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Summary
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), the first immune checkpoint to be targeted clinically, has provided an
effective treatment option for various malignancies. However, the clinical advantages associated with CTLA-4 inhibitors can be
offset by the potentially severe immune-related adverse events (IRAEs), including autoimmune thyroid dysfunction. To inves-
tigate the candidate genes and signaling pathways involving in autoimmune thyroid dysfunction related to anti-CTLA-4 therapy,
integrated differentially expressed genes (DEGs) were extracted from the intersection of genes from Gene Expression Omnibus
(GEO) datasets and text mining. The functional enrichment was performed by gene ontology (GO) annotation and Kyoto
encyclopedia of genes and genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) network, module enrichment,
and hub gene identification were constructed and visualized by the online Search Tool for the Retrieval of Interacting Genes
(STRING) and Cytoscape software. A total of 22 and 17 integrated human DEGs in hypothyroidism and hyperthyroidism group
related to anti-CTLA-4 therapy were identified, respectively. Functional enrichment analysis revealed 24 GO terms and 1 KEGG
pathways in the hypothyroid group and 21 GO terms and 2 KEGG pathways in the hyperthyroid group. After PPI network
construction, the top five hub genes associated with hypothyroidism were extracted, including ALB, MAPK1, SPP1, PPARG,
and MIF, whereas those associated with hyperthyroidism were ALB, FCGR2B, CD44, LCN2, and CD74. The identification of
the candidate key genes and enriched signaling pathways provides potential biomarkers for autoimmune thyroid dysfunction
related to anti-CTLA-4 therapy and might contribute to the future diagnosis and management of IRAEs for cancer patients.
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Introduction

Immune checkpoint blockade represents one of the most
promising anti-tumor immunotherapeutic strategies.
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), as
a key negative regulator of T cell responses, is the first im-
mune checkpoint to be clinically targeted in oncology [1].
CTLA-4 is a type 1 transmembrane glycoprotein of the
immunoglobin superfamily and shares 31% amino acid iden-
tity with CD28 [2]. It inhibits T cell activity by competing
with CD28 for B7 engagement and delivering an inhibitory
signal directly from its cytoplasmic tail [3]. Anti-CTLA-4 an-
tibodies, such as ipilimumab and tremelimumab, can exert
their antitumor effects via activating CD8 + effector T cells
and modulating the function of CD4 + T cells [1].
Ipilimumab alone, or in combination with nivolumab has
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shown overall survival benefits in patients suffering frommet-
astatic melanoma, metastatic renal cell carcinoma, and other
malignancies [4, 5].

However, CTLA-4 inhibition also leads to autoimmune
manifestations that are referred to as immune-related adverse
events (IRAEs). IRAEs result from the induction of a toler-
ance break against the tumor and involve a wide range of
organ systems [6]. Autoimmune thyroid dysfunction is one
of the common IRAEs reported clinically and is described at
potentially high risk after checkpoint inhibitor treatment. This
includes hypothyroidism and hyperthyroidism, especially af-
ter single CTLA-4, PD-1 blockade therapy, or the combina-
tion treatment regime [7, 8]. The autoimmune thyroid dys-
function is either caused by primary thyroid gland disorders
or as a result of pituitary dysfunction both induced by immune
checkpoint blockade [9]. Clinical studies have shown that the
incidence of primary and secondary hypothyroidism after ad-
ministration of ipilimumabwas 5.6% and 7.6% of the patients,
respectively [9, 10]. However, the time point of primary hy-
pothyroidism occurrence was not clarified. It could be ranging
from 5months to 3 years. Hyperthyroidism is usually found as
a transient symptom at the beginning of autoimmune thyroid-
itis or associated with Graves’ disease after anti-CTLA-4
treatment. Persistent primary hyperthyroidism is significantly
less frequent than hypothyroidismwith an occurrence of 1.7%
[6]. The patients who develop autoimmune thyroiditis after
CTLA-4 blockade therapy exhibit symptoms such as pain,
hand tremor, periorbital swelling, or tachycardia [11]. These
symptoms have a considerable negative influence on the qual-
ity of life of patients who are suffering from cancer. Thus, it is
critical to identify proper strategies to effectively manage au-
toimmune thyroid dysfunction after anti-CTLA-4 therapy.

