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Methods

Study species. The anostracan genus Branchinecta comprises around 50 species. Its members are found
on all continents except Australia’”’~”°. The genus is represented by five species in the Palaearctic, with only two
being present in the study area: Branchinecta ferox and Branchinecta orientalis. B. orientalis inhabits mineral-rich
temporary waters and has a disjunct distribution ranging between 27° and 55° N in Europe and Asia (Fig. 1a).
Active populations generally occur in spring, but they have also been recorded in autumn or winter®-*2. B. ferox
has a circum-Mediterranean and Central European distribution (Fig. 1b). It is the only Branchinecta species
occurring in Africa, being present in the north-western part of the continent (Morocco, Algeria and Tunisia’®).
In Europe, it occurs in Spain and Central Europe (Pannonian Plain), and its range extends further east across
South Ukraine to the west of Russia®*®. This species has also been reported in the Middle-East (i.e. Jordan,
Israel and Turkey®-%%). B. ferox is a halotolerant species, occurring both in freshwater rain pools in the circum-
Mediterranean area® and saline pans in the Pannonian Plain®. Active populations mostly occur in late winter
and early spring®788!. The geographic distribution of these two Branchinecta species overlaps in the Pannonian
Plain, Iberian Peninsula and Turkey®*®#. On the Iberian Peninsula and the Pannonian Plain, the two species
are found almost exclusively in large and shallow saline pans, and represent a preferred food source for water-
birds on their seasonal migration routes™.

Species distribution maps. We compiled a list of known occurrences of both species based on the above
listed samples and literature data*”67.687883-87.89-100 "The literature sources mentioning distribution and ecology
of B. ferox and B. orientalis were searched via Google Scholar and Web of Science. Sources that did not report
precise habitat coordinates of populations and/or are older than 50 years are not included, hence the actual dis-
tribution of the species is probably underrepresented (e.g., the actual distribution of B. orientalis in Asia is most
likely underrepresented here). To account for this, we built species distribution maps with the ‘dismo’ package®!
of R v. 4.0.31%2. Here, we used all available bioclimatic variables from the WorldClim database (http://www.
worldclim.org)'®, and predicted the probability of occurrence for each species. Although these variables do not
include the presence of suitable habitats (i.e., shallow temporary waters, for which there is no publicly available
database yet), they should provide a reliable indication for the climatic conditions where suitable habitats are
likely to occur. According to the probability maps, our general coverage of sequenced samples was in a good
agreement with the overall distribution of both species, including samples from the Mediterranean, the Pannon-
ian Plain in Central Europe (both species), and Middle to Central Asia (B. orientalis). Even though our model
predicted the possible occurrence of B. ferox in Italy and Southern France (Fig. 1b), we can mostly exclude these
latter regions given that both are very well covered by previous Anostraca studies that have never reported the
species there!*1%%,

Sampling procedure.  We collected Branchinecta orientalis specimens from 29 temporary pools, ponds and
shallow lakes in Europe and Asia (Table Al). Branchinecta ferox specimens were collected from 16 habitats in
Europe, North Africa, and Asia (Table A1). Specimens were collected between 1971 and 2018 and fixed in etha-
nol (of various concentrations). Once the samples arrived at the lab, animals were transferred immediately to
pure ethanol until further processing. All specimens were dissected to obtain phyllopod tissue for DNA extrac-
tion. For the molecular laboratory procedures to acquire the DNA sequences for the targeted gene regions, see
Appendix B.

Reconstructions of phylogeny based on mitochondrial COl and nuclear ITS2 DNA region.  All
generated B. ferox and B. orientalis sequences were assembled and visually checked for quality in SeqScape v3.
We checked the COI alignment for indels and internal stop codons that would indicate unintentional ampli-
fication of nuclear pseudogenes'®. The produced sequences were edited in BioEdit'””. The newly produced
sequences were aligned together with the existing sequences in GenBank (for B. ferox and B. orientalis see
Table Al in Appendix 1A; Branchinecta lynchi MF037649; B. lindahli MF037694-5; B. tolli HG797695; B. palu-
dosa HG797672, HG797699 and JN233828)+7°18996108109 3q one outgroup taxon (for COI, we used Branchipus
schaefferi MK449416* and for I1TS2, Chirocephalus diaphanus LT860206%) by using CLUSTALW multiple align-
ment tool in BioEdit for the CO1 gene region and MUSCLE for the ITS2 DNA region. The most likely evolution-
ary model for the COI marker was determined in in PartitionFinder2'? and for the ITS2 in MEGA X'!! based on
the Akaike Information Criterion (AIC). For the COI gene region, the AIC selected a General Time Reversible
model (GTR), which was used to reconstruct ML and BI tree. For the ITS2 DNA region, the AIC selected for
GTR model with a gamma shape parameter (+ G, y=1.22), which was used to reconstruct ML and BI tree.

