
Annals of Physics 455 (2023) 169396

a

3
b

T
c

6

h
0

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Axion electrodynamics: Green’s functions,
zero-point energy and optical activity
Amedeo M. Favitta a, Iver H. Brevik b, Moshe M. Chaichian c,∗

Dipartimento di Fisica e Chimica—Emilio Segré, Università degli Studi di Palermo, Via Archirafi
6, I-90123 Palermo, Italy
Department of Energy and Process Engineering, Norwegian University of Science and
echnology, N-7491 Trondheim, Norway
Department of Physics, University of Helsinki and Helsinki Institute of Physics, P.O. Box
4, FI 00014, Finland

a r t i c l e i n f o

Article history:
Received 25 February 2023
Accepted 13 June 2023
Available online 20 June 2023

Keywords:
Axion
Axion electrodynamics
Green’s function
Zero-point energy
Optical activity
Casimir Force

a b s t r a c t

Starting from the theory of Axion Electrodynamics, we work
out the axionic modifications to the electromagnetic Casimir
energy using the Green’s function method, both when the ax-
ion field is initially assumed purely time-dependent and when
the axion field configuration is a static domain wall, so purely
space-dependent. For the first case it means that the oscillat-
ing axion background is taken to resemble an axion fluid at
rest in a conventional Casimir setup with two infinite parallel
conducting plates, while in the second case we evaluate the
radiation pressure acting on an axion domain wall. We extend
previous theories in order to include finite temperatures. Var-
ious applications are discussed. (i) We review the theory of
Axion Electrodynamics and particularly the energy–momentum
conservation in a linear dielectric and magnetic material. We
treat this last aspect by extending former results by Brevik and
Chaichian (2022) and Patkos (2022). (ii) Adopting the model of
the oscillating axion background we discuss the axion-induced
modifications to the Casimir force between two parallel plates
by using the Green’s function method. (iii) We calculate the
radiation pressure acting on an axion domain wall at finite tem-
perature T . Our results for an oscillating axion field and a domain
wall are also useful for condensed matter physics, where some
topological materials, ‘‘axionic topological insulators’’, interact
with the electromagnetic field with a Chern–Simons interaction,
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like the one in Axion Electrodynamics, and there are experi-
mental systems analogous to time-dependent axion fields and
domain walls as the ones showed e.g. by Jiang and Wilczek
(2019) and Fukushima et al. (2019). (iv) We compare our results,
where we assume time-dependent or space-dependent axion
configurations, with the discussion of the optical activity of Axion
Electrodynamics by Sikivie (2021) and Carrol et al. (1990). We
also make comparisons with the properties of known materials,
such as optically active, chiral media and the Faraday effect.

© 2023 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Axions, the hypothetical particles suggested by Peccei and Quinn [1–3] in order to solve the
trong CP problem in QCD [4–6], have attracted a strong theoretical interest because they are among
ome of the best known candidates for dark matter, as first suggested in Refs. [7–9]. This topic is
ne of the most important problems in cosmology, and is discussed lively in the current literature
2,10–16]. The axion is still a hypothetical and undetected particle and there have been many
fforts to detect it. A most promising way to detect axions is based on its interaction with the
lectromagnetic field. Axion Electrodynamics is a natural extension of classical electrodynamics,
here the axion field is coupled to the electromagnetic field, and this interaction between the
hotonic field and the axion field makes it possible to detect the axions experimentally [14,17].
t is worth noticing that the interaction between the electromagnetic field and the axion field
eads to modifications of the dispersion relation and the zero-point energy of the electromagnetic
ield, similarly to chiral QED, another interesting extension of quantum electrodynamics that is
nvestigated in Refs. [18,19]. These last aspects are discussed in our work along with the calculation
f the axionic modified Green’s functions, where we find new results, and compare them to the
esults of Ref. [20]. This work is also related to earlier investigations in Refs. [11,16,21–23].

We present the basics of Axion Electrodynamics and introduce our notation in Section 2. Energy–
omentum balance is considered in Section 3. We develop the basics of the Green’s function
ethod in Axion Electrodynamics in Section 4 and use it in practice for time-dependent axion
ackgrounds, namely with constant time derivative and oscillating behaviour in Section 5. There we
alculate the Casimir force between two perfectly conducting parallel plates in two time-dependent
ackgrounds. We treat space-dependent axion backgrounds, namely dependent on just the space
oordinate z, in Sections 6 and 7. In Section 6 we develop the optical properties of a toy model of the
xion domain wall. The electromagnetic dispersion relations in such an axion background are given
n Section 6.2. General features of the Green’s function method for domain walls are introduced in
ection 7.
The Casimir force on a domain wall is obtained in Section 7.1. Section 7.2 also deals with

he calculation of the temperature-dependent electromagnetic radiation pressure acting on axion
omain walls and we exploit our results for applications in Axion Cosmology and Condensed
atter Physics. Section 8 compares our results with formerly known phenomena in Classical
lectrodynamics, such as the Faraday effect and optical activity in chiral media, and former results
n the optical activity in Axion Electrodynamics. Our work on the Green’s functions for the two
iven types of axion backgrounds of experimental interest are relevant for observing an axion field
n the current Universe. This is seen in the long wavelength approximation, i.e. we assume the
xperimental set-up to have spatial dimension L much smaller that the de Broglie wavelength
f the local axion field, so that we take a(t) = a0 sin(ωat). If a further approximation of taking

the time-derivative of the axion field to be constant is just a pedagogical first approximation for
QCD axion, it is exact for the axion field in Weyl semimetals. The axion field is mostly treated
as a fixed background field, since this is true at first order in the perturbation theory because
2
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there is no back reaction of the electromagnetic field onto axions in such an approximation, partly
analogous to what happen in the linear approximation for weak gravitational perturbations in
General Relativity [24]. We discuss this point in Section 3, where we also partly discuss the axion
dynamics when interacting with the electromagnetic field.

