CSAT3-D, Campbell Scientific Inch., 

Logan, Utah) to measure high-frequency (20 Hz) wind speed 3D 

components, and an infrared open patch gas analyzer (Li-7500, Li-cor 

bioscience inch., Lincoln, Nebraska) to measure H2O and CO2 

concentrations, respectively (at 20 Hz). High and low-frequency data were 

collected in a CR3000 datalogger (Campbell Scientific Inch., Logan, Utah) 

equipped with a 2 GB memory card. 



  Chapter 3: Materials 

 

  

M. Ippolito 51 

 

Irrigation season in the area starts at the end of May and finishes around the 

end of September, during periods with scarce or absent precipitations. The 

field is irrigated with a subsurface drip system with two pipes per plant row, 

one on each side of the tree, at 1.1 m from the trunks. The lateral pipes 

contain co-extruded emitters discharging 2.3 l h-1 at a pressure of 100 kPa 

with a spacing of 1.0 m (i.e., 10 emitters/tree). The adopted irrigation 

strategy, accounting for the actual climate conditions, was designed to 

define moderate crop water stress only during phase II of vegetative growth 

(initial fruit enlargement phase), generally between July 1 and August 15. A 

total of three watering of about 56 m3 ha-1 were scheduled per week, except 

for the period of water restrictions, in which only two irrigation events per 

week were scheduled. 

An extended database of high-resolution MSI retrieved from the Sentinel-2 

twin satellites (L2A/L2B) were acquired 

(https://scihub.copernicus.eu/dhus/#/home) to monitor, over the study area, 

the spatio-temporal variability of NDVI and NDWI VIs. The scenes 

downloaded containing the whole experimental site were 

N0208_R079_T33SUC and N0208_R122_T33SUC (fig. 3.3a,b). 

These products are calibrated in reflectance at the Bottom of the Atmosphere 

(BoA), orthorectified and corrected for the atmospheric effects (Main-

 

 
Figure 3.3: Scene N0207_R079_T33SUB (a) and N0208_R122_T33SUC (b) in true colors 

with identification of the study area, related to the acquisition dates 2-06-2018 and 3-06-

2018. 

https://scihub.copernicus.eu/dhus/#/home
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Knorn et al., 2017). The images have a spatial resolution of 10 m in the VIS–

NIR regions and 20 m in the SWIR region, with a temporal resolution of 

approximately 5 days when considering both satellites (2A and 2B 

satellites). For the three years, a total of 193 scenes were selected under 

clear-sky conditions, downloaded, and preprocessed using the R library 

named “sen2r” (Ranghetti et al., 2020). 

3.3 Irrigation District 1A – Castelvetrano  

From a climate standpoint, the study area of Castelvetrano is characterized 

by a wet season from September to April and a dry season from April to 

September. On average, the total annual rainfall is variable between 450 and 

1000 mm concentrated during the autumn-winter period and the duration of 

the dry season is about five months, from the second half of April to the 

beginning of September. The typical values of annual ETo are slightly 

higher than 1000 mm. The study area is represented by the irrigation district 

1A of the Garcia-Arancio district (fig.3.4) managed by the “Consorzio di 

Bonifica Sicilia Occidentale” (ex Consorzio di Bonifica Agrigento 3) which 

includes the territories of municipalities of Sambuca di Sicilia, Sciacca, 

Menfi, Santa Margherita Belice, Partanna and Castelvetrano. The waters 

used for irrigation purposes are those stored in the artificial reservoirs Garcia 

and Arancio, which are characterized by a reservoir capacity of 61.0 and 

24.2 Mm3, respectively. The two tanks are interconnected by an adduction 

pipeline with an overall length of about 46 km, which allows the transfer of 

volumes from Lake Garcia to the Arancio reservoir by gravity. From the 

Garcia-Arancio tank split up two distribution pipes called “Diramazione 

Est” and “Diramazione Ovest”, with a diameter of Ꝋ 1600 mm and Ꝋ 2000 

mm, respectively, these supply the header tanks by gravity or pumping, 

which supply the irrigated areas divided according to altimetry zone. 

The district 1A (fig. 3.5), falls on the northern side of the irrigated area and 

covers a surface of about 2745 ha. To deliver water from reservoir to 

hydrants a dense pipe-network extending approximately 214 km was 

implemented. The network is divided into main, secondary, and tertiary 

pipelines with different materials steel, glass fiber reinforced plastic 

(PRFV), asbestos cement and polyvinyl chloride (PVC). Irrigation network 

is fed, by gravity, by two loading reservoirs, the first of which named 1/A1 
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has a volume about 24,000 m3 located at about 240 m a.s.l., the second, 

named 1A/2, placed at 190 m a.s.l. characterized by a volume of about 

27,000 m3. Water derived from the main adductor of the Garcia lake is 

pumped into two reservoirs by a set of pumps working with variable speed 

drive installed at the “Zangara” pumping station.  

The distribution network servers 139 sectors for more than 2,000 water 

users. In each irrigation sector, water distribution is performed by turns, that 

means that the whole flow is diverted to the hydrants follow a fixed turn. 

Hydrant discharge equals to 15 l s-1, with a minimum pressure of 2.5 bar. 

Volumetric water consumptions in each sector are controlled and registered 

by a central control unit. The most common farm distribution system in 

sprinkler and drip irrigation. 

 
Figure 3.4: Irrigated areas of ex “Garcia-Arancio” district and study area irrigation district 

1A (in red). 
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The area is predominantly cultivated with olive (cv. “Nocellara del Belice”) 

orchards (70%), vineyards (24%) with sporadic presence of citrus (2.6%) 

being other horticultural (3.4%) crops sporadic. The soil characterization 

was carried out using the pedological map Bono, (1998) (fig.3.6), in which 

are indicated the pedological types. 

 

Figure 3.5: Irrigation district 1A. 

Figure 3.6: Pedologic map of the study area (Bono et al., 1998). 
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The prevalent type of soil is “Seggio (SEG1)” that covers 1786 ha, about the 

60 % of the total area. 

Table 3.2 shows the soils granulometric composition and the depth of the 

different soils type. According to the Unite State Department of Agriculture 

(USDA), the prevalent types of soil are characterized by medium mixture 

sand-clay with an average depth of about 0.85 m. The soil depth where the 

root are main developed was variable from 0.30 m to 1.25 m. Based on the 

soil texture, the coefficient α and n of the soil water retention curve are 

shown in table 3.3. These were obtained by means the pedo-transfer function 

implemented in the software “ROSETTA” (Schaap et al., 2001) using the 

soil granulometric composition showed in table 3.2. 

Within the perimeter of the irrigation district 1A is located a weather station 

(ID 302 Castelvetrano) (fig. 3.5) managed by the SIAS. This station registers 

at hourly time step, data of the main climate variables, such as air 

temperature, Rs, relative air humidity, wind speed and direction at 2 m and 

10 m height, and rainfall. The station is equipped with a CR1000 datalogger 

(Campbell Scientific Inch., Logan, Utah), two wind speed sensors Gill 

Windsonic (Gill Instruments Limited, Lymington, Hampshire, UK) 

installed at 2 m and 10 m above the soil and a thermo-hygrometer HMP45 

(Vaisala Oyj, Helsinki, Finland). 

Table 3.2: Size distribution of the soil within the irrigation district 1A. 
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The volumes delivered in each hydrant located within the sector are 

registered on a paper format user card. For each user, the employees of the 

consortium, registers in a paper the information to draw up an effective 

irrigation plan. Each form are reports information regarding the location of 

the farms in the district, the number of the sector, the crop type, the farm 

extension, the date, and the volume of the water delivered (fig. 3.7). 

 

Table 3.3: Soil water retention curve coefficients estimate by means “ROSETTA” software  

(Schaap et al., 2001). 

Figure 3.7: Example of the paper sheet referred to one user. 
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For the whole district, the MSI Sentinel-2 level 2A product were acquired 

and, in particular, the scene N0207_R079_T33SUB, (fig. 3.8). For the 

period from 01-03-2018 to 31-12-2020 were acquired 68 scenes, in clear sky 

condition. 

For the period 01-01-2009 to 31-12-2011 and same area, MODerate 

resolution Imaging Spectroradiometer (MODIS) MCD43A3, Version 6 

product (MCD43A c006) were also acquired. This product provides nadir 

reflectance at different wavelengths; with a spatial resolution equal to 500 

m, in particular ρnir, ρred and ρswir were detected respectively in band B1 

ranging from 620 to 670 nm, in band B2 ranging from 841 to 876 nm and in 

band B6, from 1628 to 1652 nm. 

 

3.3.1 Experimental field – Castelvetrano 

The experimental field “Tenuta Rocchetta” showed in figure 3.9, is 

represented by an olive orchard (cv. “Nocellara del Belice”) extended about 

6 ha (figure 3.9). The field, located in the South-West of Sicily, Italy 

(37°38’61’’ N, 12°50’53’’ E), about 5 km far from the town of 

Castelvetrano, is part of irrigation district 1A (fig.3.5) characterized by a flat 

landscape and rather homogeneous soil and crop types. The plants within 

Figure 3.8: Scene N0207_R079_T33SUB in true colors with identification of the study area. 
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the experimental field a height of about 3.50 m and are spaced according to 

a regular grid 5.0 × 8.0 m (density of about 250 trees ha-1). 

The climate of the area is Mediterranean, with precipitation events mainly 

concentrated during autumn and winter and high air temperature in summer 

with sporadic precipitation events. 

In the eastern side of this area, about 500 m is located a standard weather 

station (ID=302) of the SIAS, presented in section 3.1. 

 

 

The temporal dynamic of the evapotranspiration flux, at field scale, was 

monitored by means of an EC tower installed in the left side of the 

experimental field located within the farm (fig. 3.9). The EC flux tower was 

installed in April 2009 equipped with a 4-component net radiometer (CNR4, 

Campbell Scientific Inch., Logan, Utah) installed at 8.50 m height to 

measure low-frequency (30 min) Rn, (W m−2) a three-dimensional sonic 

anemometer (CSAT3-D, Campbell Scientific Inch., Logan, Utah) to 

measure high-frequency (20 Hz) wind speed 3D components, and an 

infrared open patch gas analyzer (Li-7500, Li-cor bioscience inch., Lincoln, 

Figure 3.9: Map of the experimental field with the position of the EC tower and the SIAS 

weather station; the MODIS (MCD43A v006) pixel containing the experimental field is also 

shown. 
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Nebraska) to measure H2O and CO2 concentrations, respectively (at 20 Hz) 

positioned at 7.00 m and two self-calibrated flux plates (HFP01SC, 

Hukseflux) placed, respectively, in the exposed and shadowed bare soil, at 

a depth of about 0.10 m. High and low-frequency data were collected in a 

CR5000 datalogger (Campbell Scientific Inch., Logan, Utah) equipped with 

a PCMCIA 2 GB memory card. Irrigation water is supplied by a drip 

irrigation system (four 8 l h−1 emitter/plant). For the experimental field, 

hourly data of air temperature, T (°C), Rs (W m-2), Tdew, and, U10 (m s-1), 

were also downloaded from the ERA5-L database (Muñoz Sabater, 2019), 

available in the climate change service portal provided by Copernicus 

(https://cds.climate.copernicus.eu/cdsapp#!/home). 
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Chapter 4: Methods 

4.1 FAO56 Penman-Monteith equation to estimate crop reference 

evapotranspiration 

Using the databases SIAS and ERA5-L, the FAO56-PM equation (Allen et. 

Al., 1998) was applied to estimate hourly crop reference evapotranspiration, 

ETo. The ERA5-L database includes all the climate variables necessary to 

estimate ETo by means FAO56-PM equation, except U2. Therefore, to 

maintain the coherency between the two databases, as well as to avoid 

possible uncertainty due to the assumption of logarithmic wind profile 

(Newman and Klein, 2014), ETo was calculated considering all climate 

variables at 2 m height and only wind speed at 10 m height. 

In the ERA5-L database the hourly relative air humidity, RH, (%), is not 

available, therefore was calculated as suggested in the FAO56 paper (Allen 

et al., 1998). 

𝑅𝐻 = 100
𝑒𝑎(𝑇𝑑𝑒𝑤)

𝑒𝑠(𝑇)
 (4.1) 

where ea(Tdew) and es(T) are the actual and saturation vapour pressure 

corresponding at, Tdew, and actual air temperature, T, respectively. 

A Matlab® script was generated to localize the grid cells, to aggregate the 

hourly ERA5-L climate data at daily time-step except for the already 

available daily Rs and, finally to estimate daily ETo. The examined database 

is complete and, for the period 2006-2015, contains 3652 records for each 

variable. 

For each daily climate variable, the comparison between the values 

measured by SIAS and retrieved by ERA5-L database was carried out by 

assuming intercept-free linear regression. The slope of the regression line, 

b, was used as a measure of accuracy, while the R2, was considered as a 

measure of precision (Sentelhas et al., 2010). 

The daily Sc, associated to each generic variable vi, was calculated based on 

the partial derivative of ETo to vi, transformed into a non-dimensional form 

(McCuen 1974; Beven 1979), as: 
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𝑆𝑐𝑖 =
∂𝐸𝑇0

∂𝑣𝑖
 

𝑣𝑖

𝐸𝑇0
 (4.2) 

where: ∂ETo is the variation of reference evapotranspiration caused by the 

change associated to the variable, ∂vi. The partial derivatives, needed for to 

evaluate daily 𝑆𝑐𝑖, were calculated using symbolic calculation tool of 

Matlab®. Yearly average Sc was obtained by averaging daily values. 

The total error referred to the ETo estimation was obtained as the sum of the 

individual error of each variable, Ei, calculated by the following equation: 

𝐸𝑖 = ((𝑏 − 1)𝑆𝑐𝑖) ∙ 100 (4.3) 

where: b indicates an eventual underestimation or overestimation, and 𝑆𝑐𝑖 is 

the sensitivity coefficient referred to the single variable, which indicates 

how ETo is sensitive to the single variables used to assess ETo. 