ML analyses were performed in MEGA X with 1000 bootstrap replicates. Bayesian inference was performed
in BEAST v2.6.4"2 in case of the COI gene region. The settings included the strict molecular clock, Yule model
and a lognormal prior distribution for the taxon set of the Branchinecta paludosa samples (set as monophyletic;
mean * standard deviation: 1.25+0.15 as in Lindholm et al.*!). The analyses were run for 10 million generations.
Molecular evolutionary rates of 2% divergence per million years were applied by Lindholm et al.>! on the closely
related B. paludosa, and were thus here applied to get a tentative temporal frame for the main cladogenetic events
observed within our study taxa. We used TreeAnnotator v. 2.6.4 to construct a single tree by discarding 25% of the
compiled trees as a burn-in. As molecular clock is not available for the ITS2 DNA region, we used MrBayes!*-11°
to an ITS2 phylogenetic tree using BI. We applied the Markov Chain Monte Carlo (MCMC) method for 10°
generations (standard deviation of split frequencies reached <0.01) while the trees were sampled every 1000
generations. The initial 25% of produced trees were discarded as burn-in.

For the B. ferox and B. orientalis COI gene fragments, we built a median-joining haplotype network for each
species (¢ =0; Bandelt et al., 1999) using PopART v 1.7''7; http://popart.otago.ac.nz). The sites containing missing
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bases at the end and the beginning of the alignment, as well as ambiguous bases, were masked leaving 479 (B.
ferox) and 304 (B. orientalis) sites for further network analysis.

Analysis of genetic diversity. Substitution saturation was tested in DAMBE v. 7.0.28'!%, using the default
settings and including all sites. The index of substitution saturation (Iss) was significantly smaller than the criti-
cal index of substitution saturation (Iss c), indicating little saturation''*'? for both markers. Pairwise genetic
K2P distances between all generated sequences and the mean genetic distances within and among the main
groups in the phylogeny of B. ferox and B. orientalis were calculated in MEGA X'*! with partial deletion of 90%
(515 positions in the final data set for COI and 574 positions for ITS2). The haplotype number was determined
in DnaSP 6'%,

In both B. ferox and B. orientalis, we tested for the dispersal limitation based on the relationship between
pairwise genetic differences on the mitochondrial COI gene region and geographic distances. To do so, we
exported pairwise genetic distances from MEGA X in a form of a data matrix and applied Hellinger transfor-
mation. We calculated pairwise geographic distances between all sampling sites as orthodromic distance. To
reveal effective dispersal over distinct distance classes, we used the computed pairwise genetic distances and
log+0.1 transformed spatial distances to perform a Mantel test with 999 permutations and calculate Mantel
correlation coeflicients. In addition to the full dataset, separate Mantel tests were performed within two main B.
orientalis clades (Clade A and Clade B). Mantel correlation coefficients were calculated between pairwise genetic
distances within eight distance classes for all COI sequences of B. orientalis and repeated separately for the two
main clades to detect positive autocorrelation as signs of effective dispersal. For B. ferox, we calculated Mantel
correlation coefficients between pairwise genetic distances within seven distance classes as the highest spatial
distance between B. ferox populations was lower than between individual B. orientalis populations. Calculation
of pairwise spatial distances, Mantel tests and Mantel correlation coefficients were performed in R software, with
the ‘fields'* and ‘vegan’'** packages.

Data accessibility
The DNA sequence data supporting the findings of this study are openly available in GenBank at https://www.
ncbi.nlm.nih.gov/genbank/, accession numbers are listed in the Appendix A, Table Al.
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