2. Basic elements of axion electrodynamics

2.1. Lagrangian density of axion electrodynamics

In the following we adopt the metric convention ηαβ = diag(+1, −1, −1, −1) and the measure
system of natural units system such that: h̄ = c = 4πϵ0 = 1. The remaining unit is choosen
to be energy, measured in eV. We consider a pseudoscalar axion field a = a(r, t) = a(x) present
in the entire Universe, having a two-photon interaction with the electromagnetic field. The total
Lagrangian density L describing the interaction between electromagnetic field and axion field in
the Minkowski space inside a linear dielectric and magnetic material with dielectric permittivity ε

and magnetic permeability µ is [11,12,14–16]:

L = −
1
4
FαβHαβ + La − JµAµ +

1
4
gaγ γ a(x)Fµν F̃µν, (1)

F̃αβ
=

1
2ϵ

αβγ δFγ δ is the dual Faraday tensor, ϵαβγ δ is the totally antisymmetric symbol with
0123

= 1, and ma is the mass of the axion. The tensor H is:

Hαβ =

⎛⎜⎝ 0 −Dx −Dy −Dz
Dx 0 Hz −Hy
Dy −Hz 0 Hx
Dz Hy −Hx 0

⎞⎟⎠ , (2)

here D⃗ and H⃗ are the usual displacement electric and magnetic fields that are related to electric E⃗
nd magnetic B⃗ fields by D⃗ = εE⃗ and B⃗ = µH⃗ for a linear dielectric and magnetic material. Jµ is an
xternal classical electrical 4-current that we present here for purpose of completeness. Finally,
aγ γ = gγ

α
π

1
fa

where α is the usual fine structure constant and fa is the axion decay constant
hose value is only insufficiently known. Astrophysical and experimental bounds indicate that

a ∼ 109
− 1012 GeV [14].

In most cases in the following, we will use the non-dimensional quantities Θ(x) = gaγ γ a(x) and
(x) = a(x)/fa. The axion mass is related to the decay constant fa by [5]

ma ≃

√
mumd

mu + md

fπmπ

fa
≃ 6 × 10−6 eV

(
1012 GeV

fa

)
, (3)

here mπ ≃ 140MeV is the pion mass and fπ ≃ 93MeV is the pion decay constant. gγ is a
odel-dependent constant of order unity [14].

.2. QCD axion Lagrangian, domain walls and long wavelength approximation

La is the ‘‘free Lagrangian’’ of the axion field, that in the case of High Energy Physics keeps
care of the effective interaction with gluonic fields that gives rise to its mass. Here we neglect the
interaction with the gravitational field. For our purposes it is [12]:

La =
1
2
∂µa ∂µa − VQCD(a, T ). (4)

The form of the potential VQCD(a, T ) is a nontrivial point for finite temperatures T [12]. Using the
dilute gas approximation one may adopt the following form when T = 0 and T ≫ ΛQCD:

VQCD(a) = f 2a m
2
a(T )

[
1 − cos

(
a
)]

. (5)

fa

3
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It is of interest for the present work that the field theory of an axion field interacting with the
luonic fields by Eq. (5) has a ZNDW symmetry subgroup if NDW > 1, with associated NDW degenerate

vacua, of the Peccei–Quinn symmetry that leaves the potential VQCD(a) invariant [2,11], namely:

θ (x) → θ (x) + 2πk, k = 0, 1, . . . ,NDW − 1. (6)

his discrete symmetry is spontaneously broken when the axion field acquires a vacuum expecta-
ion value, which happens near to the temperature T ∼ ΛQCD, leading to the formation of domain
alls [12]. Generally, a domain wall is a two-dimensional topological defect separating two domains
f a field and are indeed associated to the spontaneous breaking of a discrete symmetry [11,25].
The NDW number is called ‘‘domain wall number’’ in the literature. As treated in several

references, e.g. Refs. [11,12,21,26], the creation of domain walls is very sensitive for the evolution
of the axion field during the earliest stages of the Universe, overall for scenarios where NDW > 1
nd the spontaneous breaking of the Peccei–Quinn symmetry happens after inflation. The scenario
escribed by the formerly cited references seems to lead to an early Universe dominated by axion
omain walls, with an energy density much bigger than the critical one in the current Universe.
In the following (namely Section 7.2) we consider the possibility whether electromagnetic

adiation could significantly contribute to the decay of domain walls and we enforce what is
laimed in Ref. [21], i.e. there cannot be any significant contribution. In the following we describe
laboratory QCD axion field by assuming a coherent time-oscillating axion background, namely
(t) = Θ0sin(ωat). The latter is a very good approximation when the typical spatial dimension of

he system L is much smaller than the de Broglie wavelength of the axion field (typically of the
rder of 10−3 m−1

a if we take v ∼ 10−3 and so ωa ∼ ma cf., Millar et al. [15]).

