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Abstract. We consider a nonlinear nonhomogeneous Dirichlet problem driven
by the sum of a p-Laplacian and a Laplacian and a reaction term which is (p−
1)-linear near ±∞ and resonant with respect to any nonprincipal variational

eigenvalue of (−∆p,W
1,p
0 (Ω)). Using variational tools together with truncation

and comparison techniques and Morse Theory (critical groups), we establish

the existence of six nontrivial smooth solutions. For five of them we provide

sign information and order them.

1. Introduction. Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In
this paper we study the following nonlinear nonhomogeneous Dirichlet problem

−∆pu(z)−∆u(z) = f(z, u(z)) in Ω, u
∣∣∣
∂Ω

= 0, 2 < p. (1)

In this problem ∆p denotes the p-Laplace differential operator defined by

∆pu = div (|∇u|p−2∇u) for all u ∈W 1,p(Ω).

When p = 2, we have ∆2 = ∆ the usual Laplacian. The reaction term f(z, x) is a
measurable function which is C1 in the x-variable. We assume that f(z, ·) exhibits
(p− 1)-linear growth near ±∞ and resonance can occur at ±∞ with respect to any

nonprincipal variational eigenvalue of (−∆p,W
1,p
0 (Ω)). Near zero the reaction term

f(z, ·) exhibits a kind of oscillatory behavior. Using variational tools (critical point
theory), together with truncation techniques and Morse theory (critical groups),
we show that the problem has at least six nontrivial smooth solutions. For five
of these solutions we provide sign information and order them. Elliptic equations
driven by the sum of a p-Laplacian and a Laplacian ((p, 2)-equations for short),
arise in problems of mathematical physics. We refer to Aris [4], Benci-D’Avenia-
Fortunato-Pisani [5], Cherfils-Il’yasov [8], Fife [11] for such applications. Recently
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there have been some existence and multiplicity results for such equations. We
mention the works of Aizicovici-Papageorgiou-Staicu [3], Cingolani-Degiovanni [9],
Gasiński-Papageorgiou [15, 16], Liang-Han-Li [20], Papageorgiou-Rǎdulescu [27, 28,
29], Papageorgiou-Rǎdulescu-Repovš [32], Pei-Zhang [33], Sun [35], Sun-Zhang-Su
[36], Yang-Bai [38]. However, none of the aforementioned works treats problems
resonant at higher parts of the spectrum or produces six nontrivial smooth solutions
with sign and order information.

2. Mathematical Background - Hypotheses. LetX be a Banach space andX∗

its topological dual. By ⟨·, ·⟩ we denote the duality brackets for the pair (X∗, X).
Given φ ∈ C1(X,R), we say that it satisfies the “Cerami condition” (the “C-
condition” for short), if the following property holds:

“Every sequence {un}n∈N ⊆ X such that

{φ(un)}n∈N ⊆ R is bounded,

(1 + ∥un∥)φ′(un) → 0 in X∗ as n→ +∞,

admits a strongly convergent subsequence”.
This compactness-type condition on φ, leads to a deformation theorem, from

which one can derive the minimax theory for the critical values of φ. A basic result
in that theory is the so-called “mountain pass theorem” which we recall here.

Theorem 2.1. If φ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X, ∥u1 − u0∥ >
r > 0,

max{φ(u0), φ(u1)} < inf{φ(u) : ∥u− u0∥ = r} = mr,

and c = inf
γ∈Γ

max
0≤t≤1

φ(γ(t)) where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},

then c ≥ mr and c is a critical value of φ (that is, there exists u ∈ X such that
φ(u) = c, φ′(u) = 0).

In the analysis of problem (1) we will use the Sobolev spaces

W 1,p
0 (Ω) and H1

0 (Ω)

and the Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u

∣∣∣
∂Ω

= 0
}
.

By ∥ · ∥ we denote the norm of W 1,p
0 (Ω). As a consequence of the Poincaré

inequality, we can have

∥u∥ = ∥∇u∥p for all u ∈W 1,p
0 (Ω).

The Sobolev spaceH1
0 (Ω) is a Hilbert space. Again thanks to the Poincaré inequality

we can take as inner product of H1
0 (Ω)

⟨u, h⟩ = (∇u,∇h)L2(Ω,RN ) =

∫
Ω

(∇u,∇h)RNdz for all u, h ∈ H1
0 (Ω).

Then the corresponding norm of H1
0 (Ω) is

∥u∥H1
0 (Ω) = ∥∇u∥2 for all u ∈ H1

0 (Ω).

The Banach space C1
0 (Ω) is an ordered Banach space with positive (order) cone

given by
C+ = {u ∈ C1

0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.
This cone has a nonempty interior given by
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int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω

< 0

}
.

Here
∂u

∂n

∣∣∣
∂Ω

denotes the normal derivative of u at ∂Ω defined by
∂u

∂n
= (∇u, n)RN

with n(·) being the outward unit normal on ∂Ω. The Banach space C1
0 (Ω) is dense

in both Sobolev spaces W 1,p
0 (Ω) and H1

0 (Ω).
Consider a Carathéodory function f0 : Ω× R → R which satisfies

|f0(z, x)| ≤ a0(z)[1 + |x|r−1] for a.a. z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω), 1 < r < p∗ =


Np

N − p
if p < N,

+∞ if N ≤ p,
(the critical Sobolev exponent

for p). We set F0(z, x) =
∫ x
0
f0(z, s)ds and consider the C1-functional φ0 :W 1,p

0 (Ω) →
R defined by

φ0(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F0(z, u)dz for all u ∈W 1,p
0 (Ω).

The next proposition is a special case of a more general result of Aizicovici-
Papageorgiou-Staicu [2]. We refer to Papageorgiou-Rǎdulescu [30, 31] for similar
results suitable for the Neumann and Robin problems. These results are essentially
an outgrowth of the nonlinear regularity theory of Lieberman [22].

Proposition 1. If u0 ∈ W 1,p
0 (Ω) is a local C1

0 (Ω)-minimizer of φ0, that is, there

exists ρ0 > 0 such that φ0(u0) ≤ φ0(u0 + h) for all h ∈ C1
0 (Ω), ∥h∥C1

0 (Ω) ≤ ρ0, then

u0 ∈ C1,α
0 (Ω) with α ∈ (0, 1) and it is also a local W 1,p

0 (Ω)-minimizer of φ0, that

is, there exists ρ1 > 0 such that φ0(u0) ≤ φ0(u0+h) for all h ∈W 1,p
0 (Ω), ∥h∥ ≤ ρ1.

Our hypotheses and arguments will involve the spectra of

(−∆p,W
1,p
0 (Ω)) and (−∆, H1

0 (Ω)).

We consider the following nonlinear eigenvalue problem

−∆pu(z) = λ̂|u(z)|p−2u(z) in Ω, u
∣∣∣
∂Ω

= 0. (2)

Actually the results for (2) which we will present are valid for 1 < p < +∞.

We say that λ̂ ∈ R is an “eigenvalue”, if problem (2) admits a nontrivial solution

û ∈ W 1,p
0 (Ω) known as an eigenfunction corresponding to the eigenvalue λ̂. There

is a smallest eigenvalue λ̂1(p) which has the following properties:

• λ̂1(p) > 0 and it is isolated in the spectrum σ̂(p) of (−∆p,W
1,p
0 (Ω)) (that is,

there exists ε > 0 such that (λ̂1(p), λ̂1(p) + ε) ∩ σ̂(p) = ∅).
• λ̂1(p) is simple (that is, if û, ũ ∈W 1,p

0 (Ω) are eigenfunctions corresponding to

the eigenvalue λ̂1(p), then û = ξũ for some ξ ∈ R \ {0}).
•

λ̂1(p) = inf

[∥∇u∥pp
∥u∥pp

: u ∈W 1,p
0 (Ω), u ̸= 0

]
. (3)

The infimum in (3) is realized on the corresponding one dimensional eigenspace.
The above properties imply that the elements of this eigenspace have fixed sign. By
û1(p) we denote the Lp-normalized (that is, ∥û1(p)∥p = 1) positive eigenfunction

corresponding to λ̂1(p). The nonlinear regularity theory implies that û1(p) ∈ C+.
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Moreover, the nonlinear strong maximum principle (see, for example Gasiński-
Papageorgiou [14], p. 738) gives that û1(p) ∈ int C+. Similarly all eigenfunctions

belong in C1
0 (Ω) and if λ̂ ̸= λ̂1(p), then the corresponding eigenfunctions are nodal

(that is, sign changing). Since the spectrum σ̂(p) is closed and λ̂1(p) > 0 is isolated,
the second eigenvalue is well-defined by

λ̂2(p) = min
[
λ̂ ∈ σ̂(p) : λ̂ > λ̂1(p)

]
.

Additional eigenvalues can be produced using the Ljusternik-Schnirelmann minimax

scheme. This way we can generate a sequence {λ̂k(p)}k∈N of eigenvalues such

that λ̂k(p) → +∞ as k → +∞. These are the so-called “variational eigenva-
lues” and depending on the index used in the Ljusternik-Schnirelmann scheme,
we can have different such sequences. They all coincide in the first two elements

λ̂2(p) > λ̂1(p) > 0, but for the rest we do not know if this is the case. Here we
employ the sequence generated using the Fadell-Rabinowitz cohomological index
(see, Cingolani-Degiovanni [9]). Moreover, we do not know if the sequence of
variational eigenvalues exhausts σ̂(p). This is the case if p = 2 (linear eigenva-
lue problem) or if N = 1 (ordinary differential case).

For the linear eigenvalue problem (p = 2) we have

−∆u(z) = λ̂u(z) in Ω, u
∣∣∣
∂Ω

= 0.

In this case we have

σ̂(2) = {λ̂k(2)}k∈N with 0 < λ̂1(2) < λ̂2(2) < · · · < λ̂k(2) → +∞ as k → +∞.

The corresponding eigenspaces E(λ̂k(2)), k ∈ N, are linear subspaces of H1
0 (Ω) and

we have

H1
0 (Ω) = ⊕k∈NE(λ̂k(2)).

Such a decomposition is not possible for the nonlinear problem (2), where the
corresponding eigenspaces for k ≥ 2, are cones. This makes the study of resonant
problems for the p-Laplacian more difficult.

Standard regularity theory implies that

E(λ̂k(2)) ⊆ C1
0 (Ω) for all k ∈ N.

Moreover, each eigenspace E(λ̂k(2)), k ∈ N, has the so-called “Unique Continuation

Property” (UCP for short), that is, if u ∈ E(λ̂k(2)), k ∈ N, and u(·) vanishes on a set
of positive measure, then u ≡ 0. For the linear eigenvalue problem, all eigenvalues
admit variational characterizations:

λ̂1(2) = inf

[
∥∇u∥22
∥u∥22

: u ∈ H1
0 (Ω), u ̸= 0

]
, (4)

λ̂l(2) = inf

[
∥∇u∥22
∥u∥22

: u ∈ Ĥl = ⊕k≥lE(λ̂k(2))

]
= sup

[
∥∇u∥22
∥u∥22

: u ∈ H l = ⊕lk=1E(λ̂k(2))

]
, l ≥ 2. (5)

In (4) the infimum is realized on E(λ̂1(2)). In (5) both the infimum and the

supremum are realized on E(λ̂l(2)).
Using (4), (5) and the UCP of the eigenspaces, we deduce the following useful

inequalities.
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Proposition 2. We have:

(a) If l ∈ N, η ∈ L∞(Ω), η(z) ≥ λ̂l(2) for a.a. z ∈ Ω and η ̸≡ λ̂l(2), then there
exists c1 > 0 such that

∥∇u∥22 −
∫
Ω

η(z)u2dz ≤ −c1∥u∥2 for all u ∈ H l.

(b) If l ∈ N, η ∈ L∞(Ω), η(z) ≤ λ̂l(2) for a.a. z ∈ Ω and η ̸≡ λ̂l(2), then there
exists c2 > 0 such that

∥∇u∥22 −
∫
Ω

η(z)u2dz ≥ c2∥u∥2 for all u ∈ H l.

Consider the operator Ap : W 1,p
0 (Ω) → W−1,p′(Ω) = W 1,p

0 (Ω)∗
(
1

p
+

1

p′
= 1

)
defined by

⟨Ap(u), h⟩ =
∫
Ω

|∇u|p−2(∇u,∇h)RNdz.

This map has the following well-known properties (see, for example, Gasiński-
Papageorgiou [14]).

Proposition 3. Ap(·) is bounded (that is, maps bounded sets to bounded sets),
continuous and strictly monotone (thus maximal monotone too) and of type (S)+
(that is, un

w−→ u in W 1,p
0 (Ω) and lim supn→+∞⟨A(un), un − u⟩ ≤ 0 imply un → u

in W 1,p
0 (Ω)).

Next let us recall some basic definitions and facts from Morse theory (critical
groups), which we will use in the sequel. So, let X be a Banach space, φ ∈ C1(X,R)
and c ∈ R. We introduce the following sets

Kφ = {u ∈ X : φ′(u) = 0},

Kc
φ = {u ∈ Kφ : φ(u) = c},
φc = {u ∈ X : φ(u) ≤ c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ N0. By Hk(Y1, Y2)
we denote the kth-relative singular homology group with Z-coefficients. Suppose
u ∈ Kc

φ is isolated. Then the critical groups of φ at u are defined by

Ck(φ, u) = Hk(φ
c ∩ U,φc ∩ U \ {u}) for all k ∈ N0.

Here U is a neighborhood of u such thatKφ∩φc∩U = {u}. The excision property of
singular homology implies that the above definition of critical groups is independent
of the choice of the neighborhood U .

Suppose that φ ∈ C1(X,R) satisfies the C-condition and inf φ(Kφ) > −∞. Let
c < inf φ(Kφ). The critical groups of φ at infinity are defined by

Ck(φ,∞) = Hk(X,φ
c) for all k ∈ N0.

This definition is independent of the choice of c < inf φ(Kφ). Indeed, let c
′ <

c < inf φ(Kφ). From Corollary 5.35, p. 115 of Motreanu-Motreanu-Papageorgiou
[25] we have that

φc
′
is a strong deformation retract of φc,

⇒ Hk(X,φ
c) = Hk(X,φ

c′) for all k ∈ N0 (see [25], Corollary 6.15(a), p. 145).
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If u is a local minimizer of φ, then

Ck(φ, 0) = δk,0Z for all k ∈ N0,

where δk,m is the Kronecker symbol defined by

δk,m =

{
1 if k = m,

0 if k ̸= m,
k,m ∈ N0.

If u is a critical point of mountain pass type, then

C1(φ, u) ̸= 0 (see [25], Corollary 6.81, p. 168).

Before introducing the hypotheses on the reaction term, let us fix our notation.
For x ∈ R, we set x± = max{±x, 0}. Then given u ∈ W 1,p(Ω), we define

u±(·) = u(·)±. We know that

u± ∈W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

By | · |N we denote the Lebesgue measure on RN . If g(z, x) is a measurable function
(for example, a Carathéodory function), then by Ng(·) we denote the Nemytski
(superposition) operator corresponding to g, that is,

Ng(u)(·) = g(·, u(·)) for all u ∈W 1,p
0 (Ω).

Also if u, v ∈W 1,p(Ω), then we set

[u, v] = {h ∈W 1,p
0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω}.

By int C1
0 (Ω)[u, v], we denote the interior in C1

0 (Ω) of [u, v] ∩ C1
0 (Ω).

Now we are ready to introduce the hypotheses on the reaction term f(z, x).

H(f): f : Ω×R → R is a measurable function such that for a.a. z ∈ Ω f(z, 0) = 0,
f(z, ·) ∈ C1(R) and
(i) |f ′x(z, x)| ≤ a(z)[1 + |x|r−2] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω),

p < r ≤ p∗;
(ii) there exist functions w± ∈W 1,p(Ω) ∩ C(Ω) such that

w−(z) ≤ c− < 0 < c+ ≤ w+(z) for all z ∈ Ω,

Ap(w−) +A(w−) ≤ 0 ≤ Ap(w+) +A(w+) in W−1,p′(Ω) =W 1,p
0 (Ω)∗,

f(z, w+(z)) ≤ 0 ≤ f(z, w−(z)) for a.a. z ∈ Ω;

(iii) there exist m ∈ N, m ≥ 2 such that

lim
x→±∞

f(z, x)

|x|p−2x
= λ̂m(p) uniformly for a.a. z ∈ Ω

and if F (z, x) =
∫ x
0
f(z, s)ds, then

f(z, x)x− pF (z, x) → +∞ uniformly for a.a. z ∈ Ω, as x→ ±∞;

(iv) there exist l ∈ N, l ≥ 2 such that dl ̸= m with

dl = dim H l = dim ⊕lk=1 E(λ̂k(2))
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and functions η1, η2 ∈ L∞(Ω) such that

λ̂l(2) ≤ η1(z) for a.a. z ∈ Ω, η1 ̸≡ λ̂l(2),

η2(z) ≤ λ̂l+1(2) for a.a. z ∈ Ω, η2 ̸≡ λ̂l+1(2),

η1(z) ≤ f ′x(z, 0) = lim
x→0

f(z, x)

x
≤ η2(z) uniformly for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the function

x→ f(z, x) + ξ̂ρ|x|p−2x

is nondecreasing on [−ρ, ρ].

Remark 1. Hypotheses H(f) (ii), (iv) imply that near zero f(z, ·) has a kind of
oscillatory behavior. Evidently hypothesis H(f) (ii) is satisfied if there exist c− <
0 < c+ such that f(z, c+) ≤ 0 ≤ f(z, c−) for a.a. z ∈ Ω. Hypothesis H(f) (iii)
implies that at ±∞ we have resonance with respect to a nonprincipal variational
eigenvalue.

Example 1. The following function satisfies hypotheses H(f) with w− ≡ −1,
w+ ≡ 1. For the sake of simplicity, we drop the z-dependence:

f(x) =

{
ηx− ξ|x|r−2x if |x| ≤ 1,

λ̂m(p)|x|p−2x+ β|x|τ−2x+ θ if 1 < |x|,

with η ∈ (λ̂l(2), λ̂l+1(2)) where l ∈ N, l ≥ 2, dl ̸= m, 2 < r, 2 < τ < p, ξ > η and

θ = (p− 2)λ̂m(p) + (r − 2)ξ.

3. Constant Sign Solutions. In this section, we prove the existence of four
nontrivial smooth solutions of constant sign (two positive and two negative). We
also localize and order the solutions.

Proposition 4. If hypotheses H(f) (i), (ii), (iv) hold, then problem (1) admits two
constant sign smooth solutions

u0 ∈ intC1
0 (Ω)[0, w+] and v0 ∈ intC1

0 (Ω)[w−, 0].

Proof. Consider the Carathéodory function f̂+ : Ω× R → R defined by

f̂+(z, x) =

{
f(z, x+) if x ≤ w+(z),

f(z, w+(z)) if w+(z) < x.
(6)

We set F̂+(z, x) =
∫ x
0
f̂+(z, s)ds and introduce the C1-functional φ̂+ :W 1,p

0 (Ω) → R
defined by

φ̂+(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F̂+(z, u)dz for all u ∈W 1,p
0 (Ω).

From (6) it is clear that φ̂+ is coercive. Also using the Sobolev embedding theorem,
we see that φ̂+ is sequentially weakly lower semicontinuous. So, by the Weierstrass-

Tonelli theorem, we can find u0 ∈W 1,p
0 (Ω) such that

φ̂+(u0) = inf
[
φ̂+(u) : u ∈W 1,p

0 (Ω)
]
. (7)
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Hypothesis H(f) (iii) implies that given ε > 0, we can find δ = δ(ε) ∈ (0, c+) such
that

f(z, x) = f̂+(z, x) ≥ [η1(z)− ε]x for a.a. z ∈ Ω, all 0 ≤ x ≤ δ (see (6)),

⇒ F̂+(z, x) ≥
1

2
[η1(z)− ε]x2 for a.a. z ∈ Ω, all 0 ≤ x ≤ δ. (8)

Recall that û1(2) ∈ int C+. So, we can find t ∈ (0, 1) small such that

tû1(2)(z) ∈ [0, δ] for all z ∈ Ω. (9)

Then we have

φ̂+(tû1(2)) ≤
tp

p
∥∇û1(2)∥pp +

t2

2
λ̂1(2)−

t2

2

∫
Ω

η1(z)û1(2)
2dz +

εt2

2

(see (8) and (9) and recall that ∥û1(2)∥2 = 1)

⇒ φ̂+(tû1(2)) ≤
tp

p
∥∇û1(2)∥pp +

t2

2

[∫
Ω

(λ̂1(2)− η1(z))û1(2)
2dz + ε

]
.

Since û1(2) ∈ int C+ and l ≥ 2, we have

β =

∫
Ω

[η1(z)− λ̂1(2)]û1(2)
2dz > 0.

We have

φ̂+(tû1(2)) ≤
tp

p
∥∇û1(2)∥pp +

t2

2
[ε− β] .

Choosing ε ∈ (0, β) and recalling that p > 2 and t ∈ (0, 1), by choosing t ∈ (0, 1)
even smaller if necessary, we have

φ̂+(tû1(2)) < 0,

⇒ φ̂+(u0) < 0 = φ̂+(0) (see (7)) and so u0 ̸= 0.

From (7) we have

φ̂′
+(u0) = 0,

⇒ ⟨Ap(u0), h⟩+A(u0), h⟩ =
∫
Ω

f̂+(z, u0)hdz for all h ∈W 1,p
0 (Ω). (10)

In (10) first we choose h = −u−0 ∈W 1,p
0 (Ω). Then

∥∇u−0 ∥pp + ∥∇u−0 ∥22 = 0 (see (6)),

⇒ u0 ≥ 0, u0 ̸= 0.

Next in (10) we choose h = (u0 − w+)
+ ∈W 1,p

0 (Ω). Then

⟨Ap(u0), (u0 − w+)
+⟩+ ⟨A(u0), (u0 − w+)

+⟩

=

∫
Ω

f(z, w+)(u0 − w+)
+dz (see (6))

≤ ⟨Ap(w+), (u0 − w+)
+⟩+ ⟨A(w+), (u0 − w+)

+⟩ (see hypothesis H(f) (ii))

⇒ ⟨Ap(u0)−Ap(w+), (u0 − w+)
+⟩+ ⟨A(u0)−A(w+), (u0 − w+)

+⟩ ≤ 0,

⇒ u0 ≤ w+.

So we have proved that

u0 ∈ [0, w+]. (11)

From (6) and (11), we see that (10) becomes
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⟨Ap(u0), h⟩+A(u0), h⟩ =
∫
Ω

f(z, u0)hdz for all h ∈W 1,p
0 (Ω),

⇒ −∆pu0(z)−∆u0(z) = f(z, u0(z)) for a.a. z ∈ Ω, u
∣∣∣
∂Ω

= 0. (12)

From Ladyzhenskaya-Uraĺtseva [19] (Theorem 7.1, p. 286), we have

u0 ∈ L∞(Ω).

Then we can use Theorem of Lieberman [22] and infer that

u0 ∈ C+ \ {0}.

Let ρ = ∥w+∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f) (v). Then from
(12) we have

∆pu0(z) + ∆u0(z) ≤ ξ̂ρu0(z)
p−1 for a.a. z ∈ Ω.

Theorem 5.4.1, p. 111, of Pucci-Serrin [34] implies that

0 < u0(z) for all z ∈ Ω

(alternatively one can use Harnack’s inequality, see Motreanu-Motreanu-Papageorgiou
[25], p. 212). Finally using the boundary point lemma of Pucci-Serrin [34], we
conclude that

u0 ∈ int C+. (13)

Let a : RN → RN be defined by

a(y) = |y|p−2y + y for all y ∈ RN .

Evidently a ∈ C1(RN ,RN ) and

div a(∇u) = ∆pu+∆u for all u ∈W 1,p
0 (Ω).

We have

∇a(y) = |y|p−2

[
idN + (p− 2)

y ⊗ y

|y|2

]
+ idN ,

⇒ (∇a(y)ξ, ξ)RN ≥ |ξ|2 for all y, ξ ∈ RN . (14)

Note that

Ap(u0) +A(u0)−Nf (u0) = 0 ≤ Ap(w+) +A(w+)−Nf (w+) in W−1,p′(Ω) (15)

(see hypothesis H(f) (ii)).

Then (11), (14) and (15) permit the use of the tangency principle of Pucci-Serrin
[34] (Theorem 2.5.2, p. 35) and we obtain

u0(z) < w+(z) for all z ∈ Ω. (16)

From (13) and (16) we conclude that

u0 ∈ intC1
0 (Ω)[0, w+].

Similarly, for the negative solution, we start with the Carathéodory function

f̂−(z, x) =

{
f(z, w−(z)) if x ≤ w−(z),

f(z,−x−) if w−(z) < x.
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We set F̂−(z, x) =
∫ x
0
f̂−(z, s)ds and introduce the C1-functional φ̂− :W 1,p

0 (Ω) → R
defined by

φ̂−(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F̂−(z, u)dz for all u ∈W 1,p
0 (Ω).

Then reasoning as above (with φ̂− instead of φ̂+), we generate a negative solution
v0 ∈ intC1

0 (Ω)[w−, 0].

Next using u0 ∈ int C+ and v0 ∈ −int C+ produced in Proposition 4, we will
generate two more smooth constant sign solutions û ∈ int C+ and v̂ ∈ −int C+

such that

v̂(z) < v0(z) < 0 < u0(z) < û(z) for all z ∈ Ω.

Proposition 5. If hypotheses H(f) hold, then problem (1) has two more smooth
constant sign solutions û ∈ int C+, v̂ ∈ −int C+ such that û−u0 ∈ int C+, v0− v̂ ∈
int C+.

Proof. Let u0 ∈ int C+ be the positive solution produced in Proposition 4. Using
u0(·) we introduce the following truncation of the reaction term f(z, ·):

k+(z, x) =

{
f(z, u0(z)) if x ≤ u0(z),

f(z, x) if u0(z) < x.
(17)

We set K+(z, x) =
∫ x
0
k+(z, s)ds and introduce the C1-functional φ̃+ : W 1,p

0 (Ω) →
R defined by

φ̃+(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

K+(z, u)dz for all u ∈W 1,p
0 (Ω).

Claim 1: φ̃+ satisfies the C-condition.

Consider a sequence {un}n∈N ⊆W 1,p
0 (Ω) such that

|φ̃+(un)| ≤M1 for some M1 > 0, all n ∈ N,

(1 + ∥un∥)φ̃′
+(un) → 0 in W−1,p′(Ω) as n→ +∞. (18)

From (18) we have

|⟨φ̃′
+(un), h⟩| ≤

εn∥h∥
1 + ∥un∥

, for all h ∈W 1,p
0 (Ω), with εn → 0+,

⇒
∣∣∣⟨Ap(un), h⟩+ ⟨A(un), h⟩ −

∫
Ω

f̂+(z, un)h dz
∣∣∣ ≤ εn∥h∥

1 + ∥un∥
, for all n ∈ N.

(19)

In (19) we choose h = −u−n ∈W 1,p
0 (Ω). Using (17), we obtain

∥∇u−n ∥pp ≤ c3∥u−n ∥ for some c3 > 0, all n ∈ N,

⇒ {u−n }n∈N ⊆W 1,p
0 (Ω) is bounded. (20)

Suppose that

∥u+n ∥ → +∞ as n→ +∞.

Let yn =
u+n
∥u+n ∥

, n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. So, we may assume

that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω). (21)
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From (19) and (20), we obtain∣∣∣⟨Ap(u+n ), h⟩+ ⟨A(u+n ), h⟩ −
∫
Ω

f̂+(z, u
+
n )h dz

∣∣∣ ≤ c4∥h∥

for some c4 > 0, all n ∈ N, h ∈W 1,p
0 (Ω),

⇒
∣∣∣⟨Ap(yn), h⟩+ 1

∥u+n ∥p−2
⟨A(yn), h⟩ −

∫
Ω

Nf̂+(u
+
n )

∥u+n ∥p−1
h dz

∣∣∣ ≤ c4∥h∥
∥u+n ∥p−1

, for all n ∈ N.

(22)

Hypotheses H(f) (i), (iii), (iv) imply that

|f(z, x)| ≤ c5[|x|+ |x|p−1] for a.a. z ∈ Ω, all x ∈ R, some c5 > 0. (23)

From, (17) and (23), we infer that{
Nf̂+(u

+
n )

∥u+n ∥p−1

}
n∈N

⊆ Lp
′
(Ω) is bounded. (24)

Hence, by passing to a subsequence if necessary and using hypothesis H(f) (iii), we
have

Nf̂+(u
+
n )

∥u+n ∥p−1

w−→ λ̂m(p)yp−1 in Lp
′
(Ω) as n→ +∞. (25)

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16).

In (22) we choose h = yn − y ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and use

(21), (24) and the fact that p > 2. We obtain

lim
n→+∞

⟨Ap(yn), yn − y⟩ = 0,

⇒ yn → y in W 1,p
0 (Ω) (see Proposition 3) and so ∥y∥ = 1, y ≥ 0. (26)

So, if in (22) we pass to limit as n→ +∞ and use (25) and (26), then

⟨Ap(y), h⟩ =
∫
Ω

λ̂m(p)yp−1h dz for all h ∈W 1,p
0 (Ω),

⇒ −∆py(z) = λ̂m(p)y(z)p−1 for a.a. z ∈ Ω, y
∣∣∣
∂Ω

= 0. (27)

Since ∥y∥ = 1 and m ≥ 2, from (27) we infer that y must be nodal, a contradiction
to (26). Therefore

{u+n }n∈N ⊆W 1,p
0 (Ω) is bounded,

⇒ {un}n∈N ⊆W 1,p
0 (Ω) is bounded (see (20)).

Thus we may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω). (28)

In (19) we choose h = (un − u) ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and use

(28). Then

lim
n→+∞

[⟨Ap(un), un − u⟩+ ⟨A(un), un − u⟩] = 0,

⇒ lim sup
n→+∞

[⟨Ap(un), un − u⟩+ ⟨A(u), un − u⟩] ≤ 0 (since A(·) is monotone),

⇒ lim sup
n→+∞

⟨Ap(un), un − u⟩ ≤ 0 (see (28)),

⇒ un → u in W 1,p
0 (Ω) (see Proposition 3).
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This proves Claim 1.

Claim 2: We may assume that u0 ∈ int C+ is a local minimizer of φ̃+. Recall that

0 < (w+ − u0)(z) for all z ∈ Ω (see Proposition 4). (29)

We consider the following truncation of k+(z, ·) (see (17)):

k̃+(z, x) =

{
k+(z, x) if x ≤ w+(z),

k+(z, w+(z)) if w+(z) < x.
(see (29)). (30)

This is Carathéodory function. We set K̃+(z, x) =
∫ x
0
k̃+(z, s)ds and consider the

C1-functional ψ̃+ :W 1,p
0 (Ω) → R defined by

ψ̃+(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

K̃+(z, u)dz for all u ∈W 1,p
0 (Ω).

From (30) it is clear that ψ̃+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, invoking the Weierstrass-Tonelli theorem, we can find û0 ∈
W 1,p

0 (Ω) such that

ψ̃+(û0) = inf
[
ψ̃+(u) : u ∈W 1,p

0 (Ω)
]
,

⇒ ψ̃′
+(û0) = 0 in W−1,p′(Ω). (31)

Using (31), (30), (17), as in the proof of Proposition 4, we show that

û0 ∈ [u0, w+] ∩ int C+.

If û0 ̸= u0, then this is the desired second positive smooth solution of (1).
Moreover, via the tangency principle, we have that û0 − u0 ∈ int C+. So, we are
done. Therefore we may assume that û0 = u0. From (30) and (17), it is clear that

ψ̃+

∣∣∣
[u0,w+]

= φ̃+

∣∣∣
[u0,w+]

(32)

From (29) and (32) it follows that

u0 ∈ int C+ is a local C1
0 (Ω)-minimizer of φ̃+,

⇒ u0 is a local W 1,p
0 (Ω)-minimizer of φ̃+ (see Proposition 1).

This proves Claim 2.
Using (17) we can easily see that

Kφ̃+
⊆ [u0) ∩ int C+ = {u ∈ int C+ : u0(z) ≤ u(z) for all z ∈ Ω}.

So, we may assume that

Kφ̃+
is finite.

Otherwise we already have an infinity of positive smooth solutions of (1) all
strictly bigger than u0.

On account of Claim 2, we can find ρ ∈ (0, 1) small such that

φ̃+(u0) < inf [φ̃+(u) : ∥u− u0∥ = ρ] = m̃+. (33)

Hypothesis H(f) (iii) implies that given any η > 0, we can find M̂ = M̂(η) > 0
such that

f(z, x)x− pF (z, x) ≥ η for a.a. z ∈ Ω, all x ≥ M̂.
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We have

d

dx

[
F (z, x)

xp

]
=
f(z, x)xp − pxp−1F (z, x)

x2p

=
f(z, x)x− pF (z, x)

xp+1

≥ η

xp+1
for a.a. z ∈ Ω, all x ≥ M̂,

⇒ F (z, x)

xp
− F (z, v)

vp
≥ −η

p

[
1

xp
− 1

vp

]
for a.a. z ∈ Ω, all x ≥ v ≥ M̂. (34)

Hypothesis H(f) (iii) implies that

lim
x→±∞

F (z, x)

|x|p
=

1

p
λ̂m(p) uniformly for a.a. z ∈ Ω. (35)

So, if in (34) we let x→ +∞ and use (35), then

λ̂m(p)vp − pF (z, v) ≥ η for a.a. z ∈ Ω, all v ≥ M̂,

⇒ λ̂m(p)vp − pF (z, v) → +∞ uniformly for a.a. z ∈ Ω as v → +∞ (36)

(recall η > 0 is arbitrary).

For t > 0 big we have

φ̃+(tû1(p)) ≤
tp

p
λ̂1(p) +

t2

2
∥∇û1(p)∥22 + c6 −

∫
Ω

F (z, tû1(p))dz

for some c6 > 0 (see (17)),

⇒ pφ̃+(tû1(p)) ≤ tp[λ̂1(p)− λ̂m(p)] +
p

2
t2∥∇û1(2)∥22 + pc6

+

∫
Ω

[λ̂m(p)(tû1(p))
p−1 − pF (z, tû1(p))]dz. (37)

Recall that p > 2 and m ≥ 2. So, from (37) and using (36), we infer that

φ̃+(tû1(p)) → −∞ as t→ +∞. (38)

Claim 1, (33) and (38) permit the use of Theorem 2.1 (the mountain pass theorem).

So, we can find û ∈W 1,p
0 (Ω) such that

û ∈ Kφ̃+
⊆ [u0) ∩ int C+ and φ̃+(u0) < m̃+ ≤ φ̃+(û),

⇒ û ∈ int C+ is a solution of (1) (see (17)) and û ̸= u0 (see (33)).

Moreover, as before using the tangency principle and the boundary point lemma
(see Pucci-Serrin [34], pp. 35 and 120), we have

û− u0 ∈ int C+.

For the second negative solution, we consider the Carathéodory function

k−(z, x) =

{
f(z, x) if x ≤ v0(z),

f(z, v0(z)) if v0(z) < x.

We set K−(z, x) =
∫ x
0
k−(z, s)ds and introduce the C1-functional φ̃− : W 1,p

0 (Ω) →
R defined by

φ̃−(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

K−(z, u)dz for all u ∈W 1,p
0 (Ω).
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Working with φ̃−(·) as above, we produce a second negative smooth solution v̂ such
that

v̂ ∈ −int C+ and v0 − v̂ ∈ int C+.

Next we will show that problem (1) admits extremal constant sign solutions,
that is, a smallest positive solution u∗ ∈ int C+ and a biggest negative solution
v∗ ∈ −int C+. We will need these extremal solutions, in order to produce a nodal
(sign changing) solution.

Hypotheses H(f) (i), (iii) imply that given ε > 0 and τ ∈ (2, p∗), we can find
c7 > 0 such that

f(z, x)x ≥ (η1(z)− ε)x2 − c7|x|τ for a.a. z ∈ Ω, all x ∈ R.
We consider the following auxiliary Dirichlet problem:

−∆pu(z)−∆u(z) = (η1(z)− ε)u(z)− c7|u(z)|τ−2u(z) in Ω, u
∣∣∣
∂Ω

= 0. (39)

Proposition 6. For all ε > 0 small problem (39) has a unique positive solution
ũ ∈ int C+ and the oddness of (39) implies that ṽ = −ũ ∈ −int C+ is the unique
negative solution of (39).

Proof. First we prove the existence of a positive solution for problem (39).

Let σ+ :W 1,p
0 (Ω) → R be the C1-functional defined by

σ+(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 +

c7
τ
∥u+∥ττ −

1

2

∫
Ω

[η1(z)− ε](u+)2dz

for all u ∈ W 1,p
0 (Ω). Since τ > 2, it is clear that σ+(·) is coercive. Also, by

the Sobolev embedding theorem σ+(·) is sequentially weakly lower semicontinuous.

Therefore we can find ũ ∈W 1,p
0 (Ω) such that

σ+(ũ) = inf[σ+(u) : u ∈W 1,p
0 (Ω)]. (40)

Note that for t ∈ (0, 1) small we have

σ+(tû1(2)) =
tp

p
∥∇û1(2)∥pp +

t2

2

[∫
Ω

(λ̂1(2)− η1(z))û1(u)
2dz + ε

]
+
tτ

τ
c7∥û1(2)∥ττ .

We have

β =

∫
Ω

(η1(z)− λ̂1)û1(2)dz > 0.

Choosing ε ∈ (0, β), we have

σ+(tû1(2)) ≤
tp

p
∥∇û1(2)∥pp −

t2

2
c8 +

tτ

τ
c7∥∇û1(2)∥ττ for some c8 > 0.

Since 2 < τ, p, by taking t ∈ (0, 1) even smaller if necessary, we have

σ+(tû1(2)) < 0 = σ+(0),

⇒ σ+(ũ) < 0 = σ+(0) (see (40)),

⇒ ũ ̸= 0.

From (40) we have

σ′
+(ũ) = 0,

⇒ ⟨Ap(ũ), h⟩+ ⟨A(ũ), h⟩ =
∫
Ω

[η1(z)− ε](ũ+)hdz − c7

∫
Ω

(ũ+)τ−1hdz (41)
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for all h ∈W 1,p
0 (Ω).

In (41) we choose h = −ũ− ∈W 1,p
0 (Ω). Then

∥∇ũ−∥pp + ∥∇ũ−∥22 = 0,

⇒ ũ ≥ 0, ũ ̸= 0.

From (41) we have

−∆pũ(z)−∆ũ(z) = (η1(z)− ε)ũ(z)− c7ũ(z)
τ−1 for a.a. z ∈ Ω, ũ

∣∣∣
∂Ω

= 0.

As before, the nonlinear regularity theory implies that

ũ ∈ C+ \ {0}

and by the tangency principle we have

∆pũ(z) + ∆ũ(z) ≤ c7∥ũ∥τ−p∞ ũ(z)p−1 for a.a. z ∈ Ω,

⇒ ũ ∈ int C+ (see Pucci-Serrin [34] and Montenegro [24]).

Next we show that this solution of (39) is unique. To this end let

G0(t) =
tp

p
+
t2

2
for all t ≥ 0.

If G(y) = G0(|y|) for all y ∈ RN , then ∇G(y) = a(y) = |y|p−2y + y and

div a(∇u) = ∆pu+∆u for all u ∈W 1,p
0 (Ω).

Note that t→ G0(t
1/2) is convex.

We introduce the integral functional

j(u) =

{∫
Ω
G(∇u 1

2 )dz if u ≥ 0, u
1
2 ∈W 1,p

0 (Ω),

+∞ otherwise.
(42)

Let u1, u2 ∈ dom j = {u ∈ L1(Ω) : j(u) < +∞} (the effective domain of j(·)).
Let v1 = u

1
2
1 , v2 = u

1
2
2 . From (42) we have v1, v2 ∈W 1,p

0 (Ω). Let

v = ((1− t)v1 + tv2)
1
2 , t ∈ [0, 1].

From Lemma 1 of Diaz-Saá [10], we have

|∇v(z)| ≤ [(1− t)|∇v1(z)|2 + t|∇v2(z)|2]
1
2

⇒ G0(|∇v(z)|) ≤ G0

(
[(1− t)|∇v1(z)|2 + t|∇v2(z)|2]

1
2

)
(since G0(·) is increasing)

≤ (1− t)G0(|∇v1(z)|) + tG0(|∇v2(z)|) (since t→ G0(t
1
2 ) is convex)

⇒ G(∇v(z)) ≤ (1− t)G(∇u1(z)
1
2 ) + tG(∇u2(z)

1
2 ) for a.a. z ∈ Ω,

⇒ j(·) is convex.

Suppose that ũ, ũ0 are positive solutions of (39). From the first part of proof we
have

ũ, ũ0 ∈ int C+.

Then given h ∈ C1
0 (Ω) and for |t| small, we have

ũ+ th, ũ0 + th ∈ dom j.
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We see that j(·) is Gâteaux differentiable at ũ and at ũ0 in the direction h. Using
the chain rule, we have

j′(ũ)(h) =
1

2

∫
Ω

−∆pũ−∆ũ

ũ2
h dz and j′(ũ0)(h) =

1

2

∫
Ω

−∆pũ0 −∆ũ0
ũ20

h dz

for all h ∈ C1
0 (Ω).

The convexity of j(·) implies the monotonicity of j′(·). Hence

0 ≤
∫
Ω

[
−∆pũ−∆ũ

ũ2
− −∆pũ0 −∆ũ0

ũ20

]
(ũ2 − ũ20)dz

=

∫
Ω

[
(η1(z)− ε)

(
1

ũ
− 1

ũ0

)
− c7(ũ

τ−2 − ũτ−2
0 )

]
(ũ2 − ũ20)dz ≤ 0

⇒ ũ = ũ0 (since 2 < τ).

Since problem (39) is odd, we infer that

ṽ = −ũ ∈ −int C+

is the unique negative solution of (39).

Consider the sets

S+ = {u ∈W 1,p
0 (Ω) : u is a positive solution of problem (1)},

S− = {v ∈W 1,p
0 (Ω) : v is a negative solution of problem (1)}.

From Proposition 4 we have that

S+ ̸= ∅ and S+ ⊆ int C+,

S− ̸= ∅ and S− ⊆ −int C−.

From Filippakis-Papageorgiou [13] we know that

S+ is downward directed

(that is, if u1, u2 ∈ S+, then there is u ∈ S+ such that u ≤ u1, u ≤ u2),

S− is upward directed

(that is, if v1, v2 ∈ S−, then there is v ∈ S− such that v1 ≤ v, v2 ≤ v).

Proposition 7. If hypotheses H(f) hold, then ũ ≤ u for all u ∈ S+ and v ≤ ṽ for
all v ∈ S−.

Proof. Let u ∈ S+ and consider the following Carathéodory function

e+(z, x) =


0 if x < 0,

(η1(z)− ε)x− c7x
τ−1 0 ≤ x ≤ u(z),

(η1(z)− ε)u(z)− c7u(z)
τ−1 u(z) < x.

(43)

We set E+(z, x) =
∫ x
0
e+(z, s)ds and consider the C1-functional γ+ :W 1,p

0 (Ω) → R
defined by

γ+(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

E+(z, u)dz for all u ∈W 1,p
0 (Ω).

From (43) it is clear that γ+ is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find ũ0 ∈W 1,p
0 (Ω) such that

γ+(ũ0) = inf[γ+(u) : u ∈W 1,p
0 (Ω)].
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Moreover, as in the proof of Proposition 4 since 2 < τ , we have

γ+(ũ0) < 0 = γ+(0)

⇒ ũ0 ̸= 0.

We have

γ′+(ũ0) = 0,

⇒ ⟨Ap(ũ0), h⟩+ ⟨A(ũ0), h⟩ =
∫
Ω

e+(z, ũ0)h dz for all h ∈W 1,p
0 (Ω). (44)

If in (44) we choose h = −ũ−0 ∈ W 1,p
0 (Ω) and h = (ũ0 − u)+ ∈ W 1,p

0 (Ω), then we
show that

ũ0 ∈ [0, u] ∩ C+ \ {0} (nonlinear regularity),

⇒ ũ0 is a positive solution of (39) (see (43)),

⇒ ũ0 = ũ ∈ int C+ (see Proposition 6),

⇒ ũ ≤ u for all u ∈ S+.

Similarly we show that

v ≤ ṽ for all v ∈ S−.

Using this proposition we can now show the existence of extremal constant sign
solutions for problem (1).

Proposition 8. If hypotheses H(f) hold, then problem (1) admits a smallest positive
solution u∗ ∈ int C+ and a biggest negative solution v∗ ∈ −int C+.

Proof. Invoking Lemma 3.10, p. 178, of Hu-Papageorgiou [18], we can find a
decreasing sequence {un}n∈N ⊆ S+ ⊆ int C+ such that

inf S+ = inf
n∈N

un.

We have

⟨Ap(un), h⟩+ ⟨A(un), h⟩ =
∫
Ω

f(z, un)h dz for all h ∈W 1,p
0 (Ω), all n ∈ N. (45)

In (45) we use h = un ∈W 1,p
0 (Ω). Using (23) and recalling that 0 ≤ u ≤ u1 ∈ int C+

for all n ∈ N, we see that

{un}n∈N ⊆W 1,p
0 (Ω) is bounded.

So, we may assume that

un
w−→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lp(Ω).

In (45) we choose h = (un − u∗) ∈ W 1,p
0 (Ω) and pass to the limit as n → +∞. As

in the proof of Proposition 5 (see Claim 1), we have

lim
n→+∞

⟨Ap(un), un − u∗⟩ ≤ 0,

⇒ un → u∗ in W 1,p
0 (Ω) (see Proposition 3). (46)

So, if in (45) we pass to the limt as n→ +∞ and use (46), then

⟨Ap(u∗), h⟩+ ⟨A(u∗), h⟩ =
∫
Ω

f(z, u∗)h dz for all h ∈W 1,p
0 (Ω).



18 NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO AND FRANCESCA VETRO

Also, from Proposition 7 we have

ũ ≤ un for all n ∈ N,
⇒ ũ ≤ u∗ (see (46)),

⇒ u∗ ∈ S+ and u∗ = inf S+.

Similarly we produce v∗ ∈ S− such that v∗ = supS−.

4. Nodal solutions. In this section we prove the existence of a nodal (that is, sign
changing) solution. The strategy is the following. Let u∗ ∈ intC+ and v∗ ∈ −intC+

be the two extremal constant sign solutions (see Proposition 8). Using truncations
of f(z, ·) at u∗(z) and v∗(z), we focus on the order interval [v∗, u∗]. Employing
variational tools (in particular using Theorem 2.1), we produce y0 ∈ [v∗, u∗] a
solution of (1) distinct from {0, u∗, v∗}. The extremality of u∗ and v∗ guarantees
that y0 is nodal.

We start by considering the energy (Euler) functional φ : W 1,p
0 (Ω) → R of

problem (1) defined by

φ(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F (z, u)dz for all u ∈W 1,p
0 (Ω).

We have that φ ∈ C2(W 1,p
0 (Ω),R).

The next proposition will allow us to distinguish the trivial solution from the
other solutions of problem (1).

Proposition 9. If hypotheses H(f) (i), (iv) hold, then Ck(φ, 0) = δk,dlZ for all

k ∈ N0 with dl = dim⊕li=1 E(λ̂i(2)).

Proof. Consider the C2-functional µ̂ : H1
0 (Ω) → R defined by

µ̂(u) =
1

2
∥∇u∥22 −

∫
Ω

F (z, u)dz for all u ∈ H1
0 (Ω).

Hypotheses H(f) (i), (iv) imply that given ε > 0, we can find c9 > 0 such that

1

2
[f ′x(z, 0)− ε]x2 − c9|x|r ≤ F (z, x) ≤ 1

2
[f ′x(z, 0) + ε]x2 + c9|x|r (47)

for a.a. z ∈ Ω, all x ∈ R.
Let u ∈ H l = ⊕li=1E(λ̂i(2)). Then

µ̂(u) ≤ 1

2
∥∇u∥22 −

1

2

∫
Ω

[f ′x(z, 0)− ε]u2dz + c10∥u∥r for some c10 > 0 (see (47))

≤ −c11∥u∥2 + c10∥u∥r for some c11 > 0.

(see Proposition 2 and choose ε > 0 small).
Since r > 2, we can find ρ ∈ (0, 1) small such that

µ̂(u) ≤ 0 for all u ∈ H l = ⊕li=1E(λ̂i(2)), ∥u∥H1
0 (Ω) ≤ ρ. (48)

On the other hand, if u ∈ Ĥl+1 = H
⊥
l = ⊕i≥l+1E(λ̂i(2)), then

µ̂(u) ≥ 1

2
∥∇u∥22 −

1

2

∫
Ω

[f ′x(z, 0) + ε]u2dz − c12∥u∥r (for some c12 > 0)

≥ c13∥u∥2 − c12∥u∥r for some c13 > 0 (see Proposition 2 and choose ε > 0 small).
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Since r > 2, by choosing ρ ∈ (0, 1) even smaller if necessary, we can also have

µ̂(u) > 0 for all u ∈ Ĥl+1 = ⊕i≥l+1E(λ̂i(2)), 0 < ∥u∥ ≤ ρ. (49)

From (48) and (49) it follows that µ has local linking at 0. Using Proposition 2.3
of Su [37], we infer that

Ck(µ̂, 0) = δk,dlZ for all k ∈ N0. (50)

Let µ = µ̂
∣∣
W 1,p

0 (Ω)
. Since W 1,p

0 (Ω) is dense in H1
0 (Ω), we have

Ck(µ, 0) = Ck(µ̂, 0) for all k ∈ N0

(see Palais [26] and Chang [6] (p. 14)). Hence

Ck(µ, 0) = δk,dlZ for all k ∈ N0 (see (50)). (51)

We have

|φ(u)− µ(u)| ≤ 1

p
∥u∥p for all u ∈W 1,p

0 (Ω). (52)

Also, for all h ∈W 1,p
0 (Ω) we have

|⟨φ′(u)− µ′(u), h⟩| = |⟨Ap(u), h⟩ ≤ c14∥u∥p−1∥h∥ for some c14 > 0,

⇒ ∥φ′(u)− µ′(u)∥∗ ≤ c14∥u∥p−1 for all u ∈W 1,p
0 (Ω). (53)

From (52), (53) and the invariance of the critical groups in the C1-topology (see
Chang [7] (Corollary 5.1.25, p. 336) and Gasiński-Papageorgiou [17] (Theorem
5.126, p. 836)), we have

Ck(φ, 0) = Ck(µ, 0) for all k ∈ N0,

⇒ Ck(φ, 0) = δk,dlZ for all k ∈ N0 (see (51)).

Remark 2. In this remark, we present an alternative proof of the above result.
This new proof illustrates the power of the nonlinear regularity theory and uses the
other basic invariance property of critical groups, namely the homotopy invariance
property.

So, let λ ∈ (λ̂l(2), λ̂l+1(2)) and consider the C2-functional µ̂0 : H1
0 (Ω) → R

defined by

µ̂0(u) =
1

2
∥∇u∥22 −

λ

2
∥u∥22 for all u ∈ H1

0 (Ω).

The choice of λ implies

Ck(µ̂0, 0) = δk,dlZ for all k ∈ N0 (54)

(see Motreanu-Motreanu-Papageorgiou [25], Theorem 6.51, p. 155). Let µ0 =

µ̂0

∣∣
W 1,p

0 (Ω)
. Since W 1,p

0 (Ω) is dense in H1
0 (Ω), we have Ck(µ0, 0) = Ck(µ̂0, 0) for all

k ∈ N0 (see Palais [26] and Chang [6] (p. 14)). Hence

Ck(µ0, 0) = δk,dlZ for all k ∈ N0 (see (54)). (55)

We consider the homotopy

ht(u) = (1− t)φ(u) + tµ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Suppose we can find {tn}n∈N ⊆ [0, 1] and {un}n∈N ⊆W 1,p
0 (Ω) such that

tn → t, un → u in W 1,p
0 (Ω) and (htn)

′(un) = 0 for all n ∈ N. (56)
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From (56) we have

⟨Ap(un), h⟩+ ⟨A(un), h⟩ =
∫
Ω

f(z, un)hdz for all h ∈W 1,p
0 (Ω), all n ∈ N, (57)

⇒−∆pun(z)−∆un(z) = f(z, un(z)) for a.a. z ∈ Ω, un
∣∣
∂Ω

= 0, all n ∈ N.

The nonlinear regularity theory (see Lieberman [22]) implies that there exist θ ∈
(0, 1) and c15 > 0 such that

un ∈ C1,θ
0 (Ω), ∥un∥C1,θ

0 (Ω) ≤ c15 for all n ∈ N. (58)

Let yn =
un
∥un∥

, n ∈ N. Then ∥yn∥ = 1 for all n ∈ N and so we may assume that

yn → y in W 1,p
0 (Ω) and yn → y in Lp(Ω). (59)

From (57) we have

∥un∥p−2⟨Ap(yn), h⟩+ ⟨A(yn), h⟩ =
∫
Ω

Nf (un)

∥un∥
hdz for all h ∈W 1,p

0 , all n ∈ N

(60)

⇒− ∥un∥p−2∆pyn(z)−∆yn(z) =
f(z, un(z))

∥un∥
for a.a. z ∈ Ω, yn

∣∣
∂Ω

= 0. (61)

Using (23) we have∣∣∣∣f(z, un(z))∥un∥

∣∣∣∣ ≤ c5
[
|yn(z)|+ |un(z)|p−2|yn(z)|

]
≤ c16|yn(z)| for a.a. z ∈ Ω, all n ∈ N, some c16 > 0 (see (58)),

⇒ Nf (un)

∥un∥
∈ L∞(Ω) for every n ∈ N.

From (61) and Corollary 8.6, p. 208 of Motreanu-Motreanu-Papageorgiou [25], we
can find c17 > 0 such that

∥yn∥∞ ≤ c17 for all n ∈ N.

The Theorem 1 of Lieberman [22] implies the existence of τ ∈ (0, 1) and c18 > 0
such that

yn ∈ C1,τ
0 (Ω), ∥yn∥C1,τ

0 (Ω) ≤ c18 for all n ∈ N.

Exploiting the compact embedding of C1,τ
0 (Ω) into C1

0 (Ω) and using (59), we have

yn → y in C1
0 (Ω) and ∥y∥ = 1. (62)

Passing to the limit as n→ +∞ in (60) and using (62), we obtain

⟨A(y), h⟩ =
∫
Ω

f ′x(z, 0)yhdz for all y ∈W 1,p
0 (Ω). (63)

From the density ofW 1,p
0 (Ω) in H1

0 (Ω), we infer that (63) is valid for all h ∈ H1
0 (Ω).

Hence

−∆y(z) = f ′x(z, 0)y(z) for a.a. z ∈ Ω, y
∣∣
∂Ω

= 0. (64)

From the strict monotonicity of the eigenvalues on the weights (a consequence of
the UCP, see de Figueiredo-Gossez [12], Proposition 1), from (64) and hypothesis
H(f) (iv) we infer that y = 0, which contradicts (62). Therefore (56) can not occur
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and we can use the homotopy invariance property of critical groups (see [17], p.
836) and have

Ck(φ, 0) = Ck(µ0, 0) for all k ∈ N0,

⇒ Ck(φ, 0) = δk,dlZ for all k ∈ N0 (see (55)).

This complete the alternative proof of Proposition 9.
Now we can produce a nodal solution for problem (1).

Proposition 10. If hypotheses H(f) hold, then problem (1) admits a nodal solution
y0 ∈ intC1

0 (Ω)[v
∗, u∗].

Proof. Let u∗ ∈ int C+ and v∗ ∈ −int C+ be the two extremal constant sign
solutions of problem (1) produced in Proposition 8. We introduce the following
Carathéodory function

γ(z, x) =


f(z, v∗(z)) if x < v∗(z),

f(z, x) if v∗(z) ≤ x ≤ u∗(z),

f(z, u∗(z)) if u∗(z) < x.

(65)

We set Γ(z, x) =
∫ x
0
γ(z, s)ds and consider the C1-functional χ : W 1,p

0 (Ω) → R
defined by

χ(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

Γ(z, u)dz for all u ∈W 1,p
0 (Ω).

We also introduce the positive and negative truncations of γ(z, ·), namely the
Carathéodory functions γ±(z, x) = γ(z,±x±). We set Γ±(z, x) =

∫ x
0
γ±(z, s)ds and

consider the C1-functional χ± :W 1,p
0 (Ω) → R defined by

χ±(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

Γ±(z, u)dz for all u ∈W 1,p
0 (Ω).

Using (65), as in the proof of Proposition 4, we see that

Kχ ⊆ [v∗, u∗] ∩ C1
0 (Ω), Kχ+

⊆ [0, u∗] ∩ C+, Kχ− ⊆ [v∗, 0] ∩ (−C+).

The extremality of u∗ and v∗ implies that

Kχ ⊆ [v∗, u∗] ∩ C1
0 (Ω), Kχ+ = {0, u∗}, Kχ− = {0, v∗}. (66)

Claim: u∗ ∈ int C+ and v∗ ∈ −int C+ are local minimizers of χ.
Evidently χ+ is coercive (see (65)). Also, it is sequentially weakly lower semicontinuous.

So, we can find û∗ ∈W 1,p
0 (Ω) such that

χ+(û
∗) = inf

[
χ+(u) : u ∈W 1,p

0 (Ω)
]
. (67)

Since u∗ ∈ int C+, using Proposition 2.1 of Marano-Papageorgiou [23], we can
find t ∈ (0, 1) small such that

0 ≤ tû1(2)(z) ≤ u∗(z) for all z ∈ Ω.

Using hypothesis H(f) (iv), as in the proof of Proposition 4, we have

χ+(tû1(2)) < 0,

⇒ χ+(û
∗) < 0 = χ+(0) and so û∗ ̸= 0. (68)

From (66), (67), (68) we infer that

û∗ = u∗ ∈ int C+.
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Clearly we have

χ+

∣∣∣
[0,u∗]

= χ
∣∣∣
[0,u∗]

⇒ u∗ is a local C1
0 (Ω)-minimizer of χ,

⇒ u∗ is a local W 1,p
0 (Ω)-minimizer of χ (see Proposition 1).

Similarly for v∗ ∈ −int C+ using this time the functional χ−. This proves Claim.
We can always assume that Kχ ⊆ C1

0 (Ω) is finite. Otherwise on account of (66),
we already have an infinity of smooth nodal solutions of (1) and so we are done.
Using the Claim and Proposition 5.42, p. 119, of Motreanu-Motreanu-Papageorgiou
[25], we can find y0 ∈ Kχ ⊆ [v∗, u∗] ∩ C1

0 (Ω) of mountain pass type. So, we have

C1(χ, y0) ̸= 0 (69)

(see Corollary 6.81, p. 168, of Motreanu-Motreanu-Papageorgiou [25]). From
Proposition 9, we have

Ck(φ, 0) = δk,dlZ for all k ∈ N0.

Since φ′
∣∣∣
[v∗,u∗]

= χ′
∣∣∣
[v∗,u∗]

(see (65)), we have

Ck(φ, 0) = Ck(χ, 0) for all k ∈ N0,

⇒ Ck(χ, 0) = δk,dlZ for all k ∈ N0. (70)

Note that dl ≥ 2 (recall l ≥ 2). Hence from (69) and (70) we infer that

y0 ̸= 0,

⇒ y0 ∈ [v∗, u∗] ∩ C1
0 (Ω) is nodal.

Moreover, as in the proof of Proposition 4, via the tangency principle, we have

y0 ∈ intC1
0 (Ω)[v

∗, u∗].

5. Multiplicity Theorem. In this section, we produce a sixth nontrivial smooth
solution and we have the complete multiplicity theorem for problem (1) (six solutions
theorem).

To this end we will need the following fact about the critical groups of φ at
infinity.

Proposition 11. If hypotheses H(f) hold, then Cm(φ,∞) ̸= 0.

Proof. Let λ ∈ (λ̂m(p), λ̂m+1(p)), λ ̸∈ σ̂(p) and consider the C2-functional ψ :

W 1,p
0 (Ω) → R defined by

ψ(u) =
1

p
∥∇u∥pp −

λ

p
∥u∥pp for all u ∈W 1,p

0 (Ω).

We consider the following homotopy

ht(u) = (1− t)φ(u) + tψ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Claim: There exist β ∈ R and ε0 > 0 such that

ht(u) ≤ β ⇒ (1 + ∥u∥)∥(ht)′(u)∥∗ ≥ ε0 for all t ∈ [0, 1].
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We argue indirectly. So, suppose that the Claim is not true. Since (t, u) → ht(u)
is bounded (that is, it maps bounded sets to bounded sets), we can find {tn}n∈N ⊆
[0, 1] and {un}n∈N ⊆W 1,p

0 (Ω) such that

tn → t, ∥un∥ → +∞, htn(un) → −∞, (1+∥un∥)(htn)′(un) → 0 in W−1,p′(Ω). (71)

For all n ∈ N, we have

∣∣∣⟨Ap(un), h⟩+ (1− tn)⟨A(un), h⟩ − (1− tn)

∫
Ω

f(z, un)h dz − tnλ

∫
Ω

|un|p−2unh dz
∣∣∣

≤ εn∥h∥
1 + ∥un∥

, for all h ∈W 1,p
0 (Ω), with εn → 0+. (72)

Let yn =
un
∥un∥

, n ∈ N. Then ∥yn∥ = 1 for all n ∈ N. So, we may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω). (73)

From (72) we obtain∣∣∣⟨Ap(yn), h⟩+ 1− tn
∥un∥p−2

⟨A(yn), h⟩ − (1− tn)

∫
Ω

Nf (un)

∥un∥p−1
h dz − tnλ

∫
Ω

|yn|p−2ynh dz
∣∣∣

≤ εn∥h∥
(1 + ∥un∥)∥un∥p−1

, for all n ∈ N. (74)

Evidently {
Nf (un)

∥un∥p−1

}
n∈N

⊆ Lp
′
(Ω) is bounded (see (23)).

So, by passing to a subsequence if necessary and using hypothesis H(f) (iii), we
have

Nf (un)

∥un∥p−1

w−→ λ̂m(p)|y|p−2y in Lp
′
(Ω) as n→ +∞ (see [1]). (75)

If in (74) we choose h = yn− y ∈W 1,p
0 (Ω), pass to the limit as n→ +∞ and use

(71), (73), (75) and the fact that p > 2, then

lim
n→+∞

⟨Ap(yn), yn − y⟩ = 0,

⇒ yn → y in W 1,p
0 (Ω) (see Proposition 3) and so ∥y∥ = 1. (76)

Therefore, if in (74) we pass to the limit as n→ +∞ and use (75), (76), then

⟨Ap(y), h⟩ =
∫
Ω

[
(1− t)λ̂m(p) + tλ

]
|y|p−2yh dz for all h ∈W 1,p

0 (Ω),

⇒ −∆py(z) = λ̂t|y(z)|p−2y(z) for a.a. z ∈ Ω, y
∣∣∣
∂Ω

= 0, (77)

with λ̂t = (1− t)λ̂m(p) + tλ.

If λ̂t ̸∈ σ̂(p), then from (77) it follows that y ≡ 0, which contradicts (76). Suppose

that λ̂t ∈ σ̂(p). From (76) we have y ̸= 0. Hence there exists E ⊆ Ω measurable
with |E|N > 0 such that

|un(z)| → +∞ for all z ∈ E.
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Then (74), hypothesis H(f) (iii) and Fatou’s lemma imply∫
E

[f(z, un)un − pF (z, un)]dz → +∞ as n→ +∞,

⇒
∫
Ω

[f(z, un)un − pF (z, un)]dz → +∞ as n→ +∞ (see (23)). (78)

From (71) we see that we can find n0 ∈ N such that

∥∇un∥pp + (1− tn)
p

2
∥∇un∥22 − (1− tn)

∫
Ω

pF (z, un)dz − tnλ∥un∥pp ≤ 0 (79)

for all n ≥ n0. On the other hand from (72) with h = un ∈W 1,p
0 (Ω), we have

−∥∇un∥pp − (1− tn)∥∇un∥22 + (1− tn)

∫
Ω

f(z, un)undz + tnλ∥un∥pp ≤ εn (80)

for all n ∈ N. Adding (79) and (80) and recalling that p > 2, we have

(1− tn)

∫
Ω

[f(z, un)un − pF (z, un)]dz ≤ c19 for some c19 > 0, all n ≥ n0. (81)

We show that t < 1. Indeed, if t = 1, then (77) becomes

−∆py(z) = λ|y(z)|p−2y(z) for a.a. z ∈ Ω, y|∂Ω = 0,

⇒ y = 0 (since λ ̸∈ σ̂(p)), a contradiction to (76).

Then from (81) it follows that∫
Ω

[f(z, un)un − pF (z, un)]dz ≤ c20 for some c20 > 0, all n ≥ n0. (82)

Comparing (78) and (82), we have a contradiction. This proves the Claim.
From the Claim and Theorem 5.1.21, p. 334 of Chang [7] (see also Liang-Su

[21]), we have

Ck(h0(·),∞) = Ck(h1(·),∞) for all k ∈ N0,

⇒ Ck(φ,∞) = Ck(ψ,∞) for all k ∈ N0. (83)

For ρ > 0, we consider the following two sets

Cρ = {u ∈W 1,p
0 (Ω) : ∥u∥p < λ∥u∥pp, ∥u∥ = ρ},

D = {u ∈W 1,p
0 (Ω) : ∥u∥p ≥ λ∥u∥pp}.

Since λ ∈ (λ̂m(p), λ̂m+1(p)), we have

ind Cρ = ind D = m

with ind(·) being the Fadell-Rabinowitz cohomological index (see [9]). Then, by
Theorems 3.2 and 3.6 of Cingolani-Degiovanni [9], we have

Cm(ψ, 0) ̸= 0. (84)

But Kψ = {0} (since λ ̸∈ σ̂(p)). Hence

Ck(ψ, 0) = Ck(ψ,∞) for all k ∈ N0,

(see Proposition 6.61(c), p. 160, of Motreanu-Motreanu-Papageorgiou [25]), implies

Cm(φ,∞) ̸= 0 (see (83), (84)).
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Proposition 12. If hypotheses H(f) hold and Kφ is finite, then Ck(φ, y0) =
Ck(φ, û) = Ck(φ, v̂) = δk,1Z for all k ∈ N0.

Proof. Let χ ∈ C1(W 1,p
0 (Ω),R) be as in the proof of Proposition 10 and consider

the homotopy

ht(u) = (1− t)φ(u) + tχ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Suppose we could find {tn}n∈N ⊆ [0, 1] and {un}n∈N ⊆W 1,p
0 (Ω) such that

tn → t, un → y0 in W 1,p
0 (Ω) and (htn)

′(un) = 0 for all n ∈ N. (85)

From the equality in (85), we have

⟨Ap(un), h⟩+ ⟨A(un), h⟩ = (1− tn)

∫
Ω

f(z, un)h dz + tn

∫
Ω

γ(z, un)dz

for all h ∈W 1,p
0 (Ω),

⇒ −∆pun(z)−∆un(z) = (1− tn)f(z, un(z)) + tnγ(z, un(z)) for a.a. z ∈ Ω,

un

∣∣∣
∂Ω

= 0 for all n ∈ N. (86)

From (86) and Theorem 7.1, p. 286 of Ladyzhenskaya-Uraĺtseva [19], we have that

∥un∥∞ ≤ c21 for some c21 > 0, all n ∈ N.

Invoking Theorem 1 of Lieberman [22], we find τ ∈ (0, 1) and c22 > 0 such that

un ∈ C1,τ
0 (Ω), ∥un∥C1,τ

0 (Ω) ≤ c22 for all n ∈ N. (87)

From (85), (87) and the compact embedding of C1,τ
0 (Ω) into C1(Ω), we infer that

un → y0 in C1
0 (Ω),

⇒ un ∈ [v∗, u∗] for all n ≥ n0 (see Proposition 10).

Since φ′
∣∣∣
[v∗,u∗]

= χ′
∣∣∣
[v∗,u∗]

(see (65)), it follows that

{un}n≥n0 ⊆ Kφ,

which contradicts the hypothesis that Kφ is finite.
Hence (85) can not hold and so the homotopy invariance of critical groups (see

Gasiński-Papageorgiou [17], Theorem 5.125, p. 836), implies that

Ck(φ, y0) = Ck(χ, y0) for all k ∈ N0. (88)

But from (69) we know that

C1(χ, y0) ̸= 0,

⇒ C1(φ, y0) ̸= 0 (see (88)). (89)

We know that φ ∈ C2(W 1,p
0 (Ω),R). Then from (89) and Papageorgiou-Radulešcu

[27] (see proof of Proposition 3.5, Claim 3), we have

Ck(φ, y0) = δk,1Z for all k ∈ N0.
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Similarly for û ∈ int C+ and v̂ ∈ −int C+, using the homotopies

(h̃+)t(u) = (1− t)φ(u) + tφ̃+(u),

(h̃−)t(u) = (1− t)φ(u) + tφ̃−(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Now we are ready for the multiplicity theorem producing six nontrivial smooth
solutions for problem (1). Note that we provide sign information for five of these
solutions and we also order them.

Theorem 5.1. If hypotheses H(f) hold, then problem (1) admits at least six
nontrivial smooth solutions

u0, û ∈ int C+ with û− u0 ∈ int C+,

v0, v̂ ∈ −int C+ with v0 − v̂ ∈ int C+,

y0 ∈ intC1
0 (Ω)[v0, u0] nodal,

ŷ ∈ C1
0 (Ω) \ {0}.

Proof. From Proposition 4, we know that u0 ∈ int C+

• is a minimizer of φ̂+;
• u0 ∈ intC1

0 (Ω)[0, w+].

Since φ
∣∣∣
[0,w+]

= φ̂+

∣∣∣
[0,w+]

(see (6)), it follows that

u0 is a local C1
0 (Ω)-minimizer of φ,

⇒ u0 is a local W 1,p
0 (Ω)-minimizer of φ (see Proposition 1).

Similarly we have that

v0 is a local W 1,p
0 (Ω)-minimizer of φ.

Therefore we have

Ck(φ, u0) = Ck(φ, v0) = δk,0Z for all k ∈ N0. (90)

From Proposition 12, we have

Ck(φ, y0) = Ck(φ, û) = Ck(φ, v̂) = δk,1Z for all k ∈ N0. (91)

Also, from Proposition 9, we know that

Ck(φ, 0) = δk,dlZ for all k ∈ N0. (92)

Since Cm(φ,∞) ̸= 0 (see Proposition 11), we can find ŷ ∈ Kφ ⊆ C1
0 (Ω) such that

Cm(φ, ŷ) ̸= 0. (93)

(see Motreanu-Motreanu-Papageorgiou [25], Proposition 6.61, p. 160). Sincem ̸= dl
(see hypothesis H(f) (iv)), from (92), (93) we infer that

ŷ ̸= 0.

Also, from (90), (91) and (93), we see that

ŷ ̸∈ {u0, v0, y0, û, v̂}.
We conclude that ŷ ∈ C1

0 (Ω) is the sixth nontrivial smooth solution of problem
(1).
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elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521–524.
[11] P.C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in

Biomathematics, 28. Springer-Verlag, Berlin, (1979).

[12] D.G. De Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique
continuation, Comm. Partial Differential Equations, 17 (1992), no. 1-2, 339–346.

[13] M.E. Filippakis and N.S. Papageorgiou, Multiple constant sign and nodal solutions for

nonlinear elliptic equations with the p-Laplacian, J. Differential Equations, 245 (2008), no.
7, 1883–1922.
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