With the advances in high-throughput gene expression pro-
filing technologies, microarrays have become a valuable
method to provide insight into the gene expression pattern
on a global basis [12]. Gene Expression Omnibus (GEO) da-
tabase is a repository for high-throughput gene expression
data and accessible for the public [13]. Gene data stored in
the platform makes it possible to identify differentially
expressed genes (DEGs) and find promising biomarkers of
human diseases [14]. Another technique that should be em-
phasized is text mining, also known as Intelligence Text
Analysis. Text mining is a powerful tool automatically
extracting large amounts of biological information from vari-
ous written resources by computer [15]. We adopted the pub-
lic tool pubmed2ensembl to perform text mining.
Pubmed2ensembl is an extension of the Ensembl BioMart that
integrates the large amounts of genomic data from Ensembl
and biological literature from PubMed [16]. This tool allows
us to find a set of functionally related genes based on the
relevant literature.

The laboratory mouse provides a valuable and accessible
model for investigating and elucidating the genetic foundation

of human diseases. The rapid development in comparative
genetics makes the human and mouse homolog map more
detailed and increases our understanding of the high conser-
vation of cellular and metabolic pathways between mouse and
human on a molecular and genetic level [17, 18]. Studies have
shown that gene expression between the corresponding tissues
from different organisms is more similar and conserved than
that of the alternative tissues from the identical organism [19].
Mouse gene chips not only provide a complete expression
profile of mouse genome but also give us an ideal reference
to investigate the underlyingmechanism of human diseases on
a genetic level.

In this study, we downloaded GSE32445 and GSE58062,
the mouse hypothyroidism and hyperthyroidism gene expres-
sion profile, respectively, from the GEO database. R language
was utilized to standardize and analyze the microarray
datasets to obtain DEGs. We then converted the mouse
DEGs to their human orthologous genes to deduce the expres-
sion pattern of human genes from their mouse orthologues.
Text mining about anti-CTLA-4 therapy was then performed
by the online tool pubmed2ensembl [16]. After achieving the
common genes from microarrays and text mining, the inte-
grated DEGs were subsequently analyzed via GO enrichment
and KEGG pathway. The protein-protein interaction (PPI)
networks were constructed using the online Search Tool for
the Retrieval of Interacting Genes (STRING) and Cytoscape
software to identify the candidate hub genes and highly related
functional modules.

Materials and methods

Microarray data

Gene expression profile matrix files of GSE32445 and
GSE58062 based on the Illumina MouseWG-6 v2.0 expres-
sion beadchip were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The GSE32445 dataset
includes five euthyroid and four hypothyroid mouse liver
tissue samples, while the GSE58062 dataset contains four
euthyroid and four hyperthyroid mouse liver tissue samples.

Analysis of DEGs

The downloaded matrix TXT files were normalized with the
preprocessCore R package [20]. The DEGs between hypothy-
roidism or hyperthyroidism and control groups were identified
by the empirical Bayes t-test in the Limma R package with
|log2 fold change (FC)|>1 and P value < 0.05 set as the thresh-
old values [21]. Then the mouse DEGswere converted to their
human orthologs in the HGNC symbol by the Biomart pack-
age in R [22, 23].
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Text mining

The public tool pubmed2ensembl (http://pubmed2ensembl.ls.
manchester.ac.uk/) was used to perform text mining. The
queries “CTLA-4”, “ipilimumab” and “tremelimumab” were
retrieved from up to 100,000 document IDs in the dataset of
Homo sapiens genes (GRCh37) filtered in MEDLINE. The
common genes fromDEGs and text mining were then extract-
ed for the following analysis.

Gene ontology and pathway enrichment analysis

The GO annotation and KEGG pathway enrichment were
performed using the Database for Annotation Visualization
and Integrated Discovery (DAVID) (version 6.8) (https://
david.ncifcrf.gov/) which offers a series of functional
annotation tools to analyze the biological meaning of gene
lists systematically. The gene lists achieved above were
analyzed with a significance threshold of P value < 0.05.

Integration of PPI network

We used the online tool STRING (version 11.0) (https://
string-db.org/) database to evaluate the relationship between
the identified genes above and only interactions with a
combined score > 0.4 were considered to be significant.
Cytoscape software (version 3.7.2) was used to analyze and
visualize the PPI networks acquired from STRING. The
Cytoscape plugin Molecular Complex Detection (MCODE)
(version 1.5.1) was used to identify the functional modules
within the PPI networks with the following default parame-
ters: Degree Cutoff = 2, Node Score Cutoff = 0.2, K-Core = 2
and Max.Depth = 100. Moreover, to explore key proteins in
biological networks, another Cytoscape plugin cytoHubba
(version 0.1) was applied to identify the hub genes which rank
the top five in all nodes based on the topological analysis
method “Degree”.