2.3. Axion-modified Maxwell equations

It is straightforward [15] to see that the interaction term in Eq. (1) can be written as an
interaction Lagrangian of the form −JνAν by taking

Jν = gaγ γ F̃µν∂µa =
1
2
gaγ γ ∂µa ϵµνρσ ∂ρAσ . (7)

he 4-current generated by axions is thus Ja = (ρa, J⃗a), where

ρa = gaγ γ B⃗ · ∇a,

J⃗a = gaγ γ ∇a ∧ E⃗ − gaγ γ ȧB⃗.
(8)

The continuity equation ρ̇a + ∇ · J⃗a = 0 expresses the same as ∂µj
µ
a = 0. Another straightforward

way to see this is by observing from the structure of Eq. (1) that it is possible to redefine the tensor
H as:

Ha
µν = Hµν − gaγ γ a(x)F̃µν, (9)

in order to rewrite Eq. (1) with the interaction term 1
4gaγ γ aF̃µνFµν included inside the ‘free term’

1
4F

µνHµν . We then find that we can use different constitutive relations for D⃗ and H⃗ in Axion
lectrodynamics:

D⃗a = εE⃗ + P⃗a, (10a)

B⃗ = µH⃗a + M⃗a, (10b)

here we have defined the axion-induced polarization vector P⃗a = −gaγ γ aB⃗ and magnetization
⃗ a = −µ gaγ γ aE⃗, which can be interpreted as polarization and magnetization vectors that are
nduced by the interaction with the axion and lead to effective ‘‘bound charge and current densities’’
a = −∇ · P⃗a and J⃗a = ∇ ∧ M⃗a + Ṗa. This means that the interaction between the axion and
he electromagnetic field generates an effective polarization and magnetization, analogously to
ravitational backgrounds.
4
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The Euler–Lagrange equations associated with the Lagrangian density (1) are

ä − ∇
2a + V ′(a) + gaγ γ E⃗ · B⃗ = 0, (11a)

∇ · E⃗ = ρ + gaγ γ B⃗ · ∇a, (11b)

∇ ∧ B⃗ = J⃗ +
˙⃗E − gaγ γ ȧB⃗ + gaγ γ ∇a ∧ E⃗, (11c)

∇ · B⃗ = 0, (11d)

∇ ∧ E⃗ = −
˙⃗B. (11e)

q. (11a) is the Sine–Gordon equation for the axion field interacting with the electromagnetic field,
hile Eqs. (11b) and (11c) are the modified Maxwell equations with sources and the Eqs. (11d)
nd (11e) are the ‘‘constraint Maxwell equations’’ that are unchanged because they follow from the
ianchi identities ∂µF̃µν

= 0.
The fields in (10a) satisfy the following forms of Maxwell equations:

∇ · D⃗a = ρ, (12a)

∇ ∧ H⃗a = J⃗ +
˙⃗Da, (12b)

∇ · B⃗ = 0, (12c)

∇ ∧ E⃗ = −
˙⃗B. (12d)

.4. Axion electrodynamics in condensed matter

As explained in Refs. [27,28], the electromagnetic properties of a Weyl semimetal can be
escribed by a Chern–Simons theory with Lagrangian (1), where the effective axion field is

Θ(x) = b0t − b⃗ · r⃗ = bµxµ. (13)

he quantities bµ are of relevant physical meaning for the material, since they are related to the
nergy shift b0 and the momentum shift b⃗ of the specific Weyl point of the material and whose
amiltonian is

hW (k⃗) = b0 + vσ⃗ · (k⃗ − b⃗). (14)

Weyl semimetal constitutes an interesting phase of topological quantum matter with fascinating
hysical properties such as protected surface states and the electromagnetic response.
In the following, in order to consider an order of magnitude for bµ in the case of time-dependent

xion field and space-dependent one, we consider b0 ∼ 10−1 eV and |b⃗| ∼ 10 eV. In the first case,
he time derivative of the axion field is constant, so it is easier to deal with since e.g. the Green’s
unction is dependent on t − t ′, and can be regarded as an approximation of the second case when
e consider times 0 < t ≪ ω−1

a . The second case is a coherently oscillating axion field, which can
ppropriately approximate a current laboratory axion field when the typical spatial dimension L of
he experimental system is much smaller than the de Broglie wavelength of the axion field (see
efs. [14,15]).

.5. Electromagnetic 4-potential in axion electrodynamics

As in usual electrodynamics, the differential equations for the 4-potential Aµ(x) = (φ, A⃗) depend
on the choice of gauge. We can in general write the electric and magnetic fields as

E⃗ = −∇φ −
∂A⃗

B⃗ = ∇ ∧ A⃗. (15)

∂t

5
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Consequently, we have in the vacuum:

∇
2Φ + ∂t

(
∇ · A⃗

)
= −ρa, (16)

(∂2
t − ∇

2)A⃗ + ∇

(
∇ · A⃗ + ∂tΦ

)
= J⃗a. (17)

In the following we will use mainly the Coulomb gauge (radiation gauge if ρa = 0) ∇ · A⃗ = 0 and
the temporal gauge A0 = Φ = 0. In the case of temporal gauge we have:

□A⃗ + ∇(∇ · A⃗) = −Θ̇ ∇ ∧ A⃗ − ∇Θ ∧
∂A⃗
∂t

. (18)

In the case of the radiation gauge with a time-dependent axion field we get the equations

(εµ∂2
t − ∇

2)A⃗ = −µΘ̇ ∇ ∧ A⃗. (19)

3. Energy–momentum balance with fixed and dynamical axion background

It is then easy to notice from the Lagrangian (1) that the total energy–momentum balance reads
(with Jµ = 0):

∂µTµν
= 0, (20)

where we have that Tµν is simply the sum of the free Minkowski stress–energy tensor TMµν
=

