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Rationale and Objectives: To develop and validate a radiomic model, with radiomic features extracted from breast Dynamic Contrast-
Enhanced Magnetic Resonance Imaging (DCE-MRI) from a 1.5T scanner, for predicting the malignancy of masses with enhancement.
Images were acquired using an 8-channel breast coil in the axial plane. The rationale behind this study is to show the feasibility of a radio-
mics-powered model that could be integrated into the clinical practice by exploiting only standard-of-care DCE-MRI with the goal of
reducing the required image pre-processing (ie, normalization and quantitative imaging map generation).

Materials and Methods: 107 radiomic features were extracted from a manually annotated dataset of 111 patients, which was split into
discovery and test sets. A feature calibration and pre-processing step was performed to find only robust non-redundant features. An in-
depth discovery analysis was performed to define a predictive model: for this purpose, a Support Vector Machine (SVM) was trained in a
nested 5-fold cross-validation scheme, by exploiting several unsupervised feature selection methods. The predictive model performance
was evaluated in terms of Area Under the Receiver Operating Characteristic (AUROC), specificity, sensitivity, PPV and NPV. The test was
performed on unseen held-out data.

Results: The model combining Unsupervised Discriminative Feature Selection (UDFS) and SVMs on average achieved the best perfor-
mance on the blinded test set: AUROC = 0.725+0.091, sensitivity = 0.709+0.176, specificity = 0.741+0.114, PPV = 0.72+0.093, and
NPV = 0.75+0.114.

Conclusion: In this study, we built a radiomic predictive model based on breast DCE-MRI, using only the strongest enhancement phase,
with promising results in terms of accuracy and specificity in the differentiation of malignant from benign breast lesions.

Key Words: Breast cancer, Dynamic contrast-enhanced magnetic resonance imaging; machine learning, Radiomics, unsupervised fea-
ture selection, Support vector machines.
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INTRODUCTION

reast cancer currently represents the most common

non-skin cancer in women and men, accounting for

11.7% of all new cancer diagnoses in 2020 (1).
Because of its incidence and clinical impact, early and accu-
rate cancer detection and characterization is of utmost impor-
tance. Diagnosis of early invasive breast cancer relies on
clinical evaluation, radiological imaging and image-guided
biopsy. Breast MRI is commonly used as a screening and
problem-solving tool (2) and for the local staging of breast
cancer (3). Its high sensitivity for the detection of breast
lesions makes MRI a valuable screening tool, especially in
patients at high risk for developing breast cancer. However,
several studies have shown limited specificity when it comes
to lesion characterization leading to high recall rates and the
need for invasive and costly biopsies (4). Radiomics studies in
breast imaging have shown promising results for lesion char-
acterization, prediction of nodal metastases, tumor subtype,
response predictions and prognostication (5, 6).

Among imaging techniques, Dynamic Contrast-Enhanced
Magnetic Resonance Imaging (DCE-MRI) provides both
morphological (eg, size, margins, shape) (7) and hemody-
namic information, assessing tumor vascularity and defining
enhancement kinetic curves, with a reported sensitivity
higher than 90% for breast cancer diagnosis (8). However,
the specificity of DCE-MRI is still substantially low (about
72%) and it is often necessary to continue the diagnostic
work-up with a biopsy (8).

In breast imaging, radiomics was applied to several imaging
modalities, including MRI, mammography, ultrasound, and
digital breast tomosynthesis (9). In the recent review by (10),
63% of the reviewed radiomics studies were based on MRI,
thus demonstrating the high relevance for the scientific com-
munity. Particularly, the application of radiomics in breast
DCE-MRI was assessed by addressing various issues in the
evaluation of breast lesions from the diagnosis (eg, characteri-
zation of breast lesions, prediction of breast cancer histological
types and correlation with receptor status) to the prognosis
(eg, lymph node metastases, tumor response to neoadjuvant
systemic therapy, recurrence risks) (11).