Results

Identification of integrated DEGs related to
hypothyroidism/hyperthyroidism and anti-CTLA-4
therapy

Firstly, the hypothyroidism gene expression series GSE32445
and hyperthyroidism gene expression series GSE58062 were
normalized, and the results are shown in Fig. 1a-d. After being
screened by the limma package, a total of 1270 DEGs between
hypothyroid samples and normal controls were identified from
the GSE32445 dataset, including 558 upregulated genes and
712 downregulated genes. 475 DEGs between hyperthyroid
samples and normal controls were defined from the

GSE58062 dataset, including 293 upregulated genes and 182
downregulated genes. The overall distribution and top 100
DEGs of the two datasets are shown in volcano plots and
heatmaps, respectively (Fig. 2a-d).

The DEGs acquired from the two mouse microarray
datasets were converted to their human orthologs. A total of
948 humanDEGswere obtained in the hypothyroidism group,
containing 420 upregulated genes and 528 downregulated
genes (S.Table 1a). 341 DEGs related to hyperthyroidism
were identified and consist of 216 upregulated genes and
125 downregulated genes (S.Table 1b).

452 human genes associated with anti-CTLA-4 therapy
were revealed by text mining (S.Table 1). After comparing
the DEGs from microarray data to the gene list derived from
text mining, the intersections of genes were obtained and in-
volved 22 genes in the hypothyroidism group and 17 genes in
the hyperthyroidism group (Fig. 3).

Functional enrichment analysis

DAVID was utilized to perform GO and KEGG enrichment
analysis based on the integrated DEGs achieved above. This
was done to investigate the correlated biological function of
the integrated DEGs in autoimmune thyroid dysfunction related
to anti-CTLA-4 therapy. In the results of GO analysis, 10 bio-
logical process (BP) terms, 10 cell component (CC) terms, and 4
molecular function (MF) terms were identified in the integrated
DEGsof hypothyroidismwith a Pvalue < 0.05 as the significant
threshold. 5 genes were mainly enriched in the BP term “nega-
tive regulation of apoptotic process”, 12 genes fell into in theCC
term “extracellular exosome” and 7 genes were involved in the
MF term “identical protein binding” (Fig. 4 and S.Table 3a). In
hyperthyroidism, integrated DEGs were significantly enriched
in 21 GO terms including 8 BP terms, 6 CC terms and, 7 MF
terms. The genes were primarily enriched in the following
terms: “regulation of immune response” in BP, “extracellular
exosome” in CC, and “drug binding” inMF. Thesewere the top
3 terms of GO annotation with the integrated genes enriched
most significantly (Fig. 5 and S. Table 3b).

The KEGG enrichment analysis revealed that the integrat-
ed DEGs were significantly enriched in the KEGG pathway
“tuberculosis” in hypothyroidism group and “osteoclast dif-
ferentiation”, “tuberculosis” in the hyperthyroidism group
(Fig. 6 and S.Table 4). Notably, even though the other three
pathways “thyroid cancer”, “focal adhesion” and “prion dis-
eases” in hypothyroidism were not considered significant, the
gene MAPK1 was enriched in all the hypothyroidism related
KEGG pathways.

Construction and module analysis of PPI network

The STRING database and Cytoscape platform were adopted
to perform PPI network generation, module analysis, and
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visualization based on the 22 genes in the hypothyroidism
group and 17 genes in the hyperthyroidism group. A PPI
network containing 23 interactions was generated based on
14 integrated DEGs correlated with hypothyroidism (Fig.
7a). Also, the PPI network in the hyperthyroid group was
constructed and contained 14 connected DEGs (Fig. 7b).
According to the degree value, the top five hub genes extract-
ed from the hypothyroidism group were ALB (albumin),
MARK1 (microtubule affinity regulating kinase 1), SPP1 (se-
creted phosphoprotein 1), PPARG (peroxisome-proliferator
activated receptor gamma) and MIF (macrophage migration
inhibitory factor). On the other hand, in the hyperthyroid
group, the top five hub genes were ALB, FCGR2B (Fc frag-
ment of IgG receptor IIb), CD44, LCN2 (lipocalin 2), and
CD47 (Table 1).