1
4η

µνFαβHαβ
+Fµ

ρ Hνρ and the free axion one Tµν
a = ∂µa ∂νa−ηµν( 12∂ρa ∂ρa−

1
2m

2
aa

2). This simple
result is a consequence of the fact that in this case the system formed by the electromagnetic field
and the axion field is treated as a closed system (this is not rigorously exact since the potential
V (a) comes from the effective interaction with the gluonic fields). However, if we take the two
fields alone such a relation as Eq. (20) is not valid since they are open systems interacting between
each other. If we consider the electromagnetic field alone, one gets according to Ref. [16]:

∂νTMν
µ = −f Mµ , (21)

where f Mµ = (f M0 , f⃗ M ) whose spatial components are the components of Abraham’s force density

f A = (εµ − 1) ∂
∂t

(
E⃗ ∧ H⃗

)
− (E⃗ · B⃗)∇Θ and f M0 = −gaγ γ ȧE⃗ · B⃗.

. Green’s functions of axion electrodynamics

We first develop the Green’s function approach in Axion Electrodynamics, using the temporal
auge. We start from Eq. (18) with ε = µ = 1 and define the kernel G⃗ij(x, x′) such that:

Ai(x) =

∫
d4x′ Gij(x, x′) J j(x′). (22)

Due to causality, the variable t ′ is only integrated over t ′ ≤ t . From Eq. (18) we find

□Gij(x, x′) + ∂i(∂kGkj(x, x′)) − Θ̇(x)ϵikl∂kGlj(x, x′) − ϵikl∂kΘ(x) ∂tGlj(x, x′) =

= δijδ
(4)(xµ

− x′µ).
(23)

The G kernel (22) is equal to iDij(xµ, yµ) where D is the retarded Green’s function of the vector
potential A⃗, defined as

iDR
ij(x

µ, yµ) =

{
⟨Ai(x)Aj(y) − Aj(x)Ai(y)⟩ if x0 − y0 > 0,

0 otherwise,
(24)

can be derived by the Schwinger-Dyson equations [6] for Axion Electrodynamics which is indeed
Eq. (23) with the temporal gauge. As shown in Refs. [29–31], the calculation of the retarded Green’s
6
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function (24) is useful in order to get the significant two-point physical averages between electric
and magnetic fields. One can easily find that with this choice of gauge (valid also in radiation gauge):

⟨Ei(x)Ej(x′)⟩ = ∂t∂t ′⟨Ai(x)Aj(x′)⟩, (25a)

⟨Bi(x)Bj(x′)⟩ = curlil curl′jm⟨Al(x)Am(x′)⟩, (25b)

⟨Bi(x)Ej(x′)⟩ = − curlil ∂t ′⟨Al(x)Aj(x′)⟩, (25c)

and similarly for other two-point functions. We also use in the following Fourier transforms (FT) of
the two-point functions, e.g.

⟨Aα(x)Aβ (y)⟩ω =

∫
+∞

−∞

dt eiωt
⟨Aα(t, x⃗)Aβ (0, y⃗)⟩, (26)

and similarly for FTs, from which the relations (25) can be used to find the correspondent FTs for
two-point functions involving electric and magnetic fields.

For example, if the Green’s function is a function of the variable t − t ′, x − x′ and y − y′ we can
define the reduced Green’s function gij(z, z ′, ω, k̃):

Gij(x, x′) =

∫
∞

−∞

dω
2π

∫
∞

−∞

d2k̃
(2π )2

e−iω(t−t ′)eik̃·(r⃗−r⃗ ′)gij(z, z ′, ω, k̃), (27)

where we use the notation k̃ = (kx, ky). We also adopt the useful quantity κ2
= ω2

− k2x − k2y . In
the following we are more focused on the Green’s function in the vacuum for calculating Casimir
forces for our systems of interest. From this the following stress tensor component, important in a
Casimir context, can be found straightforwardly (ε = µ = 1):

⟨TM
zz ⟩ω,k̃ =

1
2i

[
−κ2gzz + (ω2

− k2y)gxx + (ω2
− k2x )gyy + iky

(
∂zgyz − ∂ ′

zgzy
)

+ikx
(
∂zgxz − ∂ ′

zgzx
)
+ kxky(gxy + gyx) + ∂z∂

′

z(gxx + gyy)
]
.

(28)

For our purpose of evaluating zero-point energies we are also using the retarded Green’s function
with µ ̸= 1 in order to find the vacuum one by using the fluctuation–dissipation theorem [32]:

⟨Aα(x)Aβ (y)⟩ω =
i
2

[
DR

αβ (ω, x⃗, y⃗) − DR∗
βα(ω, y⃗, x⃗)

]
(29)

and then make the limit µ → 1+ i0. Notice that in the case of temporal gauge, the Green’s function
is a 3 × 3 tensor and not a 4 × 4 one. If the axion-generated charge density ρa = 0, that is the case
when the axion field is only a function of time t , it is convenient to adopt the radiation gauge and
it is what we adopt in the following section. We adopt the temporal gauge for space-dependent
axion fields from Section 7 on.