4.2 Estimation of actual evapotranspiration based on Gaussian 

Process Regression (GPR) algorithm 

To estimate the missing data in the ETa time series, the GPR (Rasmussen 

and Williams, 2006) model was used for its power, among other ML 

algorithms, to make predictions relying on a few parameters. 

To identify the best m(x) and k(x,x’) functions, the ML model based on the 

GPR was implemented by using a Matlab® script, which was used to test 

fifteen possible combinations of the mean and covariance kernel functions 

(3 mean functions and 5 covariance kernel functions). This analysis was 

carried out by considering the complete dataset of the input variables 

acquired in the Villabate experimental field including i) the weather 

variables used to estimate crop reference evapotranspiration ETo (Rs, Ta, RH 

and U2); ii) the SWC, expressive of the soil water status and iii) two VIs, 

such as NDVI and NDWI, accounting for the characteristics of the 

vegetation, with impact on the crop coefficient (Lei and Yang, 2014; Pôças 

et al., 2020).  

Once identified the best m(x) and k(x,x’) functions, four additional 

combinations of the input variables were considered to reduce the 

computational burden. 
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Table 4.1 summarizes the combinations of the investigated variables used 

as input, to run the model for the citrus orchard. 

The first combination contains the complete dataset that was also used to 

select the m(x) and k(x,x’) functions. The second and the third combinations 

excluded, respectively, the VIs, and the SWCs, whose values are not always 

available. The fourth combination considers only the agrometeorological 

variables, whereas the last combination included only variables acquired 

from remote platforms and available online, such as the agrometeorological 

variables and the VIs retrieved from the ERA5-L and Sentinel-2, 

respectively. 

Further assessment of the suitability of the GPR algorithm was carried out 

for the olive orchard, located in the irrigation district 1A, by considering 

only the last three variables combination due to the unavailability of SWC 

measurements. However, considering that for the examined period in which 

operated the EC tower (2009-2011) the Sentinel-2 images were not 

available, the MODIS images were considered to estimate the VIs used as 

input for combinations 3 and 5. 

The best combination of m(x) and k(x,x’) functions, as well as the 

performances associated with the other variables combinations, were 

evaluated using the N-fold cross-validation (Mosteller and Tukey, 1968). In 

this study, the N value was set up as five and therefore 80% of the entire 

database was used for training while the remaining 20% was used for testing 

purposes. The suitability of m(x) and k(x,x’) functions, as well as the 

performance of the GPR model with the other four different variables 

combinations were assessed based on the following statistical indicators: i) 

the RMSE, ii) the R2, iii) the MAE, v) the Nash Sutcliffe Efficiency (NSE) 

coefficient. The statistical indicators were evaluated as the mean of all the 

N performed iterations. 
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Table 4.1: Different combinations of input variables. 
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4.3 Experimental field – Villabate  

4.3.1 Evaluation of vegetation indices 

The availability of high-resolution MSI from the ESA Sentinel-2 mission 

has allowed the easy computation of VIs based on VIS–NIR wavelength, as 

NDVI (Rouse et al., 1974), and in additional on SWIR region. For the 

experimental field, the use of the SWIR region with the NDWI has the 

advantage to be sensitive to the surface water content (Gao, 1996). 

Considering the different spatial resolutions associated with NIR and SWIR, 

to evaluate NDWI, the values of reflectance related to four pixels 

corresponding to the NIR domain were associated with a single pixel 

reflectance in the SWIR.  

The wavelengths, for Sentinel-2A and 2B satellites, are centered at 664.6 

nm and 664.9 nm for the red band (B4), at 832.8 nm and 832.9 nm for NIR 

(B8) and 1613.7 nm and 1610.4 nm for SWIR (B11), respectively.  

For the considered period (2018–2020), after selecting the Sentinel-2 clear-

sky images, a gap-filled database of daily NDVI and NDWI maps was 

generated using a linear interpolation technique (Pan et al., 2017) 

implemented in Matlab® 2021b and then exported in Quantum Gis (QGis) 

(release 3.4.3) environment. 

4.3.2 Calibration of crop coefficient - vegetation indices functional 

relationship to estimate actual evapotranspiration by means FAO56 

Agro-Hydrological model 

A Kc(VIs) non-linear relationship was initially identified by using an 

extended time series of MSI retrieved by the Sentinel-2 platform combined 

with a set of field micro-meteorological measurements. For the investigated 

orchard, the proposed Kc(VIs) relationship allowed obtaining a priori a 

database of daily Kc maps characterized by high spatial resolution (10 m).  

The empirical relationship was obtained in the absence of crop water stress 

and, therefore, on days in which SWC in the orchard resulted higher than 

0.21 cm3cm−3, which was identified as the θ*, and crop water stress occurs 

in the orchard under it (Franco et al., 2022). 
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The database of daily Kc maps was then used as input for the FAO56 model 

to estimate the spatio-temporal variability of actual evapotranspiration, ETa, 

as well as the other terms of SWB in the root zone. 

According to the single crop coefficient approach proposed in the FAO56 

paper (Allen et al., 1998) the value of actual evapotranspiration can be 

defined as: 

𝐸𝑇𝑎 =  𝐾𝑐𝐾𝑠𝐸𝑇𝑜 (4.4) 

where: Kc is the crop coefficient obtained through the predictive relationship 

based on VIs, Ks is the stress coefficient and ETo is the crop reference 

evapotranspiration. 

In this study, according to the FAO56 paper (Allen et al., 1998), Ks is 

expressed as a linear function of the soil water depletion, D, (mm) (eq. 2.13). 

At the daily time-step, the SWB in the root zone, Zr (m), was computed by 

means equation (2.6). 

The net precipitation was calculated by reducing the gross precipitation P 

(mm) of the canopy interception, Pint (mm), estimates as suggested by 

Braden (1985). 

𝑃𝑖𝑛𝑡 = 𝛼LAI (1 −
1

1+
𝑏𝑃

𝛼LAI

) (4.5) 

where: α is an empirical conversion coefficient and b is the soil cover 

fraction, corresponding to about LAI/3. For ordinary crops, α=0.25. 

Model simulations to estimate daily values of SWC and ETa, were carried 

out during three irrigation seasons, from Day Of the Year (DOY) 137 to 

273, considering as initial SWC the corresponding measurement. Table 4.2 

summarizes the values of the input variables assumed for the simulations 

and the related data sources. 
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Variable  Units 2018 2019 2020 Data source 

θfc\ [cm3cm-3] 0.28 0.28 0.28 measured 

θwp [cm3cm-3] 0.15 0.15 0.15 measured 

θ0 [cm3cm-3] 0.20 0.23 0.24 measured 

θ*
 [cm3cm-3] 0.21 0.21 0.21 fixed 

Zr  [m] 0.50 0.50 0.50 fixed 
 

4.4 Irrigation district 1A – Castelvetrano 

4.4.1 Estimation of basal crop coefficient based on fractional cover 

and canopy height 

To estimate the basal crop coefficient, Kcb, in the irrigation district, due the 

absence during the analysis period (2018-2020) of ETa measurements, it was 

not possible to apply the methodology proposed in the Villabate citrus 

orchard. For this reason, it was applied the procedure based on fractional 

vegetation cover, fc, and canopy height, hcrop, suggested by Allen and Pereira 

(2009). 

Initially, a functional relationship was calibrated between fc and NDVI. For 

this purpose two polygons databases were identified, the first for the 

calibration Kc(NDVI) relationship and the second one for his validation. 

The first database contains 20 polygons in which are contained 100 plants, 

while the second contain 12 polygons characterized by the same number of 

the plants (fig. 4.1). Figure 4.1 shows the two databases, red for the 

calibration and blue for the validation. For both databases, the fraction 

cover, fc, during the intermediate phase of the phenological cycle of the crop 

was estimated by means aerial images available on the Google Earth Pro® 

platform version 7.3.4.8642 (GEP), referring to the month of July 2019. 

During the studied period, the frequent operations performed by farmers, 

allow to recognize, and assume the absence of weed vegetation on the soil 

surface. The value of fc in the different plots was obtained as the ratio 

between the total area occupied by the plants and the extension of the plot 

examined (fig 4.2). The total area occupied by the plants of a single plot was 

obtained vectorizing the surface canopy of about 25% of the trees present, 

Table 4.2: Values for the variables used for FAO56 model simulations. 
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retrieving the average total area occupied by the plants and multiplying this 

for the number of the plants inside the plot. 

 

Figure 4.1: Polygons used for calibration (red areas) and validation (blue areas). 

 

 
Figure 4.2: Example of plot with 25% of canopy surface vectorised, used for calibration 

of predictive relationship fc-NDVI. 

The spatio-temporal variability of the VIs was investigated using Sentinel-

2 MSI level 2A. The images were downloaded and pre-processed using the 
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R package toolbox “sen2r” (Ranghetti et al., 2020). For the irrigation district 

1A, in 2019, four available clear-sky Sentinel-2 scenes were selected: two 

images the days before the aerial image of GEP, and two after. Table 4.3 

shows the dates and the images available for the examined period. 

Table 4.3: Clear-sky Sentinel-2 available scenes and date of GEP aerial image referred to 

the study area 

 

For the four images available the NDVI was calculated based on the 

relationship suggested in Rouse et al. (1974).  

Then, for each plot, using the “zonal statistic” tool of QGis software, were 

retrieved the mean and the standard deviation values of NDVI. Finally, the 

representative value for the plot was obtained as the mean of the four 

images. Based on the fc and NDVI values, a functional relationship was 

found. This relationship was used as input to implement A&P procedure, 

while the other terms were set based on values found in literature. Table 4.4 

summarizes the values of variable used to run the A&P procedure, as well 

as the corresponding refence source. 

Variable Unit Value source 

ML [-] 1.50 (Allen and Pereira, 2009)  

hcrop [m] 4 (Rallo et al., 2021) 

kh [-] 0.10 (Allen and Pereira, 2009)  

Kcb_cover [-] 0 fixed 

rc  [s m-1] 600 (Autovino et al., 2006) 

In order to obtain a functional relationship Kcb(NDVI), the Kcb obtained with 

the A&P procedure were correlated with NDVI values. Figure 4.3 shows the 

flow chart used to obtain the functional relationship Kcb(NDVI). 

   Table 4.4: Values of variable used to run the A&P procedure 
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4.4.2 Implementing the spatially distributed FAO56 model 

The implementing of spatially distributed FAO56 Agro-Hydrological model 

was carried out using the Matlab® images processing tool library. The 

model was applied on several farms, identified by the Web Map Service 

(WMS) provide by “Agenzia delle Entrate” 

(https://www.agenziaentrate.gov.it) joint with the personal data of owners. 

The farms identify, for privacy reasons, were coded using an alphanumeric 

encoding (fig. 4.4). 

 

Figure 4.4: Example of the farm encoding. 

In figure 4.4, the combination before the underscore defines the sub-

irrigation district, while the number after the underscore the progressive 

number of a farm within the sub-irrigation district. 

The figure 4.5 shows the general flow chart developed to use the FAO56 

agro-hydrological model at distributed spatial scale. The NDVI, θfc and θwp 

inputs are in raster format whereas the weather data such as crop reference 

evapotranspiration, ETo, and rainfall are expressed like a single lumped 

value; all input are referred at daily time scale. 

Figure 4.3: Functional relationship Kcb(NDVI) calculation flow chart. 

https://www.agenziaentrate.gov.it/
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The flow chart (fig. 4.5) shows two different model modes, the first is named 

WRM, and the second, WUM. The first function based on the irrigation 

management parameters, allows the irrigation scheduling by identifying the 

time and the volume of irrigation. The second allows the crop water 

requirements estimation using the farmer irrigation data. A total of 91 farms 

distributed in 67 olives, 14 vineyards, 3 citrus orchards and 7 mixed crops. 

With reference to the 67 olives farms, figure 4.6 shows the farms used in 

WUM (green surfaces) and in WRM (blue surfaces). to obtain the farmers’ 

management parameters and to estimate crop water requirements, 

respectively. 

 
Figure 4.5: Schematization of spatially distributed FAO56 Agro-Hydrological model. 
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4.5 Statistical indicators for model validation 

The model performance was evaluated based on the goodness-of-fit 

indicators used to assess the matching between measured and estimated 

SWC and actual evapotranspiration:  

RMSE, whose target value is zero when there are no differences between 

simulated and observed values. 

RMSE = √∑ (𝑦,𝑖−𝑥,𝑖)
2𝑁

𝑖=1

𝑛
  (4.6) 

where: yi is the predicted value of the i-th sample and xi is the corresponding 

measured value and n is total number of observations.. 

Mean Bias Error (MBE), whose target value is zero; a positive value 

indicates that simulated values are overestimated, while a negative value 

indicates the model underestimation (Kennedy and Neville, 1986). 

MBE =
∑ (𝑦,𝑖−𝑥,𝑖)𝑛

𝑖=1

𝑛
 (4.7) 

Figure 4.6: Spatial distribution of 67 olives orchards divided in calibration (blue) and 

validation (green) surfaces. 
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where: yi is the predicted value of the i-th sample and xi is the corresponding 

measured value and n is total number of observations. 

MAE, represent the distance between the predicted and observed values, 

with a target of zero. 

MAE =
∑ |𝑦,𝑖−𝑥,𝑖|𝑛

𝑖=1

𝑛
 (4.8) 

where: yi is the predicted value of the i-th sample and xi is the corresponding 

measured value and n is total number of observations. 

Slope of regression line, b, whose target value is one, represents the angular 

coefficient of the regression line between simulated and observed variables 

forced to the origin. 

𝑏 =
∑ 𝑦𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1

 (4.9) 

where: yi is the predicted value of the i-th sample and xi is the corresponding 

measured value. 

R2, whose target value is one indicating that the variance of the observed 

values is explained by the model (Eisenhauer, 2003). 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑥𝑖̅)2𝑛
𝑖=1

 (4.10) 

where: yi is the predicted value of the i-th sample and xi is the corresponding 

measured value and 𝑥 is the mean of measured data for a total n 

observations.  

The Percent Bias (PBIAS), whose target value is zero, and positive values 

are associated with the model underestimation, while negative values 

indicate the model overestimation. 