MCODE algorithm was performed to detect highly inter-
connected subnets that are usually protein complexes and
parts of pathways based on the topological structure. One
highly connected cluster was constructed with 5 nodes and 9
edges from the PPI network of hypothyroidism, including 3
upregulated and 2 downregulated genes (Fig. 7c). A cluster
from the network of hyperthyroidism was generated with 4
nodes and 6 edges, containing 2 upregulated and 2

downregulated genes (Fig. 7d). Further functional enrichment
analysis of the identified modules revealed that genes in the
module of hypothyroidism were primarily enriched in the GO
terms of “response to stress”, “perinuclear region of cyto-
plasm”, “identical protein binding” and KEGG pathway of
“PI3K-Akt signaling pathway” (Table 2a). Genes in the mod-
ule of hyperthyroidism mainly fell into the GO terms of “re-
sponse to nutrient”, “Golgi apparatus” and “drug binding”
(Table 2b).

Discussion

IRAEs occur in approximately 60% of the patients after
ipilimumab administration [5]. They can potentially involve
every organ system, but the gastrointestinal tract, skin, liver,
and endocrine glands are more commonly affected [24].
When the combination of CTLA-4 and PD-1 blockades are
adopted, the symptoms are more severe and can be fatal in
some cases [25, 26]. Even though IRAEs are frequently de-
scribed, the optimal treatment strategies have not been defined
and primarily depend on consensus opinion [27].
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Fig. 1 Normalization of gene
expression profile matrix. a, b
Before and after normalization of
the hypothyroidism GSE32445
dataset. c, d Before and after
normalization of the
hyperthyroidism GSE58062
dataset
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Autoimmune thyroid dysfunction related to CTLA-4 anti-
body therapy is one of the common IRAEs clinically. A
single-center study reported that a total of 23% of patients with
melanoma treated with ipilimumab developed different degrees
of thyroid abnormalities, including primary or sub-clinical hypo-
thyroidism and hyperthyroidism [8]. It is crucial to discriminate

between primary and secondary thyroid dysfunction and exclude
the pre-existing thyroid disorders for the proper treatment. Thus,
the thyroid function of patients before and after anti-CTLA-4
antibody treatment should be assessed routinely. Despite its im-
portance, scheduled thyroid laboratory evaluation is often com-
plicated and inaccessible in cancer patients. This is due to the fact
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that both, acute illnesses and antitumor therapy, can affect triio-
dothyronine (T3) levels in patients [28]. Furthermore, repeating
evaluation and following up of thyroid function also becomes a
burden for both patients and medical resources. Therefore, it is
critical to elucidate the molecular mechanism of the autoimmune
thyroid dysfunction after anti-CTLA-4 therapy in order to find
effective biological markers and efficient strategies for the diag-
nosis, monitoring, and treatment of patients.

In this study, 22 and 17 genes in the hypothyroidism and
hyperthyroidism group, respectively, associated with anti-
CTLA-4 therapy were identified for functional analysis by
GO and KEGG enrichment. Results from GO annotation sug-
gest that these DEGs are mainly involved in apoptosis, protein
binding and immune regulation. It should also be noted that
MAPK1 is the common gene in all the enriched KEGG path-
ways in the hypothyroidism group and is one of the hub genes
identified from the PPI network. MAPK1, also known as
mitogen-activated protein kinase 1, is a member of the MAP
kinase family and is involved in a wide range of biological
processes like cell proliferation and angiogenesis. Thyroid
hormone activates MAPK by binding to the hormone receptor

ανβ3 integrin expressed on various tumor cells to promote
cell proliferation. A study demonstrated that an inhibitory thy-
roxine (T4) analogue tetraiodothyroacetic acid (tetrac)
blocked MAPK activation induced by thyroid hormone and
prevented the proliferation of myeloma cells [29].