5. Purely time-dependent axion field

Here we observe that the only difference between the Green’s function in temporal gauge and
radiation gauge (with an axion field depending only on time) relies on the resulting equation for
Green’s function Gkj(x, y) that becomes from Eq. (19), if we assume a homogeneous medium with
electrical permittivity ϵ = 1 and magnetic permeability µ:[

δik□(µ) − µΘ̇(t)ϵlik∇l
]
Gkj(x, y) = µδijδ

(4)(xµ
− yµ), (30)

where the operator □(µ) = µ∂2
t − ∇

2. Since the time derivative of the axion field can be time-
dependent, the solution of Eq. (30) is generally dependent on r⃗ − r⃗ ′ and t − t ′, but explicitly also
on t . It is not trivial to find solutions with a generic time dependence of the axion field. In the
following we work out two specific cases of interest we mentioned in Section 2, i.e. Θ = Θ0t and
Θ = Θ sin(ω t).
0 a

7
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5.1. Constant axion time derivative Θ̇

If we consider Θ̇ as constant in time and uniform in space we can take, similarly to [20], the FT
f the Green’s function and get from Eq. (30) the following equation:[

δik(−µω2
+ k2) + iµΘ̇ϵlikkl

]
G̃kj(k⃗, ω) = µδij. (31)

he calculations in this case are of conceptual interest and can be applied in a similar manner in a
hysically more interesting case, such as the oscillating axion field. We will come back to this topic
n the next section.

In order to get the Green’s function with vacuum surroundings we can put a magnetic perme-
bility µ = 1 + iϵ(ω), where ϵ(ω) is an infinitesimal of the first order, and we evaluate the limit
or ϵ → 0 in the proper order, as analogously done in Ref. [32] with an electrical permeability
(ω) = 1 + iϵ(ω) to get the quantum mechanical result for the Green’s function. A magnetic
ermeability of the form µ = µr + iµ′ can be found, e.g. for real media where magnetic viscosity
s present (see e.g. Ref. [33]):

µ = ℜ(µ) + iϵ
ω

ω0
, (32)

which is analogous to the case of electric permittivity, where we have the imaginary part ℑ(µ) > 0
when ω > 0. This also justifies the presence of sgn(ω).

From Eq. (31) we get, similarly to Ref. [20], the retarded Green’s function FT as the inverse
operator of the expression in square brackets on the left side in the mentioned limit of µ =

1 + iϵ sgn(ω) → 1 + i0 sgn(ω):

G̃jk(k⃗, ω) = (ω2
− |k⃗|

2
)Ã(ω, k⃗, β⃗)δjk + iÃ(ω, k⃗, β⃗)ϵjklβl +

1

ω2 − |k⃗|
2
+ i0 sgn(ω)

Ã(ω, k⃗, β⃗)βjβk,

(33)

where β⃗ is a vector with components βj = Θ̇kj, whose squared module is β2
= Θ̇2

|k⃗|
2
and

Ã(ω, k⃗, β⃗) =
1

(ω2 − |k⃗|
2
)2 − β2 + i0 sgn(ω)

. (34)

he ordinary electrodynamics limits can be obtained by setting Θ̇ = 0. Those Fourier transforms
e got can be helpful for two applications we develop in the following, namely for evaluating the
pectral energy density ρem(ω) of the electromagnetic field at temperature T , the Casimir force
etween two parallel conducting plates in such a fixed axionic background and a discussion on
ispersion relations.

.1.1. Spectral energy density ρem(ω) of electromagnetic field
In order to get the zero-point spectral energy density we calculate the FT G̃(r⃗, ω) of the Green’s

function (33). When calculating energy density we need the correlation functions in the limit r⃗ → 0.
The usual spectral energy density of the electromagnetic field is

ρ(ω, r⃗)dω =
1
2

[
2⟨E⃗2(r⃗)⟩ω,T + 2⟨B⃗2(r⃗)⟩ω,T

] dω
2π

, (35)

where the factors 2 inside the brackets are inserted because we follow the definition of spectral
densities given in Ref. [32]: average spectral values are defined as integrals in ω from −∞ to +∞.
We also exploit the relation:

1
x ± i0

= P
1
x

∓ iπδ(x). (36)

We expand the spectral energy density in a perturbative series:

ρ(ω, r⃗) = ρ(0)(ω, r⃗) + ρ(1)(ω, r⃗) + ρ(2)(ω, r⃗) + · · · (37)
8
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according to the perturbative factor, that we can take here to be Θ̇ . We can develop a perturbative
xpansion for the Green’s function:

G̃jk(k⃗, ω) ∼ G̃(0)
jk (k⃗, ω) + G̃(1)

jk (k⃗, ω) + G̃(2)
jk (k⃗, ω), (38)

where

G̃(0)
jk (k⃗, ω) =

1
ω2 − k2 + i0 sgnω

, (39a)

G̃(1)
jk (k⃗, ω) =

i
(ω2 − k2)2 + i0 sgnω

ϵjklβl =
i

(ω2 − k2)2 + i0 sgnω
ϵjkl(Θ̇kl), (39b)

G̃(2)
jk (k⃗, ω) =

β2

(ω2 − k2)3 + i0 sgnω

[
δjk +

ϵjklβl

ω2 − k2

]
+

1
(ω2 − k2)3 + i0 sgnω

Θ̇2kjkk. (39c)

As shown in Ref. [32] it is easy to obtain (by integrating over the domain of k⃗) that the spectral
ensity associated with the zero order term ρ(0)(ω) is

ρ(0)(ω)dω = dω ω2
[
1
2
ω +

ω

e
ω
T − 1

]
. (40)

his is the familiar result from QED: the zero-point energy of electromagnetic field at a given
emperature T is the sum of the zero-point energy at the zero Kelvin temperature and the black-
ody radiation energy at the given temperature T . The first order term ρ(1)(ω) is trivially zero, while
e have a contribution of order O(g2

αγ γ ):

ρ(2)(ω) dω = dω ω2
[
1
2

Θ̇2

8ω
+

1

e
ω
T − 1

Θ̇2

8ω

]
. (41)

We notice in Eq. (41) the frequency dependence of the spectral energy density, from which we can
find the spectral emissivity using Planck’s law. The first term on the right hand side is proportional
to the frequency. As Θ̇ can be regarded small for physical purposes, this frequency dependence
suggests that this can be physically interpreted as a blue noise.

