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Abstract
In this paper we make some experimental considerations on the sets 𝒟(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦),𝑀(𝑥) ∪ 𝑀(𝑦)
involving minimal absent words of two words 𝑥 and 𝑦. This study is motivated by the computation of
distances based on these sets.
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1. Introduction

It is well-known that sequence comparison finds many applications in comparative genomics
for the study of evolutions, for building phylogenies, for comparing virus genomes. Besides
the traditional methods based on alignment, that consider only local mutations in biological
sequences, recently many alignment-free methods have been introduced, in order to consider
also global mutations (see [1] for a survey). Some of them compare two sequences by counting
their factors frequencies since, intuitively, the more similar two sequences are, the greater it
is the number of the factors they share. Other methods use data compression considerations,
based on the intuition that the more similar two sequences are, the more effective their joint
compression is than their independent compression.

A third class of method generalizes the definition of sequences alignment, where the basic
edit operation on characters are integrated with edit operations on blocks of characters. In
the context of alignment free methods, in recent years a new class of methods consider the
concept of minimal absent word, based on the idea that the negative information well represents
the sequence itself, hence two sequences can be compared by comparing the relative sets of
minimal absent words. The advantages of this approach are that the set of minimal absent
words uniquely characterizes the sequence (cf. [2]), the number of minimal absent words of
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a sequence of length 𝑛 is linear in 𝑛 (cf. [3]), they can be computed in linear time [4]. As a
consequence, it is possible to compare two sequences in time proportional to their lengths.

An experimental study of different distance measures based on minimal absent words to
analyze similarity/dissimilarity of sequences has been carried out in [5].

In [6] Chairungsee andCrochemore introduced ameasure of similarity between two sequences
𝑥 and 𝑦 making use of a length-weighted index on the symmetric difference 𝑀(𝑥)△𝑀(𝑦) of the
sets of minimal absent words 𝑀(𝑥) and 𝑀(𝑦) of 𝑥 and 𝑦, respectively. In the same paper,
the authors propose to evaluate the length-weighted index on a sample set, i.e. the subset of
𝑀(𝑥)△𝑀(𝑦) of words of limited length ℓ. Further developments and an extension of the ideas
of [6] can be found in [4].

In [7] a new similarity measure between sequences, based on minimal absent words, has been
introduced with the aim to deepen a theoretical comparison with the measures in [6] and [8].
The flaw of the distance in [6] is that the set 𝑀(𝑥)△𝑀(𝑦) could contain words that are absent
both in 𝑥 and in 𝑦, although they are minimal only for one of them. In our opinion, if the aim
is to distinguish 𝑥 and 𝑦 it is not appropriate to consider such words. Hence, we propose to
evaluate the length-weighted index on the sample set 𝒟(𝑥, 𝑦) = (𝐹(𝑥) ∩ 𝑀(𝑦)) ∪ (𝐹(𝑦) ∩ 𝑀(𝑥)),
where 𝐹(𝑥) (resp. 𝐹(𝑦)) denotes the set of factors of 𝑥 (resp. 𝑦). The set 𝒟(𝑥, 𝑦) contains words
that are minimal absent in one of the two words (𝑥 or 𝑦), but that are factors of the other one.
In our proposal, only the words of 𝒟(𝑥, 𝑦) really contribute to distinguish 𝑥 and 𝑦.

Independently in [9, 10] a similar idea has been used for comparing a set of words 𝑇, called a
target, against a set of words 𝑅, called a reference by defining a 𝑇-specific word as a factor 𝑓 of a
word in 𝑇 that is not a factor of any word of 𝑅 and such that any proper factor of 𝑓 is a factor
of some word of 𝑅. An algorithm for computing target specific words, whose construction is
based on a generalization of suffix automata, is also proposed. Finally, in [11] a generalization
of 𝑀(𝑥)△𝑀(𝑦) for multiple strings is given.