PBIAS = 100
∑ (𝑦𝑖−𝑥𝑖)𝑛

𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

 (4.11) 

where: yi is the predicted value of the i-th sample and xi is the corresponding 

measured value. 

NSE, whose target value is one; values between 0.0 and 1.0 indicate an 

acceptable model performance, whereas negative values indicate that the 
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mean of observed values is a better predictor than the simulated values and, 

therefore, unacceptable performance (Nash and Sutcliffe, 1970). 

NSE = 1 −
∑ (𝑦𝑖𝑥𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1

 (4.12) 

where: yi is the predicted value of the i-th sample, xi is the corresponding 

measured value and 𝑥 is the mean of measured data for a total n observation. 
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Chapter 5: Results and Discussion 

5.1 Comparison between ground weather stations (SIAS) and ERA5-

Land reanalysis climate variables  

The preliminary analysis on the consistence of the dataset highlighted that, 

in the decade 2006-2015, the examined climatic stations included a 

percentage of daily records containing all the variables required by FAO56-

PM equation higher than 85% except for the weather stations with ID 235, 

345 and 311 for which this percentage is equal to 74%, 78% and 79%, 

respectively. However, it was verified that the short periods with the 

occurrence of missing data, randomly distributed during the seasons and the 

years and it, did not affect the statistical analysis. 

As an example, figure 5.1 shows the scatterplots of daily climate variables 

(Tmin, Tmax, Rs, RHmin, RHmax, U10) retrieved from ERA5-L dataset versus the 

measured ones by SIAS for the weather stations of Canicattì (ID 208)  

As it can be observed, the variables are well dispersed around the best fitting 

line. On the one hand, reanalysis data of air temperature, and Rs follows the 

trends of the corresponding measured ones, on the other hand, a deviation 

from the perfect fitting line can be observed when comparing relative air 

humidity and U10.  

Considering the entire dataset, table 5.1 shows the values of RMSE and 

MBE associated, for each climatic station, for all the examined climate 

variables, as well as the minimum, maximum and average RMSE and MBE 

values referred to the whole database. 

The RMSE associated to Tmin, Tmax and Rs resulted quite low and equal, on 

average, to 2.13 °C, 2.52°C and 2.95 MJ m-2 d-1 respectively. While the 

average RMSE values associated with RHmin and RHmax, resulted of 14.14% 

and 9.94%, respectively.  
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Figure 5.1: Scatterplots of daily climate variables (Tmin, Tmax, Rs, RHmin, RHmax, U10) 

retrieved from ERA5 dataset (E, y-axis) and measured on ground by SIAS (S, x-axis) by 

the weather stations of Canicattì (ID 208). 
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Table 5.1: Values of RMSE and MBE associated to the climate variables calculated for 

all the weather stations. 

 

ERA5-L climate variables showed, in general, a good capability in 

estimating the main variables needed to assess ETo by means FAO56-PM 

equation. When considering the initial 39 weather stations the average 

values of RMSE (Table 5.1) refer to Tmin and Tmax was slight better than those 

found by Negm et al. (2017) in Sicily, using NASA-POWER database, were 
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2.13 C° and 2.5 C°, respectively; this can be attributed to the more detailed 

spatial resolution. In Campania region Pelosi et al. (2020), using the ERA5-

L database, found an average RMSE value associated to air temperature and 

wind speed equal to 1.2 C° and 2.78 m s-1, respectively; these values agree 

with those obtained in this study (1.77 C° and 1.27 m s-1). Despite the 

different morphology characteristics, between these two Italian regions, the 

low RMSE values obtained using ERA5-L database and indicates that the 

ERA-Land database adapted well to the different climate conditions. 

For the weather stations in which the measurements of U2 and U10 were 

available, the reliability of the wind speed downscaling coefficient 0.75 

suggested in the FAO56 paper (Allen et al., 1998), obtained by the 

assumption of the logarithmic wind profile, was evaluated. For these 

weather stations, annex 1 shows the scatterplots between daily average U2 

and the corresponding U10. 

As it can be observed, the values of b ranged between 0.35 and 0.74. These 

are the lowest values associated to the near weather stations where occur 

atmospheric instability due to the presence, nearby the weather station, of 

hedges and tall trees causing deviations of the wind speed profiles. The 

variability of the b in the scatterplot between the U2 and U10 highlights that 

in some cases the general practice to consider a unique downscaling 

coefficient equal to 0.75 obtained by the application of the logarithmic wind 

speed profile not always is prudent. This because the weather station’s local 

position and the environmental conditions around the station (i.e. trees and 

buildings) could cause uncertainties on the validity of the logarithmic wind 

speed profile assumptions and, consequently, the downscaling coefficient 

could not be enough to consider all these factors. Therefore, before the 

downscaling of wind speed values, it would be appropriate to locally verify 

the reliability of the logarithmic wind speed profile. 

For each weather station, annex 2 shows the values of RMSE and MBE as 

a function of the ground station elevation, z (m a.s.l.). 

The variability of RMSE and MBE values associated to Tavg, RHavg and Rs 

is minimal up to elevation values equal to 600 m a.s.l., whereas it increases 

for elevation values above 600 m a.s.l. It is to notice the exception for the 

MBE and RMSE values associated to Rs and U10, where it is not possible to 

observe a clear relation with the elevation of the weather station. A similar 

analysis was conducted by Negm et al. (2017) which found a value equal to 
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650 m a.s.l. Therefore, for Tavg, RHavg and Rs variables can be possible to 

assert that ERA5-L database, up to 600 m a.s.l., is slightly dependent on the 

elevation. 

5.1.1 Crop reference evapotranspiration, estimated from SIAS and 

ERA5-Land climate variables 

The suitability of ERA5-L database to estimate ETo was assessed for all 

weather stations for which wind speed data at 10 m were available. For these 

weather stations, table 5.2 summarizes the values of the statistical indicators 

associated with ETo. 

In general, the estimates of ETo from ERA5-L database are in good 

agreement with the corresponding values obtained according to the SIAS 

weather stations. The values of b, ranges between 0.77 and 1.00 with an 

average value equal to 0.90, denoting a maximum underestimation of 23% 

in the ERA5-L database. The dispersions of the ETo values around the best 

fitting line 1:1 is expressed in terms of R2. The values ranging between 0.86 

and 0.96 with an average value equal to 0.92, indicate a generally slight 

dispersion around the perfect fitting. RMSE and MBE, ERA5-L provided 

daily ETo estimates with good accuracy characterized by overall RMSE 

equal to 0.73 mm d-1 and corresponding MBE equal to -0.36 mm d-1. Similar 

results were obtained by Pelosi et al. (2020), who considering 18 weather 

stations over Campania region, their RMSE values ranged between 0.44 mm 

d-1 and 1.04 mm d-1 with a mean value equal to 0.67 mm d-1. These suggest 

the possibility of replicating the analysis in other different regions to assess 

the suitability of ERA5-L database in different climate and morphological 

conditions. The values of RMSE found by Negm et al. (2017) were also 

similar to those found in this study, with a minimum and maximum RMSE 

equal to 0.68 mm d-1 and 1.27 mm d-1, respectively. 
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Table 5.2: Statistical indices associated to ETo values estimated with SIAS and ERA5-

Land database. 

 

Specifically, daily ETo reached the best performance in the Canicatti station 

(ID 208), figure 5.2a, with the lowest values of RMSE equal to 0.42 mm      

d-1 and MBE equal to 0.00 mm d-1. While the lower performance was 

observed in Lentini station (ID 292), figure 5.2b, with RMSE 1.26 mm d-1 

and MBE equal to -1.03 mm d-1. 
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5.1.2 Sensitivity analysis of FAO56-Penman-Monteith equation 

For each climate variable and weather station considered, figure 5.3 shows 

the average values of Sci referred during the analysis period (2006-2015). 

The temporal variability of Sci for each weather station is expressed through 

the standard deviation bar. For Tmin, Tmax, Rs and U10, the values are relatively 

stable among the weather station considered, with an average standard 

deviation equal to 0.10, 0.04, 0.19 and 0.12, respectively. Only the RHmax 

and RHmin shows the largest fluctuations, with average standard deviation 

equal to 0.42 and 0.49, respectively. This indicates that relative air humidity, 

during period under investigation changes most rapidly than other variables. 

When considering the average values of Sci among the weather stations, Tmin, 

Tmax, Rs, and U10, show the average values of Sci equal to 0.59, 0.06, 0.33 and 

0.27 respectively, with corresponding values of standard deviation equal to 

0.06, 0.02, 0.03 and 0.03, respectively. For these variables, the values of 

standard deviation close to zero suggest that the location of the weather 

stations does not change the sensitivity of the FAO56-PM equation. 

Figure 5.2: Scatterplot between ETo estimated using ERA5-Land climate variables and 

corresponding ground measurement for the best a) Canicatti (ID= 208) and the worst b) 

Lentini (ID= 292) weather station. 

a) b) 
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A different evaluation is necessary for the Sci referred to the RHmax and RHmin 

which show an average value of -0.42 and -0.41, with standard deviation 

equal to 0.12 and 0.13, respectively. In this case, relative air humidity is the 

variable with the largest standard deviation, highlighting that this variable is 

more sensitive to the location of the weather station. 

Annex 3 summarizes the values of b, Sci Ei, referred to each variable. The 

individual error Ei for each variable was calculated using equation 4.3. The 

error Ei explains the effect of an overestimation or underestimation in the 

estimation of ETo compared to the use the ERA5-L climate variables. 

Specifically, for Canicatti (ID 208) station, the higher errors Ei occur for 

Tmax (Ei= -2.32), U10 (Ei= -2.00) and Rs (Ei=1.40), which have the worst 

performance which values b equal to 0.96, 0.92 and 1.04, respectively. On 

the other hand, for the variables Tmin, RHmax and RHmin, the values of b equal 

to 1.00, 0.99 and 1.01 can compensate the error in the ETo estimation. While 

for Lentini (ID 292) station, the poor values of b, for Tmax, U10 and RHmin 

equal to 0.92 and 0.65 and 1.25, respectively cause the worst performance 

in ETo estimation.  

The sensitivity analysis allows to identify the variables with the highest error 

rates on ETo estimation. Specifically, in this study, ETo is most sensitive to 

relative air humidity and Tmax. Estévez et al. (2009) and Liang et al. (2008) 

Figure 5.3: Mean values of sensitivity coefficient for each variable and weather stations 

referred to the analysis period (2006-2015). 
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found similar result, using a similar approach, in Spain and China, 

respectively. The standard deviation equal to ± 12% associated to Sc(RH) was 

similar to Gong et al. (2006) with values ranging between -20 % to 20% 

referred mainly in the lower region of the Chang Jiang river basin, China. 

For the other variables (Sc(Tmax), Sc(Tmin), Sc(Rs) and Sc(U10)) were not possible 

to appreciate relevant spatial variations. Similar results were obtained by 

Liang et al. (2008), in the Tao’er River Basin, China, they found that relative 

air humidity has the highest spatial variability. Therefore, it is possible to 

assert that a high uncertainty in Tmax and RHmin can cause the largest effects 

on ETo estimation. 

5.2 Estimation of actual evapotranspiration by means machine 

learning algorithm 

5.2.1 Input variables: In situ data  

For the citrus orchard (fig. 3.2), the left column of figure 5.4 shows the 

temporal dynamics of daily Rs (a), average air temperature, Tavg (c), relative 

air humidity, RHavg (e), and wind speed measured at 2 m above the soil 

surface, U2 (g), acquired by the WD weather station (black line) or retrieved 

by ERA5-L reanalysis database (blue dots) in the examined period (from 

March 2019 to September 2021). For each considered variable, the right side 

of figure 5.4 shows the scatterplots between ground and reanalysis 

observations; the coloured bar indicates the DOY. 

As it can be observed, Rs during the three years followed similar patterns 

with values ranging between a maximum of about 345 W m-2 in summer and 

a minimum of 18 W m-2 in winter. The annual dynamic from the two 

databases resulted quite similar, even if Rs values retrieved from the ERA5-

L were slightly overestimated (b = 1.03; RMSE = 32.68 W m-2), the higher 

differences associated with the lower Rs values, mostly concentrated during 

winter. The dynamic of average air temperature, Tavg, is similar to the Rs one, 

with a maximum of around 30°C in summer and a minimum of about 10°C 

in winter. The average air temperature retrieved by the ERA5-L database 

resulted slightly underestimated if compared with the ground measurements 

(b = 0.93; RMSE = 2.25°C). The annual patterns of RHavg measured on the 

ground ranged from a minimum of about 40% to a maximum of about 98%. 
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A slight overestimation (b = 1.03; RMSE = 8.64%) characterized the values 

of RHavg assessed on the basis of ERA5-L records.  

Finally, the wind speed values at 2 m height, calculated from the ERA5-L 

reanalysis data, and referred at 10 m height by assuming a logarithmic wind 

profile, resulted generally higher than the ground measurements, with a 

coefficient of the regression line passing through the origin equal to b = 2.00 

and RMSE value equal to 1.43 m s-1. 

For all the climate variables, the results of the comparison between the 

climate data acquired from the weather station (ID=302), installed near the 

olive orchard (fig.3.5), and ERA5-L reanalysis climate are shown in table 

5.1. 
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Figure 5.4: Temporal dynamics of a) daily global solar radiation, Rs, c) average air 

temperature, Tavg, e) average air relative humidity, RHavg, and g) wind speed, U2, registered 

by weather station (black line) and ERA5-Land data (blue dots); b), d), f) and h) shows the 

scatterplot from the two sources. The color bar indicates the day of the year (DOY). 
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The availability of the main agrometeorological variables such as Rs, air 

temperature and relative air humidity acquired by weather stations, is 

essential to obtain a high-quality estimation of the evaporative atmospheric 

demand. However, in the examined area, reanalysis database such as the 

NASA-POWER or the ERA5-L can be considered a suitable surrogate of 

the ground data, as evaluated by several authors for most weather stations 

installed in Sicily (Negm et al., 2017; Pelosi and Chirico, 2021; Vanella et 

al., 2022). 

For the three years of observations, figure 5.5 shows the daily dynamics of 

average SWC (black line) and precipitation (blue bars) in the citrus orchard. 

