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Abstract 
Background and rationale: Over the past few decades, several databases with a 

significant amount of biological data related to cancer cells and anticancer agents (e.g.: 

National Cancer Institute database, NCI; Cancer Cell Line Encyclopedia, CCLE; Genomic and 

Drug Sensitivity in Cancer portal, GDSC) have been developed. The huge amount of 

heterogeneous biological data extractable from these databanks (among all, drug response 

and protein expression) provides a real foundation for predictive cancer chemogenomics, 

which aims to investigate the relationships between genomic traits and the response of 

cancer cells to drug treatment with the aim to identify novel therapeutic molecules and 

targets. In very recent times many computational and statistical approaches have been 

proposed to integrate and correlate these heterogeneous biological data sequences 

(protein expression – drug response), with the aim to assign the putative mechanism of 

action of anticancer small molecules with unknown biological target/s. The main limitation 

of all these computational methods is the need for experimental drug response data (after 

screening data). From this point of view, the possibility to predict in silico the 

antiproliferative activity of new/untested small molecules against specific cell lines, could 

enable correlations to be found between the predicted drug response and protein 

expression of the desired target from the very earliest stages of research. Such an 

innovative approach could allow to select the compounds with molecular mechanisms that 

are more likely to be connected with the target of interest preliminary to the in vitro assays, 

which would be a critical aid in the design of new targeted anticancer agents. 

Results: In the present study, we aimed to develop a new innovative computational 

protocol based on the correlation of drug activity and protein expression data to support 

the discovery of new targeted anticancer agents. Compared with the approaches reported 

in the literature, the main novelty of the proposed protocol was represented by the use of 

predicted antiproliferative activity data, instead of experimental ones. 

To this aim, in the first phase of the research the new in silico Antiproliferative Activity 

Predictor (AAP) tool able to predict the anticancer activity (expressed as GI50) of 

new/untested small molecules against the NCI-60 panel was developed. The ligand-based 
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tool, which took the advantages of the consolidated expertise of the research group in the 

manipulation of molecular descriptors, was adequately validated and the reliability of the 

prediction was further confirmed by the analysis of an in-house database and subsequent 

evaluation of a set of molecules selected by the NCI for the one-dose/five-doses 

antiproliferative assays. 

In the second part of the study, a new computational method to correlate drug activity 

data and protein expression pattern data was proposed and evaluated by analyzing several 

case studies of targeted drugs tested by NCI, confirming the reliability of the proposed 

method for the biological data analysis. 

In the last part of the project the proposed correlation approach was applied to design 

new small molecules as selective inhibitors of Cdc25 phosphatase, a well-known protein 

involved in carcinogenic processes. By means of this innovative approach, integrated with 

other classical ligand/structures-based techniques, it was possible to screen a large 

database of molecular structures, and to select the ones with optimal relationship with the 

focused target. In vitro antiproliferative and enzymatic inhibition assays of the selected 

compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 

proteins and confirmed the results of the in silico analysis. 

Conclusions: Collectively, the obtained results showed that the correlation between 

protein expression pattern and chemosensitivity is an innovative, alternative, and effective 

method to identify new modulators for the selected targets. In contrast to traditional in 

silico methods, the proposed protocol allows for the selection of molecular structures with 

heterogeneous scaffolds, which are not strictly related to the binding sites and with 

chemical-physical features that may be more suitable for all the pathways involved in the 

overall mechanism. The biological assays further corroborate the robustness and the 

reliability of this new approach and encourage its application in the anticancer targeted 

drug discovery field. 
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1. Introduction 

1.1. Biological data correlation as innovative approach for the design of 

targeted anticancer small molecules 

The positive impact of targeted therapy and precision oncology in clinical treatments is 

driving medicinal chemistry research toward the identification of new and/or repurposed 

molecules with optimal ligand–target relationships. In this context, both the identification 

of target protein/s and the investigation of the potential mechanism of action of new small 

molecules exerting antiproliferative activity represent a great challenge. The unceasing 

development of databases storing a considerable amount of biological data related to 

cancer cells and anticancer drugs (gene expression, protein activity, mutation status, drug 

sensitivity data, etc.) undoubtedly contributes to this goal and represents an invaluable 

source of information for the entire scientific community [1-3].  

Among the existing databases, the National Cancer Institute (NCI) database is probably 

the best known. Indeed, since 1990, NCI has been developing and improving within the 

Developmental Therapeutics Program (DTP) an experimental project named ‘NCI-60 Tumor 

Cell Lines Screen’. Through this, the anticancer efficacy of both synthetic and natural 

molecules from laboratories around the world can be tested monthly under standardized 

conditions against approximately sixty cell lines, derived from nine different tumor types 

(leukemia, melanoma, lung, colon, brain, ovarian, breast, prostate, and kidney cancers). To 

date, biological data related to the anticancer activity of more than 250 000 compounds, 

expressed as GI50, TGI, and LC50, have been provided to the scientific community [4]. In 

addition, as a part of the so-called ‘Molecular Characterization Program’, NCI determines 

the gene and protein expression profile of thousands of molecular targets across NCI-60 [5].  

Other important databases include Cancer Cell Line Encyclopedia (CCLE) and Genomic 

and Drug Sensitivity in Cancer portal (GDSC), which store information related to both the 

target profiling of >1000 cell lines (more than those of NCI) and drug activity data of a few 

compounds (24 and ~150 for CCLE and GDSC, respectively) [6,7].  

The large amount of data extractable from these databases provides a real basis for 

predictive cancer chemogenomics, which studies the relationships between genomic traits 
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and the response of cancer cells to drug treatment with the aim to identify novel 

therapeutic molecules and targets. In other words, the antiproliferative effect of small 

molecules against cancer cell lines could be interpreted as a signature of the drugs at both 

the transcriptional and molecular level. Consequently, finding a correlation between the 

two types of data (e.g: drug activity and expression of the target protein) could provide new 

insight into the mechanism of action and putative biological target of several compounds, 

thus offering a valuable aid in anticancer drug design [8]. 

In this context, the most recent generation of high-performing statistical, 

computational, and machine-learning techniques play a crucial role, allowing to process a 

great amount of biological information quickly and to elucidate, with remarkable reliability, 

the correlation between the biological features of a specific cancer and the observed 

sensitivity to a given pharmacological agent. To highlight the great opportunity given by 

these approaches in the design of new selective anticancer agents, the most important 

literature applications deserve to be described in detail. 

1.2. In silico approaches based on the correlation between cell line 

chemosensitivity and gene/protein expression pattern 

Protocols able to integrate and correlate rapidly and efficiently the high number of 

biological data, collected across multiple screenings, could enable the extrapolation of 

information and development of hypotheses for the possible mechanism of action/ 

biological target of a given small molecule (Figure 1) [3,9-11]. 
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Figure 1. Importance of the available computational techniques for the integration of the biological data (drug 
activity and protein expression) stored on the online databases. 
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cell lines, the COMPARE algorithm could also give an estimation of the affinity of a given 

compound toward a specific molecular target by correlating the drug sensitivity of a set of 

cell lines with their proteome profile. The requirement and also the limit of COMPARE is the 

need for anticancer screening results. 

Two other well-known projects aimed at integrating biological data of cancer cell lines 

are CellMiner and CellMiner Companion (RCellMiner). These free-access web-based suites, 

representing the evolution of COMPARE, enable comparative analyses (pattern comparison 

and cross-correlation tools) exploiting the resources of the NCI database (genomic, 

molecular, phenotypic, and pharmacological data). These tools are based on the calculation 

of z-scores for the biological data of interest and on the ability to perform integration and 

find correlations (calculation of correlation coefficients) between drug activity (GI50 against 

NCI-60) and protein expression levels, transcription levels of miRNAs, and DNA copy or gene 

mutation data related to NCI-60 cancer cell lines. These analyses enable the extrapolation 

of information about possible mechanisms of action or resistance to chemicals of interest 

[13-17]. The evolution of these suites is the CellMiner Cross-Database (CellMiner-CDB), 

which, recently updated to version 1.2, is the product of four different cancers cell line 

pharmacogenomic databases (NCI-60, CCLE, GDSC, and CTRP). The integration and leverage 

of these databanks by means of statistical methods reinforces the reliability and 

reproducibility of the performed integrative analysis, making the CellMiner-CDB a unique 

resource [18,19]. The flexibility of this tool allows correlation analysis for specific cancer cell 

lines, such as the specific tool focused on small cell lung cancer cell lines (SCLC-CellMiner) 

developed by Tlemsani et al [20]. 

Recently, Krushkal et al., considering the importance of natural sources for new possible 

lead compounds, correlated the GI50 values and protein expression data stored in NCI and 

CellMiner to elucidate the potential mechanism of action of numerous natural products 

(from plants, marine invertebrates, and microbes) [21]. 

The lack of recurring updates of the CellMiner database induced Arroyo and co-workers 

to download all the available data from NCI-60 and undertake large-scale screening to find 

a connection between standardized cancer cell line sensitivity to antiproliferative agents 
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and corresponding standardized protein expression. The results obtained showed that the 

correlation between the antiproliferative activity of a given drug and the expression of a 

given protein could be exploited to: (i) confirm the biological target of known drugs; (ii) 

associate a mechanism of action with a new small molecule; (iii) repurpose an already 

developed drug against another target with which it is ‘correlated’; (iv) explain the 

pleiotropic effects of drugs (multi/off target view); and (v) find targets that can be 

influenced by a given drug. Interestingly, all the data were uploaded to an open-access 

database called GEDA (Gene Expression and Drug Activity), which allowed the correlations 

to be analyzed graphically by means of bar plots representing the level of gene expression 

per drug [22]. 

Two other databases developed to perform integrative and correlation analysis are 

PharmacoDb and GDA (Genomic and Drugs Integrated Analysis). The former includes data 

from seven different databases and is coupled with a bioinformatic tool called PharmacoGx, 

which can be used to perform correlation analysis [23,24]. In the same way, GDA, comprising 

data from >50 000 compounds and >70 cancer cell lines, was developed to provide the 

scientific community with an easy-to-use web-based tool for integrative genomic 

determinant–drug activity data integration [25]. 

Rees et al. developed a computational tool based on statistical analysis that correlates 

the biological data of basal gene expression with experimental chemosensitivity, expressed 

as the area under the curve (AUC) of concentration–response graphs, of a group of known 

drugs. They found that matching the two biological data types could aid in identifying the 

biological target/s of new molecules with unknown mechanism of action and the additional 

targets responsible for determining the antiproliferative effect of known targeted drugs, as 

well as clarifying the resistance mechanism (high correlation with expression of proteins 

involved in metabolic inactivation or in the import/export of chemicals into/from the cell). 

The advantage of this method is the free availability of data with a detailed explanation of 

the analytical tool made available online by the Cancer Therapeutics Response Portal [26-

28]. This protocol led to the identification of PDE3A as a potential target for the compound 

DNMDP, demonstrating that predictive chemogenomics based on the correlation between 
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protein expression and chemosensitivity could represent an important resource to gain 

insight into small-molecule targets [29]. Recently, taking advantage of this method, the 

putative molecular targets/mechanism of action of several non-oncology drugs (e.g., 

disulfiram) endowed with anticancer properties have been proposed [30]. 

Gonçalves and co-workers recently used an indirect approach to identify the biological 

target(s) and mechanism of action of antiproliferative compounds. They proposed a 

method comprising the correlation between CRISPR-based gene knockout (loss of-function 

screen) of numerous target proteins with drug sensitivity across >400 cell lines. They 

correlated/integrated the effect of expression arrest of a target with exposition to a drug of 

a given cell line under the hypothesis that a correlation in cell viability between a genic 

knockout and the antiproliferative effect of a drug would support the hypothesis that the 

considered target could be linked with the mechanism of action of the small molecule 

[31,32]. 

In Table 1 an overview of the most representative examples of correlation tools 

developed to date is reported, highlighting which online databases are considered and 

which types of correlation analysis can be performed by each one. 

Table 1. Overview of the most representative examples of correlation tools developed to date. 

Tool/Computational 
Protocol Databases considered Type of correlation analysis performed Ref. 

COMPARE NCI-60 Compound vS compound, 
compound vS target [12] 

RCellMiner NCI-60, CCLE,  
GDSC, CTRP 

Drug activity vS protein expression 
levels/transcriptions levels of miRNAs/DNA 

copy/gene mutations 
[14-16] 

GEDA NCI-60 Drug activity vS protein expression [22] 

GDA CCLE, NCI60 Drug activity (50 000 cpds) vS cell lines data (> 70) [25] 

PharmacoDB/ 
PharmacoGx 

CCLE, GDSC, gCSI, CTRP, 
OHSU, FIMM, UHNBreast 

Drug activity data vS Target data across seven 
different databases [24] 

 

The overview of the most interesting protocols reported in the literature showed how 

the integration of drug activity and molecular target data (protein/gene expression), which 
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are currently stored in several databases, represents a useful approach for the identification 

of both biological target/s and putative action mechanisms involved in the antiproliferative 

effect of new small molecules designed as targeted anticancer agents. 

However, the main limitation of all these computational methods is the need for 

experimental drug response data (post-screen application). In this light, a turning point 

could be the ability to predict, using computational tools, the antiproliferative activity of 

newly designed compounds. Such an approach, if built and validated appropriately, could 

enable new correlations to be found between the predicted drug response and protein 

expression of the desired target from the very earliest stages of research, providing a 

valuable help in anticancer targeted drug discovery field. 
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2. Aim of the work 
The correlation of biological data, such as drug activity – protein expression, by means 

of computational tools could represent an attractive frontier in the anticancer targeted drug 

discovery field. In this context, the development of tools capable to predict/estimate 

reliably and rapidly the anticancer activity of new compounds could represent a turning 

point, enabling new correlations to be found between the predicted drug response and 

protein expression of the desired target from the very earliest stages of research. Such an 

innovative approach could allow to select the compounds with molecular mechanisms that 

are more likely to be connected with the target of interest preliminary to the in vitro assays. 

In the light of these considerations, this PhD study aims to propose an innovative and 

reliable in silico protocol capable to design new selective targeted anticancer agents by 

exploiting the approach based on the correlation drug activity - protein expression. 

The objectives of the research can be summarized as follows: 

1. Development and validation of a computational tool for predicting the anticancer 

activity of new/untested chemical structures against the NCI-60 panel, one of the 

most characterized sets of cancer cell lines. This preliminary step of the project 

served as foundation for the next steps; 

2. Development of a new in silico method able to correlate different types of biological 

data, such as drug activity and protein expression, and to extrapolate connections 

between drugs and target/s; 

3. Application of the proposed method to analyze several case studies of known 

targeted anticancer agents, by exploiting the biological data stored in the NCI 

database. This step served as validation for the correlation method; 

4. Application of the developed correlation method to design new targeted anticancer 

drugs and consequent biological assays to evaluate the effectiveness of the 

proposed in silico predictions.  
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3. Results and Discussion 

3.1. Antiproliferative Activity Predictor: a new open-access ligand-based tool 

implemented in DRUDITonline web-platfom for drug response prediction 

against NCI-60 panel 

3.1.1. Computational protocols to predict cell line chemosensitivity: state of art 

To apply the proposed innovative idea of correlation drug activity – protein expression 

for the design of new targeted anticancer compounds, a computational protocol able to 

predict the antiproliferative activity of untested compounds is required.  

In this context, in the last decades several examples of such protocols and machine 

learning approaches have been proposed, as recently well reviewed by Firoozbakht et al 

[33]. 

For instance, Lind et al. developed a regression random forest model by the integration 

of mutational status data of 145 selected oncogenes from the Genomics of Drug Sensitivity 

in Cancer (GDSC) and more than 1200 molecular descriptors to reliably calculate the GI50 

values of selected compounds against cancer cells [34]. Similarly, Zhang et al. drew up a dual-

layer integrated cell-drug network capable of predicting drug response using gene 

expression profiles of numerous cancer cell types available in the Cancer Cell Line 

Encyclopedia (CCLE) and the Comprehensive Genomic Profiling (CGP), and providing 

chemical proprieties of drugs captured by molecular descriptors [35]. In addition, numerous 

web-based tools have been described such as: the PaccMann web-service, which can 

estimate the chemosensitivity of cancer cell line by integrating both cancer cell and 

chemical structures features [36]; CDRscan [37], a deep learning model that assesses 

anticancer drug responsiveness based on large-scale drug screening assay data. It employs 

a two-step convolution architecture, where the genomic mutational fingerprints of cell lines 

and the molecular fingerprints of drugs are processed individually, then merged by 'virtual 

docking'. Analysis of the extrapolation capability revealed a high accuracy (R2 > 0.84; AUROC 

> 0.98). The tool was applied to a large set of approved drugs, allowing the identification of 

14 oncology and 23 non-oncology drugs; DeepIC50 [38], a 1-dimensional convolution neural 
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network model, designed to predict drug responsiveness classes, based on a large set of 

features. As a result, it showed better cell viability IC50 prediction accuracy in pan-cancer 

cell lines over two independent cancer cell line datasets; and, more recently, pdCSM-cancer, 

which uses graph-based signature representation to estimate antiproliferative activity 

against multiple cancer cell lines [39]. 

However, despite these great efforts, a protocol capable of reliably, accurately, and 

rapidly screening and predicting the anticancer activity of huge structure databases against 

large panels of cell lines, such those of the NCI, has not been developed yet to date. 

In the light of these considerations, in the first part of this PhD thesis, based on the 

available antiproliferative data collected by NCI and the previous knowledge of the research 

group on molecular descriptor manipulation [40-42], the new in silico ligand-based 

Antiproliferative Activity Predictor (AAP) tool, is proposed. AAP can predict the GI50 values 

(half-maximal cell growth inhibitory concertation) of input structures for the entire NCI-60 

panel. 

In the next sections, the rationale, the computational details, the validation, and the 

application of the AAP are described and discussed in detail. 

3.1.2. Database selection 

The first step in establishing the AAP protocol was to select a reliable set of chemical 

structures, with known anticancer activity (mainly estimated as GI50 values), to be used as 

foundation for the models. For this purpose, the NCI-60 database proved to be one the most 

suitable [43]. 

In particular, from the thousands of structures tested by the NCI, those that were tested 

in a 5-dose assay, and for which the experimental GI50 values were therefore available, were 

selected. According to the publication date (see Materials and Methods section, paragraph 

4.1.1), the structure database was divided in two groups [44]:  

• the compounds tested and published up to September 2014 (hereinafter referred to 

as NCI2014DB) were selected as training set and used to build the model;  

• the others, tested and published between September 2014 and June 2016 (referred 

to as NCI2016DB) were used as a test set to validate the tool.  
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The next two sections describe the creation of the protocol and the subsequent 

validation. 

3.1.3. Fingerprint (FP) and Cell Line (CL) modules: the two pillars of the AAP tool 

The AAP protocol is able to assign -logGI50 values (indicated as GI50 in the following 

sections) to the input structures against the sixty cell lines of the NCI-60 panel (Ln). The 

assignment of each predicted GI50 value results from the weighed contribution of two 

“modules”, called Finger-Print (FP) and Cell-Lines (CL), which work synergistically together 

through a series of well-considered steps, as shown in Figure 2. 

 
Figure 2. Flow-chart of the Antiproliferative Activity Predictor (AAP) protocol: the chemical structures of the 
compounds belonging to the NCI2014DB (training set, N) are submitted to the molecular descriptor calculation 
performed by MOLDESTO software to build the two modules FP and CL (FingerPrint and CellLine, respectively). 
For each input structure submitted to the tool, each module separately assigns a GI50 value, GI50(FP) and 
GI50(CL), according to the workflow depicted in the scheme. These two parameters are weighed by means of 
the formula showed in the lower part of the scheme to assign the predicted GI50 value against each of the sixty 
NCI cell lines (i). 

Preliminarily, a set of molecular descriptors (D1, D2, D3, Dn) was calculated for the 

training set (34k structures, N, from the NCI2014DB). The calculation of molecular 
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descriptors was performed by the in-house MOLDESTO software which calculates more 

than 1000 1D, 2D, and 3D molecular descriptors (Di) for the input structures (Supplementary 

Material S1; see Materials and Methods section, paragraph 4.1.1). Then, the above-

described modules (FP and CL) were built.  

FP module relies on the molecular descriptors calculated for the training set structures 

and on the associated GI50 experimental values. The idea behind the FP module is that 

similar structures might have similar biological activities (FingerPrint matching). In details, 

the FP module matches the molecular descriptors of the input structure Xj with those of the 

structures, one by one, of the training set and assigns the S score, in the range 0-1. This 

parameter measures the degree of similarity between the input structure and each 

structure included in the training set. By ranking according to S score, the protocol assigns 

to the input structure the experimental GI50 values of the best scored structure of the 

training set (GI50(FP)). If experimental GI50 data are missing, no GI50 value is assigned to the 

input structure for that specific cell line. 

The CL module, on the other hand, is based on the cell lines. For each of the sixty NCI 

cell lines, 42 templates (CLi) were built: 40 of which for the GI50 values in the range 4-8 (0.1 

unit each) and 2 for GI50 values <4 and >8, respectively. 

With this aim, the structures of the training set were assigned to each template 

according to their experimental GI50 values. Then, a couple of values, mean (μi) and the 

standard deviation (σi), was computed for all molecular descriptors, considering the 

structures belonging to each template. 

Thus, the molecular descriptor values of the input structure are matched with the 42 

templates for the sixty cell lines: to the input structure is assigned the GI50 value (GI50CL) of 

the corresponding template with the higher score for each cell line (see Figure 3 for further 

details about the CL scoring). 
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Figure 3. Graphical representation of GI50 prediction by the CL module for a cell line. 

Thus, once an input structure Xj is uploaded into DRUDIT tools interface, MOLDESTO 

optimizes the geometry in vacuo, and calculates the molecular descriptors described above 

for the training set. Then, the molecular descriptors values are submitted to FP and CL 

modules. 

The output data from these modules are weighted as shown below: 

GI50i = GI50i(FP)*S+GI50i(CL)*(1-S) 

where: GI50i is the GI50 value for that cell line; S is the fingerprint score, GI50i(FP) is the GI50 

value predicted by the FP module, GI50i(CL) is the GI50 value assigned by the CL module. 

 

From this formula, if the structural similarity between the input structure and the best 

scored structure of the training set is high (S score close to 1), it is assumed that the 

biological activity of the input structure is very similar to that of the compound of the 

training set (similar structure could correspond to a similar biological activity). When S=1, 

the input structure is included in the training set, thus the predicted GI50 correspond to the 

experimental values. Instead, if S is not close to 1, GI50(CL) contributes more to the overall 
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result, according to the S value. In case the GI50(FP) is not available (unavailable data from 

NCI screening), the GI50 will correspond to the GI50(CL). 

3.1.4. Validation of the AAP tool 

The predictive ability of AAP was validated by internal and external datasets. Both 

required a set of NCI-60 compounds tested at five-doses. The first set was generated by 

randomly selecting compounds with available antiproliferative activity data belonging to 

the NCI2014DB database. These molecules were used to validate the CL module, the 

predictive part of the protocol.  

The second set of molecules was assembled from the compounds added to the NCI 

database after 2014 (NCI2016DB, test set) and therefore not included as training set in the 

CL and FP modules; this cluster of compounds was used to validate the Antiproliferative 

Activity Predictor tool (GI50).  

Internal validation: 5 ‰ of the training database structures (193 molecules), randomly 

selected from the NCI2014DB (Supplementary Material S2), were used to validate the CL 

module by matching the calculated GI50(CL) values with the experimental GI50 data. Because 

these structures were used to generate the AAP protocol, their experimental GI50 values 

were indicated by the FP protocol, except for those that were not available (the 

experimental GI50 are listed in Supplementary Material S3; an empty box in the matrix 

indicates unavailable experimental data). The 193 structures were clustered in three 

groups, according to GI50 values: the most active compounds (more than 40/60 GI50 values 

equal to 8); the structures with GI50 values in the range of 4-8; and the cluster of low 

active/inactive compounds, with GI50 values close to 4. 

Therefore, GI50(CL)s were first calculated for the selected structures by setting the 

DRUDIT parameters (see Materials and Methods section for the meaning of the DRUDIT 

parameters). This step has two aims: it allows to verify the predictive capability of the CL 

module and, more importantly, to optimize the DRUDIT parameters for the best prediction 

of antiproliferative activity for new compounds. Thus, runs 1-18 were performed by 

modulating the values of the parameters N, Z, and G (see Materials and Methods, paragraph 
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4.1.1 for further details), as reported in Table 2. The 18 outputs for CL module are reported 

in Supplementary Material S4. 

Table 2. Overview of DRUDIT runs for the parameters tuning, absolute deviation from true values (|DTV(GI50)|) 
is reported, run code (1-18) is given in parentheses. 

Z N 
G 

a b c 

50 

240 1.22 (1) 1.23 (2) 1.23 (3) 

500 1.22 (7) 1.30 (8) 1.31 (9) 

760 1.32 (13) 1.44 (14) 1.42 (15) 

100 

240 1.31 (4) 1.64(5) 1.72 (6) 

500 1.23 (10) 1.51 (11) 1.53 (12) 

760 1.28 (16) 1.42 (17) 1.44 (18) 

 

The eighteen matrices from CL were matched with the experimental GI50 to obtain 18 

new matrices in which the |DTV (GI50)|, i.e., the absolute deviation of the calculated GI50(CL) 

from the experimental GI50 value, was reported for each structure. Furthermore, the 

average |DTV(GI50)| for all runs was examined for each entry.  

From the analysis of these data, it appears that the protocol allows to identify the 

potentially inactive or on-average active structures (below <4 or in the range 4-7) with a 

remarkable degree of reliability, while it is less effective for structures with high activity (in 

the range 7-8), but with acceptable errors.  

Moreover, it is demonstrated that the quality of the prediction is closely related to the 

amount of available biological data used to build the model: since the number of high active 

compounds (7<GI50<8) is very low with respect to inactive or medium active compounds, 

the prediction is negatively affected (higher error). 

Moreover, the average |DTV(GI50)| for each cancer cell line was calculated for every 

run. We decided to exclude the M19-MEL melanoma cancer cell line from the analysis due 

to lack of sufficient biological data.  
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The matrix values provided by each run were further elaborated to calculate the overall 

average |DTV(GI50)| for each cancer cell line. SK-MEL-28, of the melanoma panel, yielded 

the best predictions (overall average |DTV(GI50)| of 1.14).  

To select the optimized DRUDIT parameters, the overall average |DTV(GI50)| was 

calculated for each GI50(CL) matrix (Table 2). The parameters of run 1 (N=240, Z=50, G=a) 

were identified as the best, with an overall average error of 1.22 (Table 2). In this run, the 

renal cancer panel was the best predicted, with an average error of 1.18. The full results are 

reported in Supplementary Material S5. 

External test validation of Antiproliferative Activity Predictor: To validate the 

Antiproliferative Activity Predictor tool, a set of 99 molecules was collected from 

NCI2016DB (see Materials and Methods section, paragraph 4.1.1, for database selection 

and Supplementary Material S6). Their known GI50 values were compared with the 

predicted ones, calculated using the optimized DRUDIT parameters (run 1, see internal 

validation). The output matrix showed an interesting scenario with a total average 

|DTV(GI50)| of 0.87 and excellent predictions for structures with low activity (GI50>4 for at 

least 40 cell lines). On the other hand, significant errors were observed for highly active 

structures (GI50 upper or close to 8). This evidence confirmed the capability of the protocol 

to better predict GI50 values for low activity molecules. The average errors for each cancer 

cell line were also calculated and showed excellent prediction for the breast cancer panel 

(average error of 0.77 for the panel) and especially against MDA-MB-231-ATCC (average 

error for the cancer line of 0.64). 

Analyzing the |DTV(GI50)| for all selected structures, considered by ranges, it was found 

that the protocol was able to assign the correct value returning ÷1 for 65% of the data 

(Figure 4). 
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Figure 4.  Error distribution for the external validation of the AAP protocol. 

The matrix comparing experimental GI50 with calculated ones for all structures is 

reported in Supplementary Material S7, in addition to the full analysis data. 

To demonstrate the relevant contribution of the CL module in the prediction, we also 

compared experimental GI50 values with calculated GI50(FP) ones. The total average 

|DTV(GI50)| of 0.95, which is higher than the one obtained by combining the predicted GI50 

values of both modules, shows that the CL module improves accuracy and leads to better 

predictions (Supplementary Material S8). 

3.1.5. Parameters optimization for cell line/subpanels activity prediction 

Tuning of DRUDIT parameters (N, Z, and G) could also allow optimization of the 

prediction for a particular cell line or sub-panel (all the following results are shown in 

Supplementary Material S9). 

With this aim, the analysis was addressed to determinate the best combination of 

parameters (1-18) for the nine NCI subpanels and for each cancer cell line as described 

above. 

Then, the Average |DTV(GI50)| obtained for the cancer cell lines in all runs were 

analyzed (Supplementary Material S5). 
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Regarding the optimization of parameters for each cancer cell line, SK-MEL-28 

(melanoma panel) provided the best prediction, with an average error of 0.97 for parameter 

combinations 2 and 3. Full results are shown in Table 3. 

Table 3. Tuning of DRUDIT parameters tuning for each cancer cell line. 

PANELS CELL LINES RUN 
AVERAGE 

|DTV(GI50)| 

Breast Cancer 

BT-549 4 1.35 

HS-578T 3 1.30 

MCF7 1 or 7 1.30 

MDA-MB-231-

ATCC 

7 1.22 

T-47D 7 1.16 

CNS Cancer 

SF-268 7 1.17 

SF-295 1 1.25 

SF-539 4 1.18 

SNB-19 7 1.15 

SNB-75 1 1.16 

U251 1 1.24 

Colon Cancer 

COLO-205 10 1.13 

HCC-2998 1 1.09 

HCT-116 2 or 7 1.13 

HCT-15 2 1.21 

HT29 1 1.14 

KM12 1 1.19 

SW-620 2 1.14 

Leukemia 

CCRF-CEM 7 1.13 

HL-60TB 7 1.22 

K-562 2 1.27 

MOLT-4 3 1.12 

RPMI-8226 10 1.12 

SR 2 1.28 

Melanoma 

LOX-IMVI 3 1.16 

M14 1 or 3 1.20 

MALME-3M 10 1.19 

MDA-MB-435 3 1.22 

SK-MEL-2 3 1.03 
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SK-MEL-28 2 or 3 0.97 

SK-MEL-5 2 1.26 

UACC-257 2 1.07 

UACC-62 10 1.31 

Non-Small 

Lung Cancer 

A549-ATCC 3 1.18 

EKVX 1 1.02 

HOP-62 1 or 8 1.19 

HOP-92 10 1.21 

NCI-H226 7 1.07 

NCI-H23 4 1.16 

NCI-H322M 1 1.10 

NCI-H460 2 1.26 

NCI-H522 7 1.09 

Ovarian 

Cancer 

IGROV1 1 or 3 1.25 

NCI-ADR-RES 4 1.31 

OVCAR-3 1 or 4 1.22 

OVCAR-4 7 1.00 

OVCAR-5 16 1.02 

OVCAR-8 1 1.14 

SK-OV-3 7 1.18 

Prostate 

Cancer 

DU-145 10 1.19 

PC-3 2 1.19 

Renal Cancer 

786-0 10 1.16 

A498 1 1.21 

ACHN 7 1.19 

CAKI-1 1 1.11 

RXF-393 10 1.12 

SN12C 1 or 10 1.16 

TK-10 10 0.99 

UO-31 2 1.16 

  

To identify the best parameter combination for each panel, the averages |DTV(GI50)| 

of cell lines obtained in each run were grouped by the panel and then the average 

|DTV(GI50)| for the entire panel was calculated for runs 1-18. The results as best 

combination of parameters for each panel are given in Table 4.  
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Table 4. Best parameter combinations for each of the NCI panel. 

PANELS RUN AVERAGE 

|DTV(GI50)| 

Breast Cancer 1 or 3 1.37 
CNS Cancer 1 1.23 

Colon Cancer 1 1.19 
Leukemia 2 1.23 

Melanoma 3 1.18 

Non-Small Cell 
Lung Cancer 

2 or 7 1.20 

Ovarian Cancer 1 1.21 
Prostate Cancer 1 1.23 

Renal Cancer 10 1.15 

 

Renal cancer panel resulted the best predicted of all, with an average error of 1.15 by 

using parameter combination 10. 

3.1.6. Application of the AAP tool for the virtual screening of an in-house structure 

database 

Considering the high predictive power of the proposed protocol, it seemed interesting 

to exploit it for the analysis of an in-house small molecules database to select compounds 

to be submitted to the NCI-DTP screening program. This permitted to further confirm the 

reliability of the tool in the prediction of the anticancer activity of new small molecules.  

In detail, this part of the study was carried out in collaboration with the organic 

chemistry group supervised by Prof. Antonio Palumbo Piccionello (University of Palermo), 

which has been working for many years on the synthesis of new biologically active 

curcumin-like compounds [45-47], and has provided an interesting database of structures 

that could be screened by the AAP tool.  

The evaluation of curcumin-like compounds as antiproliferative agents against the NCI-

60 panel appeared remarkably interesting. Indeed, curcumin has also been intensively 

studied in recent decades for its significant anticancer activity against various malignant cell 

types [48], and many curcumin analogues (e.g. GO-Y030, CDF, UBS109, EF24, EF31, Figure 5) 
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have already been studied as antiproliferative agents, showing even higher activity and 

improved drug-like properties compared to curcumin [49-51]. 

 
Figure 5. Curcumin and curcumin-like biologically active compounds. 

In details, the selected in-house database included three different subclasses of 

curcumin-like derivatives, as reported in Figure 6: 1,2-diones (1a-o); 1,2,4-oxadiazoles (2a-

h); 1,3,4-oxadiazoles (3a-h). They were developed by replacing the symmetrical β-diketone 

core of curcumin, which is responsible for unfavorable physicochemical properties and a 

weak pharmacokinetic profile [52-57], with stacked moieties, such as heterocycles or a-

diketones; these replacements have been shown to improve stability, solubility, oral 

absorption, and bioavailability [58]. The three classes of structures are variously substituted, 

as depicted in Figure 6. 
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Figure 6. In house structures database of curcumin-like compounds studied with AAP tool. 

After selecting the molecule database, the next step was to tune the parameters of the 

AAP protocol. As mentioned earlier, the GI50 calculation can be targeted to a specific cell 

line or class of compounds by optimizing the parameters N, G, and Z. In this light, curcumin, 

tested by NCI (NSC code 32982) and included in the training set (NCI2014DB), was selected 

as reference compound to determinate the best combination of parameters for the CL 

module. The tuning was performed with the parameters in the ranges 250 < N < 800 and 50 

< Z < 100 and considering a, b, or c for the G function. Eighteen runs were started, following 

the procedure described above for the internal validation (the combinations are reported 
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in Table 2). Consequently, the total absolute deviations from the experimental GI50 values 

were calculated for each run and the set N= 760, Z= 50, and G= c was identified (total 

|DTV(GI50)|= 0.44) and applied to the AAP tool for the selected database (see 

Supplementary Material S10). 

The output of the AAP tool with the calculated GI50 values of the 39 in-house 

compounds is provided in Supplementary Material S11. The AAP GI50 values of the 

curcumin-like analogues were compared with the experimental ones determined by the NCI 

for the curcumin lead compound (Supplementary Material S11). The analysis of the average 

GI50s of each compound for the full panel highlighted several curcumin-like molecules with 

a predicted antiproliferative activity better than that of the reference curcumin (average 

GI50 value of 5.17), such as: 1a (5.47), 1e (5.65), 1m (5.82) for the diones class; 2a (5.49), 2d 

(5.57), and 2g (5.44) for the 1,2,4-oxadiazole class; 3a (5.72), 3e (5.49), 3g (6.27), and 3h 

(5.47) for the 1,3,4-oxadiazole class. To test the consistency of the AAP protocol, 

compounds classified as both active and inactive (with a GI50 mean of less than 4.5) were 

proposed to the NCI for the in vitro evaluation of the antiproliferative activity against the 

NCI-60 human tumor cell lines, assuming that a reliable protocol must be able to identify 

both active and inactive compounds. 

3.1.7. Biological assays: NCI-60 Human Tumor Cell Lines Screen for selected compounds 

All the analyzed curcumin-like compounds were submitted to NCI cell line-based in vitro 

screening for anticancer drugs. As described in the Materials and Methods section 

(paragraph 4.2.1), the NCI applies specific criteria for compound selection. In the case of 

analogues, the selected compounds are those that are the most representative of the series 

and have significant structural novelty, compared to the NCI collection. 

From the three series of curcumin-like derivatives, five molecules were selected by NCI 

for the in vitro biological screening: 1a (NSC785541), 1b (NSC785539), and 1c (NSC785540) 

for the dione series; 2a (NSC785542) for the 1,2,4-oxadiazole series; and 3e (NSC785543) 

for the 1,3,4-oxadiazole series (Figure 7).  
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Figure 7. Chemical structures of the five curcumin-like compounds selected by NCI for the one-dose 
antiproliferative assay. 

One-dose antiproliferative assay 

The NCI screening protocol consists of a preliminary one-dose assay (concentration at 

10 μM) against the full NCI-60 panel. Compounds that meet the NCI selection criteria and 

have a significant growth inhibitory effect on a minimum number of cell lines proceed to 

the 5-dose screening (experimental details are described in Materials and Methods section, 

paragraph 4.2.2). Results are expressed as percent of growth (G%) of the treated cells when 

compared to the untreated control cells. This parameter accurately expresses the 

anticancer potential of the drug. At G%>100, the compound has no effect on cancer cell 

proliferation (inactive). In the range, the compound inhibits cell proliferation by a 

percentage, which is expressed as 100-G%. When G% is <0, the compound is cytotoxic and 

lethal to the cancer cells. To graphically represent the most sensitive panels/cell lines, a 

mean growth percentage is also provided. 

The mean G% for each of the nine subgroups is given in Table 5 for the five compounds; 

the full results and the mean graphs at one dose screening are reported in Supplementary 

Material S12.  
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Table 5. G% values determined for the five selected compounds against the NCI-60 panel at one dose assay. 

PANEL1 1a 1b 1c 2a 3e 

Leukemia 14.84 78.71 96.37 77.47 18.53 

Non-Small Cell Lung 

Cancer 
61.79 98.02 95.47 84.39 29.86 

Colon Cancer -16.06 80.65 95.84 86.52 21.07 

CNS Cancer 32.98 98.55 101.40 98.19 18.66 

Melanoma 24.26 97.49 100.59 96.74 22.40 

Ovarian Cancer 46.48 103.35 101.45 95.29 32.68 

Renal Cancer 21.07 100.02 100.31 94.36 34.17 

Prostate Cancer 33.06 102.04 101.62 88.89 40.34 

Breast Cancer 18.21 86.77 99.62 88.93 24.71 

Overall average 26.29 93.96 99.19 90.09 26.93 

1 For each compound the average G% values against the nine subpanels are reported. 

Consistent with GI50 values predicted by AAP for these compounds, biological data 

confirm the dimethoxy-dione 1a (NSC785541) and the dimethoxy-1,3,4-oxadiazole 3e 

(NSC785543) as the most active curcumin-like derivatives. They showed a remarkable 

overall average G% (26.29 and 26.93 respectively), and an average inhibition of cell growth 

of about 75% compared to the full NCI-60. 

In particular, compound 1a demonstrates high lethality against colon cancer panel 

(average G% of -16.06), with the highest cytotoxic effect on cell lines HCT-116 (G%= -74.85) 

and HT29 (G%= -35.20), and against leukemia panel, with an average G% of 14.84 and 

almost complete blockade of cell growth (G% ~ 0) of cell lines K562, RPMI-8226, and SR (see 

Supplementary Material S12). Notable data are obtained for the LOX IMVI cell line 

(melanoma panel), with a G% of -66.41, and against the RXF 393 (renal cancer panel), with 

a G% of -63.27. 
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Similarly, dimethoxy-1,3,4-oxadiazole 3e shows high antiproliferative effect against 

colon cancer panel, but with lower toxicity; it exhibits a G% close to 0, against the most 

sensitive cell lines, HCT116 and HT-29, implying an arrest of cell growth with low/no 

lethality. Furthermore, the leukemia, melanoma, and CNS cancer panels also show 

interesting sensitivity to the tested compound. Therefore, according to the selection criteria 

of the DTP NCI protocol, these two molecules progressed to the full five-dose assay. 

The other three compounds 1b, 1c and 2a, tested in the NCI one-dose protocol, 

generally exhibited less inhibitory activity, with an average G% next to 100. 

These results confirm the AAP in silico data, according to the compounds 1b and 1c 

were predicted to be almost inactive, with a mean GI50 of 4.38 and 4.54 (low millimolar 

range), respectively. 

On the other hand, when it is analyzed the antiproliferative effect on specific human 

cancer cell lines, dione 1b reduces the growth of RPMI-8226 and MCF-7 cell lines by 55% 

and 76%, respectively (G% = 45.15 and 23.84), and induces a remarkable death in HCT-116 

colon cancer cell line (G%= -36.84); 1c, instead, exhibits a G% of 69.01 against HCT-116 colon 

cancer cells. 

The 1,2,4-oxadiazole 2a, which was predicted to be more active than curcumin, showed 

no significant anticancer activity against the NCI-60 database, except for the colon cancer 

HT29 cell line (G% of 56.32). This is an unexpected result considering that the isomer 3e, 

was selected for the 5-dose screening. Probably, it could be hypothesized that the switch 

from the 1,3,4-oxadizole to the 1,2,4-oxadiazole core affect notably the capability of the 

compound to interfere with biological target/s. Thus, the two compounds 1a and 3e were 

selected for the five-dose screening to measure the GI50s, which permitted us to further 

validate our tool. 

Five-dose antiproliferative assay for the most active derivatives 1a and 3e 

The two selected compounds 1a and 3e were tested with the five-dose assay by 

measuring the percentage of cell growth at five different concentrations (from 10-8 to 10-4 

M), as described in detail in the Materials and Methods section paragraph 4.2.3. For each 
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selected compound, NCI provided the measured GI50, TGI, and LC50 values against the NCI-

60 cell lines, with the corresponding mean graphs (see Supplementary Material S13). 

In the first part of this section, attention is focused exclusively on the GI50 values, as 

these data allowed us to further assess the predictive ability of the proposed AAP protocol. 

The comparison of the average predicted GI50 with the experimental values obtained 

by NCI for the two compounds confirmed that the protocol was able to predict with high 

accuracy the range of activity of both compounds against the full NCI-60 (for 1a, the average 

predicted GI50 was 5.39, whereas the average experimental GI50 was 5.49; for 3e, the 

average predicted GI50 was 5.41, whereas the average experimental GI50 was 5.28). 

To further analyze the performance of the AAP protocol, the predicted GI50 were 

matched to the experimental ones; moreover, the |DTV(GI50)| was computed for the two 

tested compounds. This allowed to calculate the average absolute error for the compounds, 

which was of 0.39 and 0.40 for 1a and 3e, respectively (see Supplementary Material S14), 

meaning capability to assign the GI50 value with an error of less than one order of 

magnitude.  

In general, considering the mean |DTV(GI50)| for each panel, AAP returned very low 

errors in activity prediction against specific panels, as, for example, the prostate cancer 

panel for 1a (average |DTV(GI50)| for the panel of 0.07) and colon cancer panel for 3e 

(average |DTV(GI50)| for the panel of 0.25). Furthermore, a detailed analysis of specific cell 

lines revealed that the protocol was able to predict GI50 against some specific cell lines with 

quite good precision: for 1a, the |DTV(GI50)| against HL-60TB and NCI-H322M was only 0.02; 

for 3e, a |DTV(GI50)| of only 0.03 was computed for HT-29 and OVCAR-5.  

On the other hand, BT-549 (breast cancer panel) gave the worst predictions for both 

compounds, with a |DTV(GI50)| of 2.21 and 2.41; this evidence is consistent with the results 

presented in the previous section (tool validation), where this cell line showed the highest 

error. As previously demonstrated, high prediction error can be attributed to the lack of 

biological data for selected cell lines. This is confirmed by looking at the GI50(FP) assigned 

to both compounds: the structure selected as the best score in the FP module was not 

tested against BT-549, thus the final GI50 relied solely on the CL protocol, rather than 
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combining outputs from both modules, which may have drastically affected the quality of 

the prediction. 

In Figure 8a the two bar graphs depicting the comparisons between predicted GI50 

versus experimental GI50 are reported to graphically appreciate the excellent performance 

of our protocol; in Figure 8b, instead, the error mean graphs are reported to highlight the 

cell lines for which the highest/lowest errors were recorded. 

 

7.95
5.77

6.41
5.31

4.46
5.42
5.32

5.85
4.82
4.78

5.57
4.77

5.04
5.76

5.50
5.53
5.59
5.74

5.48
5.65

6.32
5.38

6.25
5.63

5.35
5.47
5.52

5.06
4.96

5.57
5.14

4.72
5.49

5.20
5.10

5.54
5.42

5.15
5.45
5.66

5.42
5.74

5.62
4.87

5.29
4.74

4.00
5.48
5.59

5.84
5.75

5.29
5.94

7.45
5.34
5.47
5.41

5.74
5.57

6.29
5.65
5.65
5.60
5.52
5.67

5.51
5.60
5.81
5.72
5.77

6.50
6.11
6.12

5.80
5.97

5.65
5.63

5.97
5.69

6.41
5.84
5.77

5.24
5.94

4.52
5.74
5.67
5.72

4.00
5.30

5.17
4.82

5.63
5.53

5.17
5.51
5.43
5.57

5.38
5.55

5.39
5.60
5.53

4.44
5.51
5.48
5.64
5.65
5.69

5.50
5.83

5.51
5.42

5.79

3.00 4.00 5.00 6.00 7.00 8.00

BT-549
HS-578T

MCF7
MDA-MB-231-ATCC

T-47D
SF-268
SF-295
SF-539
SNB-19
SNB-75
U251

COLO-205
HCC-2998
HCT-116
HCT-15
HT29
KM12

SW-620
CCRF-CEM
HL-60TB

K-562
MOLT-4

RPMI-8226
LOX-IMVI

M14
MALME-3M

MDA-MB-435
SK-MEL-2
SK-MEL-28
SK-MEL-5
UACC-62

A549-ATCC
EKVX

HOP-62
HOP-92

NCI-H226
NCI-H23

NCI-H322M
NCI-H460
NCI-H522
IGROV1

NCI-ADR-RES
OVCAR-3
OVCAR-4
OVCAR-5
OVCAR-8
SK-OV-3
DU-145

PC-3
786-0
A498
ACHN
CAKI-1

RXF-393
SN12C
TK-10
UO-31

AAP Predicted GI50 vS Experimental GI50 
1a

Predicted GI50s Experimental GI50s

7.95
5.83

6.32
5.21

4.54
5.43
5.34

5.75
4.86
4.78

5.58
4.80

5.07
5.95

5.51
5.55
5.60
5.74

5.49
5.85

6.38
5.93

6.25
5.63

5.36
5.63

5.52
5.07
5.00

5.58
5.17

4.76
5.38

5.22
4.85

5.37
5.42

5.04
5.44
5.60

5.41
5.78

5.63
4.92

5.34
4.79

4.00
5.49
5.59
5.60

7.85
5.31
5.50

5.85
5.53

6.00
5.40

5.54
5.43
5.46
5.44
5.46

5.11
5.53
5.58

5.39
5.38
5.42

5.08
4.71

5.59
5.56
5.58

5.16
5.48
5.40

5.63
5.74

5.49
5.58
5.51
5.51

5.21
6.03

5.54
5.30

5.66
5.62

5.32
5.21
5.28

5.60
4.83

5.36
4.84

5.37
5.72

5.37
5.45

5.30
5.04

5.31
5.06
5.06

4.82
5.39

5.25
6.62

4.86
4.94
5.10
5.26
5.42
5.32

3.00 4.00 5.00 6.00 7.00 8.00

BT-549
HS-578T

MCF7
MDA-MB-231-ATCC

T-47D
SF-268
SF-295
SF-539
SNB-19
SNB-75
U251

COLO-205
HCC-2998
HCT-116
HCT-15
HT29
KM12

SW-620
CCRF-CEM
HL-60TB

K-562
MOLT-4

RPMI-8226
LOX-IMVI

M14
MALME-3M

MDA-MB-435
SK-MEL-2
SK-MEL-28
SK-MEL-5
UACC-62

A549-ATCC
EKVX

HOP-62
HOP-92

NCI-H226
NCI-H23

NCI-H322M
NCI-H460
NCI-H522
IGROV1

NCI-ADR-RES
OVCAR-3
OVCAR-4
OVCAR-5
OVCAR-8
SK-OV-3
DU-145

PC-3
786-0
A498
ACHN
CAKI-1

RXF-393
SN12C
TK-10
UO-31

AAP Predicted GI50 vS Experimental GI50 
3e

Predicted GI50s Experimental GI50s



 32 

 
Figure 8. (a) Comparison between AAP predicted GI50 values and the corresponding experimental GI50 values 
measured by NCI for the two selected compounds 1a and 3e (inside each bar, the corresponding GI50 value is 
indicated); (b) Error mean graphs for the two selected compounds 1a and 3e. 
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0.41 for the compounds 1a and 3a , while the pdCSM-cancer tool showed 0.60 and 0.63 

value, respectively. The cell line that showed a low grade of reliability is BT-549, not only in 

these cases in the study but also in the external test screening. The change of the dataset 

could solve the problem. 

 
Figure 9. Performance of AAP versus pdCSM-cancer tools: colored blue and red vertical lines indicate the mean 
|DTV(GI50)| for AAP and pdCSM tools, respectively. 

It is noteworthy the antiproliferative effects of two selected curcumin-like compounds 
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to the parent compound. To this aim, the full NCI output data, which, apart from GI50s, 
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the full NCI schedules are reported in Supplementary Material S13). Furthermore, for 

comparison, the five-dose results of curcumin are also reported. 

Firstly, according to the GI50 values (the most diagnostic parameter used to compare 

antiproliferative potential), it emerged that the average GI50 is higher for both the tested 

compounds, in the high micromolar range, compared to curcumin (5.59 for 1a, 5.37 for 3e 

vs 5.16 for curcumin), confirming the in silico predictions.  

With respect to the tumor subpanels, the most active compound, the dione 1a, proves 

to be particularly effective against leukemia, colon, and breast cancer. In fact, the calculated 

average GI50 values for these subpanels (5.87, 6.00, and 5.79, respectively) were always 

much higher than the overall average GI50 (5.59). In details, among these sub-panels, several 

cell lines showed remarkable sensitivity to the compound, with excellent GI50 values in the 

low micromolar range: RPMI-8226 (6.41), HCT-116 (6.5, the most sensitive cell line), HCT-

15 (6.11), HT-29 (6.12) and MCF-7 (6.29). Also, at TGI level it resulted the most active 

(overall average TGI 4.81), confirming its selectivity against the aforementioned sub-panels 

and cell lines, especially against colon cancer (average TGI of 5.48). This trend was also 

confirmed at the LC50 level, with high cytotoxic effect against colon cancer cell lines (average 

GI50 of 4.91 for colon cancer). Interestingly, it must be underlined the very low toxicity 

against RPMI-8226 (LC50 < 4), which emerged as one of the most sensitive (GI50 in the sub-

micromolar range) demonstrating the high potency and low toxicity of the compound 

against this cell line. 

The curcumin-like 3e, although it was less active than the previous one, proved to be 

more effective than curcumin. Remarkable results were obtained against leukemia sub-

panel, with a panel average of 5.57, much higher than the average value for the full NCI-60 

(5.37). Moreover, the oxadiazole derivative exhibited high potency against two cell lines, 

MDA-MB-435 (melanoma) and A498 (renal cancer), with excellent GI50 values in the low 

micromolar range (6.03 and 6.61, respectively). Regarding TGI level, it resulted slightly less 

potent than curcumin, but the average LC50 of 4.01, also against the most susceptible cells, 

suggests high potency with low cytotoxicity, even at high concentrations.  
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Table 6. DTP NCI five-dose screening for compounds 1a and 3e. 

PANEL CELL LINE 
1a 3e Curcumin 

GI50 TGI LC50 GI50 TGI LC50 GI50 TGI LC50 

Leukemia 

CCRF-CEM 5.65 4.7 4 5.4 4 4 5.52 4.81 4 

HL-60(TB) 5.63 4.77 4 5.63 5.07 4 5.14 4.60 4.04 

K-562 5.97 4 4 5.74 4 4 5.51 4.26 4 

MOLT-4 5.69 4.72 4 5.49 4 4 5.33 4.75 4.12 

RPMI-8226 6.41 5.63 4 5.58 4 4 5.68 5.20 4 

Panel average 5.87 4.76 4 5.57 4.21 4 5.43 4.72 4.03 

Non-Small 

Cell Lung 

Cancer 

A549/ATCC 4 4 4 5.32 4 4 4.89 4.50 4.11 

EKVX 5.3 4 4 5.21 4 4 4.82 4.45 4.10 

HOP-62 5.17 4 4 5.28 4 4 5.44 4.72 4.24 

HOP-92 4.82 4.08 4 5.6 4.63 4 NT NT NT 

NCI-H226 5.63 NT1 4 4.83 4 4 4.73 4.27 4 

NCI-H23 5.52 4 4 5.36 4 4 5.25 4.50 4 

NCI-H322M 5.17 4 4 4.84 4 4 4.78 4.49 4.21 

NCI-H460 5.51 4.95 4 5.37 4 4 5.09 4.64 4.22 

NCI-H522 5.43 4.72 4 5.72 5.17 4.02 5.27 4.78 4.07 

Panel average 5.17 4.22 4.00 5.28 4.20 4 5.03 4.54 4.12 

Colon 

Cancer 

COLO-205 5.72 5.31 4.4 5.08 4.01 4 4.87 4.54 4.21 

HCC-2998 5.77 5.49 5.22 4.71 4 4 5.52 5.09 4.53 

HCT-116 6.5 5.88 5.39 5.59 4.75 4 5.53 5.03 4.28 
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HCT-15 6.11 5.21 4.25 5.56 4 4 5.39 4.73 4.14 

HT-29 6.12 5.58 5.09 5.58 4.97 4 5.29 4.49 4 

KM12 5.8 5.43 5.07 5.16 4 4 5.27 4.71 4.19 

SW-620 5.97 5.48 4.97 5.48 4 4 5.38 4.67 4.07 

Panel average 6.00 5.48 4.91 5.31 4.25 4 5.32 4.75 4.20 

CNS 

Cancer 

SF-268 5.6 5.07 4 5.11 4 4 5.15 4.44 4 

SF-295 5.52 4.51 4 5.53 4.75 4 5.10 4.68 4.32 

SF-539 5.67 5.29 4.22 5.57 5.03 4.09 5.55 5.05 4.48 

SNB-19 5.51 4.63 4 5.39 4.04 4 5.05 4.61 4.20 

SNB-75 5.6 4.47 4 5.38 4.34 4 5.17 4.74 4.35 

U251 5.81 5.44 5.07 5.42 4.73 4 5.33 4.78 4.31 

Panel average 5.62 4.90 4.22 5.40 4.48 4.02 5.22 4.72 4.28 

Melanoma 

LOX IMVI 5.84 5.49 5.15 5.51 4.54 4 5.57 5.07 4 

MALME-3M 5.24 4.1 4 5.21 4 4 4.85 4.56 4.27 

M14 5.77 5.36 4.24 5.51 4.58 4 5.42 4.80 4.35 

MDA-MB-435 5.94 5.53 5.11 6.03 5.41 4.19 5.53 4.92 4.40 

SK-MEL-2 4.51 4 4 5.54 4.73 4 4.78 4.39 4.06 

SK-MEL-28 5.74 5.4 NT 5.3 4 4 5.35 4.80 4.30 

SK-MEL-5 5.67 5.21 4 5.66 4.99 4 5.06 4.65 4.28 

UACC-257 5.61 5.13 4 4.97 4 4 4.94 4.62 4.31 

UACC-62 5.72 5.31 4.52 5.62 5 4 5.19 4.69 4.26 

Panel average 5.56 5.06 4.38 5.48 4.58 4.02 5.19 4.72 4.25 



 37 

Ovarian 

Cancer 

IGROV-1 5.57 NT 4 5.37 4 4 5.10 4.57 4.09 

OVCAR-3 5.55 5 4 5.3 4.09 4 5.18 4.61 4.17 

OVCAR-4 5.39 4 4 5.04 4 4 5.03 4.44 4 

OVCAR-5 5.6 5.09 4 5.31 4.27 4 4.78 4.45 4.12 

OVCAR-8 5.53 4 4 5.06 4 4 5.13 4.55 4.08 

NCI/ADR-RES 5.38 4 4 5.45 4 4 5.14 4.12 4 

SK-OV-3 4.44 4 4 5.06 4.03 4 5.05 4.68 4.33 

Panel average 5.35 4.35 4.00 5.23 4.06 4 5.06 4.49 4.11 

Renal 

Cancer 

786-0 5.64 5.1 4 5.25 4 4 5.48 4.97 4.42 

A-498 5.65 4.7 4 6.62 5.04 4 4.80 4.48 4.16 

ACHN 5.69 5.27 4 4.86 4 4 4.91 4.54 4.17 

CAKI-1 5.5 4 4 4.94 4 4 4.92 4.60 4.30 

RXF-393 5.83 5.52 5.2 5.1 4.11 4 5.52 4.95 4.27 

SN12C 5.51 4.75 4 5.26 4 4 5.08 4.60 4.20 

TK-10 5.42 4.6 4 5.42 4.56 4 4.85 4.51 4.18 

UO-31 5.79 5.47 5.14 5.32 4 4 4.95 4.61 4.27 

Panel average 5.63 4.93 4.29 5.35 4.21 4 5.06 4.66 4.25 

Prostate 

Cancer 

PC-3 5.48 4 4 5.39 4 4 5.06 4.59 4.15 

DU-145 5.51 4.85 4 4.82 4 4 4.81 4.53 4.25 

Panel average 5.50 4.43 4.00 5.11 4.00 4 4.93 4.56 4.20 

Breast 

Cancer 

MCF7 6.29 5.02 4 5.46 4 4 5.48 4.46 4 

MDA-MB-231/ATCC 5.65 5.22 4 5.44 4.36 4 4.75 4.25 4 
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HS 578T 5.57 4 4 5.43 4.32 4 4.96 4.23 4 

BT-549 5.74 5.35 4.66 5.54 4.45 4 5.30 4.86 4.37 

T-47D 5.65 4 4 5.46 4.09 4 5.08 4.33 4 

MDA-MB-468 5.81 5.43 4 5.54 4.56 4 NT NT NT 

Panel average 5.79 4.84 4.11 5.48 4.30 4 5.11 4.43 4.07 

Overall average 5.59 4.81 4.24 5.37 4.28 4.01 5.16 4.63 4.17 

Range 4-6,5 4-5.9 4-5.4 4.7-6.6 4-5.4 4-4.2 4.7-5.9 4-5.20 4-4.53 

1 NT= not tested against the cell line. 

3.1.8. The AAP protocol: a tool implemented in the open-acces DRUDITonline web-

platform 

The results presented in the previous paragraphs proved the extremely reliability of the 

developed AAP protocol. In order to provide free access to the scientific community, it has 

been included as a tool in DRUDITonline, a web-service (accessible at 

https://www.drudit.com, Figure 10a) created by the research group to support the research 

in medicinal chemistry field, which includes the already developed Biotarget finder tool [40-

42].  

In Figure 10b the “tools” page of the website is shown, and panel corresponding to the 

AAP is highlighted. The easy-to-use interface permit to upload or draw the chemical 

structures directly on the platform and to select, by an ON/OFF button, the required tools 

(Biotarget finder or AAP, or both). By a dedicated window, it is possible to vary and select 

the desired combination of parameters (N, Z and G) to direct the calculation accordingly. 

Once the calculations have been completed, the output matrices with the results (e.g.: 

predicted GI50 if one considers the AAP tool) can be downloaded from the “Results” page 

as a .csv file. 
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Figure 10. (a) Homepage of the open-access web-service DRUDITonline; (b) “Tools” page in DRUDITonline web-
platform. 

  

a) b)
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3.2. A new in silico method for the correlation between cell line 

chemosensitivity and gene/protein expression patterns: application to 

known targeted anticancer agents 

After the development of the AAP tool to predict the antiproliferative activity of new 

compounds, the second phase of this PhD project aimed to develop a new and quick in-

house computational method to correlate drug activity and protein expression pattern. 

Before its application to the design of new anticancer agents, to demonstrate that such a 

correlation analysis could be applied to the biological data related to the NCI-60 panel, the 

proposed method needed to be validated. In this light, a correlation analysis between the 

antiproliferative activity of several anticancer compounds tested by NCI and the expression 

of the corresponding target in the NCI-60 panel was performed.  

The proposed method and the case studies are described in detail in the next 

paragraph. 

3.2.1 Method to correlate drug response and protein expression across NCI-60 panel: 

mathematical rationale and case studies 

Given the impossibility of comparing the NCI antiproliferative and protein/gene 

expression data, because of the various experimental conditions applied, a protocol that 

allowed their comparison and consequent evaluation through normalization of all available 

data was established. Briefly, for each target, the experiments of protein/gene expression 

were downloaded from NCI database, normalized, and compared with the normalized GI50 

values of the corresponding structure tested by NCI using the in silico procedure explained 

in Figure 11. 

The proposed normalization process consists of several steps: for each sequence of 

biological data, GI50s (G) and Protein/gene expressions (EP), the mean value µ is estimated 

and the deviation from this is calculated for all cell lines c. The values are then normalized 

(NGI50 and NEP). To match the sequences of the normalized data, the signs of the values are 

considered. For each cell line, the score di = 1 is assigned when the signs are concord, 
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otherwise di = 0. The sum of these values divided by the number of cell lines gives the final 

score. 

 
Figure 11. Workflow for the assessment of the correlation between GI50 and protein expression. 

The output data were the percentage of matchings recovered for each structure in 

relation to the expression of the corresponding target/s in cancer cells.  

Several cases studies of known targeted drugs tested by NCI were analyzed to confirm 

the capability of the proposed mathematical approach to match these different types of 

biological data sequences. The chemical structures of drugs analyzed in the case studies are 

reported in Figure 12, whereas the overall results of the performed correlation analysis are 

included in Supplementary Material S15. 
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Figure 12. Examples of targeted drugs the antiproliferative activity of which (expressed as GI50) against 
National Cancer Institute NCI-60 is highly correlated with the expression of the target protein within the same 
cells. 

The first case study is focused on NSC179940, a benzofuroxan derivative that selectively 

modulates the MDM4 protein [59], a p53-interacting protein that is frequently upregulated 

in cancer cells, to prevent p53 tumor-suppressor function [60]. 

The high expression of MDM4 is crucial to MCF7 cell growth. The MDM4 gene silencing 

decreases cell proliferation [61,62]. By using the above-mentioned protocol, the percentage 

of matching score was 72% between the NCI-60 GI50 values and the corresponding MDM4 

expression (according to the model, 42 out of 58 GI50 values matched the MDM4 expression 
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values in the corresponding cancer cell lines after administration of NSC179940). Figure 13a 

shows the normalized mean graph describing this correlation. Given their specific 

proteomic profile, the MCF7, CCRF-CEM, and HCT-116 cell lines are representative of a high 

correlation between antiproliferative activity and MDM4 expression. 

Histone acetyl transferase (HAT) and histone deacetylase (HDAC) both modulate gene 

expression by controlling the pattern of histone acetylation. Several biological studies have 

shown that the balance between HAT and HDAC is altered in different human cancers [63]. 

In contrast, it has also been shown that inhibition of HDAC causes growth arrest, 

differentiation, and apoptosis of tumor cells, rendering HDACs promising targets for cancer 

therapy [64]. 

Vorinostat (NSC701852), a US Food and Drug Administration (FDA)-approved HDAC4 

inhibitor [65], showed a significant percentage of matching between HDAC4 expression and 

GI50 values (72%). In detail, optimal data were obtained for the CCRF-CEM and MOLT-4 cell 

lines, belonging to the leukemia NCI subpanel (see the normalized mean graph in Figure 

13b). The in silico results are consistent with the experimental evidence reported in the 

literature. In particular, it has been demonstrated that, in both cell lines, increased HDAC4 

expression is crucial for uncontrolled cell proliferation, while small interfering (si)RNA-

mediated knocking down of HDAC4 expression or HDAC inhibition leads to growth inhibition 

and apoptosis [66,67], with the intensification of cell sensitivity to cytotoxic drugs [68]. 
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Figure 13. (a) Mean graph representing the trend of normalized experimental GI50 of the MDM4 inhibitor 
NSC179940, available in the National Cancer Institute (NCI) database, compared with MDM4 expression in 
NCI-60. The high correlation between the two sets of biological data is evident if the MCF7, CCRF-CEM, and 
HCT-116 cell lines are considered, in which MDM4 has a pivotal role in cancer cell proliferation. (b) Mean graph 
representing the trend of normalized experimental GI50 of the HDAC4 inhibitor vorinostat, available in the 
National Cancer Institute (NCI) database, compared with HDAC4 expression in NCI-60. The high correlation 
between the two sets of biological data is evident if the CCRF-CEM and MOLT-4 cell lines are considered, in 
which HDAC4 has a pivotal role in cancer cell proliferation. 

Tyrosine kinase receptors are key proteins in signal transduction pathways, controlling 

cell proliferation, differentiation, metabolism, and apoptosis. Chronic activation of tyrosine 

kinase receptors is observed in most human cancers. Their inhibition severely impairs the 

proliferation and survival of tumor cells [69]. Among the tyrosine kinase receptors, 
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epidermal growth factor receptor (EGFR) is one of the most important targets in anticancer 

therapy. The roles of the EGFR signaling pathway in various cancers have been investigated 

since the 1980s and multiple inhibitors have been developed, many of which are in clinical 

use. Gefitinib (NSC759856) was the first EGFR inhibitor approved for clinical use [70]. As 

shown in the mean graph of the correlation of GI50/EGFR expression after treatment with 

gefitinib (see Supplementary Figure 1), most of the GI50 values matched the related 

normalized values of EGFR expression in the NCI-60 panel (percentage matching = 73%). 

High correspondence was obtained against the A498 and ACHN renal cancer cell lines, in 

accordance with the crucial role of EGFR in the survival of both cell lines [71].  

Dasatinib (NSC759877) is a multityrosine kinase inhibitor, active on both the tyrosine 

kinase nonreceptors Bcr-Abl, c-Src, and the tyrosine kinase receptors c-KIT and PDGFR-b. It 

was approved by the FDA in 2006 for the treatment of adults with chronic myeloid leukemia 

(CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL) [72]. A 

good correlation has been obtained with Abl and c-Src expression (matching of 70% and 

71%, respectively, the normalized mean graph is shown in the Supplementary Figure 2). 

The notable antiproliferative effect of dasatinib against K-562, a leukemia cell line positive 

for the Philadelphia chromosome [73,74], results from the key role of Abl kinase in cancer 

progression: numerous studies demonstrated that inhibition of Abl expression determined 

cell growth inhibition and apoptosis [75,76]. By contrast, the predicted antiproliferative 

activity of dasatinib against 786-0 and A498 renal cancer cell lines is correlated with the 

inhibition of c-Src transcription and the related mRNA translation by miRNA, which 

suppresses cell growth [77]. 

For several other compounds, a significant correlation has been obtained for particular 

cell lines, especially those in which the target protein has a pivotal role. Two examples are 

ponatinib (NSC758487) and imatinib (NSC743414), two Bcr-Abl inhibitors approved by the 

FDA for the therapy of CML and ALL [78]. A high correlation between GI50 and Abl expression 

was observed especially for the K-562 cell line (see Supplementary Figure 3, Supplementary 

Figure 4). Other well-correlated results have been obtained for MIRA-1 (NSC19630), a 

mutant p53-reactivating small molecule [79], especially for the CCRF-CEM cell lines, in which 
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p53 is mutated (NCI experiment for p53 mutation status DNA: MT171, MT2924) 

(Supplementary Figure 5) [80,81]. 

Similar results were observed for crizotinib, a small-molecule ALK inhibitor approved by 

the FDA [82]. The strong correlation between experimental GI50 and ALK expression in the 

SR leukemic cell line is supported by evidence of the involvement of ALK in SR cancer cell 

survival and growth (Supplementary Figure 6, GC28955) [83]. 
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3.3. In silico identification of small molecules as new Cdc25 inhibitors 

through the correlation between chemosensitivity and protein expression 

pattern 

The final part of this study aimed to apply the proposed new approach based on the 

correlation between chemosensitivity and protein expression data to screen a database of 

small molecules and identify new anticancer agents with optimal and selective inhibitory 

activity against a target involved in carcinogenic processes. In this light, the integration of a 

tool able to predict in advance the anticancer activity of new compounds, the AAP, gave us 

the opportunity to select the structures whose anticancer activity was optimally correlated 

with the expression of the desired target already in the first phases of drug design, before 

the in vitro antiproliferative assays. To reinforce the reliability and the robustness of the 

proposed in silico protocol, the new developed tools were integrated with other well-

established ligand-based (as the Biotarget finder tool, developed by the research group [42]) 

and structure-based techniques (such as Induced Fit Docking). 

The first application of this innovative approach herein reported was focused on the 

design new potential inhibitors of Cdc25, a phosphatase involved in the regulation of cell 

cycle, thus in cell growth, as described in detail in the following paragraph. The full 

computational protocol will be described, highlighting the advantages of such an approach 

over other conventional virtual screenings. 

Finally, the biological results of the best molecules identified in silico are reported (in 

collaboration with the biochemistry research group supervised by Prof. Carla Gentile – 

University of Palermo), permitting to verify the reliability of the full protocol herein 

proposed. 

3.3.1. Cdc25, a brief overview of its role in cancer 

The cell division cycle 25 (Cdc25) protein family, firstly identified in yeasts as a mitotic 

inducer [84], comprises three members (Cdc25A, B, and C) of dual-specificity protein 

phosphatases [85]. In mammalian cells, these proteins are involved in the activation of 

cyclin-dependent kinases 1 and 2 (Cdk1-2), through the dephosphorylation of specific 



 48 

threonine and tyrosine residues located in the ATP-binding loop (Tyr15 and Thr14). All three 

forms cooperate to regulate cell division in human cells [86]. Particularly, Cdc25A controls 

both early and late cell-cycle transitions (G1-S, S, and G2-M) by acting on CyclinE–Cdk2, 

CyclinA–Cdk2 and CyclinB–Cdk1, meanwhile Cdc25B and Cdc25C promote mitosis activating 

CyclinB–Cdk1 and CyclinA-Cdk2 ( Figure 14) [87-89]. Following DNA damage and 

environmental stresses, Cdc25 proteins are phosphorylated and inactivated by Checkpoint 

1–2 (Chk1-2) and MAPKAPK-2 kinases, leading to their export outside the nucleus, and 

consequent cell-cycle arrest [90,91].  

Considering their role in the activation of cyclin-Cdk complexes and, therefore, in cell-

cycle progression, Cdc25s have become interesting targets in the search for anticancer 

drugs. In particular, due to their role in the activation of cyclin-Cdk complexes downstream 

the G1 phase and involving cyclin A, cyclin M, and cyclin B, interference with Cdc25s activity 

could effectively block tumor cell proliferation. Indeed, although there are growth factor-

dependent and nutrient-dependent checkpoints in the G1 phase, the vast majority of 

mutations that contribute to cell transformation involve genes regulating G1-progression. 

Those mutations make tumor cells autonomous from growth factor stimulation but, 

through the dysregulation of the cellular metabolism, also able to override nutritional 

sensing [92,93]. Consequently, while in the absence of growth factor instructions and 

nutrients cells commonly arrest at the G1 phase and undergo apoptosis, tumor cells are 

able to overcome all G1-checkpoints and progress along the G1 phase. In particular, in 

cancer cells, two signaling pathways activate G1 progression. The first 

involves ras mutations that, in a growth factor independent way, activate MAP kinase 

pathways increasing cyclin D expression and G1 complexes (cyclin D-Cdk4 and cyclin D-

Cdk6) activation. The second is the mTOR pathway, which is very sensitive to the presence 

of the energy and nutrients required for activation of cyclin E complexes [94].  

The possibility of intervention downstream of G1 checkpoints, through the inhibition of 

cyclin E, A, and B partners, strengthens Cdc25 inhibition as an anticancer strategy. From a 

structural point of view, human Cdc25A, B, and C include 524, 560, and 473 amino acids, 

respectively [95-97]. All three proteins comprise two main regions: the N-terminal region, 
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which is extremely variable and acts as a regulatory domain (as the site of phosphorylation 

and ubiquitination, or the sequencing of nuclear localization and exportation), and the C-

terminal region, which is extremely homologous and contains the catalytic site [98,99]. The 

catalytic domain includes the HCX5R motif, characteristic of tyrosine phosphatase and 

composed of a highly conserved histidine; a catalytic cysteine (namely Cys430, Cys473, and 

Cys377 in Cdc25A, Cdc25B, and Cdc25C, respectively); five residues (X5), whose amide groups 

form hydrogen bonds with phosphate residues; and a conserved arginine, required for 

binding to a phosphorylated amino acid of the substrate [96,97,100-102]. 

 
 Figure 14. (a) Inactivation of cyclin-dependent kinases (Cdks) by the Wee1/Mik1/Myt1 protein kinase family 
through the phosphorylation of T14 and Y15. (b) The promotion of the entrance of cell division cycle 25 A 
(Cdc25A) in the S-phase cell cycle through the activation of the Cdk2/CycE complex (on the right); the 
promotion of mitosis by Cdc25A-B-C through the activation of the Cdk1/CycB complex (on the left). 

The analysis of the crystal structures of the catalytic domains of Cdc25A and Cdc25B 

(Figure 15, panel (a) and (b); Protein Data Bank (PDB) id: 1C25 and 1QB0, respectively) 

shows that the active sites appear flat and shallow, in contrast to other phosphatases 

[103,104]. 
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Figure 15. (a) Surface view of the Cdc25A crystal structure (PDB id: 1C25) [103] with the catalytic Cys430 in the 
HCX5R loop (CPK representation) and the C/N terminal tails highlighted. (b) Surface view of the Cdc25B crystal 
structure (PDB id: 1QB0) [104] with the catalytic HCX5R loop, the water molecules of the “swimming pool” 
region (yellow dots), the C-terminal helix, and the N-terminal tail highlighted. On the right, special focus is 
given to several of the most important residues (thick tube representation) within the catalytic pocket and the 
“swimming pool” involved in the catalytic process and the interactions with ligands. 

However, a well-ordered C-terminal helix adjacent to the catalytic pocket in the 

structure of Cdc25B contributes to the formation of the so-called “swimming pool”, an 

extended and deep protein-sequence occupied by a significant amount of water molecules. 

This region contains several key residues that, in collaboration with those present in the 

catalytic domain, participate in the stabilization of protein-inhibitor complexes (Figure 15, 

panel (b)) [98,105]. 

As reported by Lavecchia et al. [106,107], several molecules have been developed as 

selective inhibitors of Cdc25s. The most studied classes are quinonoids, phosphate 

surrogates, and electrophilic entities [108]. In particular, NSC663284 and BN82685 (Figure 

16), belonging to the quinonoid class, showed a remarkable Cdc25 inhibition activity, with 

IC50 values in the nanomolar range [109,110]. For many years, NSC663284 (Figure 16) has 

been used as a lead compound for the design of new Cdc25 inhibitors, and its mechanism 

of action has been extensively investigated [111,112]. In 2017, Ge et al. identified by in silico 

analysis the “swimming pool” region as the potential binding site of NSC663284 in the 

Cdc25B phosphatase [113]. 
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Figure 16. The chemical structure of some well-known Cdc25 inhibitors. 

Moreover, Tao et al., in analyzing Cdc25s catalytic domains and pharmacophoric 

moieties [114], reviewed more suitable molecules (imidazopyridine CHEQ-2 [115], 1,2,4-

triazole XDW-1 [116], sesquiterpene HB-21 [117], naphthyl-phenylamine (Figure 16, molecule 

4) [118,119], chalcone (Figure 16, molecule 5) [120], 1,3-thiazolidin-4-ones (Figure 16, 

molecules 6 and 7) [121,122]), with interesting inhibitory activity on Cdc25 enzymes.  

Due to the important role of Cdc25 as a checkpoint component of the cell cycle, the 

deregulation of its proteins at transcriptional, translational, and post translational levels can 

cooperate with oncogenic transformation and the progression of disease [108], especially in 

breast, ovarian, colorectal, esophageal, gastric, lung head, and neck cancer cells [123-130]. 

Furthermore, the overexpression of Cdc25A and Cdc25B is frequently linked with poor 
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clinical prognosis [98,131]. For these reasons, Cdc25s can be considered attractive targets 

from the development of specific inhibitors for targeted therapeutic treatment [108,132]. 

3.3.2. In silico protocol applied to screen the small molecules database 

The in silico mixed ligand-structure based protocol herein applied to design new 

selective Cdc25 inhibitors involved several sequential steps, as shown in the workflow 

reported in Figure 17: 

• Ligand-based studies: 

o First screening of a large database of small molecules against the Cdc25 

template implemented in the Biotarget finder, a tool of the DRUDITonline 

platform that can estimate the biological affinity for input structures against 

biological target/s; 

o Application of the newly developed AAP tool to predict the antiproliferative 

activity (GI50) of the best inhibitors; 

o Application of the proposed approach based on the correlation between 

predicted drug activity and expression of target protein (Cdc25) across the 

NCI-60 panel. 

• Structure-based studies: 

o Induced-Fit Docking (IFD): the best ranked compounds selected through the 

ligand-based phase were then further examined by means of IFD 

simulations, to verify their capability to fit well into the binding pocket of the 

target of interest.  

The most interesting compounds were then submitted for in vitro assays. 
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Figure 17. The in silico protocol aimed at identifying new Cdc25 inhibitors from a database of purchasable 
compounds (Sigma-Aldrich, St. Louis, MO, USA). 

3.3.2.1 Ligand-based studies 

In the first step of the in silico protocol (workflow in Figure 17) the Biotarget finder tool 

was used [42]. As anticipated, this ligand-based tool, already developed by the research 

group, is capable to predict the biological affinity of input structure against a given target, 

which is virtualized by the molecular descriptors of the corresponding inhibitors [42].  

Thus, the Cdc25 template was built and integrated as an external biological target in 

the DRUDITonline platform, following the procedure reported in the literature [42]. In details, 

a set of small molecules containing 117 various Cdc25s inhibitors with IC50 values lower than 
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10 μM was collected from BindingDB [133] (Supplementary Material S16). The set of 117 

structures was processed with MOLDESTO (the molecular descriptors tool, implemented in 

DRUDIT). The output matrix (structures versus molecular descriptors) was converted into a 

sequence (the template) of a pair of values for each molecular descriptor (Di) (Figure 18): 

mean (μ) and standard deviation (σ). 

 
Figure 18. DAS (DRUDIT affinity score) calculation: D1, D2, …, Dn: molecular descriptor values for the input 
structure; n: number of molecular descriptors. 

Then, a database of purchasable compounds including more than 10.000 small 

molecules (Sigma-Aldrich catalogue, St. Louis, MO, USA) was selected and submitted to the 

Biotarget Finder tool in DRUDIT in order to rank each structure according to their DRUDIT 

Affinity Score (DAS) against the Cdc25 template, as reported in Figure 18. The protocol 

assigns the αn binary score to each molecular descriptor (Di). This value is 1 when the 

molecular descriptor (Di) is in the range μ(Di) ± σ(Di), and 0 otherwise (Figure 18). The DAS 

score is assigned as Σαn/n, thus it is in the range 0 ÷ 1 (low ÷ high affinity). 

Supplementary Material S17 reports the full BIOTARGET matrix produced by DRUDIT 

and the ranking of the input structures against the Cdc25 template. The application of the 

0.8 cutoffs to DAS reduced the database to 106 molecules (Supplementary Material S18). 

In order to select the best structures for biological assay, further analysis was conducted 

by the application of the in silico approach based on the correlation drug activity–protein 

expression, proposed in this PhD work, (see workflow in Figure 17). For this purpose, a 

correlation method similar to the one used previously (see Figure 11, case studies) was 

established (Figure 19). 
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Figure 19. Workflow for the assessment of the correlation between the antiproliferative activity values 
(expressed as GI50s) and expression patterns (Eps) of Cdc25 on NCI-60 cancer cell lines χi.   

As shown, the NCI database was used as a source of Cdc25 expression patterns against 

the sixty NCI cell lines (hereafter, we denote the i-nth cell line by χi) [5]. Therefore, a set of 

protein expression patterns of Cdc25s against χi was downloaded from the NCI database. 

Then, 26 experiments reporting the measures of the expression pattern (EP) for each Cdc25 

form against χi (10 for Cdc25A, 6 for Cdc25B, and 10 for Cdc25C, Supplementary Material 

S19) were selected, obtaining the molecular target expression pattern values (Pi) and their 

mean value μP. The deviation of each Pi from the μP normalized against the highest absolute 

value was computed to obtain the NEPi for each of the Cdc25 forms. 

Because the experimental GI50 values for the selected structures were not measured, 

we used the Antiproliferative Activity Predictor tool in DRUDIT, to predict the GI50 values 

against χi for the input structures (Supplementary Material S20). Each of the 106 selected 

input structures was processed as follows. The mean value μG of the predicted GI50 values 

Gi against χi was computed. Then, the deviation of each Gi from μG was calculated and 

normalized against the highest absolute value in order to obtain NGI50i (Supplementary 

Material S20). 
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Then, a scoring method was established: the differences, δi =|NEPi–NGI50i|, and the 

fitting score, Φ = Σδi, were computed for each of the Cdc25 A, B, and C form structures. 

Finally, each structure was ranked based on the mean of the three φ values (Φ). The highest 

scoring structures were those that reported lower values of Φ, indicating the best 

correlation between protein expression pattern and sensitivity. 

Among the 106 structures, the first 24 were selected for structure-based study in the 

next in silico step (Figure 20 , Supplementary Material S21). 

 
Figure 20. Representation of the chemical structure of the 24 small molecules selected as potential Cdc25s 
modulators and identified by the correlation between protein expression pattern (EPs) and antiproliferative 
activity (GI50s) data.  
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3.3.2.2 Structure-Based Studies 

The top 24 ranked ligands were further analyzed through structure-based studies in 

order to select the compounds that best fitted to the binding site of Cdc25s. A range of 

possibilities for the binding site and binding mode of various structures into Cdc25s binding 

sites were reported in the literature, identifying two potential binding regions for the target 

inhibition: the “swimming pool” pocket and the substrate catalytic site (Figure 15) 

[105,134,135]. Furthermore, the suggested binding modes are various, and they are obtained 

by the use of different molecular docking programs. For these reasons, and in order to cover 

all the possibilities, the docking grid was extended to both the catalytic and the “swimming 

pool” zones. Then, the 24 top-scoring molecules (Figure 20) were submitted to induced-fit 

study into the binding site of Cdc25B (see Materials and Methods section, paragraph 4.1.2), 

whose crystal structure is available at the PDB as 1QB0 [104]. The induced-fit docking (IFD) 

results (Table 7) allowed for the selection of the top 50% of scored molecules for their 

investigation, as Cdc25s modulators, in wet screenings (bold in Table 7). 

Table 7. Ligand and structure-based output results. DAS: DRUDIT affinity score; IFD: induced-fit docking. 

Cpd # DAS Docking Score Prime Score IFD Score 

370053 0.824 −6.067 −5898.431 −396.631 

391557 0.832 −7.523 −5938.661 −398.557 

406252 0.842 −5.433 −5950.001 −398.655 

798827 0.81 −10.426 −5945.922 −403.413 

B8063 0.824 −8.394 −5988.759 −401.905 

D0143 0.8 −6.39 −5915.872 −398.467 

D0268 0.822 −6.625 −5846.066 −398.491 

D0756 0.802 −5.706 −5925.995 −398.421 

D9006 0.806 −6.233 −5900.211 −398.686 

E7263 0.838 −7.806 −5939.597 −398.736 

E7887 0.82 −8.818 −5930.375 −399.411 

F5312 0.854 −7.861 −5973.455 −401.703 

G5918 0.814 −7.472 −5939.175 −401.572 

J3955 0.814 −7.846 −5957.553 −400.302 



 58 

Cpd # DAS Docking Score Prime Score IFD Score 

M6690 0.836 −8.443 −5995.928 −404.249 

M8046 0.810 −6.245 −5931.352 −396.262 

N1415 0.822 −4.851 −5934.807 −398.316 

O0288000 0.826 −10.547 −5942.99 −402.148 

O0380 0.800 −7.945 −5958.136 −398.68 

PZ0191 0.824 −9.439 −5997.385 −405.087 

PZ0240 0.808 −9.103 −5983.756 −404.548 

PZ0261 0.820 −5.406 −5967.376 −397.571 

S7389 0.892 −7.65 −5875.452 −398.318 

SML0701 0.834 −7.211 −6128.861 −407.205 

The top 50% of the scored molecules selected for the in vitro screenings are shown in bold. 

Further analyses were performed on the selected hits considering a series of well-

consolidated parameters for the search of bioactive compounds, such as PAINS filters [136]; 

Lipinski’s rule [137]; Veber rules [138]; and Egan rules [139]. Thus, the 12 previously selected 

molecules were submitted to SwissADME web-tools (http://www.swissadme.ch) [140]. The 

results reported in Table 8 show that, generally, the selected compounds meet expectations 

in terms of bioactivity. In particular, seven of the twelve structures have no violations, and 

only the Cpd 798827 presented two rule violations (PAINs and Veber). 

Table 8. Drug-likeness parameters calculated for the selected compounds. 

Cpd * P L V E Cpd * P L V E 

M6690 0 0 1 0 PZ0240 0 0 0 0 

E7887 0 1 0 0 PZ0191 0 0 0 0 

E7263 0 1 0 0 J3955 0 0 0 0 

F5312 0 0 0 0 798827 1 0 1 0 

O0288000 0 0 0 0 SML0701 0 0 0 0 

B8063 0 0 1 0 G5918 0 0 0 0 

* P: PAINS #alert; L: Lipinski #violations; V: Veber #violations; E: Egan #violations. 

Finally, the molecular descriptors matrix of the selected compounds was merged with 

that of the known Cdc25 inhibitors used to build the template, and multivariate analysis 
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was performed. From this analysis emerged the method behind which the protocol was 

able to select molecules that are structurally different from those used in the building of 

the template. In fact, by applying principal component analysis (PCA) to the matrix 

(Supplementary Material S22), the visual inspection on the PCA 2D representation (Figure 

21) allows for the identification of a central region where the selected structures are 

clustered, while the template structures are spread in the left or right area, in 

approximatively two clusters. 

 
Figure 21. Principal component analysis (F1 versus F2) applied to the molecular descriptor matrix of the 
selected compounds merged with the known Cdc25 inhibitors. 

These results suggested that the ligand-based step of the protocol was able to select 

molecules endowing various scaffolds, in a different manner from that of the classical 

ligand-based methods. 
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3.3.3. Cdc25s Phosphatase Inhibitory Activity 

The selected compounds, whose structures and purity consistency were checked by 

HMRS analysis (Supplementary Material S23), were tested in a dose-response assay on 

Cdc25 phosphatases. Eight of the twelve tested compounds (798827, B8063, E7887, F5312, 

J3955, M6690, O0288000, and PZ0240) inhibited in vitro the recombinant human Cdc25s 

phosphatases in a concentration-dependent manner. Concerning Cdc25A, the recorded 

IC50 values ranged from 1.12 ± 0.09 to 19.88 ± 2.07 μM (Table 9 and Supplementary Material 

S24). A similar pattern of inhibition was observed on Cdc25B and Cdc25C, even though a 

lower inhibition activity was displayed. The determined IC50 values for the most active 

compounds (E7887 and J3955) were comparable to the IC50 of the menadione, a Cdc25 

quinonoid inhibitor used as a positive control in this study. On the contrary, the compounds 

E7263, G5918, PZ0191, and SML0701 did not reduce the activity of the phosphatase in the 

tested concentration range (0.25–25 μM). 

Table 9. IC50 values of the selected compounds for the inhibition of Cdc25 A, B, and C phosphatases. 

Cpd Cdc25A (μM) Cdc25B (μM) Cdc25C (μM) 

798827 12.02 ± 1.03 16.73 ± 1.71 14.43 ± 1.33 

B8063 15.23 ± 1.37 18.03 ± 1.11 17.73 ± 1.36 

E7263 >25 >25 >25 

E7887 7.41 ± 0.79 8.91 ± 1.02 8.12 ± 0.87 

F5312 17.12 ± 1.91 19.11 ± 1.88 19.34 ± 1.65 

G5918 >25 >25 >25 

J3955 1.12 ± 0.09 2.19 ± 0.07 2.22 ± 0.07 

M6690 17.16 ± 1.14 19.83 ± 1.41 17.79 ± 1.83 

O0288000 12.03 ± 1.17 14.14 ± 1.51 12.93 ± 1.56 

PZ0191 >25 >25 >25 

PZ0240 19.88 ± 2.07 22.13 ± 2.17 20.37 ± 2.34 

SML0701 >25 >25 >25 

menadione 4.48 ± 0.17 5.97 ± 0.75 4.49 ± 0.27 

All values are the mean ± S.D. of three independent determinations. 
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To the best of our knowledge, this is the first time that the Cdc25 inhibition activity of 

the tested compounds has been assayed. On the other hand, among the tested compounds, 

phosphatase inhibition activity is documented only for the clinically approved anticancer 

agent PZ0240 ((S)-crizotinib), which, in addition to its effect as a kinase inhibitor, is a 

stereospecific inhibitor of 2-hydroxy-dATP diphosphatase1 or MutT homolog 1 (MHT1) 

phosphatase [141], an enzyme required for the survival of cancer cells and involved in DNA 

repair processes to maintain genome stability under oxidative stress [142,143]. 

3.3.4. Antiproliferative Screening 

To assess Cdc25 inhibitors in cells, the antiproliferative activity of the most promising 

compounds (798827, B8063, E7887, F5312, J3955, M6690, O0288000, and PZ0240) was 

evaluated on the HepG2 tumor cell line for 48 h via MTT-based cell viability assay. Three of 

the tested compounds (E7887, J3955, and PZ0240) showed concentration-dependent 

antiproliferative activity with GI50 in the low micromolar range (Table 10). On the contrary, 

the other molecules showed low or no activity in the tested concentration range. Moreover, 

among the inactive molecules, only for B8063 (BML-210), an inhibitor of histone 

deacetylase, the antiproliferative activity was previously reported on leukemic and cervical 

cancer cells [144,145]. 

Table 10. The antiproliferative activity of the selected compounds at 48 h against HepG2 cell lines expressed 
as GI50 values (GI50 ± SE (μM)). 

Cpd GI50 (μM) 

798827 >25 

B8063 23.03 ± 2.13 

E7887 13.03 ± 0.85 

F5312 >25 

J3955 1.50 ± 0.37 

M6690 20.01 ± 1.87 

O0288000 >25 

PZ0240 7.35 ± 0.77 
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No data on the antiproliferative activity of E7887 (quinestrol), a synthetic estrogen used 

to treat postmenopausal syndrome and as a contraceptive component [146], had been 

reported in the literature prior to this study. Instead, the antiproliferative activity of J3955, 

a high-affinity and selective opioid receptor-like 1 (ORL1) receptor antagonist, was recently 

explored and its effects on osteosarcoma and hepatocarcinoma cells were demonstrated 

[147,148]. 

However, while we recorded a GI50 value of 1.50 ± 0.37 μM on HepG2 cells, the data 

available in the literature showed antiproliferative activity at much higher concentrations. 

In particular, Zhao B. and Hu T. found antiproliferative effects on HepG2 cells at 

concentrations above 20 μM [148]. The reason for this discrepancy is probably due to the 

dissimilar cancer cell lines used for the analysis, with genetic and mutational profiles that 

are not completely superimposable.  

In their studies, Zhao B. and Hu T. employed a type of HepG2 cells characterized by deep 

invasive properties. In our assays, we used poorly invasive cells with phenotypic 

requirements generally described in the literature for the HepG2 line. The low invasiveness 

of hepatocarcinoma cells is justified by a high expression of epithelial cadherins and by a 

lack of expression of mesenchymal cadherins [149].  

The biological results suggested an interesting correlation between the antiproliferative 

effect on HepG2 cell lines and the inhibition properties of Cdc25 enzymes. In particular, 

compounds E7887 and J3955, characterized by the highest Cdc25 modulation activities 

(Table 8) showed notable cellular growth inhibition with GI50 values of 13.03 ± 0.85 and 1.50 

± 0.37 μM, respectively (Table 10). 

The antiproliferative data, observed for the PZ0240 compound (GI50 values 7.35 ± 0.77 

μM), are in line with its anticancer therapeutic use as tyrosine kinase and an MTH1 inhibitor. 

The observed Cdc25s inhibition activities do not exclude multi-target effects. 

3.3.5. Cell Cycle Distribution and Phosphorylation of Cdk1 

Based on the results described above, among all the tested molecules compound J3955 

was identified as the one with the best inhibition effect on the Cdc25 phosphatase and with 
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the highest antiproliferative activity. With the aim to further elucidate the mechanism of 

action of J3955 as a Cdc25 inhibitor, we performed flow cytometric analysis on HepG2 cells. 

Since the Cdc25s enzymes control the cell cycle through the dephosphorylation of their 

natural substrate Cdks, the inhibition of Cdc25s results in the hyperphosphorylation of Cdks 

with consequent cell-cycle arrest. Therefore, the impact of cell exposure to J3955 on cell-

cycle progress and the phosphorylation state of Cdks was investigated. 

The flow cytometric analysis, for cell-cycle perturbation experiments, was executed in 

order to detect the shifts in cell-cycle distribution before a significant number of cells 

underwent apoptosis. The working concentrations of the compound J3955 were fixed at 1× 

and 2× of its GI50 value used in the cell proliferation assay at 48 h. 

The histograms in Figure 22 represent the percentage of cells in respective cell-cycle 

phases (G1, S, and G2/M), along with the percentage of cells in the sub-G1 (dead cells) 

obtained by flow cytometry after either a 12 h (Figure 22, panel A) or a 24 h (Figure 22, 

panel B) treatment. In the absence of J3955, HepG2 cells showed a normal diploid 

distribution with fast proliferation characteristics, with S + G2/M phase cells accounting for 

about 45% of the total cells. A 12 h treatment with J3955 arrested the cell cycle at the G2/M 

phase in a dose-dependent manner (Figure 22A). An increase in G2/M phase cells from 24% 

to 27% and from 24% to 36% (p < 0.0001) was observed as a result of cell exposure to J3955 

at 1 × GI50 (1.5 μM) and at 2 × GI50 (3.0 μM), respectively. The cell accumulation in the G2/M 

cell-cycle phase was coupled to a decrease in the G0/G1 phase cells rather than a decrease 

in the S phase. 
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Figure 22. The effects of J3955 at 2× and 1× its GI50 value on the cell-cycle distribution of HepG2 cells following 
12 h (a) and 24 h (b) treatments. Results are expressed as the mean of two independent experiments, 
performed in duplicate. Statistical analyses were performed using the Student’s t-test to determine the 
differences between the datasets. * Denotes significant differences (p < 0.0001) from untreated cells (control). 

A similar trend was observed after 24 h treatments with J3955 at 1 × GI50 (1.5 μM): 

G2/M phase cells increase from 25% to 32% (p < 0.0001) (Figure 22B). However, when the 

cells were exposed to J3955 at 2 × GI50 for 24 h, a new sub-G0/G1 population appeared, 

indicative of apoptotic cells, with a parallel decrease of the population in the G2/M phase 

(Figure 22B). 

Dephosphorylated Cdc25s are activated by both Cdk1 and Cdk2. Then, Cdc25s activate 

both the G1/S transition and S-phase Cdk-cyclin complexes (Cdk2-cyclinE and Cdk2/cyclinA), 

but also the Cdk1/cyclin B complex involved in the G2/M transition. Consequently, although 
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Cdc25 inhibition induces cell-cycle arrest, the stage of cell-cycle block by Cdc25 inhibitors 

cannot be predicted and literature data show that it is cell line-dependent. 

In the same cell line, it is observed that several molecules displaying Cdc25 inhibition 

effects trigger different cell-cycle arrests. For example, Kabakci et al., studying the inhibition 

effect of various naphthoquinone compounds on Cdc25s, observed different cell-cycle 

arrests in HeLa cells (G1/S or G2/M arrest) [150] and an imidazopyridine Cdc25 inhibitor 

triggered S-phase arrest in MCF-7, HepG2, and HT-29 cell lines [115]. 

On the other hand, it has been observed that two structurally unrelated Cdc25 

inhibitors arrested melanoma cell lines in the G2/M cell-cycle phase and activated an 

apoptotic program [118,119,151]. In addition, in previously published works some terpenoid 

compounds were tested on A375.S2 human melanoma cell lines. The authors described a 

different stopping phase of the cell cycle via Cdc25, strictly dependent on the effect of the 

tested triterpenoid compound [152,153]. 

Endogenous Cdc25s control cell cycle progression through dephosphorylation via the 

activation of their natural substrate Cdks. Thus, to directly assess Cdk1 activity in HepG2 

cells we used antibodies recognizing phosphorylated Thr14 or Tyr15, two amino acid 

residues selectively dephosphorylated by Cdc25 in the Cdk1 catalytic domain [150]. 

In order to investigate the involvement of the inhibition of Cdc25s in the 

antiproliferative action of J3955, the phosphorylation status of Cdk1 was analyzed after cell 

exposure to J3955. 

Western blot analysis of the lysate from HepG2 cells treated with J3955 at 0.75 μM, 1.5 

μΜ, and 3 μM for 6 h showed a significant dose-dependent accumulation of the 

phosphorylated form of Cdk1, when compared to control cell lysates (Figure 23). 

Considering that an increase in the phosphorylated protein fraction results in a decrease in 

the non-phosphorylated and active protein fraction, with the amount of total protein being 

almost unchanged along the different treatments, our results indicate that J3955 may 

impair Cdk1 activity in exposed cells and suggests its specific influence in molecular 

mechanisms involving Cdc25 proteins. 
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Figure 23. Effects of a 6 h treatment with J3955 (0.75, 1.5, and 3 μM) on Cdk1 phosphorylation in HepG2 cells. 
After the treatment, cells were collected, and the proteins were isolated for Western blot analysis as described 
in ‘‘Materials and methods’’. The panel shows a representative Western blot and densitometric analysis. The 
values represent the ratio between phospho-Cdk1 and total Cdk1, both previously normalized for the 
corresponding β-actin. Values are expressed as the mean ± S.D. of three separate experiments with similar 
results. Different lowercase letters on the top of each histogram indicate statistical (p < 0.05) differences 
among the tested samples, as measured by one-way ANOVA followed by the Tuckey test. The letter “a” marks 
the highest value. Bars not sharing the same letter were significantly different. 

3.3.6. Binding poses of the most interesting Cdc25 inhibitors identified in the study 

To gain further insight into the structure-based results, the binding modes of the most 

interesting compounds were analyzed. The best example, observed by the IFD study (J3955 

Figure 24a,b),  shows several interactions at the junction between the catalytic pocket and 

the “swimming pool”. In particular, the flat aromatic quinoline scaffold of J3955 is 

accommodated in the surface of the shallow active site, whereas the flexible and 

hydrophobic phenylethyl moiety is able to penetrate deeply into the adjacent “pool”, where 

it encounters several apolar residues (Met483, Leu443, Pro444, Leu445, Cys426, and Tyr428). The 

amidic portion forms several H-bonds with Glu478 (in the catalytic HCX5R motif) and Arg544 

(C-terminus, in the “swimming pool”) side chains.  
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Figure 24. Predicted binding modes of J3955 (a) and of E7887 (c) into the “swimming pool”-catalytic cleft of 
Cdc25B (PDB id: 1QB0); ligand–protein interaction diagram for J3955–Cdc25B (b) and E7887–Cdc25B (d) 
complexes, with the hydrogen bond shown as violet arrows. 

Similarly, but with completely different structural features, compound E7887 also could 

inhibit Cdc25 by binding both to the catalytic cleft (partially occupied by the cyclopentyl 

ring) and to the “swimming pool”, in which the hydrophobic steroid scaffold is inserted 

(Figure 24c, d). Inside this cavity, 17β-OH stabilized the complex by forming H-bonds with 

the side COOH and the backbone NH of Glu446.  

The lack of reactive groups could permit a reversible binding, avoiding the well-

established toxicity of the quinonoid agents and electrophilic entities.  
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4. Materials and Methods 

4.1 In silico studies 

4.1.1. Ligand-based 

• Hardware: The DRUDIT WEB service runs on 4 servers that are automatically selected 

according to the number of jobs and online availability. Each server can support up to 

10 simultaneous jobs, while the exceeding jobs are placed in a queue.  

• Software: DRUDIT consists of several software modules implemented in C and JAVA and 

running on MacOS Mojave. 

• Database selection and data sets building. The NCI-60 database, containing both 

antiproliferative and chemical data of thousands of compounds, was selected as a 

reliable source to construct the AAP protocol. In details, since the presented tool is 

based on molecular descriptors, the 2D chemical structures of the NCI tested 

compounds (.mol files, available only till the June 2016 release) and the corresponding 

growth inhibition data were retrieved from the NCI website (284.176 chemical 

structures) [44,154]. Among these thousands of compounds, only those tested in the five-

dose assay, thus with available GI50 data, were selected to build and validate the model. 

In particular, the structures were split in two sets: a training set, containing more than 

34k compounds released till 2014 (NCI2014DB), was used to construct the protocol; a 

test set, containing about one hundred compounds that were first released in 2016 

(NCI2016DB), was used to validate the AAP tool. The protein expression data used in 

the correlation analysis were downloaded from the NCI-60 database - Molecular 

Characterization Program [155]. The Binding database (Bdb) [133] storing Ki, Kd, IC50, and 

EC50 values of known inhibitors of well-defined protein targets [156,157], was used as 

reliable source to download the 2D structures of the known Cdc25 inhibitors reported 

in literature. The selected 117 Cdc25 inhibitors with IC50 values lower than 10 μM were 

used to build the corresponding template in the Biotarget finder tool implemented in 

DRUDITonline, following the procedure reported in literature [42]. The database of 

purchasable molecules submitted to in silico screening against Cdc25 contains 10.715 

structures, was retrieved from the Sigma-Aldrich repository. 
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• MOLDESTO: a new software for molecular descriptors calculation. MOLDESTO 

(MOLecular DEScriptor Tool), as we described in a previous work [42], is a software tool 

implemented in DRUDIT that represents the evolution of the expertise of the research 

group in the calculation/ manipulation of molecular descriptors [158]. It is currently able 

to calculate more than 1000 1D, 2D, and 3D molecular descriptors for each input 

structure (the full list of molecular descriptors calculated by MOLDESTO is reported in 

Supplementary Material S1). The input structures can be drawn directly in the web 

interface or uploaded as commonly used molecule file formats as external files (e.g. 

SMILES, SDF, Inchi, Mdl, Mol2). The software is provided with a caching system to boost 

the calculation speed of previously submitted structures. 

• DRUDIT settings for Antiproliferative Activity Predictor (AAP) tool. The AAP tool 

comprises the fingerprint (FP) and cell lines (CL) modules, which cooperate 

simultaneously to assign the predict GI50 values to an input structure. In each module, 

the performed calculation is dynamic; indeed, it could be modulated by appropriately 

varying the values of the available parameters (three for each module, see below).  

FP module: The FP module parameters are: choice of biological activity as GI50, TGI, LC50, 

or G% (in this work only the first choice was considered); N (-b) the best number of 

dynamically selected molecular descriptors; Z (-m) number of descriptors for which |v 

m|/m < <value> applies. v: descriptor value, m: target mean; G (-c) max number of zero 

percentage values per descriptor.  

CL module: The DRUDIT parameters for the CL module are: choice of biological activity 

as GI50, TGI, LC50, or G% (in this work only the first parameter is considered); N (-b) the 

best number of dynamically selected molecular descriptors; Z (-m) the max number of 

zeros percentage per descriptor; G (-f) the Gaussian smoothing function to be used (a, 

b, or c mode). 

4.1.2. Induced Fit Docking on Cdc25 X-ray structure 

The IFD (induced-fit docking) was applied by means of the Schrödinger software suite [159-

162] by using the settings from previous works [163,164]. Cdc25B atomic coordinates were 

downloaded from the Protein Data Bank (PDB id, 1QB0) and refined by the Protein 
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Preparation Wizard module to apply default parameters [165]. The IFD score, which 

accounts for both the protein-ligand interaction energy and the total energy of the system, 

is calculated weighing 95% of Glide Gscore and 5% of Prime Energy. It is used to rank the 

IFD poses considering that the more negative the IFD score, the more favorable the binding 

[166-170]. 

4.2. NCI-60 antiproliferative screenings 

4.2.1 Compounds selection guidelines 

The compounds to be screened are selected according to precise and rigorous guidelines; 

in general, the submission is encouraged for: molecules which bring some novelties (novel 

heterocyclic ring systems, privileged scaffolds) to the NCI collection; compounds emerged 

from computer aided drug design. In addition, in the case of series of analogues, it is 

preferred to select only the one which is expected to provide the greatest information. On 

the other hand the submission of compounds with the following features is discouraged: 

excessive flexibility; presence of drug-unlike function groups (nitro, nitroso, diazo, imine…); 

presence of chemical portions which could affect the reliability of the assays (PAINS) [171]. 

4.2.2. One dose assay 

All compounds submitted to NCI are firstly assayed against the NCI-60 DB in a one dose 

screen (concentration of 10-5 M); this kind of assay aims to determine the G% (growth 

inhibition percent) of the compounds against the considered cells. The results are plotted 

in a one-dose graph showing the G% of the single compound against the 60 cell lines. This 

first assay is considered passed only for the most promising compounds (satisfaction of 

predetermined threshold criteria); in this case the compound pass to the 5 doses screen 

(for further experimental details about the standardized assay procedures see ref. [172,173]). 

4.2.3. Five-doses assay 

The most active compounds are submitted to multiple dose screen, using 5 different 

concentrations (ranging from 10-8 to 10-4 M). The dose response curves obtained from this 

assay permit to extrapolate the GI50 (the molar concentration of the compound that inhibits 

50% of cell growth), TGI (the molar concentration of the compound leading to total 
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inhibition of cell growth) and LC50 (the molar concentration of the compound that induces 

50% cell death) values of the selected compounds against each cancer cell lines. For each 

of the mentioned parameters a Mean Graph MIDpoint (MG_MID) is calculated, providing 

an average activity parameter over all the cell lines (for further experimental details about 

the standardized assay procedures see ref.[172,173]). 

4.3. Biological procedures 

4.3.1. Cdc25s phosphatase inhibitory activity assay  

The inhibitory activity of the selected compounds for Cdc25s was assessed using the CycLex 

protein phosphatase Cdc25A, -B, and -C fluorometric assay Kit (CycLex, Cat. No. CY-1355) in 

accordance with the manufacturer’s protocol. The assay is based on the competition of the 

test compound for O-methyl-fluorescein phosphate (OMFP), an exclusive fluorescence 

Cdc25 substrate. 

An assay mixture containing OMFP was freshly prepared following the kit instructions. Test 

compounds were previously dissolved in DMSO to obtain stock solutions at 20 mM and kept 

at −20 °C. Working solutions of each compound were freshly prepared in the assay buffer. 

In each well, 40 μL of assay mixture was mixed with 5 μL of the test compound. The reaction 

was initiated by adding 5 μL (0.1 μg/μL) of the purified recombinant Cdc25 (Cdc25A, -B, and 

-C) proteins and mixing thoroughly. The plate was incubated at room temperature for 15 

min. Then, 25 μL of stop solution was added. Phosphatase activity was measured in a 96-

well microtiter plate using a Cdc25s substrate. Fluorescence intensity (FI) was measured 

using a GloMax®-Multi Microplate Reader equipped with a GloMax®-Multi Fluorescence 

Module (Promega Corporation, Madison, WI, USA) with an excitation wavelength of 485 nm 

and an emission wavelength of 580 nm. The background was defined as the FI generated 

from the wells that did not contain Cdc25s but were incubated with the assay mixture. The 

percentage enzyme activity of the test sample with respect to the control (OMFP wells) was 

calculated using the following equation: 

% FI = (FI test sample/FI control) × 100             (1) 
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IC50 was defined as the concentration of the compound at which there was 50% FI of the 

OMFP wells. 

4.3.2. Cell Culture 

The cancer cell line HepG2 (hepatocarcinoma cells) was obtained from the American Type 

Culture Collection (ATCC) (Rockville, MD, USA). The cells were cultured in RPMI 

supplemented with 5% (v/v) FBS, 2 mM L-glutamine, 50 IU/mL penicillin, and 50 μg/mL 

streptomycin, and maintained in a humidified atmosphere with 5% CO2 at 37 °C. Cells were 

routinely cultured in 75 cm2 culture flasks and were trypsinized using trypsin-EDTA. 

Exponentially growing cells were used for experiments. 

4.3.3. Anticancer evaluation assay 

The selected derivatives were submitted to the MTT assay to assess the growth inhibition 

activity against HepG2 cells. The MTT assay is a measurement of cell metabolic activity, 

quite effective in estimating cell proliferation, that is based on the protocol first described 

by Mosmann [174]. The assay was performed as previously described [175]. Briefly, the cells 

were seeded into a series of standard 96-well plates in 100 µL of complete culture medium 

at 1.5 × 104cells/cm2. Cells were incubated for 24 h under 5% CO2 at 37 °C and the medium 

was then replaced with 100 µL of fresh medium supplemented by 5% (v/v) FBS containing 

the treatments. The stock solutions (20 mM) were prepared by dissolving selected 

compounds in DMSO. Working solutions were freshly prepared on the day of testing by 

diluting the stock solutions in the complete culture medium. For the experiment, we used 

a concentration range from 20 to 0.02 µM. Twenty-four hours after seeding, aliquots of 100 

µL of different solutions at the appropriate concentrations were added to the appropriate 

wells and the cells were incubated for 48 h without the renewal of the medium. In each 

experiment, the DMSO concentration never exceeded 0.25% and a culture medium with 

0.25% DMSO was used as control. After the incubation time, cells were washed and 50 µL 

FBS-free medium containing 0.5 mg/mL of MTT was added. The medium was discarded 

after a 3 h incubation at 37 °C and formazan blue formed in the cells was dissolved in DMSO. 

The absorbance (OD, optical density) at 570 nm of the MTT-formazan was measured in a 
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microplate reader. As the absorbance is directly proportional to the number of living, 

metabolically active cells, the percentage of growth (PG) with respect to the untreated cell 

control for each drug concentration was calculated according to one of the following two 

equations: 

if (ODtest − ODtzero) ≥ 0, then PG = 100 × (ODtest − ODtzero)/(ODctr − ODtzero)   (2) 

if (ODtest − ODtzero) < 0, then PG = 100 × (ODtest − ODtzero)/ODtzero                     (3) 

where: ODtzero is the average of the optical density measurements before the exposure of 

cells to the test compound; ODtest is the average of the optical density measurements after 

the desired period of time; and ODctr is the average of the optical density measurements 

after the desired period of time with no exposure of the cells to the test compound. The 

concentration necessary for 50% of growth inhibition (GI50) for each derivative was 

calculated from concentration−response curve using linear regression analysis, by fitting 

the test concentrations that give PG values above and below the reference value (50%). 

Each result was the mean value of three separate experiments performed in quadruplicate. 

Finally, in order to exclude potential cytotoxic effects at the concentration range used for 

our experiments, the Trypan blue exclusion method was employed. 

4.3.4. Cell-cycle analysis 

DNA staining with propidium iodide (PI) and flow cytometry analysis were applied as 

previously described with the aim to evaluate the effects of the selected derivatives on cell-

cycle progression [176]. Briefly, HepG2 cells were seeded on 12-well plates at a density of 

2.0 × 104 cells/cm2, and treated 24 h after seeding without or with the indicated 

concentrations of the test compound for 12 or 24 h. Following the treatments, cells were 

collected, washed in PBS, and stained with staining solution (20 µg/mL propidium iodide, 

200 µg/mL RNAse A, and 0.1% Triton X-100 in PBS) for 30 min at 37 °C. The DNA contents 

of more than 10.000 cells were subjected to fluorescence-activated cell sorting (FACS) 

analysis (Coulter Epics XLTM, Beckman, Brea, CA, USA), and the percentage of cells 

belonging to the different compartments of the cell cycle was determined. All experiments 

were performed in duplicate and reproduced at least two times. 
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4.3.5. Western Blotting 

The phosphorylation status of the Cdk1 was analyzed by Western blotting, as previously 

reported [177]. Briefly, HepG2 cells were treated with J3955 (1.5, 3, and 6 μM) for 6 h and 

after treatment cells were rinsed twice with ice-cold PBS and harvested by scraping in ice-

cold hypotonic lysis buffer (10 mM Hepes, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM 

phenylmethylsulfonyl fluoride (PMSF), 1.5 lg/mL soybean trypsin inhibitor, 7 lg/mL 

pepstatin A, 5 lg/mL leupeptin, 0.1 mM benzamidine, and 0.5 mM dithioerythritol (DTT)) 

and incubated for 15 min on ice. The lysates were centrifuged at 13,000× g for 5 min, and 

supernatants were immediately portioned and stored at −80 °C. The protein concentration 

was determined using the Bradford protein assay reagent (Bio-Rad, Hercules, CA, USA). 

Aliquots of cell extracts containing 5–15 μg protein were separated on 8–12% sodium 

dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and transferred to a nitrocellulose 

membrane. Colored molecular weight standards (Amersham) were run simultaneously. The 

immunoblot was incubated overnight at 4 °C with blocking solution (5% skim milk), followed 

by incubation with either an anti-Cdk1 monoclonal antibody (Invitrogen, Carlsbad, CA, USA, 

Cat: 33–1800), anti-phospho-Cdk1 (Thr14, Tyr15) polyclonal antibody (Invitrogen, Cat: 

710840), or anti β-actin monoclonal antibody (Invitrogene, Cat: MA1-744) as control, for 1 

h at room temperature. Blots were washed two times with Tween 20/Tris-buffered saline 

(TTBS) and incubated with a 1:1000 dilution of horseradish peroxidase (HRP)-conjugated 

polyclonal goat anti-mouse IgG antibody (Dako, Glostrup, Denmark), or with a 1:2000 

dilution of horseradish peroxidase (HRP)-conjugated polyclonal goat anti-rabbit IgG 

antibody (Dako) for 1 h at room temperature. 

4.3.6. Statistical Analysis 

All data are expressed as mean ± S.D. Three independent observations were made for each 

experiment. Statistical difference was calculated using an unpaired Student’s t-test. Tukey 

was used to examine the difference between group means. 
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5. Conclusions and Future Perspectives 
In the last decades, a lot of computational and statistical approaches have been 

proposed with the aim of integrating and correlating the huge amount of experimental 

biological data (e.g.: antiproliferative activity and protein expression) stored in the most 

famous databases focused on cancer research. From this point of view, these types of 

correlations could allow to gain insight into the mechanism of action and to identify the 

biological target of anticancer compounds.  

The main limitation of all these computational methods is the need for experimental 

drug response data (post-screen application). The possibility to predict in silico the 

antiproliferative activity of new/untested small molecules against specific cell lines, could 

enable correlations to be found between the predicted drug response and protein 

expression of the desired target from the very earliest stages of research. Such an 

innovative approach could allow to select the compounds with molecular mechanisms that 

are more likely to be connected with the target of interest preliminary to the in vitro assays, 

providing a crucial help in the design of new targeted anticancer agents. 

Based on these premises, this PhD Thesis aimed to develop and propose a new in silico 

protocol based on the correlation between chemosensitivity and protein expression pattern 

to design new targeted anticancer drugs. To this end, the project comprised different 

phases: 

1. The first step of the study consisted of the development of the Antiproliferative 

Activity Predictor (AAP), a reliable computational tool able to predict the anticancer 

activity of new compounds against the NCI-60 panel. This ligand-based protocol, 

validated by both an internal and external set of structures, has proven to be high 

reliable and robust. The encouraging results were further supported by the 

examination of an in-house database and subsequent evaluation of a set of 

molecules selected by the NCI for the one-dose/five-dose antiproliferative assays 

(paragraph 3.1).  

2. After the development of the AAP tool to predict the antiproliferative activity of new 

compounds, the second phase of this PhD project aimed to develop a new 
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computational method to correlate drug activity and protein expression pattern. 

Before its application to the design of new anticancer agents, the proposed method 

was validated by the analysis of some case studies to demonstrate that such a 

correlation analysis could be applied to the biological data related to the full NCI-60 

panel (paragraph 3.2). 

3. The final part of the study aimed at applying the proposed approach to design new 

targeted anticancer drug. Hence, the attention was focused on Cdc25 enzymes, 

crucial targets to halt tumor proliferation. The new mixed ligand structure-based 

approach permitted, from the evaluation of a database containing more than 10.000 

small molecules, the identification of 12 compounds as potential inhibitors of 

Cdc25s. The biological screenings of the selected structures consolidated and 

confirmed the in silico results. In particular, the enzymatic inhibition assays showed 

interesting Cdc25s IC50 values for most of the tested molecules. Among them, J3955, 

the most active inhibitor of Cdc25s, exhibited antiproliferative activity against 

HepG2 cells, with GI50 values in the low micromolar range. The flow cytometric 

analysis, for cell-cycle perturbation experiments, highlighted, after treatment with 

J3955, cell-cycle arrest and the accumulation of the phosphorylated form of Cdk1 

(paragraph 3.3). 

 

Collectively, our results demonstrated that the correlation between protein expression 

pattern and chemosensitivity revealed an innovative, alternative, and robust method in the 

identification of new modulators for the selected targets. Differently from the traditional in 

silico methods, the proposed protocol allows for the selection of molecular structures with 

heterogeneous scaffolds, which are not strictly related to the binding sites and with 

chemical-physical features that can be more suitable for all the pathways involved in the 

overall mechanism. The biological results further corroborate the robustness and the 

reliability of this new approach and encourage its application in the anticancer targeted 

drug discovery field. 
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6.1. Design, synthesis, and biological evaluation of new heterocyclic 

analogues of the bacterial DNA repair inhibitor IMP-1700: Summary of the 

section 

In the last section of this PhD thesis, a separate chapter is dedicated to present the 

results of the visiting research period carried out at the Department of Pharmacology of 

University of Oxford (March-August 2022), under the supervision of Dr. Thomas Lanyon-

Hogg. The research project was focused on the design, synthesis, and biological evaluation 

of new heterocyclic small molecules as inhibitors of bacterial DNA strand break repair 

pathways, a key element involved in the development of antimicrobial resistance (AMR). 

IMP-1700 (Figure 25) is one of the most potent bacterial DNA repair inhibitors 

developed to date (single digit nanomolar potency) [178,179]. Despite the encouraging 

biological activities, its fluoroquinolone core, subject to an FDA warning for “black-box 

toxicity”, makes the progression to the subsequent phase of drug development unlikely. 

From a medicinal chemistry point of view, few SAR studies have been conducted on the 

IMP-1700 structure, especially on the central quinolone scaffold. Thus, a central question 

to be answered is: can we substitute the 4-quinolone core in IMP-1700 structure with other 

heterocycles, without affecting its biological activity? 

Trying to elucidate, in part, this aspect, the main aim of this study was the design, 

synthetize and the evaluate in vitro some non-fluoroquinolone heterocyclic analogues of 

IMP-1700 (Figure 25). 

 
Figure 25. Overview of the project: design, synthesis, and biological evaluation of new heterocyclic analogues 
of the bacterial DNA repair inhibitor IMP-1700.  
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6.2 Introduction 
6.2.1 The emergence of antimicrobial resistance (AMR) and the decline of antibiotics: 

where are we going? 

The discovery of the first antibiotics during the last century have drastically transformed 

the modern medicine; indeed, these drugs represented a turning point not only for an 

effective treatment of infectious diseases (in the pre-antibiotic era more than half of deaths 

were attributed to infections), but also to make many modern medical therapies and 

procedures (such as surgery, cancer treatment, organ transplant) possible and safe [180-

182]. 

However, despite the initial success (the so called “Golden Age” of antibiotics, ended in 

the early ‘70), their overuse/misuse in human health, but also in agriculture and livestock, 

evolved a rapid rise of antimicrobial resistance (AMR), resulting in a fast erosion of the 

antibiotic arsenal over time. As evidenced in Figure 26, resistance to almost all the approved 

antibiotics emerged immediately after their approval for clinical use [180,182-184].  

In addition, some bacteria, such as Enterococcus faecium, Staphylococcus aureus, 

Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Enterobacter (ESKAPE pathogens), have developed resistance to almost all the clinically 

antibiotic classes, making these infections difficult to treat. Thus, the feared scenario of the 

“post-antibiotic era” is starting to become a real possibility in the near future [185]. 

This dramatic scenario is reflected in the most recent statistics: it has been estimated 

that more than 700.000 deaths occur annually as a consequence of multidrug resistant 

bacteria, a figure that could increase to 10 million a year by 2050 [182,186]. 

Furthermore, additional factors combine to make AMR even more challenging and 

threatening: 

• Insufficient development of new antibacterial drugs in the last three decades 

(antibiotic discovery gap): as shown in Figure 26, only few new antibiotic drugs have 

been approved in the last twenty years and, in addition, all of them belong to already 

known class of therapeutics, such as tetracyclines, aminoglycosides and 
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fluoroquinolones (after the “Golden Age”, only two new classes of antibiotics have 

been discovered) [187-191]; 

• withdraw of already approved antibiotics from the market [192];  

• rapid drop of interest and investments by pharmaceutical companies in the 

antibacterial discovery field (limited financial market as new antibiotics kept as 

agent of last resort for most resistant infections) [181,192]. 

 

Figure 26. Timeline of antibiotic discovery, with a special focus on the development of resistance [180]. 

In this light, AMR represents one of the most serious challenges threatening global 

health during this century; hence, the discovery of drugs capable to treat resistant bacteria 

and maintain their effectiveness over time represents an urgent priority for the whole 

scientific community [185,193,194]. 

 Many approaches have been undertaken during the last decades to tackle the AMR. 

One of the most interesting strategies could be to improve/prolong the efficacy of existing 

antimicrobial drugs by directly countering bacterial mechanisms of drug resistance [182]. 

Indeed, molecules able to block the bacterial pathways responsible of resistance could have 

both advantages of increasing the lifetime of the existing therapies (adjuvants) and, 
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meanwhile, decreasing the capability of pathogens to develop resistance and survive 

[178,195]. 

In the light of this, understanding the main mechanisms by which bacteria develop 

resistance to antibiotics is critical to try to find an effective solution to this crisis. Among all, 

the bacterial DNA repair and SOS pathways are probably the most characterized elements 

involved in these processes. 

6.2.2. The inhibition of bacterial DNA repair mechanisms and SOS response pathway: 

possibility to re-sensitize multidrug resistant bacteria to existing antibiotic 

Considering the crucial role of the bacterial DNA repair pathways in the rise of AMR, in 

this section the detailed description of the main components of this network is needed. 

During the bacterial life cycle, DNA double strand breaks (DSBs) can occur; these could 

be due to ionizing radiation, metabolic perturbations, mechanical stress during DNA 

replication, oxidative bursts generated by the host immune response during infections 

(production of ROS), antibiotics targeting DNA structure (e.g: quinolones). A single DSB 

could be lethal for the bacterial cell if left unrepaired before cell division; however, the 

procaryotes, like eukaryotes, have developed complex DNA repair and recombination 

mechanisms to protect themselves [196]. Among the most famous components involved in 

these processes, we can find the RecBCD (in gram-negative bacteria) and the equivalent 

AddAB (for gram-positive bacteria), two multi-protein complexes with helicase-nuclease 

activity, which are able to find and repair the DSBs by the mechanism shown in Figure 27. 

In detail, the DSB (damaged sites of bacterial DNA) is loaded with RecBCD complex that 

starts to unwind the double strand in an ATP- dependent manner. Once RecBCD reaches a 

so-called ‘crossover hot-spot instigator (Chi)’ sequence, RecB subunit cuts the strand with 

this sequence, continuing to unwind it. At this point RecA, a monomeric strand-exchange 

recombinase, is loaded onto the newly generated 3ʹ-ended strand and starts the 

homologous recombination process by invading an intact homologous DNA strand, 

determining the DSBs repair. However, RecA activity is not limited just to DSBs repair; 

indeed, RecA, once complexed to a DNA strand, is able to recognize and bind the repressor 

proteins LexA, causing LexA autoproteolysis. This process determines the activation of the 
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SOS-responsive genes (more than 50 elements), with consequent expression of low fidelity 

DNA-polymerase, error prone DNA replication, increased rate of mutagenesis, resistance 

and tolerance to stresses, persistence, virulence, host immune response adaption, biofilm 

formation, antibiotic evasion [178,196-200]. 

 
Figure 27. Mechanism of activation of the bacterial DNA repair mechanisms and of the SOS response pathway: 
(a) external stresses (antibiotics, ionizing radiation, oxidative burst generated by host immune response, etc) 
cause DNA damage; (b) RecBCD, a multiprotein complex with a double helicase-nuclease activity, recognizes 
and binds the DSB site, starting to process the double strand; (c-d) after the recognition of the Chi 
recombination hotspot, RecA is recruited on the 3’ overhang generated, starting the homologous 
recombination process; (e) RecA also binds to the repressor LexA complexes, causing LexA autocleavage and 
consequent activation of SOS response genes [178]. 

Many studies proved that some of the most used antibiotics, such as trimethoprim 

(DHFR inhibitor), β-lactams (cell wall biosynthesis inhibitors), aminoglycosides (protein 

synthesis inhibitors) and fluoroquinolones (DNA gyrase inhibitors) are potent inducers of 

SOS response, which, in turn, has a direct role in the development of acquired resistance to 

these drugs [198,201,202]. From the other point of view, the inactivation of the DSB repair 

mechanisms and of the SOS pathway proved to enhance/restore the sensibility to the 

common antibiotic treatments, even in the most feared “superbugs” (e.g.: Escherichia coli, 

Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacterium tuberculosis) [203-

210]. 

In the light of these considerations, the bacterial DSB repair mechanisms and the SOS 

pathway, due to their key role in the acquisition of resistance, represent therefore an 
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appealing area of antibiotic discovery [208,211,212]. Indeed, a small molecule able to halt 

these processes could have the advantages both of control the spread of resistance and to 

prolong the shelf life of the current available antibiotics, with a decisive impact even on 

antibiotic therapy in vivo. 

Among all the possible targets within the SOS pathway, the following discussion will be 

focused especially on the AddAB/RecBCD complex inhibitors. Indeed, to this class belong 

some of the most potent bacterial DNA repair inhibitors currently discovered. 

6.2.3. IMP-1700: from the potent inhibition of the bacterial DNA repair pathways and to 

the issue of the quinolone core 

Few examples of inhibitors of AddAB/RecBCD complexes have been reported in 

literature in the last decades, and ML328 (CID1517823) is one of the first members of this 

class (Figure 28) [213]. Identified through a cellular DNA-repair high throughput screen, this 

pipemidic acid derivative exhibited interesting inhibitory activity in biochemical assays but 

limited cellular potency. From a structural point of view, the features that may be related 

to biological activity are: a central heterocyclic aromatic scaffold, as the pipemidic one, 

which is able to intercalate in the DNA double strand; a cyclic amine (e.g. piperazine); an 

arylthiourea moiety substituted at 3-position with a CF3 group [213]. 

 

Figure 28. Chemical structure of the pipemidic derivative ML238 and the corresponding optimized CFX 
derivative IMP-1700 [178,179,213]. 

Starting from these assumptions, Lim et al. performed a SAR study to optimize both the 

AddAB/RecBCD inhibition and the antibacterial activities of the lead compound ML328 [179]. 
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In detail, hypothesizing that an improved intercalation in the bacterial dsDNA could led to 

an improved inhibition of the AddAB/RecBCD complex, they substituted the pipemidic core 

with a ciprofloxacin (CFX) core (scaffold-hop), where the C6-fluorine and N1-cyclopropyl 

substituents modulate electron density to favor a better insertion in the DNA double strand. 

The obtained series of CFX derivatives was further optimized by guiding the substitution of 

the aryl moiety with the Topliss decision tree. Among all, IMP-1700, with a 4-CF3 electron 

withdrawing group on the aryl thiourea moiety (Figure 28), resulted the most promising 

compound, as emerged from the biological assays. 

In detail, from the MIC assay performed against the CFX-resistant MRSA strain USA300 

JE2, IMP-1700 exhibited a ∼650 increase in potency in the presence of CFX (EC50=5.9 ± 0.6 

nM) compared to its use as single agent (EC50=3.8 ± 0.5 μM). This represents ∼160-fold 

increase in potency compared to the lead compound ML328 (EC50=1.1 ± 0.1 μM) for 

potentiation against JE2 by CFX. In addition, it resulted that IMP-1700 quantitatively 

synergized with CFX indicating a mechanism of action that amplifies the effect of each 

compound. To support the hypothesis that this synergism was due to interference on the 

DNA repair mechanisms, a SOS response assay and a RecBCD pulldown on lysate were 

conducted: IMP-1700 was capable to inhibit the SOS response in JE2 bacterial cells treated 

with CFX and to pull down recombinant AddAB from lysates [179]  

Thus, even if the exact molecular target/ mechanism of action is still unclear, the 

acquired biological data strongly support a mechanism of inhibition of the AddAB/RecBCD 

complex, thus the SOS response pathway [179]. 

Despite the outstanding potency in biological assays, the fluoroquinolone nature of 

IMP-1700 (CFX core) is not ideal for a lead compound. Firstly, even if no appreciable 

inhibition of DNA gyrase and topoisomerase IV (fluoroquinolone targets) was observed, a 

sort of unwanted cipro-like activity (DNA damages, activation of SOS response), potentially 

due to hydrolysis or metabolism of the compound to CFX, was evident in the assays [179]. In 

addition, the fluoroquinolone family of antibiotics is associated with several serious adverse 

effects, which are typical of the class (so called “class effects”; e.g.: tendinitis and tendon 

rupture; headache; dizziness; liver failure; QT interval prolongation). In order to limit the 
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use of these drugs, the FDA added a black-box toxicity warning in their packages, to inform 

the patients about the risks associated to their use [214,215]. As a result, new therapeutic 

drugs are less likely to be approved if they contain a quinolone core. 

In the light of these considerations, IMP-1700, because of its fluoroquinolone structure, 

is not an ideal drug candidate for further development.  



 86 

6.3. Aim of the project 
IMP-1700, as introduced previously, is one of the most potent inhibitors of bacterial 

DNA repair pathways published to date. Despite this, the FDA black box warnings 

(unwanted side effects) and potential off-target interactions (e.g: DNA gyrase inhibition) 

ascribed to its central CFX scaffold (4-oxo-quinoline-3-carboxylic acid), makes the 

progression to subsequent phases of drug development unlikely.  

From a medicinal chemistry point of view, SAR studies on the central quinolone core 

have not been conducted [179], thus the critical question whether this part of the molecule 

is required/essential for the biological activity remains unanswered. The possibility to 

obtain new, non-CFX derivatives which maintain the potent SOS inhibitory activity, without 

the off-target inhibition of DNA gyrase, could represent an important starting point for the 

design of a new class of more selective compounds. 

In the light of the above consideration, the main aim of this study was to conduct a SAR 

analysis on the bicyclic CFX scaffold of IMP-1700. In particular, the study consisted of the 

design, synthesis, and biological evaluation of new benzo-fused six membered heterocyclic 

analogues of the lead compound (Figure 29), in order to analyze whether the changes made 

on the central core have effects on the biological activity. On the other hand, the piperazine-

thiourea-(4-trifluoromethyl) phenyl moiety at the C7 position of the central core, which 

appeared a key pharmacophoric portion from previous SAR studies [179], was maintained. 

In details, the cores selected for this SAR study were: 

• 4-quinazolinone core, reported in literature as a privileged scaffold in antibacterial 

drug design [216], and in some compounds active as antibiotic potentiator with SOS 

inhibitory activity [217]. More interestingly, one quinazoline analogue of IMP-1700 

have been tested already by the research group, showing encouraging SOS 

inhibitory activity and lack of the off-target effects of the CFX core.  

• 2,4-(1H,3H)-quinazolinedione core, which constitutes the central core of many 

compounds endowed with antibacterial activity, even against multidrug resistant 

bacteria (e.g. MRSA) [218,219]. 

• 4-quinolone core, to analyze how the lack of -COOH, affect the activity. 
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Figure 29. (a) Aim of the project: is it possible to rationally substitute the CFX moiety with other cores without 
affecting the activity? General scheme of the SAR analysis conducted on the CFX core of IMP-1700; (b) General 
structures of the three benzo-fused six membered heterocyclic systems considered in this study: 4(3H)-
quinazolinones; 2,4(1H,3H)-quinazolinediones; 4-quinolone. 

  

N

N

F3C

H
N

S

F

N

O

OH

O
F

N
N

H
N

S
F3C

IMP-1700

CFX moiety

SAR on the CFX moiety

N
H

F

O

N

N
F

O

N
H

N
F

O

O

Cores explored in this study

R1 R2

4-quinolone4(3H)-quinazolinones

(R1= H, COOMe, COOH)

2,4(1H,3H)-quinazolinediones

(R2= H, COOEt, COOH)

SAR

six-membered 
heterocycles

a)

b)



 88 

6.4. Results and discussion 
6.4.1. Chemistry 

As starting point, the synthesis of the lead compound IMP-1700 was considered 

(Scheme 1): this consisted of a one-step coupling reaction between ciprofloxacin (CFX) and 

4-(trifluoromethyl) phenyl isothiocyanate 8, using sodium hydrogen carbonate as base and 

dry DMF as solvent [179]. From a mechanistic point of view, the nucleophilic attack of the 

free secondary amine of the piperazine ring of the electrophilic isothiocyanate carbon leads 

to the formation of the required thiourea moiety. 

 

Scheme 1. One-step coupling reaction used for the synthesis of the lead compound IMP-1700; Reagents and 
conditions: (i) 4-(trifluoromethyl) phenyl isothiocyanate 8, NaHCO3, DMFdry, RT, 24h [179]. 

Taking this into account, the first step consisted of planning the most convenient 

synthetic route to have access to the selected heterocycles analogues of IMP-1700.  

In Scheme 2, the general retrosynthetic approach proposed for the synthesis of the 

required compounds is shown. In detail, it comprised three different steps:  

1. an heterocyclization reaction to afford the required difluorinated scaffolds;  

2. a selective nucleophilic aromatic substitution reaction (SnAr) at the C7 position 

of the heterocyclic core to introduce the piperazine fragment;  

3. a coupling reaction between the 7-piperazynil derivative and the 4-

(trifluoromethyl) phenyl isothiocyanate 8 to introduce the key thiourea moiety, 

as for the synthesis of IMP-1700 (see Scheme 1).  

According to the explained retrosynthetic scheme, the detailed discussion of the 

synthetic pathways was divided in three different sections (6.4.1.1-6.4.1.3), each one 

describing one of the three steps. All the experimental details, including procedures and 

characterization of the synthetized products, are reported in the Materials and Methods 

section (paragraph 6.6) 
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Scheme 2. Proposed retrosynthetic approach to afford the required heterocyclic analogues of IMP-1700. 

6.4.1.1. Synthesis of the 6-7-difluorinated heterocyclic scaffolds 

In this section the heterocyclization reactions performed to obtain the required 

difluorinated cores (4-quinazolinones, 2,4(1H,3H)-quinazolinediones and 4-quinolone, 

depicted in Figure 30) are described in detail. 

 
Figure 30. Overview of the heterocyclic cores described in this work. 

The most common synthetic approach for the synthesis of both 4-quinazolinones and 

of 2,4-quinazolinediones comprises a heterocyclization of a 2-anthranilic acid derivative 

with an appropriate reagent, such as an amide or a cyanate/isocyanate, respectively 

[220,221]. 
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reaction between the commercially available 2-amino-4,5-difluorobenzoic acid (9, 

anthranilic acid) and formamide [222]. In detail, the procedure involved the fusion of 9 and 

formamide at 125°C (solvent free), according to the Niementowski procedure, with an 

organic acid as catalyst (acetic acid) [220].  In the lower part of Scheme 3, the detailed 

mechanism of cyclization is reported: the NH2 of the anthranilic acid attacks the carbonyl of 

formamide, forming the o-amidobenzamide intermediate 10; this, under acid catalysis, 

readily undergoes a cyclization-dehydration process (11) to form the required 

quinazolinone 12 [220]. 

With the aim of introducing the carboxylate at 3-position of the ring, as in the lead 

compound IMP-1700, the N3 of the quinazolinone intermediate 12 was subjected to 

alkylation with methyl-2-bromoacetate, in the presence of K2CO3 as base and DMFdry as 

solvent, to afford methyl 2-(6,7-difluoro-4-oxoquinazolin-3(4H)-yl)acetate 13 as pure off-

white crystals in quantitative yields (adapted from literature procedure [223]). 

By observing the structure of 13 in comparison to the lead compound, a methylene 

bridge (CH2) between the COOH and the heterocyclic moiety was added. Several attempts 

are reported in literature to directly bind a carboxy group to the N3 of quinazolines, but, 

due to the instability of the nitrogen-to-carboxyl bond, they were unsuccessful [224]. 

 

Scheme 3. Synthesis of the 4-quinazolinone scaffolds 12, 13, with the detailed mechanism of cyclization. 
Reagents and conditions: (i) formamide, CH3COOH, 125 °C, 24 h; (ii) methyl 2-bromoacetate, K2CO3, DMFdry, 
45-50 °C, 2 h. 
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Regarding to the synthesis of the 2,4(1H,3H)-quinazolinedione core, the same starting 

material 9 was treated with potassium cyanate in water under acid catalysis, following a 

procedure reported in literature, to afford the intermediate 17 with good yields (Scheme 4) 

[225]. As shown in the lower part of Scheme 4, the mechanism of this one-pot cyclization 

reaction comprised three steps: nucleophilic attack of the NH2 on the electrophilic carbon 

of KOCN to form the urea intermediate 14; cyclization under basic conditions (NaOH) to 

obtain derivative 16 as sodium salt (enol form); treatment with HCl to give the required 

diketo product 17. 

With the aim of introducing the N3 carboxymethyl portion, as seen for the synthesis of 

compound 13, the selective alkylation of the N3 with methyl 2-bromoacetate was 

attempted. As the N3 between the two electron-withdrawing keto groups, was the most 

acidic, it was most prone to activation by the potassium carbonate. Unfortunately, even 

with a stochiometric amount of alkylating agent, both the nitrogen atoms reacted, leading 

to a mixture of the starting material and of the dialkylated product 18 (experimental data 

not shown). 

 

Scheme 4. Synthesis of the 2,4-quinazolinedione core 17. Reagents and conditions: (i) KOCN, CH3COOH, water, 
RT, 24 h, then NaOH and HCl; (ii) methyl 2-bromoacetate, K2CO3, DMFdry, 45-50 °C, 2 h. 
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Thus, to overcome this issue, the alternative synthetic strategy reported in Scheme 5 

was performed. In detail, methyl 2-amino-4,5-difluorobenzoate (19) and ethyl 

isocyanatoacetate (20), both commercially available, were reacted in pyridine to afford the 

key intermediate ethyl 2-(6,7-difluoro-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetate 22 

with excellent yields (91%). The use of the methyl ester 19 instead of the carboxylic acid 

was justified by its higher reactivity and its higher solubility in the organic solvent used. A 

similar literature procedure was applied for the synthesis of several 2,4-dioxothieno[2,3-

d]pyrimidine derivatives [226]. 

The cyclization mechanism proposed is very similar to the one reported for the 

synthesis of 17: initial formation of the urea adduct 21, with consequent ring closure under 

basic conditions. In this case, instead of a hydroxide base, the alkoxide NaOEt was used: this 

permitted to afford the cyclized product without the undesired hydrolysis of the ethyl ester. 

 

Scheme 5. Synthesis of the ethyl 2-(6,7-difluoro-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetate 22. 
Reagents and conditions: (i) ethyl isocyanatoacetate, pyridine, 45 °C, 2h; then add NaOEt 21% in EtOH; then 
neutralize with HCl 2N. 
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In the Scheme 6 the synthetic route to obtain the required decarboxylated 4-quinolone 

core is shown. In details, the first reaction consisted of the condensation between the 3,4-

difluoroaniline 23 and 5-methoxymethylene-2,2-dimethyl-[1,3]dioxa,n-4,6-dione 24 in 2-

propanol to obtain the intermediate 25 as a pale-yellow solid [227]. The subsequent thermic 

intramolecular cyclization was performed at 220°C (a eutectic mixture of diphenyl ether – 

biphenyl was used as heating media) and led to formation of the two difluoro regioisomers 

26 (6,7-difluoroquinol-4-one, 80%), 27 (5,6-difluoroquinol-4-one, 20%). Having the same 

polarity (almost identical Rf in TLC), they were impossible to separate by flash column 

chromatography. Hypothesizing a different reactivity towards the nucleophilic attack of 

piperazine, the mixture was used in the following step without further purification (see next 

section). 

 

Scheme 6. Synthesis of the decarboxylated quinolone cores 26, 27. Reagents and conditions: (i) 2-propanol, 70 
°C, 1 h; (ii) diphenyl ether – biphenyl (eutectic ratio), 220 °C, 2 h. 
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A large excess of piperazine (3-4 eq.) and a moderate heating (80°C, b.p. acetonitrile) 

were necessary to drive the reaction to completion. All the compounds were purified by 

silica gel flash column chromatography with a mixture DCM-MeOH (5-20%) + 1% 

triethylamine. 

 

Scheme 7. (a) Synthesis of the piperazinyl derivatives 28-32; (b) Synthesis of the piperazinyl derivatives 33. 
Reagents and conditions: (i) piperazine, MeCN, 80°C, overnight. 
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carbonyl group), was completely unreactive towards the SnAr, and was easily separated 

from the required regioisomer piperazinyl derivative 32 by column chromatography. 

Derivatives 29 and 31 were subjected to hydrolyzed successfully affording the 

compounds 34, 35 (Scheme 8). Despite the very mild conditions (use of LiOH, weaker then 

NaOH; room temperature), the reaction proceeded quickly to completion (30 min). The 

hydrolyzed compounds, given their zwitterionic nature, were completely water soluble and 

were precipitated as salts by carefully adjusting the pH to 7 with HCl. The collected white 

solids were directly used in the next step without purification. 

 
Scheme 8. Synthesis of the carboxyl acid derivatives 34, 35. Reagents and conditions: (i) LiOH, water, RT, 30 
min. 
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Scheme 9. (a) Synthesis of the piperazine-thioureatrifluoromethylphenyl derivatives 36-42; (b) Synthesis of the 
piperazine-thioureatrifluoromethylphenyl derivatives 43. Reagents and conditions: (i) for compounds 36-40, 
42, 43, 4-(trifluoromethyl) phenyl isothiocyanate, DMFdry, RT, overnight; (ii) for compound 41, 4-
(trifluoromethyl) phenyl isothiocyanate, base (Cs2CO3 or DIPEA), DMFdry, RT, overnight. 
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was not possible to test 41 in the biological assays. 
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6.5. Conclusions 

AMR represents one of the most serious challenges threatening global health during this 

century. Several approaches have been undertaken to tackle it and, among all, one of the 

most interesting strategies could be to improve/prolong the efficacy of existing 

antimicrobial drugs by directly countering bacterial mechanisms of drug resistance. 

Inhibition of the bacterial DNA repair mechanisms is one potential method to achieve this 

goal. 

IMP-1700 is one of the most potent inhibitors of bacterial DNA repair mechanism 

developed to date. However, its CFX core, responsible for unwanted cipro-like activity (DNA 

damages, activation of SOS response) and subject to an FDA warning for “black-box 

toxicity”, is not ideal for a lead compound and makes the progression to the subsequent 

phase of drug development unlikely.  

The main aim of this project was to conduct a SAR analysis on the bicyclic CFX scaffold 

of IMP-1700, to understand whether this part of the molecule is required to maintain the 

biological activity; on the other hand, no changes were made on the piperazine-thiourea-

(4-trifluoromethyl) phenyl moiety. In particular, in this study new benzo-fused six 

membered heterocyclic analogues (4-quinazolinones; 2,4-quinazolinediones; 4-quinolone) 

of the lead compound (compounds 36-43) have been designed and successfully synthetized. 

Seven of them (compounds 36-40 and 42,43) were isolated with appropriate purity and 

progressed to biological testing, which are still in progress. The results of the MRSA assay 

(CFX potentiation), as well as the SOS response and RecBCD inhibition assays will show 

whether the changes made on the IMP-1700 structure allows to maintain the potent SOS 

inhibitory activity, without the unwanted side effects. This could represent an important 

starting point for the design of a new class of more selective compounds. 
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6.6. Materials and Methods 

6.6.1. Chemistry 

Unless otherwise indicated, all reagents and solvents were purchased from commercial 

sources (Merck, Alfa Aesar, Thermo Fisher and Fluorochem) and used without further 

purification. Water was purified by a Suez® Select Fusion system. Organic layers were dried 

over MgSO4. In vacuo refers to the use of a rotatory evaporator attached to either a rotary 

vane or diaphragm pump. Thin layer chromatography (TLC) was performed on Merck 

aluminium plates coated with 60 F254 silica and were visualized using UV light (254 or 364 

nm) or by ninhydrin. Flash column chromatography was performed on a Teledyne ISCO 

Combiflash® Rf+ using Redisep® standard prepacked cartridge system.  
1H NMR, 13C NMR spectra were recorded on Bruker Advance spectrometers (Bruker 

AVIIIHD 400 nanobay), at 400 and 101 MHz respectively, in the specified deuterated 

solvent. Chemical shifts (d) are reported in parts per million (ppm) and referred as the 

internal standard to the residual solvent peaks; the coupling constants J are expressed in Hz 

and were measured through MestReNova software. Due to the poor solubility, the carbon 

assignments for the SnAr derivatives were not possible. Compound peaks overlapped with 

water peaks were assigned using COSY NMR experiments. The NMR of the most 

representative compounds are reported in the Supplementary Figures S7-19. The following 

abbreviations are used: br s = broad signal, s = singlet, d = doublet, dd = double doublet, t = 

triplet, q = quartet, m = multiplet, RT = room temperature.  

High resolution mass spectra (HRMS) were recorded on a Waters BioAccord system, 

from solutions of MeOH, water or mixture. The purity of the tested compounds was 

determined to be >95% by analytical reverse phase HPLC performed with a dual-pump LC-

20AD system equipped with an Atlantis dC18 Column (100Å, 5 µm, 4.6 mm X 150 mm) and 

eluted with a gradient 20-100% MeCN in water (15 min run), using Shimidzu UV/VIS 

detector SPD-20A (selected wavelengths: 254nm, 280 nm).  

Starting materials 2-amino-4,5-difluobenzoic acid (9), methyl 2-amino-4,5-

difluorobenzoate (19) and 3,4-difluoaniline (23) were commercially available. The 

intermediated 12, 17, 26/27 were prepared following previously reported procedures, as 
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indicated in the corresponding sections; the spectra data determined were consistent with 

the ones reported in literature. 

6.6.1.1. Synthesis of the difluorinated heterocyclic scaffolds 

6,7-difluoroquinazolin-4(1H)-one (12) 

2-Amino-4,5-difluorobenzoic acid 9 (1.0 g, 5.8 mmol), glacial acetic acid (2.5 mL), and 

formamide (9 mL) were mixed at 125 °C for 24h. The mixture was cooled to RT and ice water 

(15 mL) was added. The precipitate was filtered, collected, and dried under vacuum to 

obtain 12 as a white solid (950 mg, 90%). 1H NMR (400 MHz, DMSO-d6) δ: 12.48 (br s, 1H, 

NH), 8.14 (s, 1H, H2), 8.02 (dd, J = 10.5, 8.8 Hz, 1H, H5 or H8), 7.74 (dd, J = 11.4, 7.3 Hz, 1H, 

H5 or H8) [222]. 

Methyl 2-(6,7-difluoro-4-oxoquinazolin-3(4H)-yl)acetate (13) 

To a suspension of 6,7-difluoroquinazolin-4(3H)-one 12 (1 mmol) in anhydrous DMF (10 

mL), K2CO3 (1.5 mmol) and methyl 2-bromoacetate (1.1 mmol) were added. The mixture 

was heated at 50°C for 2 h, then allowed to cool to RT. LiCl(aq) 5% (30 mL) was added, and 

the product extracted with EtOAc (3x25mL), dried, and the solvent removed in vacuo to give 

13 as a light brown crystal. Yield: 95%. 1H NMR (400 MHz, DMSO-d6) δ: 8.43 (s, 1H, H2), 8.08 

(dd, J = 10.4, 8.6 Hz, 1H, H5 or H8), 7.83 (dd, J = 11.3, 7.3 Hz, 1H, H5 or H8), 4.86 (s, 2H, CH2), 

3.72 (s, 3H, -OCH3). 13C NMR (101 MHz, DMSO-d6) δ: 168.67, 159.37 (d, JC-F = 2.8 Hz), 154.44 

(dd, JC-F = 254.7, 14.6 Hz), 149.39 (dd, JC-F = 249.1, 13.9 Hz), 149.30 (d, JC-F = 2.2 Hz), 146.48 

(dd, JC-F = 11.4, 2.3 Hz), 119.03 (dd, JC-F = 6.8, 1.8 Hz), 116.01 (d, JC-F = 17.8 Hz), 114.18 (dd, 

JC-F = 19.0, 2.1 Hz), 52.96, 47.74. HRMS (ESI+) m/z calculated for C11H9F2N2O3 255.0576, 

found 255.0574. 

6,7-difluoroquinazoline-2,4(1H,3H)-dione (17) 

KOCN (5.22 mmol) in water (5 mL) was added to a solution of 2-amino-4,5-difluorobenzoic 

acid 9 (4.04 mmol) in water/AcOH (18 mL/0.25 mL). The mixture was stirred overnight at 

RT. NaOH (0.092 mol) was added slowly in portions first forming a clear purple solution, and 

then precipitation. After stirring for 10 mins the precipitate was filtered and resuspended 

in H2O, acidified to pH 4 with 4N HCl, and stirred for another minute. The precipitate was 
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filtered, washed with cold water, and dried to give 17 as a white powder (Yield: 61 %). 1H 

NMR (400 MHz, DMSO-d6) δ 11.48 (br s, 1H, NH), 11.27 (br s, 1H, NH), 7.83 (td, J = 9.6, 2.3 

Hz, 1H, H8), 7.15 – 7.05 (m, 1H, H5) [225]. 

Ethyl 2-(6,7-difluoro-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetate (22) 

To a suspension of methyl-2-amino-4,5-difluorobenzoate 19 (4.27 mmol) in pyridine (5 mL), 

was added ethyl isocyanatoacetate 20 (0.74 mL, 1.55 mmol) dropwise. The reaction mixture 

was stirred at 50°C for 5 h then allowed to cool to RT. The solvent was removed in vacuo, 

with the residue resuspended in EtOH and NaOEt 21% w/w in EtOH (3.2 mL, 2 eq. of sodium 

ethoxide) added. After stirring for 1h at room temperature, the mixture was slowly 

neutralized with HCl 2N in an ice bath. The volatiles were removed in vacuo and the 

resulting solid was collected by filtration, washed thoroughly with water and EtOH and dried 

under vacuum to obtain ethyl (22) as a fluffy orange solid. Yield: 91%. 1H NMR (400 MHz, 

DMSO-d6) δ: 11.76 (br s, 1H, NH), 7.92 (dd, J = 10.2, 8.4 Hz, 1H, H8), 7.17 (dd, J = 10.9, 6.6 

Hz, 1H, H5), 4.63 (s, 2H, CH2), 4.15 (q, J = 7.1 Hz, 2H, -OCH2CH3), 1.20 (t, J = 7.1 Hz, 3H, -

OCH2CH3). 13C NMR (101 MHz, DMSO-d6) δ: 168.28, 160.71 (d, JC-F = 2.4 Hz), 154.50 (dd, JC-F 

= 254.9, 14.6 Hz), 149.97, 146.21 (dd, JC-F = 243.7, 13.9 Hz), 137.53 (d, JC-F = 11.2 Hz), 116.16 

(d, JC-F = 19.2 Hz), 110.48 (d, JC-F = 4.2 Hz), 104.81 (d, JC-F = 21.9 Hz), 61.63, 41.93, 14.46. 

HRMS (ESI+) calculated for C12H10F2N2O4 [M+H]+ 285.0681, found 285.0677. 

6,7-difluoroquinolin-4(1H)-one (26)/5,6-difluoroquinolin-4(1H)-one (27) 

3,4-Difluoroaniline (23, 1.55 mmol) and 5-methoxymethylene-2,2-dimethyl-[1,3]-dioxa,n-

4,6-dione (24, 1.565 mmol) were dissolved in 2-propanol (5 ml), and the solution was stirred 

at 70°C for 30 min. The reaction mixture was filtered and was washed with methanol and 

ether, and dried to obtain a yellow solid. This was combined with biphenyl (5.8 g) and 

diphenyl ether (20 ml) and the suspension was stirred at 220 °C for 1h. The reaction mixture 

was filtered and washed with CHCl3, with the resulting residue containing a mixture of the 

two regioisomers 26 and 27 and used in the next reaction without purification [227]. 
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6.6.1.2. Synthesis of the 7-piperazinyl derivatives 

Genaral procedure for Piperazine SnAr: 

Piperazine (4 eq.) was added to a solution of difluoro heteroyclic compound (1 eq.) in 

anhydrous MeCN. The reaction was stirred at 80 °C overnight. The solvent was removed in 

vacuo and the residue was purified via flash silica column chromatography DCM-MeOH (5-

25%) with 1% Et3N. 

6-fluoro-7-(piperazin-1-yl)quinazolin-4(1H)-one (28) 

Prepared following the general procedure from the difluoro heterocyclic intermediate 12. 

Yield: 89%. 1H NMR (400 MHz, DMSO-d6) δ: 8.02 (s, 1H, H2), 7.67 (d, J = 13.2 Hz, 1H, H5), 

7.10 (d, J = 8.1 Hz, 1H, H8), 3.11 (m, 4H, 2xCH2, H2’, H-6’), 2.88 (s, 4H, 2xCH2, H3’, H5’), NHs 

missing. HRMS (ESI+) m/z calculated for C12H14FN4O 249.1146 [M+H]+, found 249.1146. 

Methyl 2-(6-fluoro-4-oxo-7-(piperazin-1-yl)quinazolin-3(4H)-yl)acetate (29) 

Prepared following the general procedure from the difluoro heterocyclic intermediate 13. 

Yield 75%. 1H NMR (400 MHz, DMSO-d6) δ: 8.32 (s, 1H, H2), 7.73 (d, J = 13.1 Hz, 1H, H5), 7.20 

(d, J = 8.0 Hz, 1H, H8), 4.82 (s, 2H, CH2), 3.71 (s, 3H, -OCH3), 3.33 – 3.26 (m, 4H, 2xCH2, H2’, 

H-6’), 3.11 – 3.04 (m, 4H, 2xCH2, H3’, H5’), NH missing. HRMS (ESI+) m/z calculated for 

C15H18FN4O3 [M+H]+ 321.1357, found 321.1359. 

6-fluoro-7-(piperazin-1-yl)quinazoline-2,4(1H,3H)-dione (30) 

Prepared following the general procedure from the difluoro heterocyclic intermediate 17. 

Yield 60%. 1H NMR (400 MHz, DMSO-d6) δ: 7.48 (d, J = 13.0 Hz, 1H, H5), 6.68 (d, J = 7.3 Hz, 

1H, H8), 3.19 – 3.12 (m, 4H, 2xCH2, H2’, H-6’), 3.02 – 2.95 (m, 4H, 2xCH2, H3’, H5’), NHs missing. 

HRMS (ESI+) m/z calculated for C12H13FN4O2 [M+H]+ 264.1022, found 264.1021. 

Ethyl 2-(6-fluoro-2,4-dioxo-7-(piperazin-1-yl)-1,4-dihydroquinazolin-3(2H)-yl)acetate (31) 

Prepared following the general procedure from the difluoro heterocyclic intermediate 22. 

Yield: 92%. 1H NMR (400 MHz, DMSO-d6) δ: 7.54 (d, J = 13.0 Hz, 1H, H5), 6.71 (d, J = 7.3 Hz, 

1H, H8), 4.61 (s, 2H, CH2), 4.13 (q, J = 7.1 Hz, 2H, -OCH2CH3), 3.23 – 3.17 (m, 4H, 2xCH2, H2’, 
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H-6’), 3.04 – 2.97 (m, 4H, 2xCH2, H3’, H5’), 1.20 (t, J = 7.1 Hz, 3H, -OCH2CH3), NHs missing. 

HRMS (ESI+) m/z calculated for C16H19FN4O4 [M+H]+ 351.1463, found 351.1478. 

6-fluoro-7-(piperazin-1-yl)quinolin-4(1H)-one (32) 

Prepared following the general procedure from the two difluoro heterocyclic intermediate 

26/27. Yield: 68%. 1H NMR (400 MHz, DMSO-d6) δ: 7.83 (d, J = 7.2 Hz, 1H, H1), 7.62 (d, J = 

13.7, 1H, H5), 6.99 (t, J = 9.1 Hz, 1H, H8), 5.93 (d, J = 7.2 Hz, 1H, H3), , 3.03 (m 4H, 2xCH2, H2’, 

H-6’), 2.87 (m, 4H, 2xCH2, H3’, H5’), NHs missing. 

Methyl 2-amino-5-fluoro-4-(piperazin-1-yl)benzoate (33) 

Prepared following the general procedure from the difluoro starting material 19. Yield: 74%. 
1H NMR (400 MHz, DMSO-d6) δ: 7.28 (d, J = 14.7 Hz, 1H, H6), 6.49 (br s, 2H, NH2), 6.28 (d, J 

= 8.0 Hz, 1H, H3), 3.73 (s, 3H, -OCH3), 3.01 – 2.94 (m, 4H, 2xCH2, H2’, H-6’), 2.85 – 2.79 (m, 4H, 

2xCH2, H3’, H5’). 

6.6.1.3. General procedure for the ester hydrolysis (synthesis of compounds 34, 35) 

To a suspension of the appropriate ester (29 or 31, 1 eq.) in water was added LiOH (2.5 eq.) 

and the mixture was stirred at RT. After 30 min, the mixture was slowly neutralized to pH 

6-7 with 2N HCl(aq) and filtered under vacuum. The obtained white precipitate was dried 

under vacuum and used for the next step without purification. 

6.6.1.4. Synthesis of the piperazine-thioureatrifluoromethylphenyl derivatives 36-43 

(Isothiocyanate coupling reaction) 

• General Procedure A 

To suspension of piperazine derivative (1 eq.) in anhydrous DMF was added 4-

(trifluoromethyl)phenyl isothiocyanate 8 (1.1 eq.) and the resulting mixture was allowed to 

stir at RT overnight under argon. The solvent was removed in vacuo and the residue was 

washed with LiCl (aq) 5% w/v and then with Et2O. The crude residue was then purified by 

flash silica column chromatography. 

• General Procedure B 
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To suspension of piperazine derivative (1 eq.) in anhydrous DMF was added 4-

(trifluoromethyl) phenyl isothiocyanate 8 (1.1 eq.), and base (1 eq). The resulting mixture 

was allowed to stir at RT overnight under argon. The solvent was removed in vacuo and the 

residue was washed with NH4Cl (aq), LiCl (aq) 5% w/v, and then with Et2O. The crude residue 

was then purified by flash silica column chromatography. 

• General Procedure C 

To suspension of piperazine derivative (1 eq.) in anhydrous DMF was added 4-

(trifluoromethyl) phenyl isothiocyanate 8 (1.1 eq.). The resulting mixture was allowed to stir 

at RT overnight under argon. The solvent was removed in vacuo and the residue was washed 

with Et2O, LiCl (aq) 5% w/v, and then 1N HCl. There were no further purification steps. 

4-(6-fluoro-4-oxo-1,4-dihydroquinazolin-7-yl)-N-(4-(trifluoromethyl)phenyl)piperazine-1-

carbothioamide (36) 

Prepared following General Procedure A from intermediate 28. Purification via flash silica 

column chromatography DCM-MeOH (2-15%). Yield 83%. 1H NMR (400 MHz, DMSO-d6) δ: 

12.19 (br s, 1H, NH), 9.79 (s, 1H, HSCN-H), 8.04 (s, 1H, H2), 7.72 (d, J = 12.9 Hz, 1H, H5), 7.65 

(d, J = 8.4 Hz, 2H, H2’’, H6’’), 7.59 (d, J = 8.4 Hz, 2H, H3’’, H5’’), 7.17 (d, J = 8.0 Hz, 1H, H8), 4.12 

(t, J = 5.0 Hz, 4H, 2xCH2, H3’, H5’), 3.35 (t, J = 4.9 Hz, 4H, 2xCH2, H2’, H6’). 13C NMR (101 MHz, 

DMSO-d6) δ: 181.79, 160.20 (d, 4JC-F = 2.9 Hz), 153.57 (d, 1JC-F = 247.2 Hz), 147.35, 145.72, 

145.52 (d, 2JC-F = 9.76 Hz), 145.37 (d, 4JC-F = 1.33 Hz), 125.55 (q, 3JC-F = 3.84 Hz), 124.93 (q, 1JC-

F = 271.21 Hz), 124.68, 124.17 (q, 2JC-F = 32.13 Hz), 116.49 (d, 3JC-F = 8.2 Hz), 115.99 (d, 3JC-F = 

3.1 Hz), 111.78 (d, 2JC-F = 23.0 Hz), 49.49 (d, 4JC-F = 4.3 Hz), 48.38. HRMS (ESI+) m/z calculated 

for C20H17F4N5OS [M+H]+ 452.1163, found 452.1161. 

Methyl 2-(6-fluoro-4-oxo-7-(4-((4-(trifluoromethyl)phenyl)carbamothioyl)piperazin-1-

yl)quinazolin-3(4H)-yl)acetate (37) 

Prepared following General Procedure A from intermediate 29. Purification via flash silica 

column chromatography DCM-MeOH (2-10%). Yield: 15%. 1H NMR (400 MHz, DMSO-d6) δ: 

9.73 (s, 1H, HSCN-H), 8.32 (s, 1H, H2), 7.75 (d, J = 12.9 Hz, 1H, H5), 7.66 (d, J = 8.4 Hz, 2H, H3’’, 

H5’’), 7.58 (d, J = 8.4 Hz, 2H, H2’’, H6’’), 7.21 (d, J = 7.9 Hz, 1H, H8), 4.82 (s, 2H, CH2), 4.13 (t, J 
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= 4.9 Hz, 4H, 2xCH2, H3’, H5’), 3.71 (s, 3H, -OCH3), 3.40 (m, 4H, 2xCH2, H2’, H6’). 13C NMR (101 

MHz, DMSO-d6) δ: 181.79, 168.94, 159.56 (d, 4JC-F = 2.5 Hz), 153.76 (d, 1JC-F = 248.0 Hz), 

148.28, 146.64, 145.79 (d, 2JC-F = 9.9 Hz), 145.30, 125.63 (q, 3JC-F = 3.76 Hz), 124.96 (q, 1JC-F = 

271.4 Hz), 124.70, 124.26 (q, 2JC-F = 31.9 Hz), 115.94 (d, 3JC-F = 3.2 Hz), 114.95 (d, 3JC-F = 8.5 

Hz), 112.03 (d, 2JC-F = 23.0 Hz), 52.89, 49.36 (d, 4JC-F = 4.27 Hz), 48.29, 47.50. HRMS (ESI+) 

m/z calculated for C23H21F4N5O3S [M+H]+ 524.1374, found 524.1373. 

4-(6-fluoro-2,4-dioxo-1,2,3,4-tetrahydroquinazolin-7-yl)-N-(4-(trifluoromethyl)phenyl) 

piperazine-1-carbothioamide (38) 

Prepared following General Procedure A from intermediate 30. Purification via flash silica 

column chromatography DCM-MeOH (10-25%). Yield: 65%. 1H NMR (400 MHz, DMSO-d6) δ: 

11.18 (br s, 1H, NH), 11.02 (br s, 1H, NH), 9.71 (s, 1H, HSCN-H), 7.66 (d, J = 8.6 Hz, 2H, H2’’, H6’’), 

7.58 (d, J = 8.5 Hz, 2H, H3’’, H5’’), 7.51 (d, J = 12.9 Hz, 1H, H5), 6.67 (d, J = 7.3 Hz, 1H, H8), 4.10 

(t, J = 4.8 Hz, 4H, 2xCH2, H3’, H5’), 3.31 (t, J = 5.2 Hz, 4H, 2xCH2, H2’, H6’). 13C NMR (101 MHz, 

DMSO-d6) δ: 181.79, 162.36 (d, 4JC-F = 2.5 Hz), 150.86, 150.38 (d, 1JC-F = 241.13 Hz), 145.65 

(d, 2JC-F = 9.82 Hz), 145.27 (d, 4JC-F = 1.18 Hz), 139.05, 125.62 (q, 3JC-F = 4.06 Hz), 124.91 (q, 
1JC-F = 271.82 Hz), 124.67, 124.41 (q, 2JC-F = 32.07 Hz), 113.24 (d, 2JC-F = 23.5 Hz), 107.31 (d, 
3JC-F = 7.5 Hz), 104.16 (d, 3JC-F = 2.07 Hz), 49.16 (d, 4JC-F = 4.3 Hz), 48.26. HRMS (ESI+) m/z 

calculated for C20H17F4N5O2S [M+H]+ 468.1112, found 468.1119. 

Ethyl 2-(6-fluoro-2,4-dioxo-7-(4-((4-(trifluoromethyl)phenyl)carbamothioyl)piperazin-1-yl)-

1,4-dihydroquinazolin-3(2H)-yl)acetate (39) 

Prepared following General Procedure A from intermediate 31. Purification via flash silica 

column chromatography DCM-MeOH (2-15%). Yield: 55%. 1H NMR (400 MHz, DMSO-d6) δ: 

11.52 (br s, 1H, NH), 9.72 (s, 1H, HSCN-H), 7.66 (d, J = 8.3 Hz, 2H, H2’’, H6’’), 7.62 – 7.53 (m, 3H, 

H5, H3’’, H5’’), 6.69 (d, J = 7.2 Hz, 1H, H8), 4.62 (s, 2H, CH2), 4.13 (m, 6H, 3xCH2, H2’, H6’, -

OCH2CH3), 3.34 (m, 4H, 2xCH2, H3’, H5’), 1.20 (t, J = 7.1 Hz, 3H, -OCH2CH3). 13C NMR (101 MHz, 

DMSO-d6) δ: 181.80, 168.53, 161.01 (d, 4JC-F = 2.4 Hz), 150.52 (d, 1JC-F = 242.1 Hz), 150.32, 

146.04 (d, 2JC-F = 9.9 Hz), 145.28, 137.69, 125.62 (q, 3JC-F = 3.8 Hz), 124.91 (q, 1JC-F = 271.3 

Hz), 124.66, 124.27 (q, 2JC-F = 31.7 Hz), 113.69 (d, 2JC-F = 23.5 Hz), 106.09 (d, 3JC-F = 7.9 Hz), 
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103.96, 61.51, 49.07 (d, 4JC-F = 4.32 Hz), 48.22, 41.72, 14.48. HRMS (ESI+) m/z calculated for 

C24H23F4N5O4S [M+H]+ 554.1480, found 554.1476. 

4-(6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-N-(4-(trifluoromethyl)phenyl)piperazine-1-

carbothioamide (40) 

Prepared following General Procedure A from intermediate 32. Purification via flash silica 

column chromatography DCM-MeOH (5-20%). Yield: 75%. 1H NMR (400 MHz, DMSO-d6) δ: 

12.15 (br s, 1H, NH), 9.77 (s, 1H, HSCN-H), 7.98 (d, J = 7.3 Hz, 1H, H2), 7.72 (d, J = 13.4 Hz, 1H, 

H5), 7.67 (d, J = 8.5 Hz, 2H, H3’’, H5’’), 7.59 (d, J = 8.4 Hz, 2H, H2’’, H6’’), 7.10 (d, J = 7.5 Hz, 1H, 

H8), 6.13 (d, J = 7.3 Hz, 1H, H3), 4.14 (t, J = 5.1 Hz, 4H, 2xCH2, H2’, H6’), 3.31 (d, J = 5.0 Hz, 4H, 

2xCH2, H3’, H5’). 13C NMR (101 MHz, DMSO-d6) δ: 181.84, 175.49 (d, 4JC-F = 2.15 Hz), 152.51 

(d, 1JC-F = 245.2 Hz), 145.32, 143.96 (d, 2JC-F = 11.3 Hz), 140.03, 138.25, 125.61 (q, 3JC-F = 3.60 

Hz), 124.92 (q, 1JC-F = 271.37 Hz), 124.67, 124.23 (q, 2JC-F = 31.81 Hz), 120.28 (d, 3JC-F = 6.5 

Hz), 110.32 (d, 2JC-F = 21.8 Hz), 107.87, 107.04 (d, 3JC-F = 2.3 Hz), 49.64 (d, 4JC-F = 3.75 Hz), 

48.40. HRMS (ESI+) m/z calculated for C21H18F4N4OS [M+H]+ 451.1210, found 451.1210. 

2-(6-fluoro-4-oxo-7-(4-((4-(trifluoromethyl)phenyl)carbamothioyl)piperazin-1-yl 

)quinazolin-3(4H)-yl)acetic acid (41) 

Prepared following General Procedure B from intermediate 34. Purification via flash silica 

column chromatography DCM-MeOH (5-20%) + 1% AcOH. Yield: 10%, impure. 1H NMR (400 

MHz, DMSO-d6) δ:  9.77 (s, 1H, HSCN-H), 8.33 (s, 1H, H2), 7.76 (d, J = 13.0 Hz, 1H, H5), 7.66 (d, 

J = 8.5 Hz, 2H, H2’’, H6’’), 7.60 (d, J = 8.5 Hz, 2H, H3’’, H5’’), 7.21 (d, J = 8.0 Hz, 1H, H8), 4.72 (s, 

2H, CH2), 4.13 (t, J = 5.0 Hz, 4H, 2xCH2, H3’, H5’), 3.39 (t, J = 5 Hz, 4H, 2xCH2, H2’, H6’), OH 

missing. HRMS (ESI-) m/z calculated for C22H19F4N5O3S [M-H]- 508.1072, found 508.1076. 

2-(6-fluoro-2,4-dioxo-7-(4-((4-(trifluoromethyl)phenyl)carbamothioyl)piperazin-1-yl)-1,4-

dihydroquinazolin-3(2H)-yl)acetic acid (42) 

Prepared following General Procedure C from intermediate 35. Yield: 82 %. 1H NMR (400 

MHz, DMSO-d6) δ: 12.89 (br s, 1H, -COOH), 11.50 (s, 1H, NH), 9.78 (s, 1H, HSCN-H), 7.66 (d, J 

= 8.6 Hz, 2H, H2’’, H6’’), 7.62 – 7.54 (m, 3H, H5, H3’’, H5’’), 6.72 (d, J = 7.3 Hz, 1H, H8), 4.53 (s, 

2H, CH2), 4.12 (t, J = 4.8 Hz, 4H, 2xCH2, H3’, H5’), 3.34 (m, 4H, 2xCH2, H2’, H6’). 13C NMR (101 



 106 

MHz, DMSO-d6) δ: 181.80, 169.87, 161.07 (d, 4JC-F = 2.0 Hz), 150.50 (d, 1JC-F = 242.0 Hz), 

150.39, 145.90 (d, 2JC-F = 9.8 Hz), 145.35, 137.71, 125.56 (q, 3JC-F = 3.9 Hz), 124.92 (q, 1JC-F = 

271.5 Hz), 124.68, 124.20 (q, 2JC-F = 31.9 Hz), 113.65 (d, 2JC-F = 23.5 Hz), 106.32 (d, 3JC-F = 8.2 

Hz), 104.00, 49.13 (d, 4JC-F = 4.4 Hz), 48.26, 41.79. HRMS (ESI-) m/z calculated for 

C22H19F4N5O4S [M-H]- 524.1022, found 524.1021. 

Methyl 2-amino-5-fluoro-4-(4-((4-(trifluoromethyl)phenyl)carbamothioyl)piperazin-1-

yl)benzoate (43) 

Prepared following General Procedure A from intermediate 33. Purification via flash column 

chromatography DCM-MeOH (2-10%). Yield: 60%. 1H NMR (400 MHz, DMSO-d6) δ: 9.69 (s, 

1H, HSCN-H), 7.66 (d, J = 8.6 Hz, 2H, H2’’, H6’’), 7.58 (d, J = 8.2 Hz, 2H, H3’’, H5’’), 7.34 (d, J = 14.5 

Hz, 1H, H5), 6.53 (br s, 2H, NH2), 6.33 (d, J = 7.9 Hz, 1H, H8), 4.07 (m, 4H,  2xCH2, H2’, H6’), 

3.75 (s, 3H, -OCH3), 3.24 – 3.17 (m, 4H, 2xCH2, H3’, H5’). HRMS (ESI+) m/z calculated for 

C20H20F4N4O2S [M+H]+ 457.1316, found 457.1323. 
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List of Abbreviations 

AAP – Antiproliferative Activity Predictor tool 

ABL – Abelson kinase 

ALL – Acute Lymphoblastic Leukemia 

AMR – Antimicrobial Resistance 

AUC – Area Under the Curve 

BCR - Breakpoint Cluster Region protein 

CCLE – Cancer Cell Line Encyclopedia 

Cdc25 - Cell division cycle 25 phosphatase 

Cdk – Cyclin dependent kinase 

CFX - Ciprofloxacin 

CGP – Comprehensive Genomic Profiling 

CML -  Chronic Myeloid Leukemia 

CL – Cell Line module (DRUDIT) 

CNS – Central Nervous System 

CRISPR - Clustered Regularly Interspaced Short Palindromic Repeats 

CTRP – Cancer Therapeutics Response Portal 

DAS – Drudit Affinity Score 

DCM - Dichloromethane 

DIPEA – N,N-Diisopropylethylamine 

DMF - Dimethylformamide 

DMSO - Dimethylsulfoxide 

DNMDP - 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one 

DRUDITonline - DRUg DIscovery Tools online platform 

DSB – DNA double strand break 

DTP – Developmental Therapeutic Program (NCI) 

|DTV (GI50)| - Absolute deviation of the predicted GI50 from the experimental GI50 

EGFR – Epidermal Growth Factor Receptor 

EP – Protein expression pattern 
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FDA – Food and Drug Administration 

FP – Finger Print module (DRUDIT) 

GDA - Genomic and Drugs Integrated Analysis database 

GDSC – Genomic and Drug Sensitivity in Cancer portal 

GEDA - Gene Expression and Drug Activity 

G% - Percentage of cancer cell growth inhibition 

GI50 – Growth inhibition 50%, Half-maximal cell growth inhibitory concertation 

GI50(CL) - Growth inhibition 50% predicted by the CL module (AAP tool). 

GI50(FP) - Growth inhibition 50% predicted by the FP module (AAP tool). 

HAT – Histone acetyl transferase 

HDAC – Histone Deacetylase 

HPLC – High-Performance Liquid Chromatography 

IC50 – Half-maximal inhibitory concentration 

IFD – Induced-Fit Docking simulation 

LC50 – lethal concentration 50 

MeOH - Methanol 

MG_MID – Mean Graph MIDpoint 

MOLDESTO – MOLecular DEScriptor TOols 

MRSA – Methycillin resistant Staphilococcus Aureus 

NCI - National Cancer Institute 

NCI2014DB – Structure database released by NCI till 2014, training set 

NCI2016DB – Structure database released by NCI after 2014, test set 

NEP – Normalized Protein Expression pattern data 

NGI50 – Normalized GI50 data 

OD – Optical Density 

ORL1 - Opioid receptor-like 1 receptor 

PAINS - Pan-assay interference compounds 

PCA – Principal Component Analysis 

PDB – Protein Data Bank 
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PDE3A – Phosphodiesterase 3A 

Rf – Retention factor (chromatography) 

ROS – Reactive oxygen species 

RT – Room temperature 

SAR – Structure-activity relationship 

SnAr – Nucleophilic Aromatic Substitution 

TGI – Concentration for total inhibition of cancer cell proliferation 

TLC - Thin Layer Chromatography  

UV/vis – Ultraviolet/visible light 
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Supplementary Materials: 

The following are available online at: 

https://drive.google.com/drive/folders/14k6HZl4CqB0FH7lhGjCissiZ1W1f0Z7v?usp=sharin

g  

 

S1: list of molecular descriptors implemented in MOLDESTO (.pdf). 

S2: list of the selected structures from NCI2014DB for internal validation and relative .mol 

files (.zip). 

S3: experimental GI50s of the NCI2014DB structures selected for internal test (.xlsx). 

S4: 18 output matrices of GI50(CL) calculation for internal validation (.xlsx). 

S5: analysis of |DTV(GI50)| for the 18 matrices (.xlsx). 

S6: list of the selected structures from NCI2016DB for external validation and relative .mol 

files (.zip). 

S7: |DTV(GI50)| obtained for the external validation (.xlsx). 

S8: |DTV(GI50)| obtained for the FP external validation (.xlsx). 

S9: Parameter optimization for cell line-specific activity prediction (.xlsx). 

S10: APP parameter optimization for curcumin (.xlsx). 

S11: AAP output matrix for the in-house database of curcumin-like compounds (.xlsx). 

S12: One dose response overview and mean graphs for the 5 selected compounds (.zip). 

S13: Five-dose response data for 1a and 3e (.zip). 

S14: Comparison GI50 experimental- predicted for 1a and 3e (.xlsx). 

S15: Case studies from NCI database for the correlation drug activity - protein expression 

(.xlsx); 

S16: 117 Cdc25 inhibitors selected to build the template (.pdf).  

S17: Cdc25 DAS calculated for purchasable structures database (.xlsx).  

S18: 106 selected structures with Cdc25 DAS above 0.8 (.pdf).  

S19: Cdc25s normalized NCI expression (.xlsx).  

S20: GI50 predicted values for the 106 selected structures (.xlsx).  

S21: Matching of Cdc25s EP-GI50 for the 106 selected structures (.xlsx).  
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S22: Molecular descriptors matrix of the template and selected structures and PCA results 

(.xlsx).  

S23: HRMS data for the in vitro tested compounds (.pdf).  

S24: Dose-response curves for the data presented in Table 8 (.pdf). 
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Supplementary figures: 
Supplementary Figure 1. Normalized Mean graph Experimental GI50 Gefitinib vS EGFR Expression in NCI-60 
panel. 
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Supplementary Figure 2. Normalized Mean graph Experimental GI50 Dasatinib vS Abl and Src expression in 
NCI-60 panel. 
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Supplementary Figure 3. Normalized Mean graph Experimental GI50 Ponatinib vS Abl Expression in NCI-60 
panel. 
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Supplementary Figure 4. Normalized Mean graph Experimental GI50 Imatinib vS Abl Expression in NCI-60 
panel. 
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Supplementary Figure 5. Normalized Mean graph experimental GI50 MIRA-1 vS p53 expression in NCI-60 panel. 
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Supplementary Figure 6. Normalized Mean graph experimental GI50 Crizotinib vS Alk expression in NCI-60 
panel. 
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Supplementary Figure 7. 1H NMR of compound 36 (DMSO-d6). 

 

Supplementary Figure 8. 13C NMR of compound 36 (DMSO-d6). 
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Supplementary Figure 9. 1H NMR of compound 37 (DMSO-d6). 

 

Supplementary Figure 10. 13C NMR of compound 37 (DMSO-d6). 
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Supplementary Figure 11. 1H NMR of compound 38 (DMSO-d6). 

 

Supplementary Figure 12. 13C NMR of compound 38 (DMSO-d6). 
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Supplementary Figure 13. 1H NMR of compound 39 (DMSO-d6). 

 

Supplementary Figure 14. 13C NMR of compound 39 (DMSO-d6). 
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Supplementary Figure 15. 1H NMR of compound 40 (DMSO-d6). 

 

Supplementary Figure 16. 13C NMR of compound 40 (DMSO-d6). 
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Supplementary Figure 17. 1H NMR of compound 42 (DMSO-d6). 

 

Supplementary Figure 18. 13C NMR of compound 42 (DMSO-d6). 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.514.0
f1	(ppm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

GLM066.1.fid
Instrument	AVH400	
Group	TLH	
Chemist	glm	
h1acq.crl	DMSO	{C:\NMR}	tlhgrp	3

7	(s)
11.50

25	(s)
9.78

28,32	(d)
7.66

6,29,31	(m)
7.58

3	(d)
6.72

13	(s)
4.53

20,22	(t)
4.12

19,23	(m)
3.34

3.
6
4

4
.2
1

2.
14

1.
15

3.
4
3

2.
29

1.
0
6

1.
07

3.
3
3

3.
3
4

3.
3
4

3.
3
5

3.
3
7

3.
3
7

3.
3
8

3.
3
9

4
.1
0

4
.1
2

4
.1
3

4
.5
3

6
.7
1

6
.7
2

7.
56
7.
58
7.
59
7.
6
0

7.
6
5

7.
6
7

9
.7
8

11
.5
0

12
.8
9

19,23

13

28,32
6,29,31

20,22

257

3

15

1

2

3

4

5

6

NH
7

8

N
9

10

O

11

O
12

13

14

OH
15

O
16N

17

F
18

19

20

N
21 22

23

24

NH
25

S
26

27

28

29

30

31

32

33

F

34

F
35

F
36

12.012.513.013.5
f1	(ppm)

0

2

4

6

12
.8
9

0102030405060708090100110120130140150160170180190
f1	(ppm)

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

GLM066.4.fid
Instrument	AVF400	
Group	TLH	
Chemist	glm	
Project	Grant	Code	tlh	
c13acq_512.crl	DMSO	{C:\NMR}	tlhgrp	1

24	(s)
181.80

14	(s)
169.87

10	(s)
161.07

27	(s)
137.71

28,29,30,31,32,33	(m)
125.52

6	(d)
113.65

5	(s)
106.32

3	(s)
104.00

19,23	(s)
49.13

20,22	(s)
48.26

13	(s)
41.79

8	(s)
150.39

1	(d)
150.50

4	(s)
145.35

2	(s)
145.90

3
9
.3
1	
D
M
S
O

3
9
.5
2	
D
M
S
O

3
9
.7
3
	D
M
S
O

3
9
.9
4
	D
M
S
O

4
0.
15
	D
M
S
O

4
0.
3
6
	D
M
S
O

4
0.
57
	D
M
S
O

4
1.
79

4
8.
26

4
9
.1
3

10
4
.0
0

10
6
.3
2

11
3.
54

11
3.
77

12
4
.6
8

12
5.
52

12
5.
56

12
5.
6
0

12
6
.2
7

13
7.
71

14
5.
3
5

14
5.
9
0

14
9
.3
0

15
0.
3
9

15
1.
70

16
1.
07

16
9
.8
7

18
1.
8
0

28,29,30,31,32,33

20,22

1
8

19,23
27 13

24 14 4 3
610

2

5

1

2

3

4

5

6

NH
7

8

N
9

10

O

11

O
12

13

14

OH
15

O
16N

17

F
18

19

20

N
21 22

23

24

NH
25

S
26

27

28

29

30

31

32

33

F

34

F
35

F
36



 142 

Supplementary Figure 19.1H NMR of compound 43 (DMSO-d6) 
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