From the algebraic point of view, the set 𝒟(𝑥, 𝑦) is the base of the ideal generated by
𝑀(𝑥)△𝑀(𝑦), hence 𝒟(𝑥, 𝑦) contains only those words of 𝑀(𝑥)△𝑀(𝑦) that do not have a
proper factor in the same set. For this reason, in general, 𝒟(𝑥, 𝑦) has far fewer elements
than 𝑀(𝑥)△𝑀(𝑦) and 𝒟(𝑥, 𝑦) contains words among the shortest of 𝑀(𝑥)△𝑀(𝑦). This choice,
from a practical point of view, has a potential advantage in terms of computation time. Although
we do not yet have an algorithm for generating the set 𝐷(𝑥, 𝑦) without considering all the
words in 𝑀(𝑥) ∪ 𝑀(𝑦), we are confident that a more direct approach for this calculation can be
introduced.

The experiments shown in this paper aim to provide measurements on how smaller the set
𝒟(𝑥, 𝑦) is, compared to 𝑀(𝑥)△𝑀(𝑦), and how shorter the words in 𝒟(𝑥, 𝑦) are, compared to
the ones in 𝑀(𝑥)△𝑀(𝑦).
The paper is organized as follows: in Section 2 we give some notations and recall the definition
of minimal absent word. In Section 3 we recall the similarity measures based on absent words.
In Section 4 we comment on some experiments that aim to evaluate the amount of data needed
to compute the two distances, that are highlighted in some graphs and tables.



2. Definitions and notations

Let Σ be a finite alphabet and Σ∗ the set of the words over Σ. If 𝑢 ∈ Σ∗, |𝑢| denotes its length. If
𝑋 ⊂ Σ∗, |𝑋 | denote its cardinality, i.e. the number of its elements, whereas 𝑠(𝑋) = ∑𝑢∈𝑋 |𝑢| is
the total length of 𝑋. A set 𝐼 ⊆ Σ∗ is said to be a (two-sided) ideal of Σ∗ if for 𝑢 ∈ 𝐼 and 𝑣 ∈ Σ∗,
then 𝑢𝑣 , 𝑣𝑢 ∈ 𝐼, i.e. 𝐼 = Σ∗𝐼Σ∗. The base of the ideal 𝐼 is the minimal set 𝐵 (with respect to the
set inclusion) such that 𝐼 = Σ∗𝐵Σ∗. Let 𝑣 be a word of Σ∗, we say that 𝑢 is a factor of 𝑣 if there
exist 𝑧, 𝑤 ∈ Σ∗ such that 𝑣 = 𝑧𝑢𝑤. In what follows we denote by 𝐹(𝑣) the set of factors of 𝑣. A
word 𝑢 occurs in 𝑣 if it is a factor of 𝑣.

A word 𝑢 is an absent word for 𝑣 if it does not occur in 𝑣. An absent word is a minimal absent
word (or MAW) for a word 𝑣 if all its proper factors occur in 𝑣. We denote by 𝑀(𝑣) the set of
minimal absent words of 𝑣. For instance if 𝑣 = 𝑎𝑏𝑎𝑎𝑏𝑎𝑏, then 𝑀(𝑣) = {𝑎𝑎𝑎, 𝑎𝑎𝑏𝑎𝑎, 𝑏𝑎𝑏𝑎, 𝑏𝑏}.

A language 𝐿 ⊆ Σ∗ is called factorial if it contains all the factors of its own words, whereas it is
called antifactorial if no word in the language is a proper factor of another word in the language.
In particular, for any word 𝑣 ∈ Σ∗, 𝐹(𝑣) is a factorial language and 𝑀(𝑣) is antifactorial.