The second term is similar to the first one as regards the frequency dependence, but it has a
Bose–Einstein temperature-dependent weight. For T ≫ ω it is term going as ≃ T , so it can be
regarded as a flat noise, and surely is bigger than the zero-temperature term. For T ≪ ω the
ose–Einstein weight would be approximately e−

ω
T , so it gives an exponential noise.

.1.2. Casimir force between parallel plates with time-increasing axion field
Here we evaluate the axion modifications to the usual Casimir force between two parallel

erfectly conducting plates (see Refs. [6,30] for a treatment without an axion background). Our
esult is comparable to the one obtained by Ref. [34], while improving their result.

We can evaluate the zero-point energy uem(L, Θ̇) per unit transverse area by evaluating the
ollowing expression:

uem(L, Θ̇) =
1
2

∑
±

∑
n

∫
d2k

(2π )2

√
|k⃗|

2
+

n2π2

L2
± Θ̇

√
|k⃗|

2
+

n2π2

L2
. (42)

his could be expected by a Casimir approach, namely by physical qualitative means given by
he dispersion relations . The expression (42) can be demonstrated overall by a Green’s function
pproach. We assume the z-axis to be the direction normal to the plates. We need to solve the
reen’s function equations with the proper boundary conditions. Since we assume to have two
erfect conducting plates we have boundary conditions for electric field and magnetic field at
= 0, L:

B = 0 E⃗ = 0, (43)
z //

9
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where E⃗// is the parallel component of the electric field, from which we get the correspondent ones
or the Green’s function:

gij(x − x′, y − y′, z, z ′)|z=0,z=L = 0 i ̸= z, j ̸= z, (44a)

∂zgzz(x − x′, y − y′, z, z ′)|z=0,z=L = 0. (44b)

These conditions, along with translational invariance along x and y directions, lets us write the
Green’s function in the following Fourier form for 0 < z < L and 0 < z ′ < L:

Gij(x, x′) =

∫
+∞

−∞

dω
2π

∫
∞

−∞

d2k̃
(2π )2

eik̃·(r̃−r̃ ′) 2
L

∞∑
n=0

sin
(nπ

L
z
)
sin
(nπ

L
z ′

)
g̃ij(k̃, n) i ̸= z, j ̸= z,

(45a)

Gzz(x, x′) =

∫
+∞

−∞

dω
2π

∫
∞

−∞

d2k̃
(2π )2

eik̃·(r̃−r̃ ′) 2
L

∞∑
n=0

ι(n) cos
(nπ

L
z
)
cos

(nπ
L

z ′

)
g̃zz(k̃, n), (45b)

here k̃ = (kx, ky), r̃ = (x, y) and ι(n) = 1 for n > 0, while ι(n = 0) = 1/2.
The reduced function G̃(k̃, n) consequently satisfies the Eqs. (31), with solution Eq. (33),where

kz =
nπ
L . We show now two ways of demonstrating Eq. (42), then we calculate the Casimir force.

a. Energy density per transversal area from ℑ(µ) → 0
Here we adopt the form (33) for the Green’s function. If we exploit the relation (36) and use the

reen’s function (33) we get

1
2
⟨E⃗2

+ B⃗2
⟩ω,kx,ky,n = π

ω

2

∑
±

[
δ

(
ω −

√
|k|2 ± Θ̇|k|

)
− δ

(
ω +

√
|k|2 ± Θ̇|k|

)]
, (46)

where |k|2 = k2x + k2y +
( nπ

L

)2. We then exploit the properties of the Dirac delta distribution by
integrating in the ω

2π domain from −∞ to +∞ and we then get

1
2
⟨E⃗2

+ B⃗2
⟩kx,ky,n =

1
2

∑
±

√
k2x + k2y +

n2π2

L2
± Θ̇

√
k2x + k2y +

n2π2

L2
. (47)

We also mention that ⟨A⃗ · B⃗⟩kx,ky,n and ⟨E⃗ · B⃗⟩kx,ky,n are trivially equal to zero. Consequently, we have
⟨T 00

em⟩kx,ky,n =
1
2 ⟨E⃗

2
+ B⃗2

⟩kx,ky,n, from which it is easy to get the energy per transverse area unit to
e equal to the expression (42).
b. Casimir force by the reduced Green’s function in the case µ = 1
In general, the Casimir force is the physical force between dielectric or metallic surfaces (and

in different configurations), caused by quantum fluctuations of the electromagnetic field. From a
general perspective, the Casimir effect can be treated by different methods.

It can be derived from statistical equilibrium thermodynamics, as an application of the
fluctuation–dissipation theorem, which relates the two-point functions of the electromagnetic field
to the imaginary part of retarded Green function, as discussed in Landau-Lifschitz book on statistical
physics [32] and mentioned before, as well as in several articles, for instance Ref. [35]. Alternatively,
the effect can be seen upon as a manifestation of quantum field theory; cf. Milton’s book [30].