The values of SWC were obtained as the mean of the measurements 

registered by the four probes in the layer 0-0.50 m in which the active roots 

are mainly located. The dynamic of the SWC profile from topsoil to 0.50 m 

depth is also shown at the bottom of the figure. 

 

The rapid increases of SWC always occurred during rain events or after a 

few micro-sprinkler irrigation events (February, May and June 2020, as well 

as in May and June 2021) supplied after long periods of droughts or 

immediately before weeding. The patterns of SWC profiles at the bottom of 

figure 5.5 also shown that during the periods in which the SDI system 

operated, the layer 0.30 m-0.50 m was the only wetted portion of the soil, 

being the upper part of the soil profile characterized by relatively lower 

Figure 5.5: Temporal dynamics of daily average soil water content (black line), SWC, and 

precipitation, P in the citrus orchard. SWC profile from 0 to 0.5 m depth is also shown at 

the bottom of the figure.  
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SWC. The standard deviation associated with SWC ranges from a minimum 

(close to zero) to a maximum of 0.06 cm3 cm-3. Since the end of 2020, the 

standard deviation values resulted relatively higher than in the previous 

period due to the failure of one of the four probes installed in the field. 

The accuracy of balance closure was verified based on the CR, (eq. 2.33) 

(Prueger et al., 2005) computed only from the subset of hourly data with Rn 

≥ 100 W m−2, whose values resulted satisfactory and equal to 0.98, 0.88 and 

1.03 for 2019, 2020 and 2021, respectively. On the other hand, for the olive 

orchard (fig. 3.9), the values of CR resulted equal to 0.90 in 2009 and 0.92 

in 2010 (Cammalleri et al., 2013b) and 1.02 in 2011 (Autovino et al., 2016). 

For tree crops, Kustas et al. (1999) considered acceptable values of CR 

ranging between 0.80 and 0.90. Values of the CR, equal to 1.08 and 1.03, 

were obtained by Er-Raki et al. (2009) in two citrus orchards in south 

Morocco characterized by a semi-arid Mediterranean climate. Figure 5.6a,b 

shows the temporal dynamics of daily actual evapotranspiration (red dots) 

and daily precipitation (blue bars), in the Villabate citrus orchard and 

Castelvetrano olive orchard, respectively. 

For the three years of observation (2019–2021), figure 5.6 shows the 

temporal dynamics of precipitation, P, and daily ETa, measured by the EC 

flux tower. The temporal dynamic of daily ETa resulted similar in 2019 and 

2020, but for the 2021 year, the values of ETa resulted generally higher, with 

a maximum value slightly lower than 6 mm d-1. EC system monitoring was 

interrupted from March to June 2020, due to the instrument failure occurring 

during the COVID-19 pandemic lockdown. This effect can be associated 

with the relatively higher air temperatures registered in 2021 compared with 

the other two years, as well as with the transpiration of the growing weeds 

due to field mismanagement during the irrigation season. 

In the olive orchard, for the examined period (2009-2011) (fig. 5.6b), 92 ETa 

values, corresponding to rainy days, were excluded from the analysis. A 

total of 573 ETa measurements resulted available out of 1095 days of 

observations (52.3 %). The maximum ETa values, slightly higher than 4 mm 

d-1, generally occurred between May and June. The missing values of daily 

ETa are scattered during the three years. As it can be observed, the periods 

with the most missing data are concentrated from November 2009 to March 

2010 and from August to November 2011. 
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5.2.2 Input variables: remotely sensed data  

Based on equations (2.18) and (2.19), maps of NDVI and NDWI with a 

spatial resolution of 10 m, were generated for the citrus orchard. To 

downscale the maps of NDWI at 10 m resolution, the value of a single pixel 

in the shortwave region (20 m resolution) was associated with the 

corresponding four values in the NIR region. A continuous time series of 

daily VIs were obtained based on linear interpolations carried out between 

Figure 5.6: Temporal dynamics of actual crop evapotranspiration (red dots), ETa, and 

precipitation (blue bars), P, for the citrus orchard a) and olive orchard b). 

b) 

a) 
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consecutive pairs of Sentinel-2 images acquired at two different dates (Pan 

et al., 2017). 

The temporal dynamic of the examined VIs for the citrus orchard, is shown 

in figure 5.7. For both the VIs, the annual trends resulted quite similar, with 

values in winter generally higher than in summer. 

In summer, the NDVI and NDWI assumed values were around 0.55 and 

0.10, respectively, which resulted lower than in winter when the values 

fluctuated around 0.90 and 0.45. On the other hand, the trend tended to 

decrease in spring (March-May) and to increase in fall. The intra-field 

variability for both VIs resulted quite limited, with values of standard 

deviation ranging between 0 and a maximum of 0.13 for NDVI and from 0 

and 0.11 for NDWI. 

Figure 5.8a,b shows the comparison between NDVI and NDWI retrieved 

from Sentinel-2 (black line) and MODIS (red line) for the olive orchard. The 

Sentinel-2 VIs, with the corresponding standard deviations, were obtained 

through zonal statistics considering all the Sentinel-2 pixels contained 

within the pixel MODIS. The generally good agreements between the NDVI 

(b = 0.95; R2=0.99) and NDWI (b = 0.88; R2 = 0.96) obtained from the two 

different platforms strongly depend on the homogeneity of soil and land 

characterizing the MODIS pixel (Autovino et al., 2016). 

 

Figure 5.7: Temporal dynamics of average NDVI (green line) and NDWI (blue line), 

retrieved from Sentinel-2 satellites for the citrus orchard. 
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The best m(x), and k(x,x’), functions were assessed with the complete dataset 

related to the citrus orchard, which includes all the examined variable 

considered in the combination 1 shown in table 4.4. Annex 4 summarizes 

the statistical indicators associated with the fifteen combinations of the 

examined m(x) and k(x,x’) functions. 

 

5.2.3 Predicted actual evapotranspiration values in the Villabate 

experimental field 

Figure 5.9a,b illustrates the temporal dynamics of simulated and estimated 

ETa when considering the complete database of the input variables and 

implementing the best and the worst m(x) and k(x,x’) functions in the GPR 

model. On the right side, the scatterplots of the corresponding estimated 

versus measured ETa are also shown (fig. 5.9c-d). Despite the limited 

differences in the examined statistical indicators, the best result was 

obtained when assuming a zero mean function and an exponential kernel 

covariance function. Under these assumptions, the estimations of ETa 

Figure 5.8: Comparison between the temporal dynamics of NDVI (a) and NDWI (b) 

retrieved from Sentinel-2 satellites (black line) and MODIS (red line) products for the olive 

orchard. The corresponding scatterplots of NDVI and NDWI obtained by Sentinel-2 versus 

the corresponding MODIS are also shown on the right (c, d). 
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resulted characterized by RMSE = 0.38 mm d-1 and MAE = 0.28 mm d-1. On 

the other hand, the worst result, characterized by RMSE = 0.45 mm d-1 and 

MAE = 0.32 mm d-1 was obtained when assuming a constant m(x) and a 

squared exponential k(x,x’). In general, however, regardless of the m(x) and 

k(x,x’) functions, the model estimates quite well the daily actual 

evapotranspiration (NSE > 0.83), even if the values resulted always slightly 

underestimated (b < 1.0). 

 

The results related to the other four different combinations of the input 

variables (combinations 2-5) are reported in annex 5. The left side of the 

annex 5 shows the temporal dynamics of actual evapotranspiration 

estimated by implementing in the GPR model the best m(x) and k(x,x’) 

functions; the right side of the figure shows the corresponding scatterplots 

of estimated versus measured daily ETa. For the citrus orchard, table 5.3 

summarizes the statistical indicators associated with the GPR model 

implemented with the best m(x) and k(x,x’) functions and the five input 

Figure 5.9: Temporal dynamic of simulated (black line), ETa-sim, and measured (red dots), 

ETa-meas, daily actual evapotranspiration obtained for the citrus orchard when considering 

the complete dataset and assuming the best (a) and the worst (b) combination of the mean 

and kernel covariance functions. The corresponding scatterplots of estimated versus 

measured ETa are also shown (c, d). 
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variables’ combinations. As it can be observed, whatever the examined 

variable combination, there is always an underestimation of actual 

evapotranspiration with slopes of the regression lines declining from 0.97 to 

0.95 as the number of variables decreases. 

  RMSE MAE R2 b NSE 
 [mm d-1] [mm d-1] [-] [-] [-]       

1 0.38 0.28 0.88 0.98 0.88 

2 0.43 0.31 0.84 0.97 0.84 

3 0.48 0.36 0.80 0.96 0.80 

4 0.53 0.39 0.76 0.96 0.76 

5 0.55 0.42 0.74 0.95 0.74 
 

The comparison of the second and third combination of the input variable, 

involving the measured SWC (combination 2), resulted in a better model 

performance than including the two VIs (combination 3), the lower RMSE 

and MAE and the higher R2, b and NSE. The possibility to include 

measurements of SWC among the input variables to improve the estimations 

of actual evapotranspiration was also indicated by Granata (2019) in an 

analysis aimed to predict ETa within a farm located in Florida, USA, by 

using the SVM algorithm and the Regression Tree (TR). The variables 

adopted by the author to implement the algorithms were: Rn, H, SWC, wind 

speed, mean relative humidity and mean temperature. He demonstrated the 

reduction of the model predicting capacity when excluding the SWC 

measurements. 

By including the VIs NDVI and NDWI, it is possible to consider the plant 

vigour and the surface water status, respectively. Carter and Liang (2019), 

after evaluating ten ML algorithms to assess daily latent heat flux LE, which 

represents a proxy of ETa, demonstrated that the quality of the results can be 

improved if among the input variables are included the Downward 

Shortwave Radiation (DSR) and Photosynthetically Active Radiation 

(PAR), retrieved by the Global Land Surface Satellite (GLASS), in addition 

of VIs (NDVI and EVI). On the other hand, Mosre and Suárez (2021) found 

that the use of NDWI, combined with weather data acquired by a standard 

Table 5.3: Statistical indicators associated with the GPR model implemented with the best 

m(x) and k(x,x’) functions and the five combinations of the input variables, for the citrus 

orchard. 
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weather station, contributes to improving the quality of monthly ETa site-

specific equations. Moreover, the results of the four additional combinations 

of input variables demonstrated that the introduction of the VIs, as well as 

the SWC, improved the model performances. The highest value of RMSE 

(0.55 mm d-1) was associated with combination 5, in which all the input 

variables are detected from information freely available online. However, if 

compared to the others, combination 5 produced the worst results; this can 

still be considered acceptable for practical applications related to irrigation 

management, considering that all the required input data can be downloaded 

from the web, avoiding costly and time-consuming field measurements.  

The reanalysis NASA-POWER database joint with the SVM algorithm was 

used by Faraminan et al. (2021) to assess ETa retrieved from the application 

of a SWB model. In their study, these authors found that in the semi-arid 

Pampean region of Argentina, the reanalysis data represents a suitable 

source of data to assess ETa. These authors obtained mean RMSE and MAE 

equal to 0.54 mm d-1 and 0.39 mm d-1
,
 respectively, fairly similar to those 

obtained in this study, but comparatively lower values of R2 and NSE, equal 

to 0.67 and 0.66, respectively. The use of ERA5-L reanalysis data, 

characterized by a higher level of detail compared with the NASA-POWER 

can therefore contribute to improve the overall quality of the ETa 

estimations. To fill gaps in the time-series of daily ETa measured in two-

crop rotation in sequential seasons, Kang et al. (2019) used a Support Vector 

Regression (SVR) algorithm initially by including, as input variables, only 

the weather data (daily DSR, air temperature, vapour pressure deficit and 

precipitation) acquired daily in situ; then, the analysis also included: daily 

DSR, retrieved from the Japan Aerospace Exploration Agency (JAXA), air 

temperature, vapour pressure deficit and precipitation, retrieved by the 

National Centers for Environmental Prediction (NCPE), remote sensed data 

of the land surface LAI, Land Surface Temperature (LST) and two VIs 

(Enhanced Vegetation Index (EVI) and the Land Surface Water Index 

(LSWI))retrieved from the MODIS (spatial resolution of 1.5 km). When 

considering the ground measurements of weather variables, these authors 

found values of RMSE and R2 equal to 0.46 mm d-1 and 0.83, respectively. 

On the other hand, the joint use of reanalysis and remote sensed data resulted 

in a lower performance of the model, which was characterized by RMSE 

and R2, equal to 0.76 mm d-1 and 0.33, respectively. Similarly, in the present 
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study, the climate variables from ERA5-L reanalysis data and VIs from 

Sentinel-2 images (combination 5) resulted in slightly lower performance 

(RMSE=0.55 mm d-1 and R2=0.74) than the only weather data measured on 

the ground (combination 4) to which corresponded RMSE and R2 values of 

0.53 mm d-1 and 0.76, respectively. 

5.2.4 Predicted actual evapotranspiration values in the Castelvetrano 

experimental field 

The daily actual evapotranspiration data collected in the “Tenuta Rocchette” 

experimental field (fig. 3.9), even if the available database did not include 

measurements of SWC, it allowed a further validation of the proposed ML 

algorithm by considering only the three variable combinations including the 

weather data and VIs. Figure 5.10 shows the temporal dynamics of daily ETa 

estimated by assuming a zero mean function and an exponential kernel 

covariance function and the three combinations of the input variables, as 

well as the scatterplots between estimated and measured ETa. The statistical 

indicators associated with the three different variable combinations are 

summarized in table 5.4. 

  RMSE MAE R2 b NSE 
 [mm d-1] [mm d-1] [-] [-] [-] 

3 0.50 0.38 0.67 0.94 0.67 

4 0.51 0.39 0.65 0.93 0.65 

5 0.50 0.38 0.66 0.94 0.66 
 

As it can be observed, combinations 3 and 5 are characterized by quite 

similar results, with RMSE of 0.50 mm d-1 and a b value equal to 0.94, which 

corresponds to an average underestimation of 6%. This result is a 

consequence of the good performance of the ERA5-L in depicting the 

agrometeorological data measured on the ground nearby the olive orchard 

(Vanella et al., 2022). Slightly worse results were associated with 

combination 4 in which only measured weather data were used as input of 

the model. 

Table 5.4: Statistical indicators associated with the GPR model implemented with the best 

m(x) and k(x,x’) functions and the three combinations of the input variables, for the olive 

orchard. 
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5.3 ET estimation on the Villabate experimental field  

5.3.1 In situ measurements: Climatic characterization 

For the three years of observation (2018-2020), the climatic characterization 

was carried out using a standard weather station WD 2000, installed nearby 

the experimental field. As already mentioned, this weather station provides, 

hourly climate data such a: air temperature, Ta (°C), relative air humidity, 

RH (%), Rs (MJ m-2 h-1), wind speed and direction at 2 m above the soil, U2 

(m s-1) as well as rainfall heights, P (mm). Figure 5.11 shows the values 

aggregated at daily time scale of the Tmax, Tmin RHmax, RHmin, Rs, U2, as well 

Figure 5.10: Temporal dynamics of simulated (black line), ETa-sim, and measured (red dots), 

ETa-meas, referred to the three different combinations of the input variables. The 

corresponding scatterplots of estimated versus measured ETa are also shown. 
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as the values of daily ETo, evaluated using the FAO56-PM equation (eq. 

2.30) and the daily and cumulative rainfall heights. 

In the three-year observation period (2018-2020), the annual trend of Rs 

remained almost similar, assuming values that are quite usual for the study 

area, with maximums of around 30 MJ m-2d-1 in July and minimum values 

of around 2 MJ m-2d-1 during the winter period (December-January). The 

temperature trend also followed a similar dynamic to the Rs, with annual 

Tmax, between 15 and 35 °C and minimums between 2 and 20 °C. 

Precipitation for the three years of observation was 923 mm (2018), 550 mm 

(2019) and 576 mm (2020), respectively and concentrated in the periods 

between January and May and between September and December. ETo, 

values were around 1 mm d-1 in January, increased in the first half of each 

year, reaching peak values of around 6 mm d-1 in the summer period, and 

decreasing in the following period, reaching minimum values about 1 mm 

d-1 in December.  
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Figure 5.11: Daily temporal dynamics of maximum and minimum air temperatures a), 

relative air humidity b) solar radiation c), wind speed d), crop reference evapotranspiration 

e) and precipitation f) for the three years of observation (2018-2020). 
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For the three years of observation (2018–2020), figure 5.12 shows the 

temporal dynamics of precipitation, P, the amount of irrigation, I, daily ETo, 

estimated using the eq. 2.30, as well as, ETa, measured by EC flux tower 

(presented in the section 5.2.1). The gray boxes identify the irrigation 

seasons (light gray), which include the periods of water deficit application 

(dark gray), usually applied from the beginning of July to mid-August. 

 

As it can be observed, even if the annual trends of daily ETo during the three 

years resulted quite similar, the values in 2018 were relatively lower than in 

the other two years. The maximum ETo generally occurred in July, during 

periods of limited or absent precipitation, while the minimum was registered 

between December and January. On the other hand, a certain variability 

during the three years can be noticed in the patterns of rainfall; the number 

of rainy days, with rainfall value equal to or higher than 2.5 mm d−1, resulted 

65 in 2018 and only 44 in 2020, when a prolonged drought period occurred 

at the beginning of the year, followed by an extreme event of 97.3 mm 

registered on March 25.  

When considering the yearly cumulated precipitation, a total of 923 mm was 

recorded in 2018, and only 550 mm and 576 mm in 2019 and 2020, 

respectively. Likewise, the yearly crop reference evapotranspiration resulted 

in 988 mm in 2018, 1069 mm in 2019 and 1076 mm in 2020 (fig. 5.13). 

Figure 5.12: Temporal dynamic of crop reference evapotranspiration, ETo, precipitation, P, 

and amount of irrigation, I, from 2018 to 2020. Available values of actual crop 

evapotranspiration, ETa, are also shown. The light box indicates the irrigation season, while 

the dark box identifies the period of application of water stress. 
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For the three investigated years, table 5.5 indicates the periods before, 

during and after irrigation season, and summarizes the cumulated 

precipitation, ΣP, the amount of irrigation, ΣI, the crop reference 

evapotranspiration, ΣETo, and the corresponding pluviometric deficits Σ(P-

ETo). During the irrigation seasons, the lowest pluviometric deficit, equal 

to − 293 mm, and it was observed in 2018; on the other hand, irrigation 

seasons 2019 and 2020 were characterized by higher pluviometric deficit, 

with values equal to − 462 mm and − 523 mm, respectively, which suggested 

to anticipate the start of irrigation season and to increase the applied 

volumes. The footprint of the flux tower, which identifies the area on the 

ground encompassing at least 70% of the flux source, is shown in figure 

5.14; the footprint was obtained based on the model proposed by Kljun et 

al. (2015) and considering the dominant wind speed of 1.7 m s-1 with a 

direction of 45° (NE). 

 

 

 

 
Figure 5.13: Cumulative precipitation, ΣP, crop reference evapotranspiration, ΣETo, and 

irrigation, ΣI, distributions during 2018–2020. The light box indicates the irrigation season, 

while the dark box identifies the period of application of water stress. 
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Table 5.5: Cumulated annual precipitation, ΣP amount of irrigation, ΣI , crop reference 

evapotranspiration, ΣETo , and pluviometric deficit Σ(P − ETo), in the three years before, 

during and after irrigation seasons. 

 

 

The accuracy of balance closure was verified based on the CR, (Prueger et 

al., 2005) computed only from the subset of hourly data with Rn ≥ 100 W 

m−2, whose values resulted equal to 0.98 in 2019 and 0.88 in 2020. 

Daily ETa measured with the EC tower only in 2019 and 2020 (fig. 5.12), 

resulted lower than daily ETo, except during or immediately after rainy 

days, because of the higher contribution of evaporation (French et al., 2020). 

Figure 5.14: Map of the experimental plot showing the EC tower footprint. The inner box 

shows the scatterplot between hourly (H+LE) and (Rn – G0) fluxes measured in 2019 (black 

dots) and 2020 (grey dots). 



  Chapter 5: Results and Discussion 

 

  

M. Ippolito 103 

 

The availability of measurements acquired by the EC flux tower and the 

weather station in 2019 and 2020, provided the source of data to estimate 

the crop coefficient, Kc, as the ratio between ground-based ETa retrieved in 

the absence of water stress and ETo (Calera et al., 2017). 

The crop coefficient, Kc, temporal dynamic, calculated after excluding the 

rainy days (P < 2.5 mm) from the dataset of measured ETa, is shown in 

figure. 5.15. 

 

This ratio represents the actual crop coefficient, K∗
c, represented by the 

product, K∗
c=Kc ∙ Ks, between the standard unstressed crop coefficient, Kc, 

and the water stress coefficient, Ks. The latter is lower than 1 only in periods 

of crop water stress (generally occurring from the beginning of July to mid-

August), and equal to 1 when SWC did not limit crop transpiration (absence 

of crop water stress). The values of K∗
c were characterized by a quite high 

variability, with trends decreasing in spring and rising at the end of summer, 

up to values higher than 0.55. Moreover, the rapid decline of K∗
c observed 

during the period of water deficit application (fig. 5.15) was due to the 

contextual effect of the weeds removal from the soil surface (red arrows) 

and the limited water supply. 

Figure 5.15: Values of the ratio between measured ETa and ETo, Kc, in 2019 and 2020. The 

light box indicates the irrigation season, while the dark one identifies the period of water 

deficit application. Red arrows indicate the days in which weeds were cut down. 
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5.3.2 Remote sensing data: Temporal dynamics of vegetation indices 

For the three investigated years, figure 5.16 shows the temporal dynamics 

of VIs, NDVI and NDWI retrieved from the Sentinel-2 clear-sky images 

database (presented in section 5.2.2); the average and standard deviation of 

both VIs were determined by considering the four pixels containing the trees 

in which the SWC sensors were installed. 

 

The generally low standard deviations characterizing both the VIs indicated 

that the four pixels were almost homogeneous. The occurrence of rainfall 

events during the irrigation seasons 2018 and 2020 (table 5.5) determined 

the rise of NDVI values, due to the rapid germination and emergence of 

spontaneous weeds on the soil surface. On the other hand, during 2019, the 

lower amount of rainfall associated with the SDI system did not drive the 

emergence of spontaneous weeds and it caused, after weeding, the 

progressive decline of NDVI from 0.62 to 0.43. During the periods from late 

fall to early spring, NDVI resulted in slightly variable and reached values 

up to 0.90, due to vigorous vegetation cover in the tree rows caused by the 

presence of uncut weeds. 

The values of NDWI, normally used to monitor the moisture conditions of 

vegetation canopies, ranged between 0.01 and 0.60, with the highest values 

associated with the high vegetation water content and coverage of a large 

part of the field, and the lowest associated with the low vegetation water 

Figure 5.16: Temporal dynamic of average NDVI and NDWI, precipitation, P, and the 

amount of irrigation, I, for the investigated period (2018-2020). The light box indicates the 

irrigation season, while the dark box identifies the period of application of water stress. Red 

arrows indicate the days in which weeds were cut down. 
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content and sparse coverage. The possibility to use jointly NDVI and NDWI 

effective to improve the evaluation of the crop coefficient in sparse orchards 

characterized by the sporadic presence of cover weeds. 

5.3.3 Predictive relationship Kc (VIs) 

To identify the relationship to predict the crop coefficient from the examined 

VIs, it was assumed that the joint use of the examined indices (NDVI and 

NDWI) can better represent the actual field conditions which was 

characterized by sparse vegetation, the presence of transpiring weeds on the 

soil surface, and a limited period of water deficit application. 

Figure 5.17 shows the scatterplot representing the crop coefficient Kc, 

evaluated in the absence of crop water stress, as a function of the sum of 

NDVI and NDWI and the predictive relationship, expressed by the 

following exponential function characterized by R2 = 0.70: 

𝐾𝑐 = 𝑎𝑒(𝑏(NDVI+NDWI))  (5.1) 

where a and b are two calibration coefficients equal to 0.304 and 0.939, 

respectively. To exclude the effects of the crop water stress in the predictive 

relationship, the periods of water deficit application (Ks < 1) were not 

included for this analysis. 

For the investigated field, figure 5.18 shows some examples of maps of 

NDVI and NDWI, retrieved by Sentinel-2, and the corresponding Kc, 

estimated with eq. 5.1 in two different days (June 20, 2019, and December 

4, 2019) and characterized by the absence (upper row) and the presence 

(lower row) of actively transpiring cover weeds on the soil surface. The sum 

of the two VIs in the absence of cover weeds (NDVIavg = 0.59, NDWIavg = 

0.10) resulted lower than the one obtained under the presence of active cover 

weeds (NDVIavg = 0.90, NDWIavg = 0.36). The observed difference is due to 

the diverse spectral responses caused by the presence of weeds covering the 

soil among the tree rows and consequently, the average Kc estimated in the 

absence of cover weeds (Kc = 0.58) resulted lower than the corresponding 

obtained in the presence of actively transpiring weeds (Kc ~ 1.00). 
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Figure 5.19 shows the comparison of temporal trends of crop coefficient 

estimated with eq. 5.1 with those obtained from the literature for citrus 

orchards characterized by the presence (Allen and Pereira, 2009) and 

absence (Rallo et al., 2021) of ground weeds. The colours associated with 

the estimated Kc values depend on the sum of NDVI and NDWI. As it can 

Figure 5.17: Predictive relationship to estimate the crop coefficient, Kc, from the sum of 

NDVI+NDWI. 

Figure 5.18: Maps of NDVI and NDWI obtained from Sentinel-2 acquisitions and 

corresponding Kc estimated from eq. (5.1) in two days characterized by the absence (June 

20, 2019, upper row) and the presence of transpirating cover weeds (December 4, 2019, 

lower row) on the soil surface. 
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be observed, relatively higher Kc were associated with the higher VIs 

combination, with values close to 1.0, and were obtained from late fall to 

early spring after the beginning of sprouting, while in the following stage, 

they were associated with the decrease in the VIs combination. 

 

On the other hand, during the irrigation season, under absent or scarce 

precipitation, the estimated Kc associated with the relatively lower 

combination of VIs, resulted in about 0.55; finally, after the end of irrigation, 

the rise in the estimated Kc, was associated with increased values of the VIs 

and can be justified by the development of ground weeds among the plant 

rows. In 2020, the late growth season started later than in 2019, because of 

a high pluviometric deficit characterizing the mid-season 2020. Similar 

annual patterns of crop coefficient have been recently reported by Puig-

Sirera et al. (2021) for an olive orchard and by Segovia-Cardozo et al. (2022) 

in a citrus orchard in which, focusing on the full year and not only on the 

growing season, it was observed that Kc values in non-growing periods 

resulted in higher values than in the growing period, due to the large 

contribution of soil evaporation. 

Figure 5.19: Comparison between crop coefficient estimated with eq. 5.1 and the 

corresponding curves suggested by Allen et al. (2009) and Rallo et al. (2021). The colours 

associated with the experimental values depend on the combination of NDVI and NDWI. 

The light grey box indicates the irrigation season, while the dark grey identifies the period 

of application of water deficit (DI). Precipitation, P, and Irrigation events, I, are indicated 

in the secondary axes. 
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5.3.4 Application of FAO56 Agro-Hydrological model 

For the Villabate field, the FAO56 Agro-Hydrological model was 

implemented in a spatially distributed mode to estimate the SWB with a 10 

m spatial resolution. However, considering that SWC measurements were 

acquired in only four trees, while ETa measurements involved the entire 

field, the validation of the spatially distributed FAO56 model was performed 

at field scale using the average of the output pixel values falling inside the 

perimeter of the study area. In this way, the results of the pixel-based FAO56 

procedure were aggregated at a field scale where evapotranspiration and 

SWC measurements were carried out. 

To give an example, figure 5.20 shows the maps of simulated soil water 

content, SWCsim and actual evapotranspiration, ETa, retrieved from the 

application of the FAO56 Agro-Hydrological model on two different days, 

i.e., on June 20, 2019, and December 4, 2019, respectively, in the absence 

and presence of active weeds on the soil surface.  

During these two days, the average, ETa, resulted equal to 3.27 mm d−1 and 

1.27 mm d−1, with a standard deviation of 0.17 mm d−1 and 0.13 mm d−1, 

respectively. Moreover, on the same days, the average SWCsim resulted 

equal to 0.19 ± 0.00 cm3 cm−3 and 0.27 ± 0.01 cm3 cm−3, respectively. The 

value of Kc was close to 1.0 on days in which weeds were present on the soil 

surface determining values of ETa fairly close to the corresponding ETo. 
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The results of the FAO56 model simulations applied at the field scale for 

the three years (from 17 May to 30 September) are reported in figure 5.21. 

The upper row illustrates the comparison between measured, SWCavg and 

simulated, SWCsim, soil water contents, the second row shows the SWC 

distribution in the soil layer 0-0.50 m where the active root system is 

developed, whereas the third row shows the dynamic of crop reference 

evapotranspiration, ETo, in the three years, as well as measured, ETa_meas and 

simulated, ETa_sim actual evapotranspiration.  

The daily values of measured SWC of the entire experimental field were 

calculated as the mean of the values acquired in layer 0-0.50 m by the four 

Figure 5.20: Examples of maps of simulated soil water content, SWCsim, and actual 

evapotranspiration, ETa, obtained in the absence (a, June 20, 2019) and presence (b, 

December 4, 2019) of active weeds among the tree rows. 
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probes installed in the plot. A fairly good agreement can be observed 

between simulated and measured SWC in the root zone, negligible 

discrepancies can be noticed, mainly after rainfall events and, for 2018 and 

2020, around the final periods of simulations, when a slight overestimation 

of simulated SWC occurred. Regarding the temporal dynamics of SWC 

profiles, it is interesting to notice that water applications with the SDI 

system increased only the SWC at depths ranging from 0.30 m to 0.50 m, 

whereas the upper soil layer remained generally dry. 

For the two years in which measured ETa values were available, the trends 

of simulated values followed, in general, those of the corresponding 

measured, even if a slight underestimation can be observed in the initial 

period of simulation of 2019, probably due to rapid SWC depletion 

consequent to the absence of rainfall events in the period. 

The lower row of figure. 5.21 shows the trend of measured and simulated 

K∗
c, whose values which were in a fairly good agreement. During irrigation 

seasons, excluding the short periods of crop water stress, Kc values ranged 

between 0.47 and 0.76, in line with the tabulated values of 0.50 and 0.82 

suggested by Allen et al. (1998) for a citrus orchard characterized by a 

fraction cover of 30%, respectively, in absence and presence of active 

ground cover or weeds. Moreover, an indicative value of the mid-season 

crop coefficient, equal to 0.55 ± 0.50, has been recently confirmed by Rallo 

et al. (2021) for low density citrus orchards characterized by a fraction cover 

between 25 and 40% and with a plant height between 2.3 and 4.5 m.  
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The performance of the Kc(VI) relationship implemented in the FAO56 

Agro-Hydrological model was evaluated based on the statistical parameters 

associated with simulated and measured SWC and ETa, reported in table 5.6 

for the periods of observation. 

 

The model allows very accurate predictions of daily SWC, with RMSE 

equal to 0.01 cm3 cm−3 and the absence of bias, because of the good 

agreement between the average SWC measured in the root zone and the 

corresponding ones simulated by the model. The goodness of the proposed 

Kc(VIs) relationship is also confirmed by the high R2 values, the b 

coefficient slightly higher than 1 and the always positive NSE. However, 

the negative values of PBIAS obtained in the three years of simulation 

indicate a weak tendency of simulated values to be higher than the 

corresponding observed ones. On the other hand, the simulated values of 

ETa, were characterized by RMSE equal to 0.57 mm d−1 and 0.40 mm d−1, 

MBE of -0.26 mm d−1 and -0.01 mm d−1 and PBIAS of 10.40 and 0.20 for 

2019 and 2020, respectively. The high values of regression coefficient b 

(higher than 0.88), and the positive NSE index, are acceptable for practical 

application aimed at irrigation scheduling and ETa estimation. 

Table 5.6: Results of the statistical analysis to check the FAO56 model performance. 
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5.4 ET estimation at the Irrigation District 1A – Castelvetrano 

5.4.1 In situ measurements: Climatic characterization 

For the three years of observation (2018-2020), the climatic characterization 

was carried out using weather data acquired by the Castelvetrano (ID=302) 

standard weather station owned by SIAS, located within the irrigation 

district 1A. This weather station provides, hourly climate data such as: air 

temperature, Ta (°C), relative air humidity, RH (%), Rs (MJ m-2 h-1), wind 

speed and direction at 2 m and 10 m above the soil, U2 and U10 (m s-1) as 

well as rainfall heights, P (mm). 

Figure 5.22 shows the daily values of the Tmax, Tmin and relative air humidity, 

Rs, U2 and U10, as well as, the values of daily ETo, evaluated using the 

FAO56-PM equation (eq. 2.30) and the daily and cumulative rainfall 

heights. 

In the three-year observation period (2018-2020), the annual trend of Rs 

remained almost similar, assuming values that are quite usual for the study 

area, with maximums of around 30 MJ m-2d-1 in July and minimum values 

of around 2 MJ m-2d-1 during the winter period (December-January). The air 

temperature trend also followed a similar dynamic to the Rs, with annual 

Tmax, between 10 and 40 °C and minimums between 1 and 25 °C. 

Precipitation for the three years of observation was 889 mm (2018), 651 mm 

(2019) and 557 mm (2020) respectively, concentrated in the periods 

between January and May and between September and December. 

ETo, was around 1 mm d-1 in January, increased in the first half of each year, 

reaching peak values of around 7 mm d-1 in the summer period and 

decreased in the following period, reaching minimum values of around 1 

mm d-1 in December. 
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Figure 5.22: Daily temporal dynamics of maximum and minimum air temperatures a), 

relative air humidity b) solar radiation c), wind speed d), crop reference evapotranspiration 

e) and precipitation f) for the three years of observation (2018-2020). 
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During the three years of observation (2018-2020) figure 5.23 shows that 

the annual value of precipitation was rather variable, while the atmospheric 

evapotranspiration demand was almost constant with value about to 1200 

mm. 

 

For the period analyzed, the pluviometric deficit was valuated referred to 

the whole year, as well as, for the irrigation season (01/06 – 30/09). Table 

5.7 summarizes the annual cumulative ETo, rainfall, as well as the 

pluviometric deficit referred for the reference periods. 

With reference to the different meteorological contributions over the three 

years, the lowest pluviometric deficit was in 2018 and the highest in 2020.  

Instead, when considering the three irrigation seasons, the pluviometric 

deficit was lowest in 2020, because the significant rain events occurred at 

the beginning and end of the irrigation season. 

 

 

Figure 5.23: Temporal trend of the cumulative values of reference crop evapotranspiration 

and rainfall over the three-year period 2018-2020. 
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5.4.2 Analysis of irrigation volumes database 

The analysis of distributed irrigation volumes together with the pluviometric 

deficit made allow to identify possible irrigation strategies adopted by the 

farmers. 

With reference to the period 2009-2020, table 5.8 shows the volume 

delivered through the irrigation district, the irrigated surface, the overall 

water supply in the district, as well as the annual pluviometric deficit. 

Table 5.8: Pluviometric deficit and water supply within the irrigation district 1A for the 

period 2009-2020. 

 
 

Table 5.7: Cumulated values of crop reference evapotranspiration, rainfall and pluviometric 

deficit annual and during the irrigation season (01/06 - 30/09). 
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Table 5.8. shows a significant variability in water supply with minimum and 

maximum of 677338 m3 and 1216230 m3 for 2013 and 2012, respectively. 

It is also important to highlight that despite a total area of about 3000 ha in 

the irrigation district, only about 1000 ha are frequently irrigated. This 

suggest that a high percentage of farmers provide the irrigation volumes 

from unauthorised well or undeclared drawing.  

The water supply between the years was slightly variable with an average 

value equal to 855 m3 ha-1. Figure 5.24 shows the water supply as a function 

of the annual pluviometric deficit in the irrigation district, for the period 

2009 -2020. 

 

As showed in figure 5.24 a correlation between total pluviometric deficit 

and water supply exists, R2 equal to 0.57. Only two points referred to 2016 

(blue dot) and 2018 (red dot) do not follow the trend. For 2016, the 

pluviometric deficit and water supply were equal to -715 mm and 738 m3 

ha-1, respectively. Whereas for 2018, the pluviometric deficit and water 

supply were equal to -299 mm and 804 m3 ha-1, respectively. These results 

could be explained by an intensive rainfall event occurred at the beginning 

of June in 2016 (33.4 mm d-1) and in the middle of August in 2018 (45.0 

mm d-1). The trend shown in figure 5.24, suggests that the irrigation 

Figure 5.24: Trend between total pluviometric deficit and total volume delivered within the 

irrigation district 1A. 
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management strategies adopted by the farmers, are based on the actual 

weather condition. 

When considering only the olive orchards within the irrigation district 1A, 

the figure 5.25 shows the total water supply in the district for the irrigation 

seasons 2018-2019 and 2020. 

The distribution of the water supply shown in figure 5.25, along the three 

irrigation seasons, highlights a certain regularity in the temporal distribution 

of the water supply, with maximum water consumption in August and 

minimum at the beginning and end of the irrigation season. For the irrigation 

season of 2018, the maximum water consumption occurs in September, due 

to an intense rainfall event (45 mm d-1) in middle of August, which reduced 

the water supply by the farmers. Therefore, the farmer’s irrigation strategies 

are strongly influenced by the weather condition. 

 

5.4.3 Remote sensing data: Temporal dynamics of vegetation indices 

Based on the Sentinel-2 MSI level 2A database, the NDVI was calculated 

for the entire district. Figure 5.26 shows the spatial distribution of the NDVI 

over the irrigation district. 

As it can be noted from figure 5.26, the NDVI shows a wide heterogeneity 

among the crops in the irrigation district. In particular, the NDVI values are 

Figure 5.25: Monthly water supply measured in the irrigation district 1A referred to the 

olives orchards during the irrigation seasons 2018, 2019 and 2020. 
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higher than 0.50 in areas with high leaf density; for sparsely vegetated areas, 

they ranged between 0.20 to 0.50.  

 

 

As an example, figure 5.27 shows the spatial distribution of the NDVI over 

the farm coded as 1A.9_002. 

 

The analysis of figure 5.27 shows a certain variability within the farm, whit 

the predominant values ranging between 0.20 to 0.50, with sporadic areas 

characterized by values higher than 0.50. 

Figure 5.26:Spatial distribution of NDVI, over the irrigation district 1A (11/08/2018). 

Figure 5.27: Spatial distribution of the NDVI over the 1A.9_002 farm relative to the 

acquisition date 22-07-2018. 
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For the same farm, the temporal dynamic of the NDVI is reported in figure 

5.28.  

 

During the 2018 irrigation season, the value of NDVI remains quietly 

constant at around 0.37, and then increases to reach a maximum value equal 

to 0.77 in December. The behaviour during the 2019 irrigation season is 

different, as the NDVI index value grows linearly from a minimum value 

similar to the 2018 to reach a value equal to 0.67 at the end of the irrigation 

season. 

5.4.4 Estimation of the basal crop coefficient for olive orchards, based 

on fraction cover and height crops 

The estimation of the basal crop coefficient, Kcb, following the A&P 

approach (Allen and Pereira, 2009), requires the knowledge of the fraction 

cover and the height of the crops. The fraction cover, fc, for both polygons 

database shown in figure 4.1, was calculated as the product between the 

value representative of the plant canopy surface in the plot and the number 

of plants within the plot. 

As an example, figure 5.29 shows the mean and the standard deviation of 

the canopy surface with the increase of the number of the plants in the plot, 

the representative of the plant canopy surface, for the examined polygon, is 

also shown. 

Figure 5.28: Temporal dynamic of the NDVI during the analysis period (2018-2020). 
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In figure 5.29, it is possible to argue that, after a certain number of plants, 

the average area of the canopy and the relative standard deviation reaches a 

constant value. Therefore, this value can be assumed as representative of all 

the plants, in the plot. This procedure was applicated for each polygon of 

the database. 

 

The values of fc were correlated with the corresponding values of NDVI and 

figure 5.30 shows the scatterplots between fc and NDVI for each plot 

considered. 

The values of fc ranged between 0.02 to 0.71 and the NDVI ranged from 

0.15 to 0.78 with the maximum and minimum values for the standard 

deviation equal to 0.23 and 0.00, respectively.  

A linear relationship was obtained to predict the fraction cover from the VI. 

𝑓𝑐 = 1.21NDVI − 0.17 (5.2) 

The linear relationship (eq. 5.2) is supported by an R2, equal to 0.80, this 

result is in according to several authors that have been confirmed the good 

relationship between fc and NDVI (Carlson and Ripley, 1997; Gutman and 

Ignatov, 1998; Ric Baret et al., 1995). 

Figure 5.29: Mean and standard deviation of the canopy surface with the increase of the 

number of the plants in the plot. 
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The performance of the predictive relationship (eq. 5.2) was evaluated based 

on the statistical parameters associated with the correspondence values of fc 

retrieved by GEP software. The statistical analysis was carried out by means 

of the RMSE, MAE and slop of regression line, b, whose values were 0.10, 

0.08 and 0.85, respectively. The results confirm that the linear relationship 

can be a useful solution to estimate the fc from NDVI values. Similar results 

were obtained for different crops in China. In their study, Ding et al. (2016) 

analysed different approaches using dimidiate pixel models to obtain fc 

values from NDVI, retrieved by Landsat 8 OLI images, for steppe and corn. 

They obtained values of R2 and RMSE equal to 0.96 and 0.11, respectively, 

for steppe and 0.72 and 0.08, respectively, for corn. Zhang et al. (2019) 

analysed the correlation between the fc and the VI, retrieved by Landsat 8 

operation land imager (OLI) images, for dessert, steppe, meadow, and mixed 

vegetation. They found values of R2 equal to 0.85 for dessert, 0.73 for 

steppe, 0.82 for meadow and 0.73 for mixed vegetation. Finally, the linear 

relationship between measured fc and NDVI, retrieved from World-View 3 

high resolution image, showed in Ma et al. (2021), value of R2 equal to 0.89 

for corn, wolfberry and rice. 

The basal crop coefficient, Kcb obtained, for each plot, through the A&P 

procedure, were correlated with the corresponding value of NDVI. Figure 

5.31 shows the scatterplot representing the basal crop coefficient Kcb, as a 

Figure 5.30: Scatterplot between fraction cover and NDVI. 
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function of the NDVI the predictive relationship, expressed by the following 

linear function is characterized by R2 = 0.98:  

𝐾𝑐𝑏 = 1.25 NDVI − 0.14 (5.3) 

The high value of R2, suggest that the functional relationship can be a 

suitable solution to estimate basal crop coefficient, Kcb for olives orchards 

in different fraction cover condition. The functional relationship obtained 

resulted in according with those reported in a review published by Calera et 

al. (2017) for many crops and the most common techniques to assess CWR 

based on remotely sensed data. Contrary with the results obtained by Mateos 

et al. (2013), in which used the Soil Adjusted Vegetation Index (SAVI) to 

assess Kcb, the linear relationship Kcb(NDVI) is an useful tools to assess, 

crop water requirements with suitable temporal and spatial resolution. 

 

5.4.5 Applications of FAO56 model in Water Uses Mode (WUM) 

The functional relationship (eq. 5.3) together with the time series of NDVI 

and some ancillary data retrieved from weather station were implemented in 

the model and run, in water uses mode (WUM). 

The model was applied to the farms identify as WUM (fig. 4.6) selected to 

derive the average management parameters adopted by the farmers of the 

Figure 5.31: Predictive relationship to estimate the basal crop coefficient, Kcb, from the 

NDVI vegetation index. 
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irrigation district from April to September in 2018. In this case the irrigation 

volumes applied by the farmers were used as input of the simulation. 

The model outputs were represented by maps describing the spatial 

distribution of crop coefficient, Kc, actual evapotranspiration, ETa, and 

SWC, for all day of the simulation. Moreover, the temporal dynamic of 

SWC, ETo, ETa, Kc and Ks are also available.  

The application of the model in WUM, allowed to determinate the threshold 

of the irrigation water supply and the percentage of the SWC re-established 

after irrigation. Even if the model was applied to all selected farms, for the 

WUM applications (fig. 4.6), the results for the farm coded as 1A.9_002 

(fig.5.32), implanted with olives with an extension of about 3.00 ha, are used 

as example to present model application and achieved results. 

In figure 5.33, the upper row illustrates the temporal dynamic of the SWC, 

the second row the ETo and ETa, while the third and fourth rows shows Kc 

and Ks. 

 
Figure 5.32: Perimeter of the 1A.9_002 farm. 
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The daily values of simulated SWC in the root zone follows the thermo-

pluviometric trend of the period. After long periods without precipitation, 

the SWC reaches values below 0.15 cm3cm-3, it increases after the rains and 

irrigation. 

For the period studied, the temporal dynamic of ETa follows the atmospheric 

water request expressed as ETo. The minimum value, around to 1.00 mm   

d-1, was observed at the end of a long period without precipitation, where 

the high atmospheric water demand and low SWC reduce the transpiration 

capacity of the plants. 

The third row of figure. 5.33 shows the trend of simulated Kc. During 

irrigation seasons, Kc was about 0.45, slightly lower than 0.50 obtained by 

Cammalleri et al. (2013a) for an olives orchard characterized by a fraction 

cover of 35%. 

In the lowest row of the figure 5.33, the temporal dynamic of the simulated 

Ks is also shown. The values of Ks equal to 1.00 for most of the examined 

period, identifying conditions of non-water stress (Allen et al., 1998), except 

for the periods where the SWC ranges between 0.27 cm3 cm-3 (negligible 

water stress condition) to 0.16 cm3cm-3 (maximum water stress condition). 

The model used in WUM allowed to estimate the ETa consumption of the 

crops according to the management strategy applied by the farmers, as well 

as, the management parameters. 

With reference to the management parameters, the results of the 33 

simulations allowed to identify the parameters adopted by the farmers. Table 

5.9 summarizes the threshold of the irrigation water and the percentage of 

the SWC re-established after irrigation, expressed as percentage of the 

TAW. 

  
Variable [% TAW] 

    

threshold irrigation water apply 75 ± 15 

irrigation dose 15 ± 18 
 

Table 5.9: Farmer’s irrigation management parameters 
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5.4.6 Application of FAO56 model in Water Requirement Mode 

(WRM) 

The management parameters (tab.5.9) obtained with the model in WUM, 

were then implemented in the model for the farms (fig.4.6) to run the 

simulations in WRM mode; the values of the variables for the simulation are 

summarized in Table 5.10 and converted in millimetres. 

For the simulated period, the model outputs were represented by maps of 

crop water requirement, expressed by ETa, SWC, in the root zone, Kc and 

Ks. Moreover, for each considered farm, the model provides the irrigation 

calendar.  

The model was applied to the 33 farms identified as WRM (fig. 4.6), from 

April to September 2018 and 2019. Initially, 2020 was also included but the 

poor quality of the irrigation volumes distributed data provides by the 

“Consorzio di Bonifica”, was a drawback in the model application in fact, it 

was impossible to validate the results of the simulation.  

The model was applied to all farms selected, for the WRM applications (fig. 

4.6). The results for the olives farm coded as 1.16_003 (fig.5.34), with an 

extension of 1.64 ha, are used as example to describe model application.  

The farm under examination is represented by an uneven-aged olive grove, 

with plants in the north area about nine years younger than those in the 

southern part and along the perimeter. This plant’s distribution could cause 

different response in the model outputs. The figure 5.35 shows the results of 

a simulation referred to the 1.16_003 farm, the first row (fig. 5.35a-c) 

Table 5.10: Values for the variables used for FAO56 model simulations. 

Model variables Unit Value 

INPUT  
 

Start simulation [-] 01/04/2018 

End simulation [-] 30/09/2018 

Root depth [m] 0.80 

SWC0 [cm3cm-3] 0.80 θfc 

MANAGEMENT PARAMETERS  
 

Threshold irrigation water apply [mm] 160 ÷ 220 

Irrigation dose [mm] 30 ÷ 45 
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illustrates the SWC spatial variability, while the second row (fig. 5.35d-f) 

the ETa, spatial variability. 

The dates were chosen to show the response of the model in the three 

different conditions after a rainfall event (07-05-2018) of 18.6 mm, at the 

end of a drying period (24-06-2018) and finally, after an irrigation of 23 mm 

(23-07-2018). The figure 5.35a-c shows that in general, the SWC is fairly 

uniform over the entire area. In particular, for the three different examined 

dates the average values of SWC were 0.31 cm3 cm-3, 0.19 cm3 cm-3 and 0.20 

cm3 cm-3 0.19 cm3 cm-3 respectively. As it was expected, the average SWC 

after the rain event or irrigation was higher than after the drying period. 

These results suggests that the model could be a useful tool to monitoring 

the soil water status. With reference to the spatial variability of the ETa, (fig. 

5.35d-f), it is interesting to note how the two portions of the field were 

characterized by different values, being higher in the south portion. This 

particularity can be attributed to the differences in Kc values estimated by 

the NDVI index, which were lower in the younger olive grove. The upper 

panel of figure 5.36 shows the temporal dynamic of the SWC, the second 

panel shows the ETo and ETa, while the third and fourth panels shows the 

Kc and Ks. 

 
Figure 5.34: Perimeter of the 1.16_003 farm. 
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The analysis of figure 5.36 (upper panel) shows the temporal dynamic of 

SWC after a rainfall event or irrigation. In these cases, the model responds 

with a quick increase in the simulated value. 

Regarding to the temporal dynamic of the simulated ETa, (fig. 5.36 second 

panel), the trend agrees with that of SWC, and a reduction in SWC 

corresponds to a reduction in ETa. 

The third panel of figure. 5.36 shows the trend of simulated Kc. During the 

irrigation seasons, the average value of Kc was about of 0.50, equal to the 

value obtained by Cammalleri et al. (2013a) for an olive orchard 

characterized by a fraction cover of 35%. 

In the lowest panel of the figure 5.36, the temporal dynamic of the simulated 

Ks is also shown. As it can be observed, the values of Ks at beginning of the 

simulation the value is equal to 1.00, identifying conditions of non-water 

stress (Allen et al., 1998), while Ks is below 1 in the periods where the SWC 

range between 0.22 cm3cm-3 (negligible water stress condition) until to 0.16 

cm3cm-3 where it reaches the maximum water stress condition. 

5.4.7 Irrigation depth estimates by FAO56 Agro-Hydrological model 

and irrigation delivered to hydrants 

The model application in WRM allowed the estimation of crop water 

demand and, consequently, the irrigation depth for each farm. 

The irrigation systems commonly adopted by the farmers in the area is 

represented by three micro sprinklers installed in a ring located at about 20 

cm above the soil. This system allows to wet an area about the 60% of the 

canopy projection. For this reason, the irrigation depth calculated by FAO56 

Agro-hydrological model was slightly reduced to account the wetted area 

that was assumed equal to 60%.  

Before discussing these results, it is important to highlight that some farms 

for irrigation purpose provide the irrigation volumes from unauthorised well 

or undeclared drawing. This can explain the large differences sometimes 

observed, between simulated irrigation depth from FAO56 model and 

measured values from the hydrants. In addition, the irrigation strategies 

adopted by farmers are highly variable and strongly dependent on the use of 

the crop grown. In other words, if the crop is used for oil production, the 

farmer reduces irrigation to improve the quality of the oil. On the contrary, 
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if the product is used for table consumption, the farmers increase the 

irrigation dose to improve the weight of the product. Unfortunately, this 

detail level was not available for the considered farms, therefore the eventual 

differences observed in the simulation can be also attributed to this 

uncertainty. Figure 5.37a,b shows the comparison between the daily 

measured and estimated irrigation depth referred to the two irrigation 

seasons. The bar charts in reference to the secondary axis, represents the 

rainfall events during the considered irrigation seasons. 

 

In figure 5.37a it is possible to note that one of the main differences between 

irrigation depth simulated (dashed line) and measured (continuous line) 

occurs at the beginning of July, where simulated irrigation depth was higher 

than the one delivered form the hydrants. A similar result was observed by 

Minacapilli et al. (2008) who found an overprediction at the start of the 

irrigation season. For the remaining season, the temporal distribution of 

simulated irrigation depth follows the thermo-pluviometric conditions while 

Figure 5.37: Comparison between measured and simulated daily irrigation depth for the two 

irrigation seasons examined (2018 and 2019), the rainfall events are also shown. 
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in some cases, the measured values show the application of irrigation also 

during rainfall events. This highlights that improper irrigation practices 

contribute to irrigation water waste. In the 2019 irrigation season (fig. 

5.37b), the absence of rainfall events worsens the model's performance with 

a slightly regular overestimation in simulated irrigation depth. Results on a 

monthly basis for the two years 2018 and 2019, are shown in figure 5.38a 

and 5.38b, respectively. 

 

The figure 5.38a,b shows the comparison between monthly irrigation depth 

simulated by FAO56 model and the corresponding monthly water depth 

supplied by farmers, obtained by integrating the water discharges measured 

at the hydrants. As it can be observed, for 2018 (fig. 5.38a), it was estimated 

that an important amount of water could have been saved by following the 

Figure 5.38: Monthly irrigation depth estimated by FAO56 model (mm) (grey bars) vs. 

monthly irrigation depth supplied at hydrants (mm) (black bars), during irrigation seasons 

2018 a) and 2019 b). Monthly rain and crop reference evapotranspiration are also indicated 

in the secondary axis. 

a) 

b) 
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FAO56 estimation, except in July when rainfall events were absent or 

negligible. This effect was confirmed in 2019 (fig. 5.38b), characterized by 

high atmospheric water demand and absence of precipitation, where the 

simulated irrigation depth was always slightly higher than that applied. 

Similar results were observed by Campos et al. (2017), during a study 

carried out on an irrigated and rain-fed maize and soybean fields in eastern 

Nebraska (USA). The authors assessed the performance of the functional 

relationship between Kcb and SAVI or LAI proposed by Choudhury et al. 

(1994) with RMSE lower than 0.7 mm d−1. In terms of simulated irrigation 

requirement, the authors observed an overestimation of about 15%, mainly 

during the periods with low precipitation and high atmospheric water 

demand. 

A good agreement was found for the temporal evolution of the cumulative 

irrigation depth (fig. 5.39a,b) with a difference between simulated and 

measured seasonal cumulated irrigation volumes of around 3% and 17% for 

2018 (fig. 5.39a) and 2019 (fig. 5.39b) irrigation season, respectively.  

 

Figure 5.39: Comparison between measured and simulated cumulative irrigation volumes 

during irrigation seasons 2018 a) and 2019 b). 

a) 

b) 



  Chapter 5: Results and Discussion 

 

  

M. Ippolito 135 

 

These results are in agreement with those obtained by Minacapilli et al. 

(2008) who found, in an irrigation district in Sicily, using the SIMODIS 

model, a difference from estimated and measured irrigation volumes less 

than 8%. In conclusion, following the FAO56 estimations, the district could 

have a tool for supporting the decision in the management of the irrigation 

water resource. 
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Chapter 6: Conclusion  

For irrigation water management and to improve water use efficiency, 

reliable climate data measurements and accurate estimations of ETa, are 

essential. This concept is crucial to optimize water use in irrigation and 

reduction of waste of water resource. Therefore, for the different application 

scales, from fields to irrigation districts, it is important to focus the attentions 

on innovative techniques that allows reliable irrigation scheduling and to 

adopt efficient irrigation strategies. 