Remark that the complement of 𝐹(𝑣) (i.e. the set of the words that are not factors of 𝑣) is an
ideal of Σ∗ and 𝑀(𝑣) is its base. This allows to establish a duality between the sets 𝐹(𝑣) and
𝑀(𝑣) given by the relations (cf. [3]):

𝐹(𝑣) = Σ∗ ∖ Σ∗𝑀(𝑣)Σ∗, 𝑀(𝑣) = Σ𝐹(𝑣) ∩ 𝐹(𝑣)Σ ∩ (Σ∗ ∖ 𝐹(𝑣)).

This last relation comes from the fact that if 𝑣 ∈ Σ∗, the word 𝑢 = 𝑎1⋯𝑎𝑛, with 𝑎𝑖 ∈ Σ is a MAW
for 𝑣 iff 𝑢 ∉ 𝐹(𝑣) and 𝑎1⋯𝑎𝑛−1, 𝑎2⋯𝑎𝑛 ∈ 𝐹(𝑣).

3. Similarity measures based on sets of minimal absent words

The idea to measure similarity by minimal absent words is based on the intuition that two
words, 𝑥 and 𝑦, are as more distant as bigger is the set of the non common absent words and
as shorter are the words in it. This idea was first formalized in a paper by Chairungsee and
Crochemore [6] where the notion of length weighted index of a set is used in order to define a
dissimilarity measure of two sequences. The length weighted index is defined as the measure
that associates to a set 𝑋 ⊆ Σ∗ the quantity 𝜇(𝑋) = ∑𝑤∈𝑋

1
|𝑤|2 .

This measure is used in [6] in order to define the distance function dist between two words 𝑥
and 𝑦, by taking the set 𝑋 = 𝑀(𝑥)△𝑀(𝑦), where △ denotes the symmetric difference operator
between two sets. Therefore the distance is defined as:

dist(𝑥, 𝑦) = 𝜇(𝑀(𝑥)△𝑀(𝑦)) = ∑
𝑤∈𝑀(𝑥)△𝑀(𝑦)

1
|𝑤|2

We remark that dist(𝑥, 𝑦) is not substantially affected by long minimal absent words. This is
why in [6] the authors propose to ignore from𝑀(𝑥)△𝑀(𝑦) those words with length longer than
a fixed threshold ℓ, and define a distance distℓ as the length weighted index over 𝑀ℓ(𝑥)△𝑀ℓ(𝑦),
where 𝑀ℓ(𝑥) (𝑀ℓ(𝑦), resp.) denotes the set of MAWs of 𝑥 (𝑦, resp.) with length smaller than or
equal to ℓ.



In [7] a different distance also based on the measure 𝜇 is considered, but applied to a subset of
𝑀(𝑥)△𝑀(𝑦) that better captures the difference between two words. Moreover, by considering
this subset, the requirement of having words with limited length is undirectely satisfied. This
subset of 𝑀(𝑥)△𝑀(𝑦) is in fact made of those factors of 𝑥 that are minimal absent words for 𝑦
and viceversa. In other terms, we want the comparison of the two sequences 𝑥 and 𝑦 not to be
influenced by those minimal absent words of 𝑦 that are absent (but not minimal) also for 𝑥. This
idea is formally described as follows. For all 𝑥, 𝑦 ∈ Σ∗ we define

𝒟(𝑥, 𝑦) = (𝐹(𝑥) ∩ 𝑀(𝑦)) ∪ (𝐹(𝑦) ∩ 𝑀(𝑥)).

The following theorem summarizes some algebraic properties of 𝒟(𝑥, 𝑦) also in relation with
𝑀(𝑥)△𝑀(𝑦) proved in [7] (Lemma 4.1 and Theorem 4.3). Note that, in general, 𝑀(𝑥)△𝑀(𝑦) is
not antifactorial and Σ∗(𝑀(𝑥)△𝑀(𝑦))Σ∗ is an ideal.