In both cases, the essential ingredient required in practical calculations is the difference between
the normal Maxwell stress components Tzz on the two sides of a boundary. We explicitly calculate
the expression (28) with the Green’s function solving Eq. (31) in the form (45) when exactly µ = 1.
t is easy to get:

⟨Tzz⟩ω,kx,ky |z=z′=0,L= −2i
+∞∑ n2π2

L3
κ2

−
n2π2

L2

2 n2π2 2 ˙ 2 2 2 n2π2 , (48)

n=1 (κ −

L2
) − Θ (kx + ky +

L2
)

10
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We remind that κ2
= ω2

− k2x − k2y . This series can be treated by noticing that the n-term of the
eries can be written as:

n2π2

L2
(κ2

−
n2π2

L2
)

(κ2 −
n2π2

L2
)2 − Θ̇2(k2x + k2y +

n2π2

L2
)

=
1
2

∑
±

n2π2

L2

κ2 −
n2π2

L2
± Θ̇

√
k2x + k2y +

n2π2

L2

, (49)

nd one can perform a standard complex frequency rotation ω → ζ = iω, similarly to what done
in Ref. [30], and integrate over ζ/2π , obtaining:

⟨Tzz⟩kx,ky |z=z′=0,L=
∑
±

+∞∑
n=1

n2π2

L3
1√

k2x + k2y +
n2π2

L2
± Θ̇

√
k2x + k2y +

n2π2

L2

. (50)

It is easy to see from Eqs. (48), (49) and (50) that, also up to contact terms, we are dealing with
divergent expressions. This is because the physical quantity we observe (Casimir force) is the
discontinuity of Tzz , not the single values on the two sides of the interface(at z = 0+ as in this
case). We then need to consider Tzz at z = 0−.

In order to do that, one needs to solve Eq. (30) with z < 0 and z ′ < 0 (the case with z > L gives
the same results from symmetry) with the boundary conditions (44) at z = 0 and g ∼ e−ikz for
z → −∞. This can be done in a similar fashion to what done in Stakgold’s book [36], by noticing
that, accordingly to the boundary condition at z = 0, the sine (or cosine) Fourier transform satisfies
Eq. (31).

We can then solve the equations, as done in Ref. [36], and get the following Tzz expression:

⟨Tzz⟩ω,kx,ky |z=z′=0−= −2i
∫

+∞

0
k2z

κ2
− k2z

(κ2 − k2z )2 − Θ̇2(k2x + k2y + k2z )
dkz . (51)

e manipulate this expression in a similar fashion to the one at 0+,integrate over ζ and omit
ontact terms. We then get the Casimir force as the discontinuity of Tzz :

f (L, Θ̇) =

∫
∞

−∞

dkx
2π

∫
∞

−∞

dky
2π

1
L

+∞∑
n=1

∑
±

⎡⎢⎢⎢⎣
n2π2

L2
± Θ̇ n2π2

L2
√
k2x+k2y+

n2π2
L2√

|k⃗|
2
+ n2π2/L2 ± Θ̇

√
|k⃗|

2
+

n2π2

L2

⎤⎥⎥⎥⎦ . (52)

It is easy to notice that the following formal relation holds:

f (L, Θ̇) = −
∂uem(L, Θ̇)

∂L
, (53)

onfirming our results.
c. Calculation of the Casimir force
In order to evaluate the Casimir force deriving from the expression (42) it is convenient to adopt

he zeta function regularization method and extending it to a dimension d ̸= 2 (see e.g. Milton [30]
nd Brevik [37]). We employ the Schwinger proper-time representation for the square root:

uem =
1
2

∑
±

∑
n

∫
ddk

(2π )d

∫
+∞

0

dt
t
t−

1
2 e

−t

(
k2+n2π2/L2±Θ̇

√
|k⃗|

2
+

n2π2
L2

)
1

Γ (− 1
2 )

, (54)

t is not easy to evaluate it exactly, so we will calculate it perturbatively up to second order in Θ̇ .
t is possible to write the Taylor series of the exponential in Eq. (54) up to the second order in Θ̇

nd sum up in the two polarizations explicitly:

uem ≃

∑∫
ddk

(2π )d

∫
+∞ dt

t
t−

1
2 e−t

(
k2+n2π2/L2

) [
2 + t2Θ̇2

(
k2 +

n2π2

L2

)]
1

1 . (55)

n 0 Γ (− 2 )

11
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As it is usually done in this kind of calculations, we carry out the Gaussian integration over k, use
the Euler representation of Gamma function, carry out the sum over n via the definition of Riemann
eta function and we get:

uem ≃ u0(L, d) + uax(L, d, Θ̇), (56)

here

u0(L, d) = −
1

2
√

π

1
(4π )d/2

(π

L

)d+1
Γ

(
−

d + 1
2

)
ζ (−d − 1), (57a)

ua(L, d, Θ̇) = −
Θ̇2

2
√

π

1
(4π )d/2

(π

L

)d−1
[
Γ

(
3 − d
2

)
ζ (−d − 1) +

d
2

Γ

(
1 − d
2

)
ζ (−d + 1)

]
.

(57b)

he first term u0 is the familiar result of Quantum Electrodynamics, while ua is the additional
econd-order axion contribution. For d = 2 they are equal to

u0(L, d = 2) = −
π2

720
1
L3

, ua(L, Θ̇, d = 2) = −Θ̇2 7
320

1
L

, (58a)

rom which:

f0(L) = −
π2

240
1
L4

, fa(L, Θ̇) = −
7Θ̇2

320
1
L2

. (59a)

t is worth noticing that we get a second-order axion-induced modification of the Casimir energy
er transverse area going as ∼

1
L , similarly to what is obtained in Ref. [34], although our result

iffers by a multiplicative factor of 0.63 (our result is lower). There are some points to notice about
he possibilities of physical application of these results.