Radiomics extracts a large amount of quantitative imaging
features from medical images, conveying more information
than the visual and qualitative patterns observable by the radi-
ologists’ naked eye (12). In particular, radiomic biomarkers —
which has attracted the attention of the scientific community,
especially in the case of oncological imaging — can be associ-
ated with clinical outcomes (13). With this regard, quantita-
tive imaging biomarkers have shown great potential
in prediction, prognosis or treatment response assessment
(14, 15). To increase the robustness of these biomarkers, sys-
tematic studies on radiomic feature reliability were presented
(16, 17). As a matter of fact, initiatives and roadmaps were
conducted in the last years to support the lack of reproduc-
ibility and validation of radiomics studies (18—20). Finally, to
facilitate the clinical translation of the developed predictive

and prognostic models, biological meaning and validation
have been recently investigated (21, 22).

The development of robust biomarkers could accelerate
their incorporation into personalized medicine (23). Thus,
standardization initiatives have been carried out by the scien-
tific community to deal with the lack of reproducibility and
validation of radiomics studies (20). An accurate and careful
preliminary analysis of the robustness of the radiomic features
is mandatory to define clinically relevant biomarkers able to
provide generalization abilities on external datasets.

The primary objective of this study is to develop and vali-
date a radiomic model capable of predicting malignant breast
masses by using 3D radiomic features extracted from DCE-
MRUI, while the rationale is to show the feasibility of a radio-
mics-powered model that could be integrated into the clini-
cal practice by exploiting only standard-of-care DCE-MRI
with the goal of reducing the required image pre-processing
(ie, normalization and quantitative imaging map generation).

MATERIALS AND METHODS
Patients and Imaging Data Selection

Retrospective data collection was approved by the local
Ethics
informed consent was waived because of the retrospective

Committee. The requirement for evidence of
nature of our study.

A total of 194 Breast DCE-MRI exams, performed from
November 2019 to October 2020 at the Breast Unit of the
Fondazione Istituto "G. Giglio" in Cefalu (Palermo, Italy)
were recruited for this study. The exclusion criteria applied
during population enrolment are illustrated in Fig. 1.

The whole dataset resulting consisted of 111 lesions (size
range: 5—60 mm; mean sizexSD: 16.67£11.18mm),
depicted at DCE-MRI as masses with enhancement in 111
patients (110 women and 1 man; age range: 23—72 years;
mean age£SD: 47.83+9.16 years), and classified by a breast
radiologist (with more than 30-year experience) according to
BI-RADS criteria (24).

In patients with multi-focal lesions only the largest one was
considered. As standard-of-reference (SOR), we included a
definitive histological diagnosis for all breast lesions classified
as BI-RADS 4-5 and a definitive histological diagnosis or a
complete follow-up at 24 months for BI-RADS 3 lesions.

MR images were acquired using a 1.5T scanner (Signa
HDxt; GE Healthcare, Barrington, IL, USA) using an 8-
channel breast coil and a standard protocol including T2w
FSE with and without fat saturation, Diffusion-Weighted
Imaging (DWI) and DCE-MRI (T'1-weighted three-dimen-
sional spoiled gradient echo) sequences in the axial plane.
The second one was analyzed for radiomics purposes and
imaging parameters are described in Table 1.

The whole dataset of 111 breast DCE-MRI sequences was
divided into two groups, via an 80%—20% split hold-out
approach, obtaining a:
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Initial population

194 contrast-enhanced MRI scans performed from November 2019 to October 2020 and classified
according to BI-RADS criteria by an expert radiologist with more than 30 years of experience

Final population

e 111 patients (110 women, 1 man,
23-72 'y, mean age 47.83y)

¢ 111 lesions (6+60 mm, mean size
16.67 mm)

83/194 exams excluded:

e BI-RADS 1 to 2 exams (30)

technical artifacts negatively affecting images

quality (3)

associated or isolated non-mass enhancement
(20)

suspicious enhancement foci (5)

lack of a definitive histological diagnosis (10)
absence of a complete follow-up at 24 months

for BI-RADS 3 lesions (15)

I:> BI-RADS 4 = 15/111 (13.5%)

BI-RADS 3 = 41/111 (36.9%)

. J
(" N\
BI-RADS 5 = 55/111 (49.6%)

(. /

Figure 1. Diagram illustrating the criteria considered in this study for inclusion/exclusion. (Color version of figure is available online.)

® discovery set: used to define the best predictive model, in

terms of feature selection (FS) method and classifier;

® test set: used in the test phase on unseen data.

The discovery set was used, by means of a nested k-fold

cross-validation, to find the best predictive models, while the

TABLE 1. T1-Weighted Three-Dimensional Spoiled Gradient

Echo Sequence Parameters.

DCE-MRI Characteristic Value

sequence type DCE-MRI

series description Ax VIBRANT mphase
scanner model GE Signa HDxt (1.5T)
repetition time (TR) 37.720—-56.920 ms
echo time (TE) 17.640—-26.800 ms
flip angle 10°

matrix size 512X512 pixels

slice thickness 2-3mm

spacing between slices 1-1.5mm

pixel spacing

0.6875—-0.7422 mm
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test set was adopted to validate the final model. This parti-
tioning was performed 50 times by stratified sampling.

Image Processing

The overall workflow of this study is depicted in Fig. 2. Each
step in the image processing and analysis pipeline is described
in the following sections.

Lesion Segmentation

For each mass with enhancement included in our study, the
tumor volume of interest was determined by manual slice-
by-slice segmentation on DCE-MRI images and performed
by a breast radiologist, with more than 5-year experience in
breast MR, in consensus with a consultant breast radiologist
(with more than 30-year experience in breast imaging). All
the breast masses were manually segmented using a MatLab-
coded custom tool (25). The ROIs were delineated on the
whole tumor on the DCE-MRI images with the strongest
enhancement phase (26). In particular, among the phases pro-
vided by the VIBRANT sequences (6 or 7, across different
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Figure 2. Overall workflow of the developed radiomic pipeline for breast lesion classification on DCE-MRI. (Color version of figure is available

online.)

patients), the observer selected the one where the breast mass
was more evident than in the background: on average, phase
3.6611.13 was chosen for segmenting the analyzed lesions.
The acquisition of DCE-MRI involves the administration
of a contrast medium, which better depicts the morphologi-
cal/physiological characteristics of the tissues, where the
examination includes various acquisitions in well-defined
time intervals. Considering a specific position within the
acquired volume, each voxel has a Time Intensity Curve,
TIC(f), reflecting the signal intensity variations due to the

a

absorption/release of the contrast medium. The time course
of the TIC(f) curves can help clinicians to infer the type of
lesion (eg, benign versus malignant).

In Zhang et al. (27), only 1 time-point of the DCE-MRI
series was chosen. The strongest enhancement phase can bet-
ter reflect the tumor heterogeneity and invasiveness by rely-
ing upon the subtracted DCE-MRI images according to the
literature (27,28). Therefore, our choice to analyze a single
phase is consistent with the literature. In particular, relying
upon the enhancement curves (with the goal of increasing

Figure 3. Two segmentation examples of breast lesions (axial view): (A) benign lesion; (B) malignant lesion. To improve the graphical repre-
sentation, only a crop of the original 512X512 pixel DCE-MRI image is shown. The images are displayed with the same zoom factor. (A) a 42-
year old woman with a palpable lump in her left breast. MRI showed the presence, in the inferior outer quadrant, of a mass measuring lesion
(20.5 mm in diameter), slightly hyperintense in T2-Weighted (T2W) sequences, with strong post-contrast enhancement, with high wash-in rate
(>200%) and type Il enhancement curve. The lesion was proven to be a fibroadenoma. (B) a 65-year old man with Klinefelter syndrome and
gynecomastia, performed a breast MR local staging of a known breast cancer. Four lesions were found in the upper outer quadrant of the right
breast, with inhomogeneous enhancement and a type lll enhancement curve. The lesion was proven to be an invasive ductal carcinoma (ER:
100%: PgR: 5%, KI67: 80%. HER-2: 2+) and the patient underwent mastectomy. (Color version of figure is available online.)
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the reproducibility), only the strongest enhancement phase
(26,27), was selected and analyzed.

Lesion segmentation was performed without including
peritumoral tissues. The corresponding data were stored in
the Neuroimaging Informatics Technology Initiative (INIfTT)
format (9). Fig. 3 shows two examples of breast lesion seg-
mentation.

Radiomic Feature Extraction

The features were extracted (from the 3D ROIs delineated in
the previous step) using PyRadiomics, an open-source Python
package developed for the standardization of radiomic feature
extraction (29). We used PyRadiomics version 2.0 and Python
3.7.5. Along with shape-based features, 6 feature classes were
extracted: (1) first-order intensity histogram statistics, (2) Gray
Level Co-occurrence Matrix features (GLCM) (30),(31), (3)
Gray Level Run Length Matrix (GLRLM) (32), (4) Gray Level
Size Zone Matrix (GLSZM) (33), (5) Gray Level Dependence
Matrix (GLDM) (34), and (6) Neighboring Gray Tone Difter-
ence Matrix (NGTDM) (35).

A well-established, practical rule of thumb states that at least
10 samples (ie, patients) are needed for each feature in a model
based on binary classifiers (12). Indeed, due to the small sample
size, we preferred to use only original features to avoid the
processing of additional features extracted using convolutional
image filters on the input medical images (eg, Laplacian of
Gaussian, logarithmic, exponential, gradient, wavelets). More-
over, clear guidelines for filtered versions of the images are not
yet available, with the release of the Image Biomarker Stand-
ardisation Initiative (IBSI) (36) Chapter 2 still being under
preparation ([https://theibsi.github.io/ibsi2/).

U Inner loop for outer training fold 2

Calibration and Pre-Processing

Calibration and pre-processing steps were performed to iden-
tify a subset of features that are independent from the MRI
acquisition parameters, informative, and non-redundant, by
following the guidelines outlined in (13).

Supplementary Section S1 ‘Calibration and Pre-processing
Details’ provides an in-depth description of the implemented
pre-processing steps, while Section S2 ‘Radiomic Features’
describes the final set of analized features.

Feature Selection and Predictive Modeling

The aim of FS is to reduce the data dimensionality by select-
ing only a subset of features to create a model (37). According
to Supplementary Section S3 ‘Feature Selection Methods’,

we considered these methods (38—40):
® Unsupervised Discriminative Feature Selection (UDFS)

(41);

® Dependence Guided Unsupervised Feature Selection
(DGUES) (42);

® Unsupervised Feature Selection with Ordinal Locality
(UFSOL) (43).

The predictive modeling was performed by a Support
Vector Machine (SVM) (44,45) trained and tested using a
nested 5-fold cross-validation (CV) procedure (Fig. 4).

This discovery phase was aimed to find the FS methods
with the best performance in combination with the SVM-
based predictive modeling. The discovery set consisting of 89
patients was used and 50 repetitions of the nested 5-fold CV
training were performed to obtain average model results (see
Supplementary Section S4 ‘Nested k-fold Cross-Validation’).

.~ "7 " TOoutertraining fold 1~~~ Outertestfold 1 .

/ =1 1 1 \

. 1 I
I < T T T 1
i 5 D Select the inner .

- O model with highest |
| =3 o AUROC .
o .= (considering the |
; o '% feature selection 8‘ . 1* outer model
p .
. E Y| GeEsraEaE aaE e el 1. . rankings) ol 2nd outer model
|_ Q 1stinner model p—
Q5| 1 E | 3rd outer model
" o nd i .
I I I 2" inner model ,5, | T
- rd j
I 1 § 5% Inner madel oO- 5th outer model
. I I 4 inner model |
I | i .

| | IS S | S | E— . 5" inner model | Outer training
! i

U Inner loop for outer training fold 3
\ U Inner loop for outer training fold 4

Outer test

Inner training

C

.

Inner test

\

Figure 4. Nested k-fold cross-validation scheme (with k = 5). (Color version of figure is available online.)
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The used evaluation metrics were the Area Under the
Receiver Operating Characteristic (AUROC), sensitivity and
specificity, along with Positive Predictive Value (PPV) and
Negative Predictive Value (NPV) to better investigate true
positive and true negative results, respectively (46).

Relevant Feature Analysis and Testing on the Held-out
Set

After the discovery phase, the most relevant features were
selected according to the best three FS methods. With the goal
of assessing the radiomic signature performance in the clinical
practice, the predictive model was evaluated on a held-out test
set (composed of unseen data after the hold-out splitting). In
particular, the best three models identified in the discovery phase
were retrained on the entire discovery set and tested on the test
set. Similar to the discovery phase, 50 repetitions of the hold-
out with stratified sampling were considered. See Supplemen-
tary Section S5 ‘Relevant Features and Radiomic Signatures’.

Statistical and Computational Analysis

All the statistical and computational analyses were performed
using the MatLab R2019b (64-bit version) environment
(The MathWorks, Natick, MA, USA).

For feature robustness analyses, the two-way random-eftects
model (or mixed-effects), consistency, single rater/measure-
ment, ICC(3,1) was used (47) (for the definition, see Supple-
mentary Section S1 ‘Calibration and Pre-processing Details’).
The intrinsic dependency analysis made use of the Spearman
correlation coefficient (p <0.0001 as a cutoff), while the
redundant feature analysis used the Spearman correlation coef-
ficient for pairwise feature comparison (p >0.90). No multi-
ple-comparison correction was used to keep a reasonable
number of features.

For distribution comparisons, the non-parametric Wil-
coxon signed-rank test on paired samples was used, using a
significance level of 0.05).

To realize the feature selection, the MatLab-coded ‘Fea-
ture  Selection  Library v6’  (https://arxiv.org/abs/
1607.01327) was used (22—24). The SVM models were
based on the Statistics and Machine Learning Toolbox pro-
vided by MatLab.

RESULTS

Experiments were aimed to quantify capabilities of the pre-
dictive models (FS method + classifier) in breast lesions char-
acterization tasks. This section reports details about i) the
models discovered and tested, if) the radiomics signature
obtained by each model, iii) the classification performance.

Study Population

Malignant lesions had a significantly (Mann-Whitney U test)
higher volume at baseline compared to benign lesions

TABLE 2. Histological Features of the Included Malignant
and High-Risk Breast Lesions.

Histological Diagnosis n %
Invasive ductal carcinoma 29 53.7
Invasive lobular carcinoma 12 22.2
In situ ductal carcinoma with central necrosis 2 3.7
Atypical ductal hyperplasia 2 3.7
Low-grade intraductal carcinoma 5 9.3
Mucinous carcinoma 1 1.9
Tubular carcinoma 1 1.9
Malignant philloydes 1 1.9
Ductal carcinoma with mucinous aspects 1 1.9
Total 54 100
Tumor Grade

G1 5 9.2
G2 15 27.8
G3 34 63
Molecular Subtype

Luminal A 22 40.7
Luminal B 29 53.7
Triple negative 3 5.6

(median (interquartile range): 3.532 (8.8034) cm’ vs 0.692
(1.910) cm’; p = 0.007).

According to the SOR, 103/111 masses with enhancement
were histologically characterized resulting in 57/111 benign
(51.35%), 2/111 (1.80%) high-risk (with uncertain malignant
potential (ie, atypical ductal hyperplasia, ADH), and 52/111
malignant (46.85%) breast lesions. Predicting the upgrade from
ADH to malignant lesions is still an open question in DCE-
MRI radiomic studies (48). As a matter of fact, In literature
studies with long-term follow-up, atypical hyperplasia has
been shown to have a 4x relative risk factor for future breast
cancer (49). Therefore, with the goal of obtaining a highly sen-
sitive predictive model able to discriminate the patients into
two classes for recall visits and diagnosis, we made a conserva-
tive choice for clinical purposes: lesions of uncertain malignant

TABLE 3. Final Diagnosis of the Included Benign Breast
Lesions as by SOR.

Diagnosis n %
Fibroadenoma 21 36.8
Adenosis 12 211
Usual ductal hyperplasia 5 8.8
Intraductal papilloma 4 7
Apocrine metaplasia 4 7
Corpuscular cyst 3 5.3
Mastitis 2 3.5
Intramammary lymph node 2 3.5
Benign philloydes 1 1.8
Fibrosis 1 1.8
Sclerosing adenosis 1 1.8
Columnar cell hyperplasia 1 1.8
Total 57 100
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TABLE 4. Classification Metrics Obtained in The Discovery Phase by The Predictive Models Exploiting the Best three FS Methods
and the SVM. For Each of These Metrics, The Mean Value and Standard Deviation over all 50 Repetitions were Calculated. Bold-

face Numbers Denote the Highest Value for Each Metric.

Predictive Model AUROC Sensitivity Specificity PPV NPV

UDFS + SVM 0.557+0.07 0.622+0.17 0.493+0.184 0.552+0.107 0.4524+0.145
DGUFS + SVM 0.647+0.058 0.722+0.089 0.5741+0.148 0.652+0.059 0.573+0.153
UFSOL + SVM 0.597+0.053 0.778+0.094 0.426+0.107 0.567+0.062 0.599+0.124

potential (ie, ADH) were included in the class of malignant
lesions since they are considered as high-risk lesions.

Furthermore, 8 benign breast lesions, with imaging charac-
teristics suggesting the diagnosis of fibroadenoma, were stable
in a follow-up of at least two years.

The final diagnosis of these lesions is described in Tables 2
and 3. Molecular subtypes were determined according to the
St. Gallen International Expert Consensus 2013 (50).

UDFS:

DCE-MRI Radiomics Predicts Lesion Malighancy

Following the steps in Fig. 2 (more details are provided in
Section S1 ‘Calibration and Pre-processing Details’), the
highest number of robust features was obtained using 16 bins
in the gray level quantization (Supplementary Table S1).
Therefore, out of the initial 107 features the number of
highly robust features was 84. The intrinsic dependence anal-
ysis between these radiomic features and MRI acquisition

e Joint Energy (GLCM)
e Short Run Emphasis (GLRLM)
e Least Axis Length (3DS)

DGUFS:

* Flatness (3DS)

e Long Run Low Gray Level Emphasis (GLRLM)
e Joint Energy (GLCM)

* Elongation (3DS)

* Least Axis Length (3DS)

UFSOL:

* Flatness (3DS)

* Elongation (3DS)

e Size-Zone NonUniformity (GLSZM)

Figure 5.
online.)
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TABLE 5. Classification Metrics Obtained in the Hold-Out Testing Phase by the Predictive Models Exploiting the three FS Methods
and SVM. For Each of These Metrics, The Mean Value and Standard Deviation Over all 50 Repetitions were Calculated. Boldface

Numbers Denote the Highest Value for Each Metric.

Predictive Model AUROC Sensitivity Specificity PPV NPV

UDFS + SVM 0.725+0.091 0.709+0.176 0.7411+0.114 0.72+0.093 0.75+0.114

DGUFS + SVM 0.723+0.086 0.7054+0.173 0.741+0.11 0.719+0.088 0.747+0.11

UFSOL + SVM 0.7084-0.089 0.796+0.128 0.62+0.144 0.669+0.098 0.777+0.125
parameters — based on a Spearman correlation analysis — often an overlap between the kinetic curves that depict

showed 72 interdependent features. Afterwards, the near-
zero variance analysis did not exclude any feature, while 19
non-redundant features were found. These steps are summa-
rized in Supplementary Table S2.

These remaining 19 features were considered as the set to
be fed to the FS methods to rank them and, successively,
train/test the SVM. Supplementary Sections S3 ‘Feature
Selection Methods’ provides the list of all FS methods, while
Table S3 reports the final set of 19 features selected after the
calibration and pre-processing phase.

Among the investigated FS methods, the ones obtaining
better performance were: UDFS, DGUES, and UFSOL.
Table 4 provides the classification metrics obtained in the dis-
covery phase by the best three predictive models (which used
an SVM and the three FS methods previously described).

After the choice of the best FS and fitted model the rele-
vant features were used to retrain the SVM model and per-
form hold-out testing. The final signatures for each of the
three best FS methods — which were used in the external test
— were composed of the relevant radiomic features listed in
Fig. 5. Table 5 provides the classification metrics obtained by
the best three predictive models in the hold-out testing phase
cohort (see Supplementary Material S5 ‘Relevant Features
and Radiomic Signatures’).

DISCUSSION

Various breast cancer predictive radiomic models were built-
up by using different quantitative radiomic features extracted
from MRI sequences, showing promising results, with the
goal of predicting the lesion malignancy in a non-invasive
way (11). Nevertheless, different breast MRI protocols, as
well as a wide spectrum of lesion segmentation and feature
extraction methods, have been proposed so far. DCE-MRI is
the most common MRI technique used to characterize breast
lesions relying upon both morphologic and hemodynamic
features (51—53). Although circumscribed masses are gener-
ally suggestive of benign lesions and non-circumscribed
masses are suspicious for carcinoma, margin analysis is highly
dependent on the spatial resolution, thus low spatial resolu-
tion scans could affect margin evaluation, in particular for
small masses. Furthermore, although benign lesions generally
follow persistent curves, as well as many malignant lesions fol-
low “wash-out” curves, a “plateau” curve can be observed
with both benign and malignant lesions; therefore, there is

malignant and benign lesions (24).

In this study, we developed a predictive model based on
3D radiomic features extracted from DCE-MRI sequences
(using only the strongest enhancement phase), focusing on
breast masses with enhancement, aiming at predicting breast
lesion malignancy. After careful pre-processing steps (includ-
ing feature robustness and redundancy analyses), we used the
remaining features to build radiomic signatures, investigating
three feature-ranking methods (UDFS, DGUES and
UFSOL) and one classifier (SVM). Good performance for
both ranking methods and classifiers used in our work were
reported in previous studies (54,55). 3 radiomic signatures
were defined, with the best performance in terms of
AUROC and specificity achieved by the FS method UDFS
coupled with the SVM cdlassifier (0.72540.091 and 0.741+£
0.114, respectively), while and the highest sensitivity and
NPV values was obtained by UFSOL+SVM (0.79640.128
and 0.777+£0.125, respectively). All MRI series involved in
our study were acquired at the same institution with the same
imaging protocol, with the result of reducing the variability
in image acquisitions. We analyzed a homogeneous dataset
that allowed us to carefully process and assess the extracted
radiomic features, thus increasing the result reliability, as well
as the model generalization on external patient cohorts.
Despite the limited number of clinical cases, an in-depth and
careful analysis was proposed to build radiomic models that
predict malignant lesions in patients with breast cancer. Our
study was conducted in accordance with (56), where the gen-
eralization abilities of radiomic models in multi-centric MRI
datasets have been recently addressed. It is worth noting that
the use of breast lesion classification based on the ACR BI-
RADS lexicon also facilitated the sample standardization of
the enrolled cases (8).

Considering that we analyzed only the strongest DCE-
MRI phase, thus enabling an efficient and less protocol-
dependent approach compared to DCE pharmacokinetic
modeling, our results are consistent with recent literature
studies. In particular, Whitney et al. (57) achieved an average
AUROC of 0.846 (95% confidence interval: 0.808—0.875)
by using FS from all the features and exploiting pharmacoki-
netic modeling (58). Nevertheless, the multiparametric
MRI-based radiomic model developed by Zhang et al. (59)
demonstrated higher diagnostic ability for differentiating
benign and malignant breast lesions (AUROC = 0.921),
increasing the discriminating power of radiomic features
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extracted from DCE pharmacokinetic parameter maps alone
(AUROC=0.836), as well as the IsoSVM Classification
model proposed by Parekh et al. (60), which also included
radiomic feature mapping of T2w, T1w, DWI, and ADC
map images. These two works (ie, (59),(60)) analyzed differ-
ent types of MR sequences, thus introducing further process-
ing and dependence on the MRI acquisition protocols.
Unlike these literature works, where multiple sequences
were used, our main objective was to develop a radiomics-
powered model to be integrated into the clinical practice by
exploiting standard-of-care MRI and reducing the required
image pre-processing (ie, normalization and quantitative
imaging map generation). Therefore, considering standard-
of-care imaging only, the dependency on the scanner/proto-
cols is minimized and the full potential of the strongest
enhancement phase DCE-MRI (as suggested by Teruel et al.
(28) for clinical/pathological response prediction) was drawn
by relying upon robust radiomics analyses. By doing so, our
model might be suitably deployed onto other institutions
without requiring specific pre-processing. As a matter of fact,
our radiomic model achieved an AUROC of 0.725£0.091
comparable to the results presented in Zhang et al.(59) for
the T1-weighted imaging input (AUROC = 0.730) in the
differentiation of benign and malignant breast lesions using
SVMs. It is worth noting that a direct comparison between
the 2 contributions is not fair since the analyzed datasets are
different; moreover, we used a conservative training/testing
strategy aimed at future multicenter studies (ie, a nested
cross-validation as recently shown in (56) and several feature
selection methods to avoid over-optimistic results despite the
relatively limited sample size.

The combination of radiomic features extracted from dif-
ferent types of sequences could increase the predictive power
of the model developed for the problem at hand. Our work
primarily aims at clinical feasibility and, for this reason, we
analyzed only the subtracted images (obtained from two
DCE-MRI time-points), which currently represent the rou-
tine examination in breast cancer patients (61,62).

Other recent studies demonstrated that peritumoral tissue
inclusion during segmentation led to higher accuracy com-
pared to tumor alone (63). Our analysis focused on extracting
radiomic features from a single post-contrast phase. Further-
more, providing the classifier with supplementary informa-
tion derived from texture features of the first and later post-
contrast phases, in a dynamic manner, could potentially
improve the performance of lesion characterization, as deter-
mined in other studies (64). Analyzing features selected in the
three optimal radiomic signatures built-up in our study, 3DS
features (least axis length, flatness and elongation) were prevalent
and occurred in all signatures, joint energy was the only
GLCM feature selected by 2 out of 3 radiomic models,
whereas Short Run Emphasis (SRE) and Long Run Low Gray
Level Emphasis (LRLGLE) were the two GLRLM features
selected by UDFS and DGUEFS, respectively. Therefore,
Size-Zone NonUniformity, a GLSZM feature, was employed
only in the UFSOL-derived signature.

838

According to previous research, our results confirm that
morphological features, reflecting information about the whole
lesion shape, may be used for differential diagnosis in radiomic
models (65—67). On the contrary, in the best performing
radiomic models built-up in other studies, such as in (59),
shape features accounted for a small proportion of the features
in all models, and they were not selected in some models.

Joint Energy, a measure of homogeneous patterns in the
image, is a GLCM feature selected by two of our optimal
radiomic models. Early work utilized parameters calculated
from the GLCM to discriminate between benign and malig-
nant lesions (68,69). The benign or malignant nature of a
lesion can be also inferred via its homogeneous or heteroge-
neous enhancement appearance, and prior studies have
shown that such GLCM-derived features can be used to char-
acterize breast lesions with high diagnostic accuracy (69—71).

In our study, among the GLRLM features, LRLGLE and
SRE were included in two radiomic signatures. By evaluating
the robustness of radiomic features in MR, Cattell et al. (72)
showed that the GLRLM features were found to have mod-
erate robustness (0.5 —0.9). Moreover, in the study con-
ducted by Gibbs et al. (68), both these GLRLM features,
LRLGLE and SRE, demonstrated significant differences in
the differentiation between benign and malignant lesions.

According to a very recent meta-analysis conducted by Zhu
et al. (73), the characterization of breast masses on DCE-MRI
alone showed high sensitivity and AUROC (0.95 and 0.92,
respectively) whereas specificity remained lower (0.71). Radio-
mic models could be capable of overcoming this issue: two of
our radiomic signatures showed slightly better performance in
terms of specificity, thus further efforts are needed to optimize
these results.

Considering also the recent increased evidence of deposi-
tion of gadolinium in the brain (74), the development of con-
trast-free examinations, even of comparable accuracy, appears
to be highly attractive. The combination of breast multipara-
metric MRI radiomics with unenhanced breast MRI proto-
cols is promising, as it may develop into a tool to decrease
user-dependence of interpretation. In particular, quantitative
DWI showed a higher specificity to differentiate between
benign and malignant breast lesions compared to DCE-MRI
(75,76).

The limitations of our study are listed in what follows:

® the analyzed dataset was collected from a single center, and
an additional external validation of the proposed model is
required;

® the lesion ROIs were manually annotated by a single
observer, and then checked by an experienced reader,
helping to further increase the reliability of the delineation
process;

® this was a patient-driven rather than a lesion-driven study:
in patients with multi-focal breast lesions only the largest
lesion was considered. We assumed that, enrolling multi-
ple lesions of the same patient as separate lesions, a practice
often used to increase the available samples, would have
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introduced potentially a redundancy of data (belonging to
the same person) into the dataset, from which the predic-
tive model must then be built, affecting the capabilities of
the model.

As future directions, we are planning to extend our single-
center study to a larger patient cohort and also to non-mass
enhancement breast lesions. Moreover, a multicentric study
would allow us to assess the generalization abilities of the
developed predictive model. Lastly, prospective studies are
required to explore how these radiomics-powered predictive
models could be deployed into the clinical practice for the
characterization of breast masses in DCE-MRI. Complement-
ing studies on BI-RADS 4 and 5 characterization (77,78), ana-
lyzing BI-RADS 3 lesions by an ad-hoc method would be
clinically relevant to avoid unnecessary biopsies and resulting
in an optimization of the current patient management.
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