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1 | INTRODUCTION

High-income countries are experiencing a rapid growth of health care expenditure (HCE) that seems to outpace demo-
graphic growth and aging of their population jeopardizing the fiscal sustainability of their health systems (OECD, 2006, 
2015). The first objective of this study is to measure the effect of non-demographic and non-health related drivers, such 
as technological progress and change in medical practice, on the increment of HCE over time. In spite of the relevance 
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Abstract
This study measures the increment of health care expenditure (HCE) that can 
be attributed to technological progress and change in medical practice by using 
a residual approach and microdata. We examine repeated cross-sections of indi-
viduals experiencing an initial health shock at different point in time over a 
10-year window and capture the impact of unobservable technology and medi-
cal practice to which they are exposed after allowing for differences in health 
and socioeconomic characteristics. We decompose the residual increment in the 
part that is due to the effect of delaying time to death, that is, individuals surviv-
ing longer after a health shock and thus contributing longer to the demand of 
care, and the part that is due to increasing intensity of resource use, that is, the 
basket of services becoming more expensive to allow for the cost of innova-
tion. We use data from the Danish National Health System that offers universal 
coverage and is free of charge at the point of access. We find that technological 
progress and change in medical practice can explain about 60% of the increment 
of HCE, in line with macroeconomic studies that traditionally investigate this 
subject.
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of these factors frequently being mentioned in the literature, research measuring their impact on HCE is sparse due to 
a lack of agreement on their definition and conceptualization of appropriate indicators (Chernew & Newhouse, 2011; 
Martín et al., 2011). The approach proposed in this paper is to measure their effect as a residual increment (RI) of HCE 
after controlling for observable demographic and health drivers using microdata. We performed a repeated cross-section 
analysis on individuals experiencing an initial health shock to capture the impact of unobservable technology and medi-
cal practice to which they are exposed when they experience the shock, allowing for the data generating process that links 
variation in age and morbidity to variation in HCE over time. The identification of the effect of technological progress 
and change in medical practice on HCE is achieved from the assignment of individuals to their initial health shock over a 
time window of 10 years, which occurs with some degree of randomness with respect to the technology available to treat 
them after the shock, and a large battery of individual indicators adjusting for variation in health and sociodemographic 
characteristics. We find evidence that the RI account for 60% of the total increment of HCE in our study population.

The second objective of this study is to decompose the RI of HCE in the part that is due to delaying time to death  
(TTD), that is, individuals surviving longer after a health shock, and the part that is due to increasing intensity of resource use,  
that is, individuals consuming more resources per unit of time. New technologies and medical practices may generate 
an increase in HCE over time through two different channels: first, the basket of services accessed by patients becomes 
more expensive to allow for the cost of innovation; second, patients are able to delay the TTD associated with their 
health condition and thus they can potentially contribute to the demand for health care for longer. Numerous studies 
demonstrate that approaching TTD prompts an exponential increment of HCE leading to the suggestion that HCE might 
reduce in the future as individual experience increasing life expectancy over time and hence delay their TTD (Felder 
et al., 2010; Werblow et al., 2007; Wong et al., 2011; Zweifel et al., 1999). However, this hypothesis has not been formally 
tested and it is likely to depend on the source of the increment in life expectancy. HCE is likely to fall if the increment 
in life expectancy is due to slowing down the process of aging gaining additional life years free from morbidity and disa-
bility, as suggested by the compression of morbidities hypothesis (Fries et al., 2011; Geyer et al., 2018; Manton, 2008). 
In contrast, HCE might increase if additional life years attracts morbidities and disabilities. Such a scenario might arise 
when additional life years are gained through new medical technologies and practices that are capable of saving the life 
of patients, but unable to grant them a full recovery from disease leaving them permanently frailer after the interven-
tion (Gruenberg, 2005; Laudicella et al., 2013; Laudicella, Martin, et al., 2018). In this study, we provide evidence on the 
impact of delaying TTD that stems from the latter source. We find that about one fourth of the RI of HCE can be attrib-
uted to delaying TTD, while the rest is due to increasing intensity of resource use. However, the impact of delaying TTD 
is heterogeneous according to the health conditions that prompt the health shock.

Econometric analysis is based on a three-part estimator predicting the probability of surviving, the probability of 
using health care services, and the conditional HCE over the time elapsed after the health shock. This estimator was 
originally developed by Basu and Manning  (2010) for the analysis of episodes-of-illness costs over time. We use the 
BM-estimator to model the impact of a health shock on HCE over two dimensions of time describing our data generating 
process: calendar time when individuals experience the shock and elapsed time after the shock.

The study is based on a rich dataset covering the whole population of residents in Denmark age 50+ using inpatient 
and outpatient hospital services. The dataset includes very accurate information on individual's morbidity and DRG 
tariffs that are used to reimburse hospital services. We study the Danish National Health System (DNHS) that is free of 
charge at the point of use and offers a universal coverage to its population. The DNHS offers an ideal setting to assess 
variation in HCE over time as the use of health services is not confounded by variation in ability to pay or access to health 
insurance.

1.1 | Literature background

Numerous studies suggest TTD and morbidity are key drivers of HCE, whereas aging captures the effect of these 
factors when they are omitted from the analysis; hence age has been labeled a red herring (Felder et al., 2010; Werblow 
et al., 2007; Wong et al., 2011; Zweifel et al., 1999). Research based on hospital administrative data reinforces the case for 
morbidity as one the main drivers of HCE suggesting that TTD captures the effect of unmeasured morbidity, and thus the 
relationship between TTD and HCE could be another red herring (de Meijer et al., 2011; Howdon & Rice, 2018; Moore 
et al., 2017; Shang & Goldman, 2008). However, the literature is still debating the extent to which age and morbidity are 
the causes of the increment of HCE observed in the past, and whether they are good predictors of its growth in the future 
(Breyer & Lorenz, 2020; de Meijer et al., 2013; Dormont et al., 2006). Epidemiological studies suggest that morbidity 

LAUDICELLA et al.
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follows a compression process characterized by increasing life expectancy and non-increasing total number of years lived 
with disability (Geyer et al., 2018; Manton, 2008; Payne et al., 2007). Also, evidence on TTD suggests that increasing life 
expectancy of the population could contribute to reducing HCE over time as individuals postpone the increase in HCE 
associated with end of life (Breyer et al., 2015; de Meijer et al., 2011; Howdon & Rice, 2018; van Baal & Wong, 2012).

Despite the large body of research on the response of HCE to demographic and health related drivers, little attention 
has been paid to the variation that remains unexplained after controlling for these factors. Some studies move in this 
direction by decomposing the increment of HCE over time into the part that is due to variation in the distribution of its 
drivers and the part that is due to variation in their effects following Oxaca type and Chernozhukov type decomposition 
approaches (de Meijer et al., 2013; Dormont et al., 2006; Rice & Aragon, 2018). Variation in the distribution of the drivers 
is then attributed to changes in demographic and health factors in the population, while variation in their effect is attrib-
uted to technological progress and changes in medical practice.

Finally, a residual approach to measure the impact of technological progress on HCE growth has been adopted in 
many macroeconomic studies (Finkelstein, 2007; Newhouse, 1992; Peden & Freeland, 1998; Smith et al., 2009). However, 
to the extent of our knowledge, this is the first application using microdata that allows for an accurate control over 
observable drivers, such as morbidity, and avoids assumptions on factors encouraging technological progress, such as 
income elasticity and insurance coverage, which often underpin macroeconomic studies (Chernew & Newhouse, 2011).

2 | DATA

We used data extracted from the Danish National Patient Register including all elective and emergency admissions to 
hospital and outpatient visits occurring between 2000 and 2017. We had access to information on patient admission and 
discharge date, each admission and outpatient visit includes information on primary diagnosis and up to 20 secondary 
diagnosis reported using ICD-10 codes. Every hospital discharge and outpatient visit attract a DRG tariff from which 
HCE is derived; DRG tariffs are reported in our data from 2003 onwards. All residents of Denmark are identified by a 
unique identification number that is used to follow them through the Danish National Patient Register and to link them 
to a number of other registers at the individual level. We linked data on date of death from the Register of Causes of 
Death, individual annual income from the Income Statistics Register, and living alone status from the Central Person 
Register (see Thygesen et al. (2011) for an overview on Danish registries).

2.1 | Institutional framework

The DNHS offers a universal coverage to residents in Denmark and free access to primary and secondary care services, 
which are funded by the taxpayers. Secondary care, including elective and emergency outpatient and inpatient services, 
is delivered by a network of 21 large multi-service hospitals, which are non-profit public organizations serving a local 
population of 250,000 residents and managed by the 5 Danish Regions. Access to elective care is managed by General 
Practitioners (GPs), who are the gate keepers of the system, while emergency care can be accessed by calling an emer-
gency number managed by the Emergency Medical Coordination Centers, which assess the urgency of the call and direct 
the patients to the closest Emergency Department available. Hospital services are reimbursed by the Danish Regions 
through a system of DRG tariffs centrally determined by the Department of Health on the basis of the average costs 
reported annually by hospitals. DRGs were initially introduced in 2000 to facilitate payments for patients choosing to 
receive their treatment in a different administrative area than their area of residence; 3 years later they were extended to 
all patients as a tool to incentivize hospital productivity and in 2005 were officially adopted as a reimbursement system. 
The Hospital sector underwent a reorganization in 2007 aiming at reducing costs and improving the quality of services; 
acute hospitals were reorganized into 21 large multiservice organizations with highly specialized treatments, such as 
surgery for lung cancer, heart surgery, transplants or treatment of serious burns, centralized in 1–3 locations in the 
country (Christiansen & Vrangbaek, 2018). This reform undoubtedly contributed to the trajectory of HCE and can be 
considered as one of the forces that contributed to the introduction of new technology and medical practice in Denmark.

LAUDICELLA et al.
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2.2 | Study population

Our study population includes individuals age 50+ exposed to an initial health shock in different calendar years over a 
10-year window, 1 from 2005 to 2014. A health shock is defined as an emergency admission for any cause with a length 
of stay of at least 1 day. 2,3 Individuals enter the study at the time of their initial health shock, that is, the first shock in 
a moving time window of 5 years, for example, an individual enters the study in 2005 if she experiences a health shock 
in 2005 and no shocks in 2000–2004. Then, we follow each individual 2 years before and 3 years after her initial health 
shock and extract information on her HCE, health and sociodemographic characteristics. Hence, our study population is 
constructed using data from 2000 to 2017 allowing for the initial health shock and the follow up period, although expo-
sure to new technology and medical practice is assessed between 2005 and 2014. It is worth noting that our definition 
of initial health shock aims to capture a deterioration of individual's health that leads to an unplanned event, that is, an 
emergency admission, rather than a deterioration of health that leads to a new health condition. For instance, patients 
experiencing an emergency admission may have been diagnosed earlier and may already have been placed on a course 
of elective treatment. Such a definition allows us to capture a large population of 962,794 individuals who are potentially 
frequent users of the Health System. For instance, individuals experiencing an initial health shock in 2014 account for 
23.5% of national HCE for all hospital inpatient and outpatient services in the same year and for 8.2% of all users in the 
same age group.

2.3 | Dependent variable

Our dependent variable is the HCE for hospital inpatient and outpatient services accessed by individuals in our study 
population at 2017 price level. This includes HCE for pharmaceuticals delivered during inpatient admissions and outpa-
tient visits. We calculate HCE over different time windows from the onset of the health shock to which individuals are 
exposed, that is, 365 days and 1095 days, and we indicate the specific time window adopted in the method section and 
in the results section to avoid confusion. HCE is measured by a system of DRG tariffs that the Danish Regions pay to 
hospitals on the basis of the services delivered to patients every year. The DRG payment system was officially introduced 
in 2005, although DRG tariffs were calculated and reported since 2003. The DRG tariffs are updated every year to allow 
for changes in the cost of services; updates are based on the national average cost of each service calculated from hospital 
cost returns. Official calculations for inflation are produced by the Danish Regions annually and separately for primary 
care, secondary care, and pharmaceuticals; building blocks of these calculations are: the report over the business cycle 
from the Ministry of Economic Affairs and the Interior Ministry's financial statement; wage developments determined 
by all collective agreements with labor unions; price developments determined by a basket of goods and services, which 
include fuel, food, transport, land and buildings, and service procurement. The official inflation coefficients reported for 
hospital services were used to adjust HCE at 2017 price level. 4

2.4 | Control variables

We use a large basket of individual indicators capturing health and sociodemographic characteristics to control for indi-
vidual heterogeneity in the analysis. Health indicators were based on individual health conditions reported in the hospital 
records at the time of the health shock and in the 2 years before the shock, including: age, gender, indicator for primary 
diagnosis and total secondary diagnoses, Charlson index measuring mortality risk, comorbidity indicators for acute and 
chronic conditions affecting mortality risk (acute myocardial infarction [AMI], congestive heart failure, peripheral vascu-
lar disease, cerebrovascular disease, dementia, chronic obstructive pulmonary disease, rheumatoid disease, peptic ulcer, 
liver disease, diabetes, and renal disease, cancer). Indicators for the primary diagnosis include a total of 1005 distinct 
indicators based on the ICD-10 system for classification of diseases reported at the time of the health shock. The Charl-
son index and comorbidity indicators are calculated by using hospital records at the time of the health shock and 2 years 
before the shock. Finally, we included indicators for individual HCE occurring 1 year and 2 years before the health shock 
to control for heterogeneity in utilization of care before the shock.

The socioeconomic indicators include individual income, living alone status, and migrant status. Individuals not 
living alone might receive informal care reducing utilization of other types of care (de Meijer et al., 2011).

LAUDICELLA et al.
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2.5 | Descriptive statistics

Figure 1 shows the distribution of HCE before and after an initial health shock occurring at the two end points of our 
study, that is, 2005-6 and 2013-14. HCE is reported in Euros at 2017 price level and observations are grouped in 2-year 
intervals. Individuals experiencing a health shock in 2013-14 consumed health resources for 17,541 € in the first year 
after the shock (i.e., the interval 0–365 days including the shock), and 4358 and 3341 € in the second and third year after 
the shock respectively (i.e., the intervals 366–730 days and 731–1095 days after the shock). In contrast, HCE in patients 
experiencing a health shock in 2005-6, was considerably lower totaling 15,004 € in the first year after the shock and 3748 
€ and 3052 € in the second and third year.

Table 1 reports descriptive statistics for individuals experiencing a health shock at the two end points of our study 
period. Patients with a health shock in 2013-14 survive 4.86 days longer and are 2.53% points less likely to face TTD than 
patients with a health shock in 2005-6. However, the former are 0.41 years older, have 0.06 points higher Charlson index 
for mortality risk and have 0.09 more diagnoses than the latter. In terms of prevalence of specific morbidities, patients 
with a health shock in 2013-14 are less likely to have: AMI (−0.93% points), congestive heart failure (−0.47 pp), cerebro-
vascular disease (i.e., strokes; −0.82 pp), and peptic ulcer (−0.68 pp); in contrast, they are more likely to have: chronic 
obstructive pulmonary disease (0.39 pp), diabetes without complications (0.79 pp), renal disease (0.56 pp), cancer (2.08 
pp) and metastatic cancer (0.30 pp). With respect to socioeconomic status they are less likely to live alone (−0.88 pp), 
more likely to be a migrant (1.33 pp), and their annual income is 2607 € higher in real terms than individuals having 
a health shock 8 years before. Finally, Table 1 shows that the total number of individuals experiencing a health shock 
increased by 3.28% moving from 188,275 to 194,459 in the 8-year period examined.

3 | METHODS

The empirical analysis consists of two parts. In the first part, we measure the RI of HCE in each calendar year by using a 
repeated cross-section analysis. In the second part, we decompose the RI of HCE into delaying TTD effect and intensity 
effect by applying a time-to-event longitudinal analysis.

LAUDICELLA et al.

F I G U R E  1  Health care expenditure after an initial health shock in 2005-6 and 2013-14. Prices reported in Euros at 2017 level [Colour 
figure can be viewed at wileyonlinelibrary.com]
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3.1 | Measuring the RI of HCE

We model HCE by using a generalised linear model (GLM) with gamma distribution and log link function. Box-Cox tests 
and Modified Park tests were used to select the appropriate link function and family function:

� (HCE�|��) = exp (� + ���) (1)

LAUDICELLA et al.

Health shock 2013-14 Heath shock 2005-6

DifferencePatients Mean s.d. Patients Mean s.d.

Health Care Expenditure (Euros)

 0–365 days after shock 194,459 17541.01 25462.22 188,275 15004.84 19808.74 2536.17

 366–730 days after shock 194,459 4358.17 11914.09 188,275 3748.27 10359.22 609.90

 731–1095 days after shock 194,459 3341.87 9907.74 188,275 3052.57 8919.10 289.30

 365-1 day before shock 194,459 3456.06 9068.51 188,275 2401.08 7374.29 1054.99

 730-366 days before shock 194,459 1718.42 5488.90 188,275 1168.62 4141.11 549.80

Time to Death

 TTD (days from shock to death) 42,121 353.403 334.8776 45,547 348.5398 335.7149 4.8632

 Entering TTD (within 3 years from shock) 194,459 21.66% 188,275 24.19% −2.53%

Demographic characteristics

 Female 194,459 50.56% 188,275 51.90% −1.34%

 Age 194,459 69.04 11.22 188,275 68.63 11.4322 0.41

Comorbidities at the time of the shock and up to 730 days before

 Total diagnoses (at the time of the shock) 194,459 2.0385 1.3995 188,275 1.945 1.2338 0.0935

 Charlson index 194,459 0.8578 1.4515 188,275 0.8005 1.3465 0.0573

 AMI 194,459 4.60% 188,275 5.53% −0.93%

 Congestive heart failure 194,459 3.73% 188,275 4.20% −0.47%

 Peripheral vascular disease 194,459 2.99% 188,275 2.76% 0.23%

 Cerebrovascular disease 194,459 9.24% 188,275 10.06% −0.82%

 Dementia 194,459 1.96% 188,275 2.12% −0.16%

 Chronic obstructive pulmonary dis. 194,459 6.80% 188,275 6.41% 0.39%

 Rheumatoid disease 194,459 1.97% 188,275 1.86% 0.11%

 Peptic ulcer 194,459 1.36% 188,275 2.04% −0.68%

 Liver disease (mild) 194,459 0.87% 188,275 0.83% 0.04%

 Liver disease (severe) 194,459 0.35% 188,275 0.31% 0.04%

 Diabetes 194,459 7.24% 188,275 6.45% 0.79%

 Diabetes complications 194,459 1.68% 188,275 1.67% 0.01%

 Renal disease 194,459 1.65% 188,275 1.09% 0.56%

 Cancer 194,459 11.95% 188,275 9.87% 2.08%

 Metastatic Cancer 194,459 2.43% 188,275 2.13% 0.30%

Socioeconomic characteristics

 Living alone 194,459 41.65% 188,275 42.53% −0.88%

 Migrant 194,459 5.51% 188,275 4.18% 1.33%

 Income (x1,000 €) 194,459 29.2736 38.3464 188,275 26.6662 38.4559 2.6074

 Length of stay (at the time of the shock) 194,459 3.72 5.34 188,275 5.06 8.05 −1.34

Abbreviation: AMI, acute myocardial infarction.

T A B L E  1  Difference in the characteristics of individuals with a health shock in 2014-13 and 2005-6
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HCE� measures the total amount paid for inpatient and outpatient services accessed by individual “i” from the onset 
of the health shock to 365 days after. The RI of HCE is captured by a vector of dummies, t, for the calendar year of the 
initial health shock after controlling for observable individual health and sociodemographic characteristics in 𝐴𝐴 𝐴𝐴i . Our 
identification strategy is to use variation in HCE generated by individuals with similar observables health and socio-
demographic characteristics exposed to different unobservable technology and medical practice in different calendar 
years. This approach aims to address the data generating process that links age and morbidity and unobservable drivers, 
such as technology and medical practice, to HCE over time in line with the objectives of our study. Typically, individuals 
experience a specific age and health shock only in one calendar time point during their lifetime, since within individual 
variation in these factors goes only in one direction over time. Therefore, it would be difficult to disentangle the effect 
of variation in observable and unobservable drivers of HCE over time by following the same individual over calendar 
time, for example, by using a panel data approach. 5 Finally, including individuals at the time of their initial health shock 
allows us to mitigate the confounding effect of technology and medical practice to which they were exposed in the past, 
which could influence their probability of being included in the study (e.g., surviving a previous health shock) and their 
unobservable health characteristics.

Control for individual heterogeneity is achieved through two channels. First, the calendar year when individuals are 
exposed to an initial health shock has some degree of randomness with respect to the technology and medical practice 
available to treat them after the shock. For instance, hospitals decision to invest in acute care for patients with an AMI 
or a stroke in a particular year has little influence on the probability that individuals will suffer from an AMI or a stroke 
in that year. Second, we use a large basket of indicators controlling for individual heterogeneity in health and socioeco-
nomic characteristics over the calendar years when individuals are exposed to the health shock. For instance, a health 
shock might be more severe in late calendars years if the population becomes older and sicker, or if the health system 
rises the bar for an emergency hospital admission. However, the extent of this potential bias should not be large given 
the relatively short time window examined by our study, and it should be possible to control for by using the large basket 
of individual indicators at our disposal. We provide two tests for the extent of such a potential bias in the section for 
robustness checks.

We attribute the RI of HCE captured by Equation (1) to the overall change in technology and medical practice that 
occurred during the examined time, t, following a similar interpretation in macroeconomic studies using a residual 
approach (Chernew & Newhouse, 2011). Our identification assumption is that the calendar year when an individual 
experience an initial health shock and the severity of the shock are independent from technological progress in hospital 
acute care after controlling for observable individual heterogeneity. We provide evidence supporting this assumption in 
the robustness-checks section of the paper.

3.2 | Decomposing the RI of HCE

Equation (1) provides a snapshot of the RI of HCE with respect to the calendar time when individuals are exposed to a 
health shock. However, the RI of HCE can be also examined with respect to the elapsed time from the health shock as the 
difference in two cost accumulation functions produced by individuals who are exposed to a health shock in two differ-
ent calendar years. In other words, we can study the trajectory followed by the RI from the time point when the health 
shock onsets to different end points of interest, for example, 30 days, 180 days, 365 days or 1095 days after the shock, 
and examine how the RI of HCE accumulates over such time windows. To this end, we apply the estimator proposed 
by Basu and Manning (2010) that extends the class of two-part models to deal with spikes in cost-accumulation due to 
TTD. The BM-estimator allows us to decompose the RI in the part that is due to increasing survival, that is, the delaying 
TTD effect, and the part that is due to increasing resource use per unit of time, that is, the intensity effect. Both effects 
are likely to occur as a result of investments in new technologies and medical practices improving quality of care and 
reducing hospital mortality rates for many health conditions (OECD et al., 2017). The delaying TTD effect is the result 
of patients surviving longer and thus contributing longer to the demand of care. The intensity effect is the net results of 
distinct sources of variation in HCE: on one hand the basket of services accessed by patients becomes more expensive 
over time to allow for the cost of innovation; on the other hand, new technology and medical practice may reduce the use 
of unnecessary care, for example, emergency hospital readmissions, and allow policy makers to redirect the demand to 
less expensive and equally effective level of care, 6 for example, from inpatient to outpatient care, incentivizing produc-
tivity (OECD et al., 2017).

LAUDICELLA et al.
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Basu and Manning (2010) propose the following model to describe the process of cost accumulation for an individual 
i over a number of discrete time periods j = 1 …, K:

𝜇𝜇 =

𝐾𝐾
∑

𝑗𝑗=1

Pr
(

𝑉𝑉 𝑉 𝑉𝑉𝑗𝑗−1

)

∗
{

𝜇𝜇1𝑗𝑗 ∗ ℎ
(

𝑉𝑉𝑗𝑗

)

+ 𝜇𝜇2𝑗𝑗 ∗
(

1 − ℎ
(

𝑉𝑉𝑗𝑗

))}

 (2)

Where 𝐴𝐴 𝐴𝐴 is the expected cumulative HCE up to the period j = 1,…, K for the individual i (the notation for individuals has 
been suppressed for clarity); 𝐴𝐴 𝐴

(

𝑎𝑎𝑗𝑗

)

 is the hazard of death in the interval 𝐴𝐴
(

𝑎𝑎𝑗𝑗, 𝑎𝑎𝑗𝑗−1

]

 for individuals who survived until 𝐴𝐴 𝐴𝐴𝑗𝑗−1 ; 
Pr
(

� > ��
)

= �
(

��
)

 is a survival function for the individual i with V indicating her TTD. An appealing property of this 
model is that the rate of cost accumulation in individuals who die is allowed to differ from individuals who do not, with 

𝐴𝐴 𝐴𝐴1𝑗𝑗 representing the expected HCE if the subject dies in the interval j and 𝐴𝐴 𝐴𝐴2𝑗𝑗 the expected HCE if she survives.
The model in Equation  (2) can be estimated using a three-part estimator over different subsets of person-period 

observations: Part-1 estimates the predicted probability of survival 𝐴𝐴 𝑆𝑆𝑗𝑗(𝑋𝑋) until the start of the period j and the hazard 
function for death during the period 𝐴𝐴 ℎ̂𝑗𝑗(𝑋𝑋) for all person-period observations. We estimated Part-1 with a pooled logit 
model using a discrete-time approach that allows us to estimate: (a) the time-varying effects, which enter the model 
through the interaction between the periods j = 1,…, K and capture the time elapsed after the health shock; and (b) the 
calendar time t = 1,…,T capturing the RI of HCE. Part-2 estimates 𝐴𝐴 𝐴𝐴𝐴1𝑗𝑗(𝑋𝑋) in the person-periods in which individuals die, 
and Part-3 estimates 𝐴𝐴 𝐴𝐴𝐴2𝑗𝑗(𝑋𝑋) in the person-periods in which the individual survives. We estimated Part-2 and Part-3 by 
using a two-part model with the first part consisting in a Logit model for the probability of positive HCE and the second 
part consisting in a GLM model for positive HCE with gamma distribution and log link function. The estimated cost 
function for an interval j for any individual can be expressed as:

𝜇𝜇𝑗𝑗(𝑋𝑋) = 𝑆𝑆𝑗𝑗(𝑋𝑋) ∗
[

ℎ̂𝑗𝑗(𝑋𝑋) ∗ �̂�𝜇1𝑗𝑗(𝑋𝑋) +
(

1 − ℎ̂𝑗𝑗(𝑋𝑋)
)

∗ �̂�𝜇2𝑗𝑗(𝑋𝑋)
]

 (3)

with: 𝐴𝐴 𝐴𝐴𝐴(𝑋𝑋) =

𝐾𝐾
∑

𝑗𝑗=1

𝐴𝐴𝐴𝑗𝑗(𝑋𝑋)

Formal proof of the consistency of the estimator is in Basu and Manning (2010). Equation (3) allows us to model two 
dimensions of time that describe the data generating process. First, the calendar time t when individuals experience the 
health shock, which we include in the matrix of covariates 𝐴𝐴 𝐴𝐴 as a vector of dummies. 7 Here, the calendar time t captures 
the RI of HCE that can be attributed to technological progress and medical practice following a similar approach to the 
model in Equation (1). Second, the time elapsed after the health shock j (with j = 1, 2, … K) that we capture by estimating 
the HCE for each person-period observation after the shock, 𝐴𝐴 𝐴𝐴𝐴𝑗𝑗(𝑋𝑋) , and then cumulating the sum of 𝐴𝐴 𝐴𝐴𝐴𝑗𝑗(𝑋𝑋) from the first 
to the last of the periods j.

The RI of HCE, which can be attributed to the overall change in technology and medical practice, is obtained by 
differentiating Equation (3) with respect to calendar years 𝐴𝐴 Δ𝑡𝑡

 8:

Δ�(�)
Δ�

=
�
∑

�=1

{

Δ�̂�(�)
Δ�

[

ℎ̂�(�) ∗ �̂1�(�) +
(

1 − ℎ̂�(�)
)

∗ �̂2�(�)
]

+ �̂�(�)

[

Δℎ̂�(�)
Δ�

∗
(

�̂1�(�) − �̂2�(�)
)

]}

+

+
{

�̂�(�)
[

ℎ̂�(�) ∗
Δ�̂1�(�)

Δ�
+
(

1 − ℎ̂�(�)
)

∗
Δ�̂2�(�)

Δ�

]} (4)

The first part of Equation (4) in curly brackets captures the RI of HCE that is due to a change in the probability of 
surviving between the two calendar years, that is, the delaying TTD effect, while the second part captures the RI of HCE 
that is due to a change in the rate of cost accumulation per unit of time, that is, the intensity effect. The delaying TTD 
effect is measured for an expected level of HCE predicted by 𝐴𝐴 𝐴𝐴𝐴1𝑗𝑗(𝑋𝑋) and 𝐴𝐴 𝐴𝐴𝐴2𝑗𝑗(𝑋𝑋) for every subject-intervals in the data (first 
part of Equation 4); similarly, the intensity effect is measured for an expected level of survival predicted by 𝐴𝐴 𝑆𝑆𝑗𝑗(𝑋𝑋) (second 
part of Equation 4). Finally, the exponential trajectory of HCE in individuals entering TTD is modeled by estimating two 
distinct cost functions, 𝐴𝐴 𝐴𝐴𝐴1𝑗𝑗(𝑋𝑋) and 𝐴𝐴 𝐴𝐴𝐴2𝑗𝑗(𝑋𝑋) , for the j person-periods in which individuals die and in which they survive.

Notice that under this framework, individual characteristics and health care resources included in X are assumed to 
have a distinct and independent effect on individual survival, 𝐴𝐴 𝑆𝑆𝑗𝑗(𝑋𝑋) , and cost of care 𝐴𝐴 𝐴𝐴𝐴1𝑗𝑗(𝑋𝑋) and 𝐴𝐴 𝐴𝐴𝐴2𝑗𝑗(𝑋𝑋) . This is a key 
property of the cost function in Equation (2) that allows us to capture the effect of technological progress and change 
in medical practice, 𝐴𝐴 Δ𝑡𝑡 , on HCE through a distinct and independent effect on TTD and intensity of resource use. This 
approach has been used for measuring the effect of alternative treatments on cost trajectories (Federspiel et al., 2013; 
White et al., 2019; Williams et al., 2019) and in the formulation of other cost functions (Lin, 2003). However, other studies 

LAUDICELLA et al.
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adopt a different modeling solution in which the survival function, or the TTD indicator, enters the cost function as an 
independent variable together with individual characteristics and health care resources (de Meijer et al., 2011; Howdon 
& Rice, 2018).

4 | RESULTS

Table 2 reports estimates of RI of HCE from the GLM model described in Equation (1) in the method section. HCE is 
measured as the total amount paid for inpatient and outpatient services accessed by individuals in our study from the 
onset of the health shock to 365 days after. The RI is captured by the calendar year dummies under five different model 
specifications with increasing number of covariates testing its sensitivity to variation in age, morbidity, and socioeco-
nomic status. We use 2-year intervals to allow for a minimum of 10 observations in each morbidity group. The average 
HCE per person increased by 16.90% points in individuals experiencing an initial health shock in 2013-14 as compared 
to similar individuals in 2005-6 (Model 1). After controlling for variation in age and morbidity and socioeconomic status, 
the increment in HCE between the 2 periods drops to 10.28% points (Model 5), namely the estimated RI of HCE that 
can be attributed to technological progress and change in medical practice accounts for about 60% of the total increment 
of HCE (i.e., 10.28/16.90 = 60.82%). This result is in the ballpark of macroeconomic studies measuring the impact of 
technological progress on HCE using a residual approach (Newhouse, 1992; Peden & Freeland, 1998; Smith et al., 2009). 
Variation in age accounts only for about 7% of total increment (i.e., 1–15.77/16.90 = 6.87; Model 2). Morbidity and age 
together account for about 40% of total increment (i.e., 1–10.19/16.90 = 39.70; Model 4), while including variation in 
socioeconomic status leave the total increment unchanged (Model 5). The latter result is not surprising as the DNHS is a 
universal health system with access to care independent from income. This analysis suggests that variation in age plays a 
limited role in explaining variation in HCE over time, while variation in morbidity has a much larger influence as found 
by other studies (de Meijer et al., 2011; Howdon & Rice, 2018; Moore et al., 2017; Shang & Goldman, 2008). However, 
both age and morbidity are blunt predictors of the increment of HCE over time as about 60% of its total increment 
remains unexplained after allowing for these factors.

Table 3 reports results of the decomposition analysis of the RI into the part that is due to delaying TTD and the part 
that is due to increasing intensity of resource use. Estimates are obtained from the BM-estimator described in Equa-
tions (2)–(4). 9 HCE is measured as the cumulated total amount paid for inpatient and outpatient services accessed by 
individuals in our study from the onset of the health shock to 365 days, 730 days, and 1095 days after. The RI is captured 
by the difference in HCE for individuals having a health shock in 2013-14 as compared with 2005-6 after controlling for 
variation in age, morbidity and socioeconomic characteristics using the same parametrization of Model 4 in Table 2. The 
RI is measured as a differential effect (i.e., average marginal effect) and cumulated over the time elapsed from the health 
shock up to 3 years after. Standard errors are calculated from 500 clustered bootstrap replicates. Figure 3 plots results in 
Table 3 against the time elapsed from the health shock providing more granularity to the trajectories of cost accumula-
tion. Three years from the health shock, the cumulated total RI f HCE that can be attributed to technological progress and 
change in medical practice amounts to 2006 € per patient (at 2017 price level); about one fourth of the total RI (508 €) is 
due to delaying TTD, that is, individuals using more health care resources as they survive a health shock for longer than 
their peers in 2005-6, while the rest of the RI is due to increasing intensity of resource use (1498 €), that is, individuals 
consuming more health care resources per unit of time. Finally, Table 3 and Figure 3 show that about 63% of the total RI 
is produced in the first 365 days after the health shock (1278 €), while the remaining 37% is accumulated in year 2 and 
year 3 from the health shock in equal shares.

Figure 2 reports the predicted cumulative survival distribution for individuals having an initial health shock in 2013-
14 and 2005-6 over the following 3 years. Predictions are obtained from the logit model used to estimate Part 1 of the 
three-part BM-estimator described in the method section.

Table 3 and Figure 3 also report results of the heterogeneity analysis by health conditions prompting the initial health 
shock, that is, the health condition reported as the primary diagnosis at the time of the health shock. We examined 
three acute conditions that gained noticeable increments in their survival rates during the time of our study (OECD 
et  al.,  2017): cancer, AMI, and strokes. With respect to cancer, we examined the four most prevalent type of cancer 
(colorectal, breast, prostate and lung) and included controls for cancer site and metastatic cancer in the regression. As 
expected, the RI and its components show a large heterogeneity across these conditions as they attract different treat-
ments with associated different trajectories of technological progress and medical practice. In cancer, the cumulated total 
RI per patient is two and a half times larger than in the total population amounting to a total of 5326 € 3 years after the 

LAUDICELLA et al.
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shock; about 77% of this total is produced in the first year after the shock and about 90% is due to delaying TTD. Individu-
als in this group include newly diagnosed patients during an emergency admission and formerly diagnosed patients with 
a deterioration in health conditions leading to an emergency admission, both attracting a high mortality risk and amount 
of resources (Laudicella, Walsh, et al., 2018). The large share of the RI due to the delaying TTD effect can be explained by 

LAUDICELLA et al.

  Model 1 Model 2 Model 3 Model 4 Model 5

Shock 2005-6 Baseline Baseline Baseline Baseline Baseline

Shock 2007-8 0.9894** 0.9881*** 0.9830*** 0.9792*** 0.9794***

(0.0043) (0.0042) (0.0038) (0.0038) (0.0038)

Shock 2009-10 1.0700*** 1.0648*** 1.0389*** 1.0307*** 1.0312***

(0.0047) (0.0047) (0.0042) (0.0041) (0.0041)

Shock 2011-12 1.1210*** 1.1125*** 1.0793*** 1.0684*** 1.0690***

(0.0050) (0.0049) (0.0044) (0.0043) (0.0043)

Shock 2013-14 1.1690*** 1.1577*** 1.1191*** 1.1019*** 1.1028***

(0.0052) (0.0051) (0.0046) (0.0044) (0.0045)

Female 0.8733*** 0.9147*** 0.9126*** 0.9108***

(0.0025) (0.0025) (0.0025) (0.0025)

Age 1.1274*** 1.0869*** 1.0849*** 1.0854***

(0.0017) (0.0015) (0.0014) (0.0015)

Age sq. 0.9991*** 0.9994*** 0.9994*** 0.9994***

(0.0000) (0.0000) (0.0000) (0.0000)

Total diagnoses 1.1294*** 1.1190*** 1.1187***

(0.0012) (0.0012) (0.0012)

Charlson index 1.2220*** 1.1769*** 1.1767***

(0.0145) (0.0136) (0.0136)

15 comorbidities indicators Yes Yes Yes

175 primary diagnosis indicators Yes No No

1005 primary diagnosis indicators No Yes Yes

Single 1.0139***

(0.0028)

Migrant 0.9401***

(0.0056)

Income 1.0000

(0.0000)

Income sq. 1.0000

(0.0000)

HCE 1 year before the shock 1.0012*** 1.0012*** 1.0012***

(0.0000) (0.0000) (0.0000)

HCE 2 years before the shock 1.0006*** 1.0006*** 1.0006***

(0.0000) (0.0000) (0.0000)

Constant 15,004.8381*** 272.1890*** 402.0070*** 1249.3888*** 1295.9371***

(45.6520) (14.2397) (20.5177) (732.8990) (774.3949)

Observations 962,794 962,794 962,794 962,794 962,794

BIC- 12203624 −12221661 −12432801 −12457751 −12457898

Note: Exponentiated coefficients from GLM regression. Robust SE in parentheses.
Abbreviations: BIC, Bayesian information criterion; GLM, generalised linear model; HCE, health care expenditure.
***p < 0.01, **p < 0.05, *p < 0.1.

T A B L E  2  Residual Increment of annual HCE in individuals with an initial health shock
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1194 LAUDICELLA et al.

0–365 days after shock 0–730 days after shock 0–1095 days after shock

RI total

RI due to 
delaying 
TTD

Ri due to 
intensity of 
resource use RI total

RI due to 
delaying 
TTD

RI due to 
intensity of 
resource use RI total

RI due to 
delaying 
TTD

RI due to 
intensity of 
resource use

All

 2005-26 Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

 2007-8 −0.121 0.022 −0.143 0.118 0.058 0.060 0.324 0.082 0.243

 S.E (0.057) (0.010) (0.058) (0.077) (0.019) (0.078) (0.089) (0.023) (0.090)

 2009-10 0.583 0.085 0.497 1.154 0.209 0.945 1.526 0.283 1.243

 S.E. (0.057) (0.010) (0.057) (0.084) (0.019) (0.082) (0.100) (0.024) (0.097)

 2011-12 1.031 0.120 0.911 1.789 0.278 1.511 2.233 0.366 1.868

 S.E. (0.057) (0.009) (0.058) (0.078) (0.018) (0.080) (0.091) (0.021) (0.093)

 2013-14 1.278 0.174 1.104 1.800 0.392 1.408 2.006 0.508 1.498

 S.E. (0.063) (0.009) (0.063) (0.085) (0.019) (0.084) (0.097) (0.023) (0.097)

Cancer

 2005-6 Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

 2007-8 −1.140 0.988 −2.128 −0.975 1.565 −2.540 −0.887 1.766 −2.653

 S.E. (0.408) (0.217) (0.384) (0.554) (0.325) (0.511) (0.624) (0.359) (0.576)

 2009-10 1.125 1.641 −0.516 1.925 2.676 −0.750 2.239 3.058 −0.819

 S.E. (0.433) (0.232) (0.409) (0.586) (0.343) (0.537) (0.657) (0.377) (0.603)

 2011-12 3.089 2.136 0.953 4.602 3.418 1.184 5.162 3.873 1.289

 S.E. (0.412) (0.227) (0.394) (0.560) (0.345) (0.510) (0.635) (0.382) (0.574)

 2013-14 4.134 2.667 1.467 5.155 4.253 0.901 5.326 4.810 0.515

 S.E. (0.442) (0.239) (0.438) (0.564) (0.364) (0.554) (0.614) (0.404) (0.606)

AMI

 2005-206 Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

 2007-8 −0.316 0.041 −0.357 −0.068 0.104 −0.172 0.096 0.124 −0.028

 S.E. (0.270) (0.028) (0.271) (0.358) (0.066) (0.358) (0.406) (0.078) (0.406)

 2009-10 −0.263 0.070 −0.333 0.430 0.192 0.238 0.872 0.237 0.635

 S.E. (0.293) (0.027) (0.295) (0.405) (0.061) (0.406) (0.469) (0.072) (0.469)

 2011-12 −0.238 0.082 −0.320 0.394 0.228 0.167 0.787 0.280 0.506

 S.E. (0.302) (0.028) (0.305) (0.401) (0.064) (0.407) (0.457) (0.076) (0.463)

 2013-14 −1.465 0.141 −1.606 −1.093 0.382 −1.476 −0.746 0.467 −1.213

 S.E. (0.315) (0.029) (0.317) (0.423) (0.063) (0.423) (0.477) (0.074) (0.476)

Stroke

 2005-6 Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

 2007-28 −0.003 0.005 −0.008 0.369 0.019 0.350 0.603 0.026 0.577

 S.E. (0.266) (0.043) (0.266) (0.369) (0.082) (0.366) (0.433) (0.094) (0.429)

 2009-10 2.257 0.037 2.219 3.070 0.109 2.961 3.364 0.144 3.220

 S.E. (0.331) (0.045) (0.329) (0.421) (0.087) (0.415) (0.465) (0.101) (0.458)

 2011-12 3.330 0.115 3.215 4.619 0.269 4.350 5.097 0.332 4.765

 S.E. (0.349) (0.049) (0.352) (0.451) (0.097) (0.455) (0.504) (0.113) (0.509)

 2013-14 6.249 0.181 6.068 7.620 0.392 7.228 7.878 0.471 7.407

 S.E. (0.412) (0.043) (0.412) (0.517) (0.082) (0.513) (0.560) (0.094) (0.555)
Note: Total residual increment and decomposition into delaying time to death effect and intensity effect. (1000 €). Estimated average marginal effects from 
Basu-Manning estimator in Equation (4). All models include controls for variation in age, morbidity and socioeconomic characteristics using the same 
specification of Model 4 in Table 2. Standard errors calculated from 500 clustered bootstrap replicates.
Abbreviations: AMI, acute myocardial infarction; HCE, health care expenditure; RI, residual increment; TTD, time to death.

T A B L E  3  Residual increment of HCE from 2005-6 to 2013-14
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1195

a large improvement in survival outcomes (Figure 2) and a relatively small increment in the average amount of resources 
allocated to patients after an initial shock due to cancer, that is, a large 𝐴𝐴 Δ𝑆𝑆𝑗𝑗 and a small 𝐴𝐴 Δ𝜇𝜇𝑗𝑗 in Equation (4). Moreover, 
cancer patients consume a high level of resources, that is, a large 𝐴𝐴 𝐴𝐴𝐴𝑗𝑗 (Equation 4), which amplifies the share of the RI that 
the cost function apportions to the survival effect.

The cumulated total RI for strokes amount to 7878 € per patient 3 years after the shock; similarly to cancer, a large 
share of this total is produced in the first year after the shock (74%), but more than 90% is due to increasing intensity 
of resource use, rather than delaying TTD. This can be explained by a smaller improvement in survival outcomes as 
compared to cancer (Figure 2) and a relatively larger increment in resources allocated to these patients, including timely 
intervention for patients living in rural areas and rehabilitation services provided in hospital outpatient setting.

Finally, the RI for AMI is negative suggesting a saving of −1465 € after the first year from the health shock and reduc-
ing to −746 € after 3 years. The latter is the result of a large reduction in intensity of resource use and a small increment 
in survival effect over time. This might be explained by an increment in the offer of rehabilitation services for cardiac 
patients in Denmark, which reduced the risk of re-hospitalization and total number of bed days during the period of 
our study, and by a shift of part of the rehabilitation services from the hospital to the municipality (Lindstrom Egholm 
et al., 2018).

4.1 | Robustness checks

We tested the robustness of our findings to potential bias from unobservable individual heterogeneity and measurement 
errors. First, we compared estimates of the RI of HCE obtained from 2 different baskets of primary diagnosis indicators: 
the first basket consisted of 1005 indicators based on the first 3 digits of the ICD-10 code (Model 5, Table 2), while the 
second basket consisted of 175 indicators obtained from the first 2 digits of the former (Model 4, Table 2). In other words, 

LAUDICELLA et al.

F I G U R E  2  Cumulative survival probability after a health shock in 2013-14 and 2005-6. Predictions from a logit model [Colour figure 
can be viewed at wileyonlinelibrary.com]
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we compared estimates obtained by using the basket of most accurate control indicators at our disposal with estimates 
obtained by reducing the level of accuracy of such indicators. If results are robust to such a large drop in the level of 
accuracy of our control indicators, then we can expect a small scope for bias from unobservable individual heterogeneity 
and coding error in individual diagnosis. We found that estimates of the RI are about one percentage point smaller when 
using the more accurate basket of indicators suggesting that the scope for potential bias is small.

Second, we extended model in Equation (1) by including a longitudinal dimension:

�
(

�����|���
)

= exp
(

�� + ����
)

 (5)

with j defining the longitudinal dimension of time as the time elapsed after a health shock for the individual i, while t 
capturing the calendar time when the shock occurred. We estimated the RI of HCE from Equation (5) by using a popu-
lation average Generalized Estimating Equations (GEE) with gamma distribution and log link function, which allows 
for within-individual dependence of observations. We considered j = 1, 2, 3 years after the health shock. Equation (5) 
provides an alternative strategy to control for individual heterogeneity that might confound the identification of the RI 
of HCE by using individual random effects. The GEE model is consistent under the correct specification of the mean 
function and does not require distributional assumptions on the individual random effects of the mixed models. The 
GEE model was estimated using the same specification of Model 4 in Table 2, as it did not reach convergence under the 
full model specification of Model 5. Point estimates differ by less than one percentage point with respect to estimates 
produced by the GLM under Model 5 specification 10 (Equation 1 and Table 2).

Third, we repeated our analysis in a subsample of the study population with a health shock resulting in at least 2 days 
of hospital length of stay (Appendix 2). This means selecting individuals with more severe health shocks and dropping 
about one third of the original study population as many emergency admissions have a length of stay of just 1 day. In this 

LAUDICELLA et al.

F I G U R E  3  Residual increment of health care expenditure in 2013-14 versus 2005-6 (baseline). Total increment (continuous line) 
and decomposition into delaying time to death effect (dotted line) and intensity effect (dashed line). Cumulative distribution over the time 
elapsed from initial health shock. (Y = 1000 €) [Colour figure can be viewed at wileyonlinelibrary.com]
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subsample, the increment in HCE that can be attributed to variation in technological progress and change in medical 
practice is 54.72% as compared with 60.82% in the total population, which leads to similar conclusion to our main anal-
ysis. However, the total increment of HCE over the period of our study is larger in the subsample (23.96%) as compared 
with the total population (16.90%).

Finally, survival probabilities predicted from the logit model to estimate Part-1 of the BM-estimator are similar to 
predictions obtained by using a non-parametric Kaplan-Meier estimator.

5 | DISCUSSION

This study uses a residual approach and microdata to measure the impact of non-demographic and non-health related 
drivers of the HCE, such as technological progress and change in medical practice. We focus on residents of Denmark 
experiencing an initial health shock from 2005 to 2014 and accounting for 23.5% of the national HCE for hospital inpa-
tient and outpatient care. During this period, HCE per patient increased by 16.90% points in real terms. We found that 
60% of such an increment is not explained by variation in morbidity or socioeconomic factors and can be attributed to 
technological progress and change in medical practice in hospital care. Macroeconomic studies using a residual approach 
(Newhouse, 1992; Peden & Freeland, 1998; Smith et al., 2009) and also a direct approach with indicators of investment 
in R&D as a proxy for technological progress (Okunade & Murthy, 2002; Willemé & Dumont, 2015) reach similar conclu-
sions, estimating an impact between 40 and 70% on HCE growth. The residual approach has the advantage of bypassing 
the adoption of a specific definition of technological progress and indicators capturing it; both pose a long standing 
challenge to research on this topic as technological progress has different meanings for different sectors of health care 
and encompasses heterogeneous aspects that are often difficult to capture by existing indicators, for example, investment 
in R&D, patents for new drugs and medical devices, hospital investments (Chernew & Newhouse, 2011). The RI of HCE 
captures a broad definition of technological progress described in Chernew and Newhouse (2011), including innovation 
that results in new products and services, innovation that results in new applications of existing products and services, 
and process innovation that results in lowering production costs by changing the organization of the production and 
delivery of existing products and services. The latter is likely to be responsible for the drop in the RI of HCE in 2007-8 
after the introduction of a reform that reorganized the hospital sector in Denmark creating large multi-service organi-
zations and centralizing specialized services (Christiansen & Vrangbaek, 2018). Disentangling the different channels of 
technological progress would require new methods and data and should be a subject of future research.

Applying a residual approach to microdata allows us to provide an accurate control for variation in HCE that is due 
to morbidity and to avoid assumptions over factors encouraging technological progress, such as income elasticity. Both 
are often problematic variables in macroeconomic models as the former is often unavailable at the macro level and the 
latter influences the predicted effect of technological progress on HCE (Chernew & Newhouse, 2011). However, our iden-
tification of the impact of technological progress relies on controlling for observable characteristics of the demand that 
influence HCE over time. Although we use a large basket of control indicators for individuals' health and socioeconomic 
characteristics, we are unable to control for large exogenous shock to the demand. For instance, a strong economic shock, 
such as the 2008 financial crisis, may generate a temporary increment in the demand of some health services, for exam-
ple, mental health care, in individuals with similar health and socioeconomic conditions to pre-crisis periods; similarly, a 
new health shock in a large section of the population, such as a pandemic disease, may disrupt the demand and supply of 
some health services in the medium term. In these cases, the identification of the impact of technological progress using 
a residual approach may be difficult to achieve. Moreover, our specific application does not include utilization of primary 
care and pharmaceuticals prescribed by the GP. If some hospital services are shifted to primary care over time, this may 
result in underestimating the RI and thus the impact of technological progress (in hospital care) on HCE. However, this 
is not an inherit limitation of our approach and primary care costs can be included in future works.

Using microdata and the BM-estimator allow us to decompose the impact of technological progress on HCE in the 
part that is due to delaying TTD and the part that is due to the intensity of resource use. Technological progress and 
change in medical practice are likely to produce their impact on HCE through two main channels: first individuals are 
able to survive a health shock for a longer time, hence they can continue to contribute to the demand for health care 
during that time; second the basket of health care services they access is likely to become more expensive to allow for 
the cost of innovation. The decomposition exercise provides useful information on the impact of technological progress 
on HCE over time. It allows the researcher to apportion the contribution of delaying TTD and increasing intensity of 
resource use consistently and examine their impact over time separately. A pure intensity effect may occur if techno-

LAUDICELLA et al.
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logical progress has no impact on survival; similarly, a pure survival effect may occur if technological progress has no 
impact on intensity of resource use. Both cases are possible. For instance, the intensity effect is likely to include savings 
in HCE from reducing the use of unnecessary care, for example, emergency hospital readmissions, and from redirecting 
the demand to less expensive care, for example, from inpatient to outpatient care; both could result in a zero or negative 
intensity effect. Disentangling the different components that contribute to the intensity effect goes behind the scope of 
this study and should be the object of further work.

The identification of a distinct effect of technological progress on HCE through the survival effect and the intensity 
effect is achieved from the functional form of the cost function modeling HCE (Equation 2), rather than from a distinct 
source of variation of technological progress affecting survival and intensity of resource use separately. The latter would 
be quite difficult to achieve as survival and use of resources are intertwined processes for many health conditions, that 
is, patients are able to survive as they use health resources and are able to use health resources as they survive. The cost 
function of the BM-estimator assumes that health care resources have a distinct and independent effect on survival and 
costs that ultimately allows for decomposing the marginal effect of technological progress into a survival and an intensity 
effect. A growing number of studies have adopted a similar cost function and decomposition approach for measuring the 
effect of alternative treatments on cost trajectories (Federspiel et al., 2013; White et al., 2019; Williams et al., 2019). In 
contrast, a common approach in modeling the effect of TTD on HCE is to include the former directly in the cost function 
as an independent variable (de Meijer et al., 2011; Howdon & Rice, 2018).

We found evidence that delaying TTD can explain one quarter of the increment in HCE 3 years after the onset of the 
initial health shock, while the remaining part can be attributed to an increment in intensity of resource use. The former 
can be considered a “side effect” of the success of the health system in improving quality of care and reducing mortality 
rates as shown in this study and elsewhere (Laudicella, Martin, et al., 2018). Although we cannot exclude that the vari-
ation in the probability of surviving over time is also affected by other processes, such as increasing longevity due to the 
slowing down of the process of aging, the latter is likely to play a minor role due to the relatively short interval of time 
and the specific population examined in this study. Finally, the magnitude of the delaying TTD effect is likely to change 
over time. If future technological advances entail lower costs of treatment, than the cost of individuals surviving longer 
will decrease.

Our study contributes to the literature on TTD and HCE. Macroeconomic models show that postponing TTD results 
in reducing HCE growth as the high costs associated with TTD are moved forward to future periods (Polder et al., 2006; 
Stearns & Norton, 2004; Wickstrøm et al., 2002). More sophisticated models show that the cost-saving effect of postpon-
ing TTD is off-set by an increment in costs due to “unspecified causes”, normally attributed to technological progress in 
the literature (van Baal & Wong, 2012). In our study framework, the RI captures “unspecified causes” of HCE growth 
using micro data, and the effect of delaying TTD in the first part of our model (Equation 4) can be offset by the intensity 
effect in the second part. Postponing TTD may result in reducing individual HCE if the person-periods in which individu-
als die are moved forward outside the time window examined by the study, that is, the first 3 years after the health shock. 
However, our empirical application focuses on a population exposed to a health shock with a large share of mortality 
events occurring within a close range from the shock. In our study population, the effect of postponing TTD is to increase 
HCE as a large share of high-risk individuals enter TTD within the examined time window, namely their TTD is just 
delayed. Such a prediction differs from studies on TTD showing that postponing TTD may have a cost reducing effect on 
HCE. This is not surprising as we examine mortality in a subgroup of the population exposed to a health shock, rather 
than in the whole population. The choice of this specific setting allows us to model variation in TTD as an outcome of 
technological progress in hospital care, while most of the existing literature includes variation in TTD as an exogenous 
variable. The relationship between postponing TTD and HCE is likely to be different in other subgroups of the popula-
tion for whom gains in life expectancy are the outcome of slowing down the process of aging, for example, by assuming 
healthy life styles and behaviors, or the outcome of technological progress outside the hospital sector, for example, in 
preventive care.

The period examined in our study encompasses a reform of the hospital sector that created large multi-service organ-
izations and centralized specialized services. Undoubtedly, this reform contributed to the trajectory of HCE in Denmark. 
However, we argue that such a policy intervention should not be considered as a confounding effect to the identification 
of the effect of technological progress and change in medical practice, rather it is one of the forces that lead these two 
processes in the health system. Other forces include physicians' beliefs and patient preferences (Cutler et al., 2019), the 
structure of the pharmaceutical market (Acemoglu & Linn, 2004), and the diffusion and coverage of health insurance 
(Finkelstein, 2007). Publicly funded universal health systems, such as the DNHS, are subject to heavy regulation offering 
a limited scope to market forces for leading changes in the system, hence technological progress and change in medical 
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practice are often made possible through policy interventions. Disentangling the contributions of different forces in 
conveying technological progress and their impact on HCE should be the object of further work.
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ENDNOTES
  1 Health shocks are more likely to occur in individuals age 50+ than in the rest of the population.
  2 Using health shocks as an exogenous source of variation has been used in the literature, see Garcia-Gomez et  al.,  2013, Fadlon and 

Nielsen, 2021.
  3 The analysis is robust to using higher thresholds, such as 2 days.
  4 The accuracy of the inflation index is important for removing variation in the price of hospital services unrelated to variation in real inputs 

and outputs over time, and thus for the correct estimation of the RI of HCE.
  5 We also conducted a longitudinal analysis based on the time elapsed after the health shock, which is descried in the robustness checks 

section of the paper
  6 In decomposing the increment of HCE, de Meijer et al. (2013) give a similar interpretation to the variation in the effect of the drivers of HCE 

over time as the net effect of both new technologies and new policies.
  7 The covariates included the matrix X are measured in the calendar year “t” when individuals experience an initial health shock and can vary 

over the time “j” elapsed after the shock; the vector of calendar years “t” is fixed.
  8 In our empirical application, we calculate population average marginal effects for t = 2005-6 (baseline year) against t = 2007-8, 2009-10, 

2011-12, and 2013-14.
  9 Appendix 1 reports the full list of output tables and estimated parameters of the Basu-Manning estimator. Estimates were obtained using 

Stata version 16.
  10 Estimates of the GEE model are available upon request from the authors
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