Direct measurements of the main climate data (Tmin, Tmax, Rs, RHmin, RHmax, 

U10) to estimate the atmospheric water demand are very important to know 

the upper boundary conditions of the SPA system. In some areas of the 

world, these measurements are not always available due to limited economic 

or difficult morphological conditions for the installation of the climatic 

stations. In this case, the increased availability of reanalysis climate data can 

be an alternative to access these data and reduce the technological gap. 

The EC systems are the most used technique to monitoring the 

evapotranspiration fluxes from the canopy and soil. However, these systems 

are subject to improper installation of the sensors or incorrect calibration, as 

well as the poor maintenance can cause acquisition gaps of one or more 

sensors and compromises the continuity of actual evapotranspiration 

records. Recent studies based on ANNs and ML techniques have been 

demonstrated that these models can be a reliable solution for time series gap-

filling and or produce synthetic data series. 

Despite the direct measurements of ETa are most important to know the real 

crop water requirements, for large scales of application can be costly and 

time-consuming. For these reasons, remotely sensed data, as earth 

observation by means MSI can be reliable input data to assess crop water 

requirements by means the implementation of spatially distributed models. 

In this framework, the general context of this thesis can be defined as how 

the use of remotely sensed data and innovative techniques of data analysis 

can support the estimation of crop water requirements, at different spatial 

scales, using spatially distributed model. 

In this thesis, the quality of the ERA5-L reanalysis climate variable was 

evaluated to assess crop reference evapotranspiration, ETo, in Sicily, with 

specific attention to the assessment of the FAO56-PM equation sensibility 

for the ETo estimation. Contextually, over the Villabate citrus orchard and 
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“Tenuta Rocchette” olives orchard, the performance of the GPR algorithm 

was evaluated for time series gap-filling of ETa. For two different crops 

(citrus and olives) were obtained two functional relationships Kc(VIs). The 

reliability of these equations was assessed by means the implementation of 

the FAO56 Agro-Hydrological model to assess crop water requirements for 

the two different types of crops examined. To this aim, two databases of 

Sentinel-2 MSI level 2A were obtained and then processed to derive spatial 

and temporal distribution of the NDVI and NDWI over the study areas. The 

datasets were used as input of the FAO56 Agro-Hydrological model to 

estimate spatial and temporal distribution of SWC, actual 

evapotranspiration, ETa, crop coefficient, Kc, and stress coefficient, Ks. 

Regarding to the assessment of the ERA5-L reanalysis climate variables 

quality, the comparison between reanalysis climate variables and ground 

measurement evidenced that ERA5-L database generally is in good 

agreement with the variables measured on the ground. Specifically, Tmin and 

Tmax and Rs were mostly well estimated, by reanalysis database with overall 

average RMSE values equal to 2.13 °C, 2.52°C and 2.95 MJ m-2 d-1, 

respectively. With corresponding MBE values equal to 0.50 °C, -1.28°C and 

0.95 MJ m-2 d-1 respectively. On the other hand, the worst variables 

estimated were RHmin and RHmax with RMSE equal to 14.14 % and 9.94% 

and corresponding MBE value equal to 9.94 % and 0.98 %, respectively. 

Considering that in ERA5-L database the relative air humidity is a function 

of dew point temperature and air temperature, an improvement in these two 

variables could better assess relative air humidity. 

The effect of the weather station elevation on the quality of the reanalysis 

climate data shows that for average air temperature, average relative air 

humidity and Rs, RMSE and MBE values were generally stable for elevation 

below 650 m a.s.l.. While for the stations with elevation above 650 m a.s.l. 

was possible to notice an increase of the two indices. 

The ETo values estimated based on climate variables from ERA5-L database 

encourage to use of the reanalysis database to assess ETo in Sicily. In 

general, the results were in agreement with those obtained from ground 

measurement by 27 weather stations, with average RMSE equal to 0.73 mm 

d-1 and corresponding MBE equal to -0.36 mm d-1. The best estimation 

performance of ETo (b= 0.99, R2=0.96, RMSE =0.42 mm d-1 and MBE=0.00 

mm d-1), was obtained in Canicatti (ID 208) station where all climate 

variables were well estimated by the ERA5-L database. While the highest 

differences (b= 0.77, R2=0.92, RMSE =1.26 mm d-1 and MBE=-1.03 mm d-



  Chapter 6: Conclusion 

 

  

M. Ippolito 139 

 

1) were observed in Lentini (ID 292) station where the relative air humidity 

overestimation (b=1.25) and wind speed underestimation (b=0.65) cause the 

worst performance in ETo estimation. 

The Sc referred to the six variables Tmin, Tmax, RHmax, RHmin, Rs and U10, used 

in the PM equation were equal to 0.59, 0.06, -0.42, -0.41 0.33 and 0.27, 

respectively. It is possible conclude that the main contribution to ETo quality 

estimation derives from the accuracy of Tmax and relative air humidity 

measurements.  

The results obtained in this study can be useful to encourage the use of 

ERA5-L database in Sicily. Moreover, the sensitivity analysis allowed to 

identify, which instruments need accurate maintenance routines to ensure a 

good quality of the future estimation. The results also provide an approach 

for assess ETo in areas where climate data are not available and to replace 

eventual lack in the ground measurement.  

The use of the GPR algorithm to fill gaps in the time series of daily actual 

evapotranspiration was investigated. In the first step, the best combination 

of mean, m(x), and kernel covariance, k(x,x’), functions were identified 

considering all the input variables associated with the climate, soil water 

status as well as two VIs expressive of plant vigor and surface water status. 

In the second step, four additional variable combinations were also explored, 

to verify the performance of the estimation when limiting the number of 

input variables or considering only input variables freely downloadable 

from the web. The goodness of the proposed methodology is confirmed by 

the quite high NSE index, ranging between 0.74 and 0.88, and values of 

RMSE always lower or equal to 0.55 mm d-1. Further validation of the 

proposed ML algorithm with the three variable combinations not including 

SWC was carried out in an olive orchard. The performance of the GPR 

model was confirmed by the values of RMSE always lower than 0.51 mm 

d-1 and values of NSE positive and ranging from 0.65 to 0.67. Therefore, the 

combined use of agrometeorological and RS data with a GPR model can 

represent an opportunity to estimate missing data in the daily ETa time 

series. Furthermore, in the zone where ground data are not available, the use 

of ERA5-L agrometeorological archive and VIs retrieved from Sentinel-2 

images or, in areas characterized by homogeneous soil and land use, from 

MODIS sensors can be considered a valid alternative to fill gaps in measured 

time series of daily actual evapotranspiration.  

The application of the FAO56 Agro-Hydrological model, in the Villabate 

citrus orchard during three irrigation seasons (2018, 2019 and 2020), based 
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on the proposed non-linear relationship Kc(VIs), showed fairly good 

agreement between estimated and measured, SWC, and ETa at field level. 

The predictions of daily SWC were very accurate, with RMSE equal to 0.01 

cm3 cm−3 and the absence of bias, as a consequence of the substantial 

agreement between the average SWC, measured in the root zone, and the 

corresponding ones simulated by the model. 

The reliability of the proposed Kc(VIs) relationship is also confirmed by the 

high R2 values, the b coefficient slightly higher than 1 and the always 

positive NSE. However, the negative values of PBIAS, obtained in the three 

years of simulation, indicate a weak tendency of simulated values to be 

higher than the ones observed. On the other hand, the simulated values of 

ETa were characterized by RMSE equal to 0.57 and 0.40, MBE of -0.26 mm 

d−1 and -0.01 mm d−1 and PBIAS of 10.40 and 0.20 for 2019 and 2020, 

respectively. Even if the crop coefficients tabulated for the different stages 

of citrus crop growth, on average, were confirmed in this research, the 

possibility of using site-specific crop coefficients, accounting for local and 

time-variable conditions occurring in the field can contribute to improving 

the crop water requirement predictions and irrigation scheduling. Moreover, 

the proposed Kc(VIs) relationships, implemented in a GIS environment, can 

also contribute to driving the implementation of precision irrigation 

strategies accounting for the actual field spatial variability. 

The FAO56 Agro-Hydrological model was also applied on 33 pilot farms 

located within the irrigation district 1A, during two irrigation seasons (2018 

and 2019). This model allowed retrieving daily spatial distribution of SWC, 

ETa, Kc and Ks. 

With reference to the capabilities of the model to estimate spatial 

distribution of SWC and ETa, the results show a good predictive property 

with values consistent with the thermo-pluviometric boundary conditions. 

The comparison between daily measured and estimated irrigation depth for 

the 2018 irrigation season, showed that the main differences in the estimated 

values are concentrated at beginning of July, when the irrigation season 

starts while for the remaining season, the simulated values were lower than 

of the real amount distributed, allowing a significative water saving. Except 

for the 2019 irrigation season, the absence of rainfall events causes a regular 

slightly overestimation in the simulated irrigation depth. When considering 

the cumulative irrigation depth, the differences between simulated and 

measured seasonal values was for the 2018 3%, while for the 2019 was 17%. 

The latter value suggests that the model performance is strongly conditioned 
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by the presence of the rainfall events. Despite for the 2019, the difference 

was considerable; the proposed methodology can be improved in order to 

minimizes the effect due to the absence of the precipitation. These results 

highlight that the proposed model, with opportune improvements, can be a 

useful tool for supporting the decision in the management of the irrigation 

water resources. 

6.1 Future research line 

In this thesis the possibility to assess CWR, in two typical Mediterranean 

orchards, using proximal and remotely sensed data was widely analysed. 

However, some research questions are still open. 

Despite, the accurate estimations of ETo were obtained considering the 

ERA5-L climate variables. In this research, the U10 from ERA5-L climate 

database was used. Further analysis could be useful to investigate the effect 

on ETo estimation due to the application of logarithmic profile suggested by 

Allen et al. (1998) to retrieve the wind speed, obtained from ERA5-L 

database, at 2 m above the soil. Moreover, additional research activity could 

be needed to consider the possibility of downscaling the climate variables 

acquired from ERA5-L reanalysis database, using elevation information 

retrieved from Digital Elevation Model (DEM) to consider the intra-pixel 

spatial variability. 

The applicability of GPR algorithm to predict ETa was tested in two typical 

orchards (olives and citrus) of the Mediterranean basin. Nevertheless, the 

applicability of the proposed algorithm and methods could be extended, to 

assess the performances in different climatic areas. Furthermore, future 

studies could assess the performance in ETa estimations associated with the 

introduction, as an input variable, of high-resolution satellite-based soil 

moisture products. 

The performances of the FAO56 Agro-Hydrological model to estimate 

CWR at different spatial scale should be also tested on other sparse crops 

systems, as vineyards. Moreover, for application over large scales (irrigation 

district) information regarding the spatialization of the crops root depth and 

the real irrigated surface are essential. In this future perspective, data fusion 

between in-situ measurements and accurate field information are necessary 

to improve the knowledge in this research field. 
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https://www.agenziaentrate.gov.it  
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https://atmosphere.copernicus.eu/copernicus-moves-forward-monitoring-

human-carbon-dioxide-emissions  
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https://www.campbellsci.de/wxpro  
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https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

levels?tab=overview  

Cds.climate.copernicus.eu, ERA5-Land database, web site 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-

land?tab=overview  

Cds.climate.copernicus.eu, web site 

https://cds.climate.copernicus.eu/#!/home  

Copernicus.eu, web site  

https://www.copernicus.eu  

Directory.eoportal.org, web site 

https://directory.eoportal.org/web/eoportal/home  

Esa.int, web site 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_

Sentinel_missions  

Esa.int, web site 

https://www.esa.int/Enabling_Support/Space_Transportation/Types_of_o

rbits  

Esa.int, web site 

https://www.esa.int/ESA_Multimedia/Images/2020/03/Geostationary_or

bit 
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Ibis.geog.ubc.ca, web site 

https://ibis.geog.ubc.ca/~achristn/infrastructure/oakridge.html  

landsat.gsfc.nasa.gov, web site 

https://landsat.gsfc.nasa.gov/article/preliminary-spectral-response-of-the-

operational-land-imager-in-band-band-average-relative-spectral-

response/  

Scihub.copernicus.eu, web site  

https://scihub.copernicus.eu/dhus/#/home  

Sentektechnologies.com, website 

https://sentektechnologies.com/products/soil-data-probes/  

Sias.regione.sicilia.it, web site  

http://www.sias.regione.sicilia.it/  

Skyeinstruments.com, web site 

https://www.skyeinstruments.com/digital-system/  
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Annex 1: Daily average wind speed registered on ground at 2 m vs the corresponding at 

10 m height 
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Annex 2: Pattern of RMSE and MBE values as a function of the elevation of the ground 

stations, for each examined variable 
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Annex 4: Statistical indicators for mean, m(x), and kernel covariance, k(x,x’), 

 functions obtained by considering the entire database which includes all the examined 

variables (combination 1). 
 

  Covariance kernel functions k(x,x’) 

 

Mean 

function 

m(x) 

Rational 

Quadratic 

Squared 

Exponential 

Matern 

5/2 

Matern 

3/2 
Exponential 

RMSE 

[mm d-1] 

Zero 0.39 0.44 0.42 0.40 0.38 

Constant 0.40 0.45 0.43 0.42 0.39 

Linear 0.41 0.40 0.41 0.41 0.40 

MAE  

[mm d-1] 

Zero 0.28 0.33 0.31 0.29 0.28 

Constant 0.29 0.32 0.31 0.30 0.28 

Linear 0.29 0.29 0.30 0.29 0.29 

R2                   

[-] 

Zero 0.87 0.84 0.85 0.86 0.88 

Constant 0.86 0.83 0.84 0.85 0.87 

Linear 0.86 0.87 0.86 0.86 0.87 

 b             

[-] 

Zero 0.98 0.97 0.97 0.98 0.98 

Constant 0.97 0.97 0.97 0.98 0.98 

Linear 0.97 0.98 0.98 0.98 0.98 

NSE               

[-] 

Zero 0.87 0.84 0.85 0.86 0.88 

Constant 0.86 0.83 0.84 0.85 0.87 

Linear 0.86 0.87 0.86 0.86 0.87 
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Annex 5: Temporal dynamics of simulated (black line), ETa-sim, and measured (red dots), ETa-meas,. 

The corresponding scatterplots of estimated versus measured ETa are also shown.  
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