The common genes enriched in two KEGG terms of the
hyperthyroid group were FCGR2B and FCGR3A. FCGR2B,
also named CD32, and FCGR3A, also named CD16A, are
low-affinity receptors for the Fc region of immunoglobulin
gamma (IgG) belonging to the immunoglobulin superfamily
and involved in a series of immune response. FCGR2B is the
only inhibitory IgG Fc receptor that prevents the immune
overstimulation and regulates immunologic balance [30].
FCGR2B expressing on B cells suppresses humoral immunity
by restraining their activation and inhibiting B cell-mediated
antigen presentation to T cells [31]. Therefore, the dysfunction
of FCGR2B affects the susceptibility to several autoimmune
diseases. The activating Fc receptor FCGR3A is mainly
expressed in NK cells and macrophages and plays an impor-
tant role in autoimmune disease [32]. A previous study indi-
cated that the hypothyroidism due to rabbit immunoglobulins
injection was attenuated in mice lacking FCGR3, but not in
mice lacking FCGR2B [33].

By the PPI network construction, functional enrichment
analysis of the highly connected modules revealed that genes
in the hypothyroidism module were mainly enriched in the
KEGG t e rm “P I 3K -Ak t s i g n a l i n g p a t hw a y ” .
Phosphatidylinositol 3′ -kinase (PI3K) is responsible for the
generation of phosphatidylinositol 3,4,5-trisphosphate, a sec-
ond messenger essential for the translocation of Akt (Protein
kinase B). Activation of Akt involves in fundamental cellular
functions such as cell proliferation and survival. The
PI3K-Akt pathway is associated with the development
of various diseases such as cancer, diabetes mellitus,
and autoimmunity [34]. Furthermore, five hub genes
with the highest degree of connectivity were identified
separately from the hypothyroidism and hyperthyroidism
group. The top five hub genes associated with hypothy-
roidism are ALB, MAPK1, SPP1, PPARG, and MIF,
whereas those associated with hyperthyroidism are
ALB, FCGR2B, CD44, LCN2, and CD74.

Specifically, the hypothyroidism and hyperthyroidism
group share the same hub gene ALB, also known as albumin.
Albumin is a multifunctional plasma protein that is highly
abundant in human blood [35]. The center of Albumin con-
sists of hydrophobic radicals which are binding sites for a
wide range of compounds, such as the hormone T4. It serves
as a critical fast exchange resource of the thyroid hormone to
rapidly stabilize T4 level [36]. A total of four binding sites for
T4 have been identified on the subdomains IIA, IIIA, and IIIB
of human serum albumin [37]. The mutation of residue R218
in its subdomain IIA is related to familial dysalbuminemic
hyperthyroxinemia (FDH) which is induced by the increased

Fig. 3 Venn diagram of DEGs from microarray data and genes list from
text mining. a Intersection of genes between DEGs generated from
GSE32445 and anti-CTLA-4 gene list from text mining. b Intersection
of genes between DEGs generated from GSE58062 and anti-CTLA-4
gene list from text mining. DEGs, differentially expressed genes
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affinity for thyroxine after conformation change and the fur-
ther elevated serum T4 levels [38].

SPP1, also named osteopontin, plays an important role in
cell-mediated immunity and immunoglobulin production by
B cells [39, 40]. It is involved in various autoimmune diseases
including systemic lupus erythematosus, rheumatoid arthritis,
and multiple sclerosis [41]. It was demonstrated that SPP1
levels were increased in the serum of patients suffering from
Graves’ disease [42].

PPARG encodes a member of the peroxisome proliferator-
activated receptor (PPAR) subfamily. There are three known
isotypes: PPARα, PPARβ, and PPARγ. PPARγ is primarily
expressed in adipose tissue, colon and immune system and
takes part in distinct diseases including obesity, diabetes, ath-
erosclerosis and cancer [43]. A previous study indicated that
the PPARγ agonist rosiglitazone raised the thyroxine hor-
mone levels in circulation and PPARs and thyroid hormone

receptors could crosstalk to influence a series of biological
processes [44, 45].