Theorem 1. For all 𝑥, 𝑦 ∈ Σ∗

1. 𝒟(𝑥, 𝑦) = ∅ if and only if 𝑥 = 𝑦.
2. 𝒟(𝑥, 𝑦) ⊆ 𝑀(𝑥)△𝑀(𝑦).
3. 𝒟(𝑥, 𝑦) is antifactorial.
4. 𝒟(𝑥, 𝑦) is the base of the ideal Σ∗(𝑀(𝑥)△𝑀(𝑦))Σ∗.

Point 4 of Theorem 1 states that considering 𝒟(𝑥, 𝑦) is equivalent to ignore, in 𝑀(𝑥)△𝑀(𝑦),
those words that have a proper factor in the same set. Therefore one can define a distance based
on the length weighted index applied to 𝒟(𝑥, 𝑦):

𝛿(𝑥, 𝑦) = 𝜇(𝒟(𝑥, 𝑦)) = ∑
𝑤∈𝒟(𝑥,𝑦)

1
|𝑤|2

We remark that as in the case of distℓ, the distance 𝛿 takes into consideration elements among the
shortest of 𝑀(𝑥)△𝑀(𝑦) because they are elements of the base of the ideal Σ∗(𝑀(𝑥)△𝑀(𝑦))Σ∗.

Example 1. Let 𝑥 = 𝑐𝑏𝑎𝑎𝑏𝑑𝑐𝑏 and 𝑦 = 𝑎𝑏𝑐𝑏𝑎 words over Σ = {𝑎, 𝑏, 𝑐, 𝑑}. Then,
𝑀(𝑥) = {𝑎𝑐, 𝑎𝑑, 𝑏𝑏, 𝑏𝑐, 𝑐𝑎, 𝑐𝑐, 𝑐𝑑, 𝑑𝑎, 𝑑𝑏, 𝑑𝑑, 𝑎𝑎𝑎, 𝑎𝑏𝑎, 𝑏𝑎𝑏, 𝑐𝑏𝑑, 𝑑𝑐𝑏𝑎}
𝑀(𝑦) = {𝑎𝑎, 𝑎𝑐, 𝑏𝑏, 𝑐𝑎, 𝑐𝑐, 𝑎𝑏𝑎, 𝑏𝑎𝑏, 𝑐𝑏𝑐, 𝑑},
𝑀(𝑥) ∪ 𝑀(𝑦) = {𝑎𝑎, 𝑎𝑎𝑎, 𝑎𝑏𝑎, 𝑎𝑐, 𝑎𝑑, 𝑏𝑎𝑏, 𝑏𝑏, 𝑏𝑐, 𝑐𝑎, 𝑐𝑐, 𝑐𝑏𝑐, 𝑐𝑏𝑑, 𝑐𝑑, 𝑑, 𝑑𝑎, 𝑑𝑏, 𝑑𝑐𝑏𝑎, 𝑑𝑑},
𝑀(𝑥)△𝑀(𝑦) = {𝑑, 𝑎𝑎, 𝑎𝑑, 𝑏𝑐, 𝑐𝑑, 𝑑𝑎, 𝑑𝑏, 𝑑𝑑, 𝑎𝑎𝑎, 𝑐𝑏𝑑, 𝑐𝑏𝑐, 𝑑𝑐𝑏𝑎},
𝒟(𝑥, 𝑦) = {𝑑, 𝑎𝑎, 𝑏𝑐}.

Remark that the word 𝑐𝑑, for instance, is absent both in 𝑥 and in 𝑦 (although not minimal in 𝑦) so,
in some way, it represents a common property of the two words, and it should not be considered as
a contribution to the distance. The same holds for the words 𝑎𝑑, 𝑑𝑎, 𝑑𝑏, 𝑑𝑑, 𝑎𝑎𝑎, 𝑐𝑏𝑑, 𝑐𝑏𝑐, and 𝑑𝑐𝑏𝑎.
On the other hand, the word 𝑑, for instance, is a minimal absent word in 𝑦, but occurs in 𝑥 and
therefore discriminates the two words. Viceversa, the word 𝑎𝑎 is minimal absent in 𝑦 but occurs in
𝑥 i.e. it also contributes to their dissimilarity. In Example 1, the cardinality of the set 𝒟(𝑥, 𝑦) is
much smaller than the one of 𝑀(𝑥)△𝑀(𝑦), and the words in 𝒟(𝑥, 𝑦) are among the smallest in
𝑀(𝑥)△𝑀(𝑦). Finally:

dist(𝑥, 𝑦) = 1 + 7
4
+ 3
9
+ 1
16

= 453
144

≈ 3.1 𝛿(𝑥, 𝑦) = 1 + 1
2
= 3

2
= 1.5
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Figure 1: Distributions of MAWs lengths in 𝒟(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) for 𝑥 =Human
mtDNA and 𝑦 =Gorilla mtDNA

4. Experimental results on the 𝒟(𝑥, 𝑦) set

In the previous section we have observed that the set 𝒟(𝑥, 𝑦) is the base of the ideal
Σ∗(𝑀(𝑥)△𝑀(𝑦))Σ∗ and then it is likely to have a smaller cardinality and that involves the
words among the shortest. Actually, in [4], due to computational reasons, the distance distℓ is
considered instead of the distance dist, but the authors do not give any motivation on how they
choose the goode value of ℓ. Moreover, some experiments that will appear in [12] show that
the 𝛿 and the distℓ distances behave in a similar way on biological datasets with respect to the
generated taxonomies.

Having an idea about the quantities involved could be interesting for the computation of
𝛿 and dist, whose computational complexity depends on the computation of the sets 𝒟(𝑥, 𝑦)
and 𝑀(𝑥)△𝑀(𝑦), respectively. Therefore it is worth to see how much smaller |𝒟(𝑥, 𝑦)| is, w.r.t.
|𝑀(𝑥)△𝑀(𝑦)| and |𝑀(𝑥) ∪ 𝑀(𝑦)|.

It is also interesting to consider and compare the total lengths 𝑠 of the three sets.
With these motivations here we present some experimental results. Our first experiments on

this topic is performed by exploring sets 𝒟(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦), 𝑀(𝑥) ∪ 𝑀(𝑦) on a 41 mammals
mitochondrial DNA (or mtDNA) benchmark dataset (https://github.com/NaserAnjum21/CD-
MAWS/tree/master/Data). The sequences in this dataset are approximately 17000 bases long.
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Figure 2: Distributions of MAWs lengths in𝒟(𝑥, 𝑦),𝑀(𝑥)△𝑀(𝑦) and𝑀(𝑥) ∪𝑀(𝑦) for 4-letters alphabet
and length 17000.



|Σ| Lengths 𝐷(𝑥, 𝑦) 𝑀(𝑥)△𝑀(𝑦) 𝑀(𝑥) ∪ 𝑀(𝑦)
2 8500 13 14 1417000 14 15 1534000 15 16 1668000 16 17 17136000 17 18 18
4 8500 7 8 817000 7 8 834000 8 9 968000 8 9 9136000 9 10 10
8 8500 5 6 517000 5 6 634000 6 6 668000 6 7 6136000 6 7 7

Table 1
This table shows, for each dataset 𝐷Σ,𝑚, the most represented length of MAWs in 𝐷(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦),𝑀(𝑥) ∪ 𝑀(𝑦), respectively, with 𝑥, 𝑦 ∈ 𝐷Σ,𝑚.
distribution of MAW lengths in the three sets. After that we wandered on what woudl happen
if the same experiments were performed on random strings, in order to infer fron experiments
combinatorial properties of the sets. Then, in order to compare the results with those biological
strings, we produced a 8500-long randomly generated strings on a 4-letters alphabet dataset,
whose results are displayed in Figure 2. We are interested to study the sensitivity of the sets𝐷(𝑥, 𝑦) and 𝑀(𝑥)△𝑀(𝑦) to the values of two parameters: the alphabet size and the dataset
words length.

