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FRAMES AND WEAK FRAMES FOR UNBOUNDED

OPERATORS

GIORGIA BELLOMONTE AND ROSARIO CORSO

Abstract. In 2012 Găvruţa introduced the notions of K-frame and of atomic

system for a linear bounded operator K in a Hilbert space H, in order to

decompose its rangeR(K) with a frame-like expansion. In this article we revisit

these concepts for an unbounded and densely defined operator A : D(A) → H

in two different ways. In one case we consider a non-Bessel sequence where

the coefficient sequence depends continuously on f ∈ D(A) with respect to the

norm of H. In the other case we consider a Bessel sequence and the coefficient

sequence depends continuously on f ∈ D(A) with respect to the graph norm

of A.

1. Introduction

The notion of frame in Hilbert spaces dates backs to 1952 when it was in-

troduced in the pioneeristic paper of J. Duffin and A.C. Schaffer [21], and was

resumed in 1986 by I. Daubechies, A. Grossman and Y. Meyer in [19]. This notion

is a generalization of that of orthonormal bases. Indeed, let H be a Hilbert space

with inner product 〈·|·〉 and norm ‖ · ‖, a frame is a sequence in H that allows

every element of H to be written as a stable, potentially infinite, linear combina-

tion of the elements of the sequence. The uniqueness of the decomposition is lost,

in general, and this gives a certain freedom in the choice of the coefficients in the

expansion which is in fact a good quality in applications.

L. Găvruţa introduced in [23] the notion of atomic system for a linear, bounded

operator K defined everywhere on H. This notion generalizes frames and also

atomic systems for subspaces in [22]. More precisely, {gn}n∈N ⊂ H is an atomic

system for K if there exists γ > 0 such that for every f ∈ H there exists af =

{an(f)}n∈N ∈ ℓ2, the usual Hilbert space of complex sequences, such that ‖af‖ ≤
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γ‖f‖ and

Kf =

∞∑

n=1

an(f)gn.

This notion turns out to be equivalent to that of K-frame [23]; i.e. a sequence

{gn}n∈N ⊂ H satisfying

(1.1) α‖K∗f‖2 ≤
∞∑

n=1

|〈f |gn〉|
2 ≤ β‖f‖2, ∀f ∈ H,

for some constants α, β > 0, where K∗ is the adjoint of K. The main theorem

in [23] states that if {gn}n∈N is a K-frame, then there exists a Bessel sequence

{hn}n∈N in H, i.e.
∑∞

n=1 |〈f |hn〉|
2 ≤ γ‖f‖2 for all f ∈ H and some γ > 0, such

that

Kf =

∞∑

n=1

〈f |hn〉gn, ∀f ∈ H.

This generalization of frames allows to write every element of R(K), the range

of K, which need not be closed, as a superposition of the elements {gn}n∈N which

do not necessarily belong to R(K). A question can arise at this point: why

develop a theory of K-frames since there already exists a well-studied theory of

frames that reconstruct the entire space H? The answer is that if in a specific

situation we are looking for sequences with some properties, then we may not find

any possible frame, but we may find a K-frame because this notion is weaker and

we could want to decompose just R(K).

Let us see a concrete example: let H = L2(R), φ ∈ L2(R) and consider

the translation system {φn(x)}n∈Z := {φ(x − cn)}n∈Z and the Gabor system

G(φ, a, b) = {φm,n(x)}m,n∈Z := {e2πimbxφ(x − na)} with a, b, c > 0. As it is

known [16], there is no hope to have {φn}n∈Z (or {φm,n}m,n∈Z with ab > 1) as

a frame, whatever φ is in L2(R). But if K is a bounded operator on L2(R) and

R(K) 6= H, then we might find φ such that one of the previous sequences is a

K-frame.

We have taken inspiration to [31, Example 1] for the following simple example.

We write f̂ for the Fourier transform of f , which is defined for f ∈ L1(R) as

f̂(γ) :=
∫
R f(x)e

−2πixγdx, γ ∈ R, and it is extended to f ∈ L2(R) in a standard
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way. Let PW 1

4

= {f ∈ L2(R) : supp(f̂ ) ⊂ [−1
4 ,

1
4)}. If φ ∈ L2(R) is such that

φ̂(γ) =





1 for |γ| ≤ 1
4

decaying to zero continuously for 1
4 ≤ |γ| < 1

2

0 for 1
2 ≤ |γ|,

then we have for f ∈ PW 1

4

f̂ = φ̂f̂ = φ̂
∑

n∈Z

〈f̂ |en〉en =
∑

n∈Z

〈f̂ |en〉φ̂en =
∑

n∈Z

〈f̂ |fn〉φ̂en,

where

en(γ) =




e2πinγ for |γ| ≤ 1

2

0 for |γ| > 1
2 ,

and fn(γ) =




e2πinγ for |γ| ≤ 1

4

0 for |γ| > 1
4 .

Thus f =
∑

n∈Z〈f |ψn〉φn for f ∈ PW 1

4

where φn is the inverse Fourier transform

of φ̂e−n, i.e. φn(x) := φ(x−n), and ψn :=

̂

f−n is the inverse Fourier transform of

f−n, i.e.

ψn(x) =
̂

f−n(x) =




4
sin(π

2
(x−n))

π(x−n) if x 6= 0

1 if x = 0.

If P is the orthogonal projection of L2(R) onto PW 1

4

, then we can write

Pf =
∑

n∈Z

〈Pf |ψn〉φn =
∑

n∈Z

〈f |ψn〉φn, ∀f ∈ L2(R)

since ψn ∈ PW 1

4

. In conclusion, {φn}n∈Z is a K-frame with K = P (it fulfills

(1.1) as one can easily see by taking the Fourier transform) but of course {φn}n∈Z
is not contained in R(P ) = PW 1

4

. Moreover, it is not even a frame sequence, i.e.

a frame for its closed span (indeed {φn}n∈Z does not satisfy [16, Theorem 9.2.5]).

In the literature there are many further studies or variations of K-frames (see

for example [24, 26, 29, 32, 33, 36] and the references therein).

In this paper we deal with two different generalizations of [23] which involve

a closed densely defined operator A on H. When the operator is bounded, all

definitions do coincide with those in [23]. To justify our two different approaches,

let us consider a Bessel sequence {gn}n∈N ⊂ H and assume that, for f ∈ D(A),

the domain of A, we have a decomposition

Af =
∞∑

n=1

an(f)gn,
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for some af := {an(f)}n∈N ∈ ℓ2; in particular, this situation appears when

{gn}n∈N is a frame. If A is unbounded, then the coefficients sequence af can

not depend continuously on f , i.e. it can not exists γ > 0 such that ‖af‖ ≤ γ‖f‖

for every f ∈ D(A); this fact may represent another issue when we want to de-

compose R(A) by a frame.

For these reasons, we develop two approaches where either the sequence {gn}n∈N
or the coefficients sequence af is what represents the unboundedness of A. To go

into more details, in the first case we consider a non-Bessel sequence {gn}n∈N but

the coefficients depend continuously on f ∈ D(A). In the second case, we take

a Bessel sequence {gn}n∈N and coefficients depending continuously on f ∈ D(A)

only in the graph topology of A, which is stronger than the one of H when A is

unbounded.

The paper is organized as follows. After some preliminaries, see Section 2, we

introduce in Section 3, the notions of weak A-frame and weak atomic system for A

(Definitions 3.1 and 3.6, respectively), where A is a, possibly unbounded, densely

defined operator. The word weak is due to the fact that the decomposition of

R(A), with A also closable, holds only in a weak sense, in general; i.e., we find a

Bessel sequence {tn}n∈N of H such that

〈Af |u〉 =
∞∑

n=1

〈f |tn〉〈gn|u〉 ∀f ∈ D(A), u ∈ D(A∗)

see Theorem 3.10. Like in the bounded case (see [33, Lemma 2.2]), we have also

A∗u =

∞∑

n=1

〈u|gn〉tn, ∀u ∈ D(A∗),

and thus we note a change of the point of view: a weak A-frame may be used to

get a strong decomposition of A∗ rather than A.

In Section 4 we face our second approach, giving the general notions of atomic

system for A and A-frame, see Subsection 4.1, where A is a, possibly unbounded,

closed densely defined operator. Denote by 〈·|·〉A the inner product which induces

the graph norm ‖ · ‖A of A. The resulting decomposition is

Af =

∞∑

n=1

〈f |kn〉A gn ∀f ∈ D(A),

for some Bessel sequence {kn}n∈N of the Hilbert space D(A)[‖ · ‖A], see Corol-

lary 4.8. Actually, this second approach is a particular case of K-frames, in the
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Găvruţa-like sense, where K ∈ B(J ,H) is a bounded operator between two dif-

ferent Hilbert spaces J and H, see Section 4. Indeed, for a densely defined closed

operator A on H we take K = A and J = D(A)[‖ · ‖A], see Corollary 4.8.

Throughout the paper we give some examples of weak A-frames or A-frames

that can be obtained from frames or that involve Gabor or wavelets systems.

2. Preliminaries

In the paper we consider an infinite dimensional Hilbert space H with inner

product 〈·|·〉 and norm ‖ · ‖. The term operator is used for a linear mapping.

Given an operator F , we denote its domain by D(F ), its range by R(F ) and its

adjoint by F ∗, if F is densely defined. By B(H) we denote the set of bounded

operators with domain H and we indicate by ‖F‖ the usual norm of the operator

F ∈ B(H). In some examples we need the usual Hilbert spaces L2(0, 1), L2(R) and

the Sobolev spaces, denoted with standard notations, H1(0, 1), H1
0 (0, 1), H

1(R),

see [34, Section 1.3]. As usual, we will indicate by ℓ2 the Hilbert space consisting

of all sequences x := {xn}n∈N satisfying
∑∞

n=1 |xn|
2 < ∞ with norm ‖x‖2 =(∑∞

n=1 |xn|
2
)1/2

.

We will say that a series
∑∞

n=1 gn, with {gn}n∈N ⊂ H, is convergent to g in H

if limn→∞ ‖
∑n

k=1 gk − g‖ = 0. We will write {gn} to mean a sequence {gn}n∈N
of elements of H. For the following definitions the reader could refer e.g. to

[1, 3, 15, 16, 25, 27].

A sequence {gn} of elements in H is a Bessel sequence of H if any of the

following equivalent conditions are satisfied, see [16, Corollary 3.2.4]

i) there exists a constant β > 0 such that
∑∞

n=1 |〈f |gn〉|
2 ≤ β‖f‖2, for all

f ∈ H;

ii) the series
∑∞

n=1 cngn converges for all c = {cn} ∈ ℓ2.

A sequence {gn} of elements in H is a lower semi-frame for H with lower bound

α > 0 if α‖f‖2 ≤
∑∞

n=1 |〈f |gn〉|
2, for every f ∈ H. Note that the series on the

right hand side may diverge for some f ∈ H.

A sequence {gn} of elements in H is a frame for H if there exist α, β > 0 such

that

α‖f‖2 ≤
∞∑

n=1

|〈f |gn〉|
2 ≤ β‖f‖2, ∀f ∈ H.

We now recall some operators which are classically used in the study of se-

quences, see [1, 2, 3, 15]. Let {gn} be a sequence of elements of H. The analysis
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operator C : D(C) ⊆ H → ℓ2 of {gn} is defined by

D(C) =

{
f ∈ H :

∞∑

n=1

|〈f |gn〉|
2 <∞

}

Cf = {〈f |gn〉}, ∀f ∈ D(C).

The synthesis operator D : D(D) ⊆ ℓ2 → H of {gn} is defined on the dense domain

D(D) :=

{
{cn} ∈ ℓ2 :

∞∑

n=1

cngn is convergent in H

}

by

D{cn} =

∞∑

n=1

cngn, ∀{cn} ∈ D(D).

The frame operator S : D(S) ⊆ H → H of {gn} is defined by

D(S) :=

{
f ∈ H :

∞∑

n=1

〈f |gn〉gn is convergent in H

}

Sf =
∞∑

n=1

〈f |gn〉gn, ∀f ∈ D(S).

The main properties of these operators are summarized below.

Proposition 2.1 ([3, Prop. 3.3]). Let {gn} be a sequence of H. The following

statements hold.

i) C = D∗ and therefore C is closed.

ii) D is closable if and only if C is densely defined. In this case, D ⊆ C∗.

iii) D is closed if and only if C is densely defined and D = C∗.

iv) S = DC.

A sequence {gn} is a Bessel sequence if and only if one, and then all, the

operators C,D and S are bounded. Moreover, if {gn} is a frame then S is invertible

with bounded inverse and the following reconstruction formula holds

(2.1) f =
∞∑

n=1

〈f |hn〉gn, f ∈ H,

where {hn} is a frame for H called a dual of {gn}. A choice of {hn}, which

is always possible, is {S−1gn}, called the canonical dual of {gn}, but it can be

different if {gn} is overcomplete, i.e. {gn} is not a basis. As a consequence of

(2.1), the Hilbert space H must be separable.
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Now we spend some words on non-Bessel sequences and reconstruction formu-

las. In general, if {gn} is a lower semi-frame, then by [14, Proposition 3.4] or [18,

Sect. 4], there exists a Bessel sequence {hn} such that

h =
∞∑

n=1

〈h|gn〉hn, ∀h ∈ D(C).

Hence a reconstruction formula holds in weak sense as

(2.2) 〈f |h〉 =
∞∑

n=1

〈f |hn〉〈gn|h〉, f ∈ H, h ∈ D(C).

Moreover, if D(C) is dense, then one can take hn = T−1gn, where T := |C|2 =

C∗C, a self-adjoint operator with bounded inverse on H, see [17, 18]. The “weak-

ness” of the formula (2.2) is a consequence of the fact that the synthesis operator

D is not closed, in general. If {gn} is a lower semi-frame, D(C) is dense and the

synthesis operator D of {gn} is closed, then D = C∗, by Proposition 2.1. Thus

S = C∗C and the strong reconstruction formula again holds

f = SS−1f =
∞∑

n=1

〈f |S−1gn〉gn, ∀f ∈ H.

Remark 2.2. In the light of (2.2), we compare the pair ({gn}, {hn}) with repro-

ducing pairs [5, 6, 10, 11], weakly dual pairs [30], also called pairs of pseudoframes

for H, and pairs of pseudoframes for subspaces [31]. If in (2.2) the formula holds

for every h ∈ H, then by definition ({gn}, {hn}) is a weakly dual pair. In (2.2),

if in addition D(C) is dense, the pair ({gn}, {hn}) is a reproducing pair if and

only if it is a weakly dual pair. In order the pair ({gn}, {hn}) in (2.2) to be a

pseudoframe for D(C), this space has to be closed and {gn} and {hn} have to be

Bessel sequences for D(C) and H, respectively, so the nature of {gn} and {hn} in

(2.2) is very different from the setting of pseudoframe for subspace, in general.

Now we recall the two notions we will generalize in the present paper. Let

K ∈ B(H). A sequence {gn} ⊂ H is an atomic system for K [23] if the following

statements hold

i) {gn} is a Bessel sequence of H;

ii) there exists C > 0 such that for every f ∈ H there exists af = {an(f)} ∈ ℓ2

such that ‖af‖ ≤ C‖f‖ and Kf =
∑∞

n=1 an(f)gn.

In [23, Theorem 3], the author proves the following
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Theorem 2.3. Let K ∈ B(H) and {gn} a sequence of H. The following state-

ments are equivalent.

i) {gn} is an atomic system for K.

ii) there exist constants α, β > 0 such that

α‖K∗f‖2 ≤
∞∑

n=1

|〈f |gn〉|
2 ≤ β‖f‖2, ∀f ∈ H.

iii) there exists a Bessel sequence {hn} of H such that

Kf =

∞∑

n=1

〈f |hn〉gn, ∀f ∈ H.

Due to the inequalities in ii) above, a sequence satisfying any of the conditions

in Theorem 2.3 is also called a K-frame for H.

Lastly, we will use the next lemma that can be obtained by Lemma 1.1 and

Corollary 1.2 in [13].

Lemma 2.4. Let H and K be Hilbert spaces. Let W : D(W ) ⊂ K → H be

a closed densely defined operator with closed range R(W ). Then, there exists a

unique W † ∈ B(H,K) such that

N (W †) = R(W )⊥, R(W †) = N (W )⊥, WW †f = f, f ∈ R(W ).

The operator W † is called the pseudo-inverse of W .

3. Weak A-Frames and weak atomic systems for A

In this section we introduce our first generalization of the notion of K-frames

to a densely defined operator on a Hilbert space H.

Definition 3.1. Let A be a densely defined operator on H. A weak A-frame for

H is a sequence {gn} ⊂ H such that

(3.1) α‖A∗f‖2 ≤
∞∑

n=1

|〈f |gn〉|
2 <∞,

for every f ∈ D(A∗) and some α > 0.

By [27, Theorem 7.2], if A ∈ B(H) then {gn} is a weak A-frame if and only if

it is an A-frame in the sense of [23].

Remark 3.2. As it is clear from (3.1), the property of being a weak A-frame

does not depend on the ordering of the sequence.
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Remark 3.3. Let A be a closable densely defined operator and {gn} a weak

A-frame. The domain D(C) of the analysis operator C of {gn} contains D(A∗).

It is therefore dense and the synthesis operator D is closable. Moreover,

α‖A∗f‖2 ≤
∞∑

n=1

|〈f |gn〉|
2 = ‖Cf‖2 = ‖T

1

2 f‖2, ∀f ∈ D(A∗),

where T = C∗C. This shows that the series in (3.1) is also bounded from above

by the norm of a self-adjoint operator acting on f ∈ D(A∗).

Example 3.4. Let A be a densely defined operator on a separable Hilbert space

H. Then a weak A-frame for H always exists. Indeed, let {en} be an orthonormal

basis for H contained in D(A) (there always exists such a one, by [37, Ch. 1,

Corollary 1] and the Gram-Schmidt orthonormalization process), it suffices to

take gn = Aen, because for every f ∈ D(A∗), ‖A∗f‖2 =
∑∞

n=1 |〈f |gn〉|
2, by the

Parseval identity.

Example 3.5. Let A be a densely defined operator on a separable Hilbert

space H. A more general example of weak A-frame is obtained by taking a frame

{fn} ⊂ D(A) for H. In this case, in fact, there exist α, β > 0 such that

α‖A∗f‖2 ≤
∞∑

n=1

|〈A∗f |fn〉|
2 ≤ β‖A∗f‖2, ∀f ∈ D(A∗).

Therefore, {Afn} is a weak A-frame for H.

Now we generalize the notion of atomic system to the case of an unbounded

operator.

Definition 3.6. Let A be a densely defined operator on H. A weak atomic

system for A is a sequence {gn} ⊂ H such that

i)
∑∞

n=1 |〈f |gn〉|
2 <∞ for every f ∈ D(A∗);

ii) there exists γ > 0 such that, for every h ∈ D(A), there exists ah =

{an(h)} ∈ ℓ2 satisfying ‖ah‖ ≤ γ‖h‖ and

(3.2) 〈Ah|u〉 =
∞∑

n=1

an(h)〈gn|u〉, ∀u ∈ D(A∗).

Remark 3.7. If {gn} is a weak atomic system for A then the series in (3.2) is

unconditionally convergent. Indeed it is absolutely convergent: fix any h ∈ D(A),

u ∈ D(A∗), then
∑∞

n=1 |an(h)〈gn|u〉| ≤ ‖ah‖
(∑∞

n=1 |〈gn|u〉|
2
)1/2

<∞.
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The following lemma, which is a variation of [20, Theorem 2], will be useful

in Theorem 3.10 for a characterization of weak atomic systems for A and weak

A-frames.

Lemma 3.8. Let (H, ‖ · ‖), (H1, ‖ · ‖1) and (H2, ‖ · ‖2) be Hilbert spaces and

T1 : D(T1) ⊆ H1 → H, T2 : D(T2) ⊆ H → H2 densely defined operators. Denote

by T ∗
1 : D(T ∗

1 ) ⊆ H → H1 and T ∗
2 : D(T ∗

2 ) ⊆ H2 → H the adjoint operators of

T1, T2, respectively. Assume that

i) T1 is closed;

ii) D(T ∗
1 ) = D(T2);

iii) ‖T ∗
1 f‖1 ≤ λ‖T2f‖2 for all f ∈ D(T ∗

1 ) and some λ > 0.

Then there exists an operator U ∈ B(H1,H2) such that T1 = T ∗
2U .

Proof. Define an operator J on R(T2) ⊆ H2 as JT2f = T ∗
1 f ∈ H1. Then J is a

well-defined bounded operator by iii). Now we extend J to the closure of R(T2)

by continuity and define it to be zero on R(T2)
⊥. Therefore J ∈ B(H2,H1) and

JT2 = T ∗
1 , i.e. T1 = T ∗

2 J
∗ and the statement is proved by taking U = J∗. �

For the characterization in Theorem 3.10 we need the following definition.

Definition 3.9. Let A be a densely defined operator and {gn} a sequence on H,

then a sequence {tn} of H is called a weak A-dual of {gn} if

(3.3) 〈Ah|u〉 =
∞∑

n=1

〈h|tn〉〈gn|u〉 ∀h ∈ D(A), u ∈ D(A∗).

Theorem 3.10. Let {gn} ⊂ H and A a closable densely defined operator on H.

Then the following statements are equivalent.

i) {gn} is a weak atomic system for A;

ii) {gn} is a weak A-frame;

iii)
∑∞

n=1 |〈f |gn〉|
2 < ∞ for every f ∈ D(A∗) and there exists a Bessel weak

A-dual {tn}.
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Proof. i) ⇒ ii) Let f ∈ D(A∗). Then ‖A∗f‖ = suph∈H,‖h‖=1 |〈A
∗f |h〉| and by the

density of D(A) in H

‖A∗f‖ = sup
h∈D(A),‖h‖=1

|〈A∗f |h〉| = sup
h∈D(A),‖h‖=1

|〈f |Ah〉|

= sup
h∈D(A),‖h‖=1

∣∣∣∣∣

∞∑

n=1

an(h)〈f |gn〉

∣∣∣∣∣

≤ sup
h∈D(A),‖h‖=1

(
∞∑

n=1

|an(h)|
2

)1/2( ∞∑

n=1

|〈f |gn〉|
2

)1/2

≤ γA

(
∞∑

n=1

|〈f |gn〉|
2

)1/2

,

taking into account that ‖ah‖ ≤ γA‖h‖ for some γA > 0 and every h ∈ D(A).

ii) ⇒ iii) Let {en} be an orthonormal basis of ℓ2. Consider the densely defined

operator B : D(A∗) → ℓ2 given by Bf = {〈f |gn〉} which is a restriction of the

analysis operator C : D(C) → ℓ2. Since C is closed, B is closable.

We apply Lemma 3.8 to T1 := A and T2 := B noting that ‖Bf‖2 =
∑∞

n=1 |〈f |gn〉|
2.

There exists M ∈ B(H, ℓ2) such that A = B∗M . This implies that for h ∈

D(A), u ∈ D(A∗) = D(B)

〈Ah|u〉 = 〈B∗Mh|u〉 = 〈Mh|Bu〉 =
∞∑

n=1

〈Mh|en〉〈gn|u〉

=

∞∑

n=1

〈h|tn〉〈gn|u〉,

taking {tn} = {M∗en} which is a Bessel sequence by [3, Proposition 4.6].

iii) ⇒ i) It suffices to take ah = {an(h)} = {〈h|tn〉} for all h ∈ D(A). Indeed for

some γA > 0 we have
∑∞

n=1 |an(h)|
2 =

∑∞
n=1 |〈h|tn〉|

2 ≤ γA‖h‖
2 since {tn} is a

Bessel sequence and 〈Ah|u〉 =
∑∞

n=1 an(h)〈gn|u〉, for u ∈ D(A∗). �

The term “weak” of weak A-frame and of weak atomic system, is due to the

fact that (3.3) holds whereas, in general, the same decomposition in strong sense

Ah =
∑∞

n=1〈h|tn〉gn may fail, unlike the case of A-frame where A ∈ B(H), see

[23, Theorem 3]. We show this with the following example.

Example 3.11. Suppose that H is separable. Let {en} be an orthonormal basis

for H and {gn} the sequence defined by g1 = e1 and gn = n(en − en−1) for n ≥ 2.

We denote by C,D the analysis and synthesis operators of {gn}, respectively.
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As it is shown in [15], C is densely defined and D is a proper restriction of C∗.

In particular,
{

1
n

}
n∈N ∈ D(C∗)\D(D). Let I be the analysis operator of {en}.

Obviously it is a bijection in B(H, ℓ2). Now consider the sesquilinear form

Ω(f, u) =

∞∑

n=1

〈f |en〉〈gn|u〉,

which is defined on H × D(C). Moreover Ω(f, u) = 〈If |Cu〉 for all f ∈ H, u ∈

D(C). Therefore Ω(f, u) = 〈C∗If |u〉 for all f ∈ D(C∗I), u ∈ D(C).

This suggests to define A := C∗I which is a densely defined closed operator.

The adjoint A∗ is equal to I∗C and then it has D(C) as domain. Thus

〈Af |u〉 =
∞∑

n=1

〈f |en〉〈gn|u〉, ∀f ∈ D(A), u ∈ D(A∗),

i.e. {gn} is a weak A-frame by Theorem 3.10. But the relation

Af =

∞∑

n=1

〈f |en〉gn, ∀f ∈ D(A)

does not hold. Indeed, the element f :=
∑∞

n=1
1
nen belongs to D(A) and the sum∑n

k=1〈f |ek〉gk = en for n ∈ N, does not converge in H.

Example 3.12. In general, for a weak A-frame {gn} for H a Bessel weak A-dual

{tn} is not unique. For all examples we have considered we give here a possible

choice of {tn}.

i) If {gn} := {Aen}, where {en} ⊂ D(A) is an orthonormal basis for H, then

one can take {tn} = {en}.

ii) If {gn} := {Afn}, where {fn} ⊂ D(A) is a frame for H, then one can take

for {tn} any dual frame of {fn}.

Remark 3.13. Let A be a densely defined operator, {gn} a weak A-frame and

{tn} a Bessel weak A-dual of {gn}, then for h ∈ D(A) and u ∈ D(A∗)

〈A∗u|h〉 = 〈u|Ah〉 =
∞∑

n=1

〈h|tn〉〈gn|u〉 =
∞∑

n=1

〈u|gn〉〈tn|h〉.

Since the sequence {tn} is Bessel, the series
∑∞

n=1〈u|gn〉tn is convergent. Therefore

〈A∗u|h〉 =

〈
∞∑

n=1

〈u|gn〉tn

∣∣∣h
〉
, ∀h ∈ D(A), u ∈ D(A∗)
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and by the density of D(A) we obtain

(3.4) A∗u =

∞∑

n=1

〈u|gn〉tn, ∀u ∈ D(A∗).

In conclusion, it is worth noting that in this setting, surprisingly, from condition

(3.1) the strong decomposition of A∗ follows, whereas for A we have just a weak

decomposition, in general. If A is symmetric, i.e. A ⊂ A∗, then clearly from (3.4)

we have a decomposition of A in strong sense. If {gn} is also a Bessel sequence,

then A is bounded on its domain, thus closable, and condition (3.1) gives us

decompositions in strong sense for both the closure A and A∗ (see [23, Theorem

3] and [33, Lemma 2.2]).

Remark 3.14. One could ask whether a weak A-dual {tn} of a weak A-frame

{gn} is a weak A∗-frame, with A a closable densely defined operator. The answer

is negative, in general. Indeed, if {tn} is a Bessel sequence, an inequality as

α‖Af‖2 ≤
∞∑

n=1

|〈f |tn〉|
2, ∀f ∈ D(A)

with α > 0, implies that A is bounded on its domain.

Under further assumption of A, weak A-frames can be used to decompose the

domain of A∗.

Theorem 3.15. Let A be a densely defined closed operator with R(A) = H and

(A†)∗ ∈ B(H) the adjoint of the pseudo-inverse A† of A. Let {gn} be a weak

A-frame and {tn} a Bessel weak A-dual of {gn}. Then, the sequence {hn}, with

hn := (A†)∗tn ∈ H for every n ∈ N, is Bessel and

u =

∞∑

n=1

〈u|gn〉hn, u ∈ D(A∗).

Proof. First observe that, since A is onto, f = AA†f , for every f ∈ H. Let

{gn}, {tn} and {hn} be as in the statement. Then, by (3.3), we have that for

f ∈ H, u ∈ D(A∗)

〈f |u〉 = 〈AA†f |u〉 =
∞∑

n=1

〈A†f |tn〉〈gn|u〉 =
∞∑

n=1

〈f |hn〉〈gn|u〉

and for some γ > 0
∞∑

n=1

|〈f |hn〉|
2 =

∞∑

n=1

|〈A†f |tn〉|
2 ≤ γ‖A†f‖2 ≤ γ‖A†‖2‖f‖2
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since {tn} is Bessel for H and A† is bounded. Hence, {hn} is a Bessel sequence

of H. Finally, for any f ∈ H, u ∈ D(A∗), we have 〈u|f〉 =
∑∞

n=1〈〈u|gn〉hn|f〉.

Since the sequence {hn} is Bessel, the series
∑∞

n=1〈u|gn〉hn is convergent and we

conclude that u =
∑∞

n=1〈u|gn〉hn, for all u ∈ D(A∗). �

Now we give another theorem of characterization for weak A-frames involving

the synthesis operator.

Theorem 3.16. Let A be a closed densely defined operator, {gn} ⊂ H and D :

D(D) ⊂ ℓ2 → H the synthesis operator of {gn}. The following statements are

equivalent.

i) The sequence {gn} is a weak A-frame for H;

ii) there exists a densely defined, closed extension R of D such that A = RQ

with some Q ∈ B(H, ℓ2);

iii) there exists a closed densely defined operator L : D(L) ⊂ ℓ2 → H such

that and D(A∗) ⊂ D(L∗), gn = Le′n where {e′n} ⊂ D(L) is an orthonormal

basis for ℓ2 and A = LU for some U ∈ B(H, ℓ2).

Proof. i) ⇒ ii) Following the proof of Theorem 3.10, A = B∗M . Then the

statement is proved taking Q =M and R = B∗, since B∗ ⊇ C∗ ⊇ D.

ii) ⇒ iii) Since R is an extension of the syntesis operator D, it suffices to take

L = R,U =M and {e′n} the canonical orthonormal basis of ℓ2.

iii) ⇒ i) For every f ∈ D(A∗) the adjoint of L is given by

L∗f =
∞∑

n=1

〈f |gn〉e
′
n.

Indeed, for c ∈ ℓ2

〈L∗f |c〉 = 〈L∗f |
∞∑

n=1

cne
′
n〉 =

∞∑

n=1

cn〈f |Le
′
n〉

=
∞∑

n=1

〈e′n|c〉〈f |gn〉 = 〈
∞∑

n=1

〈f |gn〉e
′
n|c〉.

Moreover, {gn} is a weak A-frame because for every f ∈ D(A∗) we have
∑∞

n=1 |〈f |gn〉|
2 =

‖L∗f‖2 <∞ and ‖A∗f‖2 ≤ ‖U∗L∗f‖2 ≤ ‖U‖2‖L∗f‖2. �

We conclude this section with some concrete examples.

Example 3.17. Let us consider the differential operator Af = −if ′ with domain

H1(0, 1) which is a densely defined closed operator on H = L2(0, 1), see [34,
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Section 1.3]. The sequence {gn}n∈Z = {enb}n∈Z, where 0 < b ≤ 1 and enb(x) =

e2πinbx for x ∈ (0, 1), is a frame for L2(0, 1), see [16, Section 9.8]. Therefore

{Agn} = {2πnbebn} is a weak A-frame for L2(0, 1) by Example 3.5. The canonical

dual frame of {enb} is {1
benb}, then according to Example 3.12 we can take {1

benb}

as weak A-dual of {gn}. The adjoint A
∗ is the operator A∗f = −if ′ with D(A∗) =

H1
0 (0, 1), see again [34, Section 1.3]. Note that A∗ ⊂ A. Hence the decomposition

in weak sense of Theorem 3.10 reads as

〈−if ′|h〉 = 〈Af |h〉 =
∑

n∈Z

2πn〈f |enb〉〈enb|h〉, ∀f ∈ H1(0, 1), h ∈ H1
0 (0, 1).

Finally, we have also a strong decomposition of A∗ by (3.4):

−if ′ = A∗f =
∑

n∈Z

2πn〈f |enb〉enb, ∀f ∈ H1
0 (0, 1).

Example 3.18. Let H := L2(R) and denote by A the selfadjoint operator

Af = −if ′ with domain D(A) = H1(R). Let g : R → C be a continuous and

differentiable function with support [0, L], more generally, one can take a function

g ∈ H1(R) such that g ∈ W where W is the Wiener space, see e.g. [16, Section

11.5] for the definition of W .

Let y ∈ R, ω ∈ R and Ty,Mω : H → H be the translation and modula-

tion operators defined, for f ∈ H, by (Tyf)(x) = f(x − y) and (Mωf)(x) =

e2πiωxf(x), respectively. Consider the Gabor system G(g, a, b). By the hypothe-

sis, {gm,n}m,n∈Z ⊆ D(A). Assume in particular that {gm,n}m,n∈Z is a frame for

L2(R), a necessary and sufficient condition is given in [25, Theorem 6.4.1]. Then,

by Example 3.5, {Agm,n}m,n∈Z is a weak A-frame; i.e., for some γ > 0

γ‖A∗f‖2 ≤
∑

m,n∈Z

|〈f |Agm,n〉|
2 <∞ ∀f ∈ D(A∗) = D(A) = H1(R).

Explicitly,

Agm,n(x) = 2πbne2πibnxg(x− am)− ie2πibnxg′(x− am)

= 2πbn(MbnTamg)(x)− i(MbnTamg
′)(x).

For the decomposition of A we can use the canonical dual of the Gabor frame

{gm,n}m,n∈Z which is a Gabor frame {hm,n}m,n∈Z with some window h ∈ L2(0, 1).

Since A is selfadjoint we can write directly a decomposition in strong sense of A

according to (3.4)

−if ′ = Af =
∑

m,n∈Z

〈f |MbnTam(2πbng − ig′)〉MbnTamh, ∀f ∈ H1(R).
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Once more we point out that the property of being a weak A-frame does not

depend on the ordering of the sequence {MbnTam(2πbng− ig
′)}m,n∈Z, see Remark

3.2.

Example 3.19. Let us consider the same space H := L2(R) and the operator

Af = f ′ with domain D(A) = H1(R). Let φ ∈ H1(R) and the shift-invariant

system {φk(x)}k∈Z := {φ(x−ck)}k∈Z, with c > 0. Then {(Aφk)(x)}k∈Z = {φ′(x−

ck)}k∈Z. However, we cannot apply Example 3.5 to say that {Aφk} is a weak A-

frame. Indeed, as it is known [16], {φk} is never a frame for L2(R).

Consider instead the wavelet system {φm,n}m,n∈Z := {a−
m

2 φ(a−mx−nb)}m,n∈Z
with a, b > 0. We have {φm,n}m,n∈Z ⊂ H1(R) and

{(Aφm,n)(x)}m,n∈Z = {a−
3m

2 φ′(a−mx− nb)}m,n∈Z.

The sequence we obtained is nothing but the wavelet system {φ′m,n}m,n∈Z gener-

ated by the derivative φ′ multiplied by the scalars {a−m}m∈Z.

When {φm,n}m,n∈Z is a frame for H, {Aφm,n}m,n∈Z is a weak A-frame. In

particular, by [25, Theorem 10.6 (c)], for any k ∈ N, there exists a function

φ with compact support and continuous derivatives up to order k such that

{φm,n}m,n∈Z := {2−
m

2 φ(2−mx − n)}m,n∈Z is an orthonormal basis for L2(R) and

hence {Aφm,n}m,n∈Z is a weak A-frame.

Example 3.20. Let A be a closed and densely defined on H. The domain D(A)

of A can be turned into a Hilbert space if endowed with the graph norm ‖ · ‖A.

Denote it by HA and by H×
A its conjugate dual and construct the rigged Hilbert

space HA →֒ H →֒ H×
A, where →֒ means that the embeddings HA ⊂ H ⊂ H×

A are

continuous with dense range, see e.g. [4, Chapter 10]. Since the sesquilinear form

B(·, ·) that puts HA and H×
A in duality is an extension of the inner product of H

we write B(ξ, f) = 〈ξ|f〉 for the action of ξ ∈ H×
A on f ∈ HA.

Now let {gn} ⊂ H. Then {gn} can be regarded as a sequence in H×
A. Assume

that it is a Bessel-like sequence in the sense of [12, Definition 2.10], i.e. for every

bounded subset M ⊂ HA,

sup
f∈M

∞∑

n=1

|〈f |gn〉|
2 <∞.

Then, by [12, Proposition 2.11],
∑∞

n=1 |〈f |gn〉|
2 <∞ and the operator F : HA →

ℓ2 given by Ff := {〈f |gn〉} is bounded. If F is also injective, e.g. if {gn} is dense
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in H, and has closed range, then {gn} is a weak A∗-frame since

c‖Af‖2 ≤ c‖f‖2A ≤
∞∑

n=1

|〈f |gn〉|
2 = ‖Ff‖2 <∞, ∀f ∈ D(A)

and for some c > 0.

4. Atomic systems for bounded operators

between different Hilbert spaces

In this section we will give another generalization of the notions and results

in [23] to unbounded closed densely defined operators in a Hilbert space. If

A : D(A) → H is a closed and densely defined operator, then it can be seen as

a bounded operator A : HA → H between two different Hilbert spaces, where by

HA we indicate the Hilbert space D(A)[‖ · ‖A] with ‖ · ‖A the graph norm.

Thus, before going forth, we reproduce the main definitions and results in [23]

for bounded operators from a Hilbert space J into another, say H, omitting the

proofs since they are very similar to the standard ones where J = H, [23, 33].

We will come back to the operator A : HA → H in Section 4.1.

Let 〈·|·〉H, 〈·|·〉J be the inner products and ‖ · ‖H, ‖ · ‖J the norms of H and J ,

respectively. We denote by B(J ,H) the set of bounded linear operators from J

into H.

Definition 4.1. Let K ∈ B(J ,H). An atomic system for K is a sequence

{gn} ⊂ H such that

(i) {gn} is a Bessel sequence,

(ii) there exists γ > 0 such that for all f ∈ J there exists af = {an(f)} ∈ ℓ2,

with ‖af‖ ≤ γ‖f‖J and Kf =
∑∞

n=1 an(f)gn.

Clearly the previous notion reduces to that of atomic system in [23] when

J = H.

Example 4.2. Let H be separable and K ∈ B(J ,H). Every frame {gn} for H is

an atomic system for K. Indeed, if {vn} is a dual frame of {gn}, then

Kf =

∞∑

n=1

〈Kf |vn〉Hgn, ∀f ∈ J

and the definition is satisfied by taking af = {〈Kf |vn〉H} for f ∈ J .
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Example 4.3. Let J be separable, K ∈ B(J ,H) and {fn} a frame for J with

dual frame {hn} ⊂ J , then for all f ∈ J

f =

∞∑

n=1

〈f |hn〉J fn, hence Kf =

∞∑

n=1

〈f |hn〉JKfn.

Thus the sequence {gn} = {Kfn} is an atomic system for K, taking af =

{an(f)} := {〈f |hn〉J }.

For L ∈ B(J ,H) we denote by L∗ ∈ B(H,J ) its adjoint. We now give a

characterization of the atomic systems for operators in B(J ,H) similar to that

obtained by Găvruţa in [23, Theorem 3].

Theorem 4.4. Let {gn} ⊂ H and K ∈ B(J ,H). Then the following are equiva-

lent.

i) {gn} is an atomic system for K;

ii) there exist α, β > 0 such that for every f ∈ H

(4.1) α‖K∗f‖2J ≤
∞∑

n=1

|〈f |gn〉H|
2 ≤ β‖f‖2H;

iii) {gn} is a Bessel sequence of H and there exists a Bessel sequence {kn} of

J such that

(4.2) Kf =

∞∑

n=1

〈f |kn〉J gn, ∀f ∈ J .

Definition 4.5. Let K ∈ B(J ,H). A sequence {gn} ⊂ H is called a K-frame

for H if the chain of inequalities (4.1) holds true for all f ∈ H and some α, β > 0.

By (4.2) the range R(K) must be a separable subspace of H, which may be

non separable. As in [33, Definition 2.1] a sequence {kn} ⊂ J as in (4.2) is called

a K-dual of the K-frame {gn} ⊂ H.

Example 4.6. As in Section 3, we remark that, in general, a K-dual {kn} ⊂ J

of a K-frame {gn} ⊂ H is not unique. Then, for the K-frames {gn} considered in

Examples 4.2 and 4.3 we give possible K-duals.

i) If {gn} := {fn}, with {fn} ⊂ H a frame for H, then one can take {kn} =

{K∗vn} where {vn} is any dual frame of {fn}.

ii) If {gn} := {Kf ′n}, with {f ′n} ⊂ J a frame for J , then one can take for

{kn} any dual frame of {f ′n}.
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Once at hand a K-frame {gn}, the Bessel sequence {kn} ⊂ J in Theorem 4.4

is a K∗-frame, see [33, Lemma 2.2] for the case J = H.

We now give a characterization of K-frames involving the synthesis operator.

The equivalence of the first two sentences is an easy generalization of [23, Theorem

4] and the other ones are straightforward.

Theorem 4.7. Let K ∈ B(J ,H), {gn} ⊂ H and D : D(D) ⊆ ℓ2 → H the

synthesis operator of {gn}. The following statements are equivalent.

i) {gn} is a K-frame for H;

ii) there exists L ∈ B(ℓ2,H) such that gn = Le′n where {e′n} is an orthonormal

basis for ℓ2 and R(K) ⊂ R(L);

iii) D ∈ B(ℓ2,H) and R(K) ⊂ R(D);

iv) D ∈ B(ℓ2,H) and there exists M ∈ B(J , ℓ2) such that K = DM .

From Theorem 4.7 iii) it follows that a K-frame is not necessarily a frame

sequence, indeed the range of the synthesis operator may be not closed, see [16,

Corollary 5.5.2].

4.1. Atomic systems for unbounded operators A and A-frames. As an-

nounced at the beginning of this section, we come back to our original aim to

generalize K-frames, with K ∈ B(H), in the context of unbounded closed and

densely defined operator A on a Hilbert space H. Here, for simplicity, we denote

again by 〈·|·〉 and ‖ · ‖ the inner product and the norm of H, respectively.

From now on we will consider A as a bounded operator in B(HA,H), where HA

is the Hilbert space obtained endowing the domain D(A) with the graph norm

‖ ·‖A, induced by the graph inner product 〈·|·〉A. Let A
♯ : H → HA be the adjoint

of A : HA → H, different from A∗ the adjoint of the unbounded operator A.

For the reader’s convenience we rewrite the definitions of atomic system for

A ∈ B(HA,H) and of A-frame. A sequence {gn} ⊂ H is said to be

i) an atomic system for A if {gn} is a Bessel sequence and there exists γ > 0

such that for all f ∈ D(A) there exists af = {an(f)} ∈ ℓ2, with ‖af‖ ≤

γ‖f‖A and Af =
∑∞

n=1 an(f)gn, with respect to the norm of H;

ii) an A-frame if there exist α, β > 0 such that for every f ∈ H

α‖A♯f‖2A ≤
∞∑

n=1

|〈f |gn〉|
2 ≤ β‖f‖2.
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Hence, Theorem 4.7 can be rewritten as follows.

Corollary 4.8. Let {gn} ⊂ H and A a closed densely defined operator on H.

Then the following are equivalent.

i) {gn} is an atomic system for A;

ii) {gn} is an A-frame;

iii) {gn} is a Bessel sequence of H and there exists a Bessel sequence {kn} of

HA such that

(4.3) Af =
∞∑

n=1

〈f |kn〉A gn, ∀f ∈ D(A)

with respect to the norm of H.

iv) the synthesis operator D of {gn} is bounded and everywhere defined on ℓ2

and R(A) ⊂ R(D);

v) the synthesis operator D of {gn} is bounded and everywhere defined on ℓ2

and there exists M ∈ B(HA, ℓ
2) such that A = DM .

Note also that if A ∈ B(H), then the graph norm of A is defined on H and it

is equivalent to ‖ · ‖, thus our notion reduces to that of [23].

Remark 4.9. The expansion in (4.3) of Af in terms of {gn} involves the inner

product 〈·|·〉A. One might ask if there exists also a sequence {tn} ⊂ H such that

Af =

∞∑

n=1

〈f |tn〉gn, ∀f ∈ D(A)

like for atomic systems for A ∈ B(H), see [23, Theorem 3]. The answer, in

general, is negative if A is unbounded. Indeed, let {en} be an orthonormal basis

for a separable Hilbert space H and A an unbounded closed and densely defined

operator in H. Assume in particular that {en} * D(A∗), such an orthonormal

basis for H can always be found. Clearly, {en} is an A-frame. Suppose that there

exists a sequence {tn} ⊂ H such that Af =
∑∞

n=1〈f |tn〉en, for all f ∈ D(A). Then

〈Af |en〉 = 〈f |tn〉 for all f ∈ D(A) and n ∈ N. But this leads to the contradiction

that {en} ⊂ D(A∗).

We conclude by showing an example of an A-frame which is not a frame.
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Example 4.10. Let H = L2(R), {αk}k∈Z be a complex sequence and A the

closed and densely defined operator on L2(R) defined as

(Af)(x) =




αkf(x) x ∈ [2k, 2k + 1[

αkf(x− 1) x ∈ [2k + 1, 2k + 2[

where k varies in Z, with natural domain

D(A) =

{
f ∈ L2(R) :

∑

k∈Z

|αk|
2

∫ 2k+1

2k
|f(x)|2dx <∞

}
.

The operator A ∈ B(L2(R)) if and only if {αk}k∈Z is bounded.

Now let g ∈ L2(R) be bounded with support [0, 2] and let the essential infimum

of |g| on [0, 2] be positive, essinfx∈[0,2]|g(x)| > 0. Consider the Gabor system

G(g, a, b) := G(g, 2, 1) = {e2πimxg(x−2n)}m,n∈Z; it is Bessel because g is bounded

and compactly supported, but it is not a frame since ab = 2 > 1. However, we

show that it is an A-frame. Indeed, the range of the synthesis operator of G(g, 1, 2)

is

R(D) = {f ∈ L2(R) : f(x) = f(x− 1),∀x ∈ [2k + 1, 2k + 2[,∀k ∈ Z}

and contains R(A). Therefore, by Corollary 4.8, G(g, 2, 1) is an A-frame.

5. Conclusions

In conclusion, we make some remarks to highlight the novelty and potential

applications of the notion of weak A-frame. If {fn} ⊂ H is a frame for H and

{hn} ⊂ H is a dual frame of {fn}, then a closable densely defined operator A in

H can be decomposed as follows:

Af =

∞∑

n=1

〈Af |hn〉fn, ∀f ∈ D(A).

However, in this decomposition the action of the operator A still appears. On

the contrary, if {gn} ⊂ H is a weak A-frame, then by Theorem 3.10 there exists

a Bessel sequence {tn} ⊂ H such that

〈Ah|u〉 =
∞∑

n=1

〈h|tn〉〈gn|u〉, ∀h ∈ D(A), u ∈ D(A∗)

and the action of the operator A does not appear in the decomposition. Since we

have also

A∗u =
∞∑

n=1

〈u|gn〉tn, ∀u ∈ D(A∗)
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weak A-frames are clearly connected to multipliers that have been recently object

of many studies, refer e.g. to the survey [35]. However, few works were directed

to unbounded multipliers, so our study could give a contribution in this direction,

actually it is what we did in Examples 3.17 and 3.18 for some specific operators.

We want to mention [7, 8, 9, 28] where some unbounded multipliers have been

defined as model of non-selfadjoint Hamiltonians. Let us focus on [8] for a con-

nection with weak A-frames. Fixed a complex sequence α = {αn} and a Riesz

basis φ = {φn} with dual ψ = {ψn}, one can construct the operator

(5.1) Hα
φ,ψf =

∞∑

n=1

αn〈f |ψn〉φn

with D(Hα
φ,ψ) being the greatest subspace where (5.1) converges. Then {αnφn}

is a weak Hα
φ,ψ-frame, indeed by [8, Proposition 2.1]

D(Hα
φ,ψ

∗) =

{
f ∈ H :

∞∑

n=1

|〈f |αnφn〉|
2 <∞

}

and thus Theorem 3.10 iii) is satisfied.
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23. L. Găvruţa, Frames for operators, Appl. Comp. Harmon. Anal. 32 (2012), 139-144.

24. R. Geddavalasa, P.S. Johnson, Frames for operators in Banach spaces, Acta Math. Vietnam.

42, 4, (2017), 665-673.
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