MIF is a lymphokine released by macrophages, lympho-
cytes and epithelial cells and involved in a variety of cell-
mediated immune response and inflammation. T4 is consid-
ered as a potential antagonist of MIF as the binding of T4
suppresses the catalytic activity of the hydrophobic pocket
that is associated with the pro-inflammatory activities of
MIF. In patients with active antineutrophil cytoplasmic anti-
body (ANCA)-associated vasculitis (AAV), an increase in
MIF was detected with a decreased fT3 level [46]. It is note-
worthy that MIF binds to its natural receptor CD74, a type II
transmembrane protein, to initiate downstream inflammatory
signals. The recruitment of CD44, a transmembrane glycopro-
tein with tyrosine kinase activity, is necessary in the following
activation of SRC family non-receptor tyrosine kinases, which
result in the phosphorylation of ERK1 and ERK2 [47, 48]. In
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Fig. 6 KEGG pathway enrichment of the integrated DEGs associated with autoimmune thyroid dysfunction and anti-CTLA-4 therapy. a
hypothyroidism. b hyperthyroidism. DEGs, differentially expressed genes
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Fig. 7 PPI network and highly connected modules of integrated genes. a,
b PPI network in hypothyroidism and hyperthyroidism group. c, d
Modules from the PPI network in hypothyroidism and hyperthyroidism
group generatedby the MCODE algorithm in Cytoscape. Red indicates

relative upregulated genes and green indicates relative downregulated
genes. The size of the edges represents the strength of the interactions
based on the combined score

1726 Invest New Drugs (2020) 38:1717–1729



addition, a study about Graves’ disease (GD) showed that the
injection of GD lymphocytes into thyroid tissue transplants
increased the expression of CD44 significantly, indicating
the important role of CD44 in the pathology of autoimmune
thyroid diseases [49].

LCN2 is a small extracellular protein belonging to the
lipocalin family. Besides its transportation function of

hydrophobic molecules such as lipids, steroids, and retinoids,
LCN2 is also associated with immune modulation, metabolic
regulation, and tumorigenesis [50]. LCN2 was indicated to be
regulated by the thyroid hormone. A study showed that thy-
roid hormone receptors bound directly to thyroid hormone
response elements that are located between positions − 1444
and − 1427 of the LCN2 promotor and T3 upregulated the
expression of LCN2 in a time- and dose-dependent way [51].

Conclusions

As one of the relatively common IRAEs, autoimmune thyroid
dysfunction after anti-CTLA-4 therapy should be brought to
the forefront, especially in the systematic therapeutic regime
of malignancies in clinical practice. In the present study, the
pivotal role of candidate key genes such as MAPK1 and
FCGR2B, and the enriched signaling pathway such as PI3K-
Akt pathway in the molecular regulation network of autoim-
mune thyroid disorders were highlighted by integrated bioin-
formatic analysis and this provided potential targets for the
future diagnosis and clinical treatment. Nevertheless, in vitro
or in vivo experiments should be performed for further veri-
fication of the obtained findings.
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Table 1 Top five hub genes identified from the PPI networks

Hypothyroidism related genes Hyperthyroidism related genes

Gene Node Gene Node

ALB 8 ALB 8

MAPK1 7 FCGR2B 6

SPP1 5 CD44 5

PPARG 4 LCN2 5

MIF 4 CD74 4

Table 2 Functional enrichment analysis of genes from the highly
interconnected modules. P value<0.05

Category Term ID Count P value

a. Hypothyroidism

BP Response to stress GO:0006950 2 0.014453026

BP Response to estrogen GO:0043627 2 0.01539526

BP Receptor-mediated
endocytosis

GO:0006898 2 0.043579902

CC Perinuclear region
of cytoplasm

GO:0048471 3 0.006645122

CC Golgi apparatus GO:0005794 3 0.012608444

CC Extracellular exosome GO:0070062 4 0.012971117

CC Extracellular region GO:0005576 3 0.041477897

MF Identical protein
binding

GO:0042802 3 0.011112225

MF Protein phosphatase
binding

GO:0019903 2 0.014845978

MF Drug binding GO:0008144 2 0.017888742

KEGG PI3K-Akt signaling
pathway

hsa04151 3 0.007274867

KEGG Pathways in cancer hsa05200 3 0.009397898

KEGG Thyroid cancer hsa05216 2 0.012595768

KEGG Prostate cancer hsa05215 2 0.037894255

KEGG Estrogen signaling
pathway

hsa04915 2 0.042562603

KEGG Toll-like receptor
signaling pathway

hsa04620 2 0.045525493

b. Hyperthyroidism

BP Response to nutrient GO:0007584 2 0.013163186

BP Cellular response to
tumor necrosis factor

GO:0071356 2 0.019524915

CC Golgi apparatus GO:0005794 3 0.006508414

CC Extracellular space GO:0005615 3 0.015572412

MF Drug binding GO:0008144 2 0.013446386
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