In order to run the experiment, we generated some random datasets to work on. For each
alphabet size Σ = 2, 4, 8 and for each words of length 𝑚 = 8500, 17000, 34000 68000, 136000, a
dataset 𝐷Σ,𝑚 of random strings has been produced. (i.e. we iteratively doubled the alphabet size
and the sequences lengths).

Then for each pair 𝑥, 𝑦 ∈ 𝐷Σ,𝑚, we have computed the distribution of the MAWs lengths in𝐷(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦). The results of these experiments are summarized in the
histograms in Figures 3, 4, 5 where two random sequences 𝑥, 𝑦 ∈ 𝐷Σ,𝑚 (with different values
of |Σ| and 𝑚) are considered and the corresponding distributions of the MAWs lengths in the
different sets are shown. We observe that:

• The values for the three sets are distributed on a bell shaped curve and the values are
nonzero in a small interval.

• The maximum for 𝒟(𝑥, 𝑦) approximates log|Σ| |𝑥 |. This observation is coherent to a result
in [2], stating that for a randomly generated word 𝑥 with a memoryless source and
identical symbol probability, the maximal length of a minimal absent word is 𝑂(log|Σ| |𝑥 |).
This value appears to be always one unity less than the maximum for 𝑀(𝑥)△𝑀(𝑦) and𝑀(𝑥) ∪ 𝑀(𝑦) (see Table 1).

• The curve for 𝒟(𝑥, 𝑦) is much lower than the curves for 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦).

Table 1
This table shows, for each dataset 𝐷Σ,𝑚, the most represented length of MAWs in 𝐷(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦),
𝑀(𝑥) ∪ 𝑀(𝑦), respectively, with 𝑥, 𝑦 ∈ 𝐷Σ,𝑚.

Figure 1 summarizes the results concerning the distribution of MAW lengths in the three sets
where 𝑥 corresponds to human’s and 𝑦 to gorilla’s mtDNA. The experiments on other pairs of
species give similar curves.

A natural question is to ask what happens if the same experiments are performed on random
strings. In fact this kind of experiments would allow us to infer some combinatorial properties
of the sets. Then, in order to compare the results with those on biological strings, we produced
a 17000-long randomly generated strings on a 4-letters alphabet dataset, whose results are dis-
played in Figure 2. We are interested to study the sensitivity of the sets 𝐷(𝑥, 𝑦) and 𝑀(𝑥)△𝑀(𝑦)
to the values of two parameters: the alphabet size and the dataset words length.

In order to run the experiment, we generated some random datasets to work on. For each
alphabet size Σ = 2, 4, 8 and for each words-length 𝑚 = 8500, 17000, 34000 68000, 136000, a
dataset 𝐷Σ,𝑚 of random strings has been produced. (i.e. we iteratively doubled the alphabet size
and the sequences lengths).

Then for each pair 𝑥, 𝑦 ∈ 𝐷Σ,𝑚, we have computed the distribution of the MAWs lengths in
𝐷(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦) and𝑀(𝑥)∪𝑀(𝑦). The results of some of these experiments are summarized
in the histograms in Figures 3, 4, 5 where two random sequences 𝑥, 𝑦 ∈ 𝐷Σ,𝑚 (with different
values of |Σ| and 𝑚) are considered and the corresponding distributions of the MAWs lengths in
the different sets are shown. We observe that:

• The values for the three sets are distributed on a bell shaped curve and the values are
nonzero in a small interval.

• The maximum for 𝒟(𝑥, 𝑦) approximates log|Σ| |𝑥 |. This observation is coherent to a result
in [2], stating that for a randomly generated word 𝑥 with a memoryless source and
identical symbol probability, the maximal length of a minimal absent word is 𝑂(log|Σ| |𝑥 |).



This value appears to be always one unity less than the maximum for 𝑀(𝑥)△𝑀(𝑦) and
𝑀(𝑥) ∪ 𝑀(𝑦) (see Table 1).

• The curve for 𝒟(𝑥, 𝑦) is much lower than the curves for 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦).
This intuitively means that the number of the words in 𝒟(𝑥, 𝑦) is much smaller than the
ones in 𝑀(𝑥)△𝑀(𝑦).

• The curves for 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) are very close, i.e. the 𝑀(𝑥)△𝑀(𝑦) involve
most of the MAWs of 𝑥 and 𝑦.

Figures 3, 4 and 5 show the distributions of MAWs lengths in 𝒟(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦) and
𝑀(𝑥) ∪𝑀(𝑦) for two random strings on different alphabeth sizes |Σ| and different string lengths
𝑛. It is easy to see, in all the dispalyes cases, how higher are the curves of length distributions
of 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∩ 𝑀(𝑦) compared to the one of 𝒟(𝑥, 𝑦). In particular:
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Figure 3: Distributions of MAWs lengths in 𝒟(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) for 2-letters
alphabet and length 8500.

• For 𝑚 = 8500 and |Σ| = 2 (cf. Figure 3) the curve for 𝒟(𝑥, 𝑦) has its maximum in
correspondence with length 13 (i.e. MAWs of length 13 are the most frequent in 𝒟(𝑥, 𝑦))
and the frequence is around 1500, whereas the maximum for both 𝑀(𝑥)△𝑀(𝑦) and
𝑀(𝑥) ∪ 𝑀(𝑦) is in correspondence of length 14 with a frequence around 3000 (note that
log2 8500 = 13, 053). Nonzero values for 𝒟(𝑥, 𝑦) are in the interval [10, 18] whereas for
both 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) are in [10, 24].

• For 𝑚 = 8500 and |Σ| = 4 (cf. Figure 4) the curve for 𝒟(𝑥, 𝑦) has its maximum in
correspondence with length 7 and the frequence is around 5000, whereas the maximum
for both 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) is in correspondence of length 8 with a frequence
around 11000 (note that log4 17000 = 7, 027). Nonzero values for 𝒟(𝑥, 𝑦) are in the
interval [5, 9] whereas for both 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) are in [5, 12].

• For 𝑚 = 136000 and |Σ| = 8 (Figure 5) the curve for 𝒟(𝑥, 𝑦) has its maximum in corre-
spondence with length 6 and the frequence is around 120000, whereas the maximum for
both 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) is in correspondence of length 7 with a frequence
around 500000 (note that log8 136000 = 5, 684). Nonzero values for 𝒟(𝑥, 𝑦) are in the
interval [5, 8] whereas for both 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) are in [5, 10].



The experiment, repeated on different sample sequences, gives similar curves and equal maxi-
mum frequence. The curves are similar also for sample sequences taken from biological datasets
with lengths comparable to the random sequences here considered (see, for instance, Figure 1).

For the investigation about cardinalities, in another experiment, for all of the pairs
𝑥, 𝑦 ∈ 𝐷Σ,𝑚 we computed the ratios |𝒟(𝑥, 𝑦)|/|𝑀(𝑥)△𝑀(𝑦)|, |𝒟(𝑥, 𝑦)|/|𝑀(𝑥) ∪ 𝑀(𝑦)|,
𝑠(𝒟(𝑥, 𝑦))/𝑠(𝑀(𝑥)△𝑀(𝑦)) and 𝑠(𝒟(𝑥, 𝑦))/𝑠(𝑀(𝑥) ∪ 𝑀(𝑦)). Tables 2 and 3 show the average of
these values and the corresponding standard deviation. One can note that:

• As the cardinality of the alphabet grows, |𝒟(𝑥, 𝑦)|/|𝑀(𝑥)△𝑀(𝑦)| and |𝒟(𝑥, 𝑦)|/|𝑀(𝑥) ∪
𝑀(𝑦)| decrease. This is also true w.r.t. the total lengths.

• The ratios relating to the total lengths are smaller than the corresponding ratios relating
to the cardinalities. This shows that the words in 𝒟(𝑥, 𝑦) are among the smallest of the
words in 𝑀(𝑥)△𝑀(𝑦).
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Figure 4: Distributions of MAWs lengths in 𝒟(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) for 4-letters
alphabet and length 8500
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Figure 5: Distributions of MAWs lengths in 𝒟(𝑥, 𝑦), 𝑀(𝑥)△𝑀(𝑦) and 𝑀(𝑥) ∪ 𝑀(𝑦) for 8-letters
alphabet and length 136000

view, compared to the distance based on the symmetric difference. In fact, computing a distance
based on 𝒟(𝑥, 𝑦) could be more efficient than computing the distance on 𝑀(𝑥)△𝑀(𝑦) since
we would have a smaller set, provided that one can get directly the words of the set 𝒟(𝑥, 𝑦)
without explicitely producing all the words in 𝑀(𝑥),𝑀(𝑦), 𝐹 (𝑥), 𝐹 (𝑦).|Σ| Lengths 𝑎𝑣𝑔1 × 100% (s.d) 𝑎𝑣𝑔2 × 100% (s.d)

2 8500 37.71% (0.49) 34.46% (0.50)17000 37.67% (0.34) 34.64% (0.34)34000 37.76% (0.22) 34.93% (0.22)68000 37.76% (0.19) 35.11% (0.19)136000 37.83% (0.13) 35.36% (0.13)
4 8500 29.28% (0.32) 26.22% (0.31)17000 28.77% (0.20) 25.93% (0.20)34000 29.33% (0.16) 26.62% (0.16)68000 28.74% (0.09) 26.20% (0.09)136000 29.25% (0.08) 26.81% (0.08)
8 8500 23.51% (0.31) 20.67% (0.28)17000 21.95% (0.12) 19.07% (0.11)34000 19.58% (0.10) 17.51% (0.10)68000 23.59% (0.09) 21.17% (0.09)136000 21.94% (0.04) 19.48% (0.04)

Table 2
For each pair of words 𝑥, 𝑦 ∈ 𝐷Σ,𝑚, the ratios 𝑅1(𝑥, 𝑦) = |𝒟(𝑥,𝑦)||𝑀(𝑥)△𝑀(𝑦)| and 𝑅2(𝑥, 𝑦) = 𝑠(𝒟(𝑥,𝑦))𝑠(𝑀(𝑥)△𝑀(𝑦)) ,
resp. have been computed. Afterwards, the average values 𝑎𝑣𝑔1 = 𝑎𝑣𝑔𝑥,𝑦∈𝐷Σ,𝑚(𝑅1(𝑥, 𝑦)) and 𝑎𝑣𝑔2 =𝑎𝑣𝑔𝑥,𝑦∈𝐷Σ,𝑚(𝑅2(𝑥, 𝑦)), resp., have been computed and reported in terms of percentage in columns 3 and 4,
respectively, with the relative standard deviation (s.d.) in parenthesis. Since the sandard deviation is
everywhere very small, this means that data are clustered tightly around the mean.
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In conclusion, these experiments are aimed to remark that the great numerical difference of
the data dimension in these sets, make the distance 𝛿 interesting, from a computational point of
view, compared to the distance based on the symmetric difference. In fact, computing a distance
based on 𝒟(𝑥, 𝑦) could be more efficient than computing the distance on 𝑀(𝑥)△𝑀(𝑦) since
we would have a smaller set, provided that one can get directly the words of the set 𝒟(𝑥, 𝑦)
without explicitely producing all the words in 𝑀(𝑥),𝑀(𝑦), 𝐹 (𝑥), 𝐹 (𝑦).
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