The approximation Θ̇ ∼ constant for the fundamental physics axion field could be applicable
o approximate a coherently oscillating axion field for very small times t ≪ ω−1

a , meaning that
he theory is a reasonable approximation for frequencies ω ≫ ωa. It could then be used when
1
L ≫ ωa. This means that the treatment of the Casimir force between two conducting plates
with such an axion background is relevant for experimental purposes because the assumption
for the perturbative approach is L ≪ (Θ0 ωa)−1, which is a stricter requirement than the long
avelength approximation, since for an axion being the main component of Dark Matter we need
0 ∼ 10−19 [37,38] at cosmological scales.
If we take then the case of High Energy Physics axion at cosmological scales, Θ̇ ∼ Θ0ωa,

nd a comparison between the terms in Eq. (58a) tells us that ua is comparable with u0 when
a ∼ (Θ0 ωa)−1

∼ 1014
(

ma
10−2eV

)
meters, so ua would be very small for usual Casimir experimental

evices, if there are no significant local deviations in the axion field. However, this axionic term
ould be significant in the case of topological insulators. Namely, if we take b0 ∼ 10−1 eV, this
orresponds to Θ̇ ∼ 10−1 eV, so now La ∼ µm.

.1.3. Dispersion relations
Here we briefly discuss the dispersion relations for the case of a constant Θ̇ . From the Green’s

unction it is easy to find the 4 poles to which they are associated with the dispersion relations:

ω± =

√
|k⃗|

2
± Θ̇|k⃗| ω0 = |k⃗|. (60)

This last observation can be understood in the following way: one firstly consider the Fourier
equations of vector potential for a plane wave propagating along the direction of the z-axis:

(−ω2
+ k2z )Ax = Θ̇kzAy,

(−ω2
+ k2z )Ay = −Θ̇kzAx,

2 2

(61)
(−ω + kz )Az = 0.
12
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This assumption on the propagation direction does not lose generality, since the treated system
in the vacuum is isotropic and it is possible to find an inertial reference frame, where the
electromagnetic wave propagates along the z-axis. It is then easy to demonstrate the dispersion
elation ω± of (60) for real transverse photons. Indeed, if we define the fields as A± = Ax± iAy, one
ets the dispersion relations ω± with kx = ky = 0. One then gets the expression for ω± in Eq. (60)
y using the relativistic invariance of the magnitude of the wave 4-vector. The physical meaning of
his is interesting: a left-circular polarized wave has a different frequency than a right-circular one
ith the same k⃗. This is due to the optical activity of the vacuum in Axion Electrodynamics as we
hall discuss in Section 8.
We also notice that a solution for the equation of Az , the one with the dispersion relation
= |k⃗| and corresponding to longitudinal photons, is simply zero, so that the dispersion relation

orresponds to virtual photons.

.2. High frequency approximation for the Green’s function

Before working out the case of an oscillating axion field (by perturbative methods), we can get
ome understanding of the behaviour by considering the High frequency approximation in that case.
tart from Eq. (23), substitute the form Θ(t) = Θ0 sin (ωat), and calculate the FT:

(−ω2
+ |k⃗|

2
)G̃ij(ω, k⃗) − iϵlikkl

Θ0ωa

2

[
G̃ij(ω + ωa, k⃗) + G̃ij(ω − ωa, k⃗)

]
= δij. (62)

We have here used the modulation property of the Fourier Transform in time. The High frequency
approximation consists on assuming ω ≫ ωa. In this way, up to first order in ωa, the Green’s
function satisfies the following equation,

(−ω2
+ |k⃗|

2
)G̃ij(ω, k⃗) − iϵlikklΘ0ωaG̃kj(ω, k⃗) = δij. (63)

It has the same form as the preceding equation and has accordingly the same solutions, with just
the substitution Θ̇ → Θ0ωa. The interpretation of Eq. (41) terms are still valid in this case.

5.3. Case with Θ(t) = Θ0 sin(ωat): Spectral energy density and production of real photons

Now we treat a case of physical interest as mentioned before. In order to treat this case properly
we need to work out Eq. (30) in more detail.

We assume that the wave vector is directed along a fixed direction, without losing generality.
Actually, the axion field is taken to be dependent on time but spatially homogeneous, so it is
isotropic. We make a FT in space and put k⃗ = |k⃗|êz ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t + |k⃗|

2
)G̃xx(k⃗, t, t ′) + iΘ̇kz G̃zx(k⃗, t, t ′) = δ(t − t ′),

(∂2
t + |k⃗|

2
)G̃yy(k⃗, t, t ′) + iΘ̇kz G̃xy(k⃗, t, t ′) = δ(t − t ′),

(∂2
t + |k⃗|

2
)G̃zz(k⃗, t, t ′) = δ(t − t ′),

(∂2
t + |k⃗|

2
)G̃xy + iΘ̇kz G̃yy = 0,

(∂2
t + |k⃗|

2
)G̃yx − iΘ̇kz G̃xx = 0,

(∂2
t + |k⃗|

2
)G̃zy + iΘ̇kz G̃xy = 0.

(64)

We will solve this coupled differential equation system by a perturbative approach. We expand the
formalism up to second order in Θ0 in the following way.

Consider Gxy and Gyy, whose equations are coupled between themselves only. To order zero we
get

Gyy(k⃗, t, t ′) = H(t − t ′) ×
1

|k⃗|
sin
[
|k⃗|(t − t ′)

]
,

⃗ ′

(65)

Gxy(k, t, t ) = 0,

13



A.M. Favitta, I.H. Brevik and M.M. Chaichian Annals of Physