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Abstract— The study of cardiovascular dynamics is pivotal 

in the prevention and monitoring of cardiovascular diseases. 

Pulse Arrival Time (PAT) series contain information concerning 

not only the dynamics of the Autonomic Nervous System (ANS), 

but of all the systems involved in the regulation of 

cardiovascular homeostasis. This study aims to highlight how 

indexes extracted from PAT series in time-, frequency- and 

information-domain allow to discriminate among different 

physiological conditions. Analyses were carried out on 76 young 

healthy subjects, at rest and during orthostatic or mental stress. 

Our results show that PAT indexes vary according to the ANS 

condition, and may thus be useful parameters for the 

classification of physiological stress. 

Keywords—Pulse Arrival Time (PAT), Electrocardiography 

(ECG), Blood Pressure (BP), Time series analysis, entropy 

I. INTRODUCTION 

 Physiological regulation in humans includes several 
interconnected control mechanisms that permit to maintain 
cardiovascular homeostasis. Mechanical, neural and hormonal 
factors result in variations in heart rate, blood pressure, blood 
flow and breathing rate that are finely connected to each other 
by complex dynamics [1]–[4]. To study such mechanisms, 
different parameters can be monitored on a beat-to-beat basis. 
Among them, Heart Rate Variability (HRV) is the most used 
parameter for the assessment of the complex dynamics 
underlying the cardiovascular control [5], [6]. Other measures, 
such as the Pulse Arrival Time (PAT), can provide 
information not only on the regulatory activity of the 
autonomic nervous system (ANS), but also on variations of 
blood pressure (BP) [7] and arterial stiffness [8]. The PAT is 
the time delay between the electrical depolarization of the 
heart left ventricle and the following time of arrival of the 
pressure wave at the body periphery [7].  

Cardiovascular diseases (CVDs) represent nowadays a 
major cause of death and chronic disability in the world and 
an early diagnosis for individuals who are at a high risk of 
developing CVDs could permit to implement prevention 
strategies [9]. Some studies demonstrate how, among the 
different cardiovascular parameters, also the PAT and its 
components could be pivotal in the diagnosis of CVDs, e.g. 
atherosclerosis [10] and ischemic stroke [11], or of events 
related to them, e.g. obstructive sleep apnea [12]. In addition 

to standard measurements in the time and frequency domains, 
the development of advanced methods for time series analysis 
in the information-theoretic domain provides further 
capability to detect and classify altered physio-pathological 
states [6], [13]. Moreover, the ease of implementation of 
algorithms capable of performing such analyses on portable 
devices constitutes a precious advantage for monitoring and 
also for early diagnosis of CVDs [14], [15]. In this sense, HRV 
indices have been employed not only as marker of ANS 
functioning, but also to estimate CVD risk [16]. Frequency 
domain indices such as the Low Frequency (LF, range 0.04-
0.15 Hz) and High Frequency (HF, range 0.15-0.4 Hz) 
spectral powers have been employed not only to assess ANS 
activity [5], but also to extract physiological information on 
pulse activity [17]. 

 In this context, the present study carries out a thorough 
investigation on PAT variability, computing several measures 
in time-, frequency- and information-theoretic domains in 
different physiological conditions with the aim of 
demonstrating their dependence on the stress condition, and 
thus to propose them as indexes to be used in addition to HRV 
measures for the detection and classification of altered 
physiological states.  

II. METHODS 

A.  Subjects and experimental protocol 

 The analyses were performed on data belonging to a 
database employed in previous studies to investigate the effect 
of physical and mental stress on cardiovascular parameters 
[18], [19]. Signals were recorded on 76 young healthy subjects 
(32 males and 44 females; age 18.4±2.7 years), normotensive 
and with a normal body mass index (21.3±2.3 kg/m2). The 
dataset consists of electrocardiographic (ECG) and blood 
pressure (BP) signals acquired synchronously with a sampling 
frequency of 1 kHz by using horizontal bipolar thoracic lead 
(CardioFax ECG-9620, NihonKohden, Japan) and the 
photoplethysmography volume-clamp method (Finometer 
Pro, FMS, Netherlands), respectively. The acquisition 
protocol consists of five phases: (a) baseline state (B) with 
subjects resting in the supine position on a motorized bed after 
a starting period of stabilization of physiological parameters 
(15 minutes); (b) head-up tilt state (T) obtained after 
inclination of the motorized bed to 45° so as to produce 



orthostatic stress (8 minutes); (c) first recovery state (R1) in 
which subjects were put again in the resting supine position to 
recover physiological parameters (10 minutes); (d) mental 
arithmetic stress (M) in which the subjects, still laying in the 
supine position, were asked to perform sums of 3-digit number 
and indicate whether the number obtained was even or odd (6 
minute); and (e) a final phase of recovery with subjects in the 
supine resting state (R2) (10 minutes). 

B. Time series extraction 

The analyzed data consisted of the instants of occurrence 
of the R peaks in the ECG and of the systolic peaks in the 
blood pressure, extracted using the LabChart 8 (ECG analysis, 
blood pressure modules) toolbox from ADInstruments [18], 
[19]. Starting from such data, PAT intervals were obtained as 
the time difference between the time of each BP maximum 
and that of the preceding R peak. The RR time series were 
computed as the time intervals between two consecutive ECG 
R peaks and their mean was used to obtain the cut off 
frequency of PAT series spectrum. 

In order to favor the fulfillment of stationarity criteria, for 
each physiological phase the analysis was performed on time 
windows covering 300 consecutive heartbeats (usually 
referred for HRV as “short-term” analysis [19]), appositely 
selected to avoid transient effects from a phase to the 
subsequent one. Specifically, the PAT time series were 
measured from signals acquired starting at ~8 min, ~3 min, ~3 
min, ~2 min and ~5 min after the beginning of each phase of 
the protocol. An example of the PAT time series measured in 
the five phases for a representative subject is reported in Fig. 
1 (a). 

C. Preprocessing and Data analysis 

Starting from PAT time series, the conventional time-
domain analysis was performed computing average (MEAN) 

and standard deviation (SD) values for each subject and 
experimental condition. 

Before performing frequency- and information-domain 
analyses, PAT series were first preprocessed using a high-pass 
AR filter with cut-off frequency of 0.0156 times the sampling 
rate. Afterwards, the series were normalized to zero mean and 
unit variance. Spectral analysis was performed using the non-
parametric Blackman-Tukey approach (Hamming window, 
bandwidth of 0.04 Hz) [20]. An example of power spectrum 
of PAT time series in each phase for a representative subject 
is reported in Fig. 1 (b). After obtaining the spectrum of the 
PAT series, frequency-domain indexes were extracted. 
Specifically, the LF spectral power (PLF, range 0.04-0.15 Hz), 
the HF spectral power (PHF, range 0.15-0.4 Hz) and the ratio 
PLF/ PHF were computed. 

Information-theoretic analysis was performed to assess the 
static and dynamic information content of the analyzed series. 
Specifically, the entropy of a process � , representing the 
quantity of information held in the current state of � , is 
defined under the hypothesis of stationarity as [21]: 

�� = −��ln 
��
��                              (1) 

being �
 the value of the most recent sample of �, and 
��
� 
its probability. An example of probability distribution 
��
�, 
estimated using histogram quantization of PAT(�), is reported 
in Fig. 1 (c). The information storage (S) is the quantity of 
information held in the current state of the system attributable 
to its past states, measuring regularity and predictability of the 
time series; it is defined as follows [21]: 

�� = ���
; �

�� = � �ln ����,����

������������                     (2) 

being ��∙;∙�  the mutual information, �

� = ��
�� �
�� . . . � 

collects the random variables sampling the past of the 

 
Fig. 1. Example of PAT time series (a), power spectrum (b) and probability distributions (c) for a representative subject during baseline (B), orthostatic 

stress (T), resting period after tilt (R1), arithmetical stress (M) and final resting period (R2). In this example, the following time-domain, frequency-
domain and information-theoretic measures were computed for B, T, R1, M and R2: MEAN:  283.07, 271.82, 285.67, 251.43, 284.93 ms, SD: 6.67, 6.69, 

7.74, 5.89, 8.45 ms, PLF: 7.26, 6.63, 9.75, 8.40, 9.19 ms2, PHF: 17.90, 21.07, 22.74, 10.77, 22.16 ms2, PLF/ PHF: 0.41, 0.31, 0.43, 0.78, 0.41, H: 3.18, 3.24, 

3.28, 3.11, 3.32 nats with linear estimator and 3.19, 3.21, 3.21, 3.09, 3.33 nats with knn estimator, S: 0.07, 0.08, 0.07, 0.04, 0.04 nats with linear estimator. 
and 0.06, 0.09, 0.08, 0.04, 0.04 nats with knn estimator. 



analyzed process, and �

� = ��
�� �
�� . . . �  represents a 

realization of �

�. 

These two measures were estimated using both parametric 
and model-free approaches. As regarding the linear parametric 
method, starting from the assumption that the PAT time series 
follows a Gaussian distribution, measures in (1) and (2) are 
computed as [22]: 

�!� = �
� ln�2#$%&�

��                               (3) 

�'� = �
� ln ()*

+

(),
+                                      (4) 

where %&�
�  is the variance of the PAT series and %&-

�  is the 
variance of the residuals obtained by solving a linear 
regression problem where �
  is predicted from �


� . The 
model order was set to 2, so that the past of the process is 
considered of finite length and equal to the model order, i.e. 
�


� ≈ �

� = ��
�� �
��� . The non-parametric k-nearest 

neighbor (knn) estimates of information indexes were instead 
obtained by using the following formulation [22]: 

�!� = /�0� − /�1� + ⟨ln 4
⟩                   (5) 

�'� = /�0� + /�1� − ⟨/�0�
�⟩ − 6/70��89:      (6) 

where /�∙�  is the digamma function, 0  is the number of 
available observations of the present and past variables, 1 is 
the number of neighbors selected for the analysis, ; is the 
embedding dimension, i.e. the number of time-lagged 
variables that approximate the past history of the process, 4
 
is twice the distance from �
 to its 1-th nearest neighbor in the 
one-dimensional space computed according to the maximum 
norm, and 0��  and 0��8  are the number of points whose 

distance from �
 and �

< is smaller than 4
/2, respectively. 

For the analyses we set the parameters to 1=10 and ;=2, 
respectively, which have been proven suitable in previous 
studies for the analysis of short time series [19]. 

 This selection of the parameters is also adequate for the 
implementation of the algorithms within the firmware of 
wearable devices: indeed, a fixed low AR model order as well 
as a small embedding vector allow to limit the computational 
costs. 

D. Statistical Analysis 

The statistical analyses were carried out on the 
distributions of all the time-domain, frequency-domain and 
information-theoretic domain measures using non-parametric 
tests. Specifically, the Kruskal-Wallis analysis of variance 
was employed to test for differences of the distributions 
among all the conditions, followed by a pairwise post-hoc 
Wilcoxon signed rank test. The Bonferroni-Holm correction 
was employed to correct for multiple comparisons (n=10). 
The Wilcoxon signed rank test was also applied to determine 
the presence of statistically significant differences between the 
distributions of the two different estimates of information-
domain measures (i.e. linear vs knn). For all statistical tests, 
the significance level was set at 0.05. 

III. RESULTS 

 Fig. 2 shows the results of time-domain analysis carried 
out on PAT time series in the five physiological conditions. 
With regard to MEAN (Fig. 3(a)), statistically significant 
differences can be observed between each pair of conditions 
except between B and the resting periods following the 
execution of tasks (R1 and R2). Specifically, the mean PAT 

decreases during mental stress if compared to physical stress 
and even more if compared to the baseline. On the other hand, 
variability of PAT (Fig. 3(b)) during baseline is lower than 
that recorded during R1 and R2 and there is a significant 
increase during tilt if compared to baseline and mental stress. 

 Fig.3 reports the results of frequency-domain analyses, i.e. 
the distributions of power values in LF and HF bands and also 
their ratio for all the phases of the protocol. Both the LF and 
HF spectral powers increase significantly during T and 
decrease during M. No statistically significant differences are 
detected for PLF/ PHF ratio, given that the trends of LF and HF 
powers are similar in all the considered conditions. 

 The distributions of information-domain indexes obtained 
with both linear and knn estimators are shown in Fig. 4. 
Significant differences can be observed both for H and S 
during the T and M phases if compared to rest conditions, with 
higher values during T and lower values during M. The use of 
the knn estimator leads to significantly lower values of 
entropy, and to significantly higher values of information 
storage, when compared to the linear estimator. 

IV. DISCUSSION 

 The present study investigates the information provided by 
indexes extracted from PAT time series about the complex 
physiological control system that leads to the achievement of 
cardiovascular homeostasis. By measuring the beat-to-beat 
variability of the time interval between the contraction of the 
heart and the arrival of the pulse wave in the peripherical 
artery, it is possible to infer information not only about the 
balance between the activity of the sympathetic (SNS) and 
parasympathetic (PNS) branches of the ANS, but also on 
changes in blood pressure following the baroreflex, on the 
influence of respiration on arterial stiffness, and therefore on 
all whole cardiovascular hemodynamics [4], [23]. 

 
Fig. 2. Boxplots and individual values of MEAN (a) and SD (b) of PAT 

time series computed for all subjects during the five conditions 
(baseline (B), head-up tilt (T), mental arithmetic test (M) and supine rest 

phases (R1, R2)). Statistical analysis: #, p<0.05, Kruskal-Wallis test; 

phase name, p<0.05 pairwise, Wilcoxon signed rank test with 

Bonferroni-Holm correction. 



 Moreover, analyzing PAT allows to distinguish the Pre-
Ejection Period (PEP), i.e. the time interval between the 
depolarization of ventricle and the opening of the aortic valve, 
and the Pulse Transit Time (PTT), that is the time interval that 
the pressure wave takes to travel from the aortic valve to the 
peripheral arteries [7]. 

As reported in several previous studies [19], [24], the 
cardiovascular control system reacts to physiological stress 
conditions by increasing the heart rate (HR), the blood 
pressure and the cardiac output, but also with responses which 
depend on the type of stressor and thus linked to different 
aspects of cardiovascular regulation. This can be related to the 
differences shown in our results between the phases of head-
up tilt and mental arithmetics. In fact, we observe how the 
parameters obtained during orthostatic and arithmetic stress 
phases present often different trends (see Figs. 2 to 4). 

 As indicated by the increased predictability of PAT during 
head-up tilt (see Fig. 4(b)), in this phase well-defined 
oscillatory mechanisms come into play, providing information 

on the sympatho-vagal balance as demonstrated by numerous 
studies in the literature [6], [19]. Previous studies have also 
reported that the increase of the tilt angle during head-up tilt 
procedure causes an increase of the pre-ejection period and a 
decrease of the pulse transit time [25]. In this phase, venous 
pooling of blood to the lower limbs leads to a decrease of 
cardiac preload and consequently to a decrease of the 
contraction strength via the Frank-Starling law, with 
consequent increase of the PEP [26]. On the other side, the 
mean arterial blood pressure tends to remain constant and this 
can be explained by an increase of arterial stiffness [27] which 
leads to a decrease of the PTT; this mechanism is regulated by 
the arterial baroreceptors [28]. The reduction of the mean PAT 
(see Fig. 2(a)) mostly reflects the trend of PTT, moreover it is 
important to underline how mechanisms of regulation of PEP 
and PTT act differently for each subject and within each 
heartbeat, thus leading to a high variability of PAT during 
orthostatic stress [29] (see Fig. 2(b)). The larger variability of 
the PAT during this phase can be related to larger amounts of 
information contained in the time series, reflected in our data 
by the higher entropy values than those recorded in the resting 
phase (see Fig. 4(a)). 

 Previous studies focusing on HRV analyses ([19] on the 
same data or [30]) reported how the oscillations linked to the 
variability of the heart rate decrease in the HF band and 
increase in the LF band during the orthostatic challenge, 
evidencing a shift in the sympatho-vagal balance. Instead, our 
analysis on PAT variability evidences that power increases in 
both LF and HF bands (see Fig. 3(a, b)), showing thus that the 
most important differences with HRV are observed in HF 
band. Such a finding suggests that the vascular dynamics in 
this band are expected to be mainly driven by other 
mechanisms rather than by the regulation of the autonomic 
system. This is in agreement to previous findings in literature 
that describe the dynamics in the HF band is mainly related to 
respiratory modulation of vasoconstriction [17]. Instead, the 
increase of LF band power can be explained both with 
autonomic regulation mechanisms (basically, the sympathetic 
activation during tilt) but also through Mayer waves [6], [17], 
[31] due to baroreflex activity [2]. Our results (Fig. 3(c)) show 
that, unlike in HRV analysis [5], the LF / HF ratio is not 
indicative of the sympatho-vagal balance when studying PAT. 

 On the other hand, the transition from a resting state to a 
mental stress condition induces a decrease in the regularity of 
PAT, as shown in Fig. 4(b). This may be related to the 
presence of different control mechanisms during mental 
stress, not as well defined as in the case of an orthostatic 
challenge, possibly related to a non-stable and time-variant 

 
Fig. 3. Boxplots and individual values of LF power (a), HF power (b) and LF/HF power ratio (c) of PAT time series computed for all subjects during the 

five conditions (baseline (B), head-up tilt (T), mental arithmetic test (M) and supine rest phases (R1, R2)). Statistical analysis: #, p<0.05, Kruskal-Wallis 

test; phase name, p<0.05 pairwise, Wilcoxon signed rank test with Bonferroni-Holm correction. 

 
Fig. 4. Boxplots and individual values of entropy H (a) and information 

storage S (b) of PAT time series computed for all subjects during the 

five conditions (baseline (B), head-up tilt (T), mental arithmetic test (M) 
and supine rest phases (R1, R2)) with both linear (triangular markers on 

the left) and knn (square markers on the right) estimators. Statistical 

analysis: #, p<0.05, Kruskal-Wallis test for both estimators; phase name, 
p<0.05 pairwise, Wilcoxon signed rank test with Bonferroni-Holm 

correction; *, p<0.05 linear vs. knn, Wilcoxon signed rank test. 



cardiovascular system [32]. Previous studies suggest that, 
despite the increase of heart rate and of mean arterial pressure, 
there is not a significant change in muscle sympathetic nerve 
activity (MSNA) during mental stress, and thus the vascular 
control in the peripherical arteries is not influenced by the 
sympathetic outflow [33], [34]. Specifically, mental stress 
decreases the forearm vascular resistance leading to an 
increase of blood flow due to sympathetic withdrawal, active 
neurogenic vasodilatation and β-adrenergic vasodilatation 
[35]. Such complex regulatory mechanisms occurring during 
a mental stress condition produce a decrease of mean PAT 
(see Fig. 2(a)) linked to a decrease in PEP, due to weakening 
of parasympathetic activity and a positive inotropic effect 
[26], and to a decrease in PTT, as found in similar studies [26], 
[29], [36]. These two similar trends lead to a lower PAT 
variability during the arithmetic stress phase, as documented 
by our results in Fig. 2(b).  Following forearm vascular 
dilation, we would expect an increase in PTT during the phase 
of mental stress compared to a condition of rest, but this is not 
what is shown by results.  As previously discussed, 
cardiovascular system during a condition of mental stress is 
time-variant: at the beginning of the task, parasympathetic 
withdrawal starts to occur and sympathetic nerves are still not 
activated; going on with the mental stress, there is an 
activation of the latter, probably associated to changes of 
cortical potential, given by neural and cardiovascular response 
[32]. Therefore, one could expect that the results obtained in 
terms of mean PAT depend on the selection of the windows 
of the time series. The frequency domain analysis provides 
further information if compared to time-domain indices, 
highlighting a lower sympathetic activity during mental stress 
if compared to tilt (see Fig. 3(a)). 

Finally, interesting remarks can be made looking at 
differences between linear and knn estimators in the 
evaluation of information-domain indexes (see Fig. 4). The 
higher values of information storage obtained using the knn 
estimator compared with the linear estimator suggest the 
presence of nonlinear dynamics underlying this aspect of the 
cardiovascular regulation [22]. A previous study combining 
the computation of nonparametric estimators of information 
measures with the method of surrogate data reported that HRV 
is also affected by nonlinear dynamics [37]. Although similar 
studies have not been carried out on PAT time series, we may 
speculate that this may also be true with regard to the 
dynamics of cardiovascular control analyzed with PAT, given 
that our results almost always show statistically significant 
differences between the values of information storage 
computed using linear and nonlinear estimators. While these 
results indicate that it would be preferable to use the non-
parametric estimator to capture the complexity of PAT 
dynamics, the observation that the main changes with stress 
(T vs B and M vs R1) are detected by both estimators suggest 
the feasibility of a simpler linear analysis. In fact, the linear 
estimator may represent the best algorithm to be implemented 
within the firmware of portable devices, being at the same 
time quite reliable and requiring less computational power. 

 A limitation of studying PAT consists in the fact that it 
cannot be considered as a surrogate of PTT or of the Pulse 
Wave Velocity (PWV) [38], that have been used in the 
literature for a quite reliable assessment of blood pressure and 
arterial stiffness [39]. It is also important to highlight that PAT 
time series are usually extracted from synchronous acquisition 
of photoplethysmographic (PPG) and ECG signals. Instead, in 
this work we use timing peaks of BP signal as surrogate of 

timing peaks of PPG signal. This should not affect 
significantly the validity of the analyses, since BP and PPG 
signals have similarities in terms of pulsation timing [40]. 
Moreover, although the absolute value of the PAT depends on 
the signal from which the arrival times are measured (PPG or 
BP), on the acquisition site (finger, toe, ear…) and on the point 
of signal that was considered for its determination (minimum, 
maximum, inflection points…), its relative changes across 
different phases are indicative of cardiovascular control 
mechanisms activity. 

V. CONCLUSIONS 

 This paper reports a systematic analysis of PAT series 
acquired during different physiological conditions, employing 
time-, frequency- and information-theoretic domain measures. 
Our results evidence that cardiovascular dynamics represented 
by PAT behave differently in the various conditions. Thus, the 
proposed indices allow to discriminate the transition from a 
resting to a stress state, also showing differences between 
physical and mental stressors. The indirect comparison with 
HRV indices, representing the gold standard for assessing 
ANS activity, showed some similarities but also different 
behaviors. Although the PAT does not allow to delineate 
precisely the heart rate dynamics, its evaluation favors a more 
complete understanding of the complex regulatory 
mechanisms that also include the dynamics of blood pressure, 
respiration and vascular response. This may also have clinical 
relevance, in terms of prevention and monitoring of CVDs. 
Future activities may consider to combine HRV and PAT 
indices, taking also into account other signals (e.g. blood 
pressure, respiration), together with employing novel 
information dynamics tools, e.g. multiscale Information 
Decomposition [41], to have a more comprehensive 
understanding of cardiovascular and cardiorespiratory 
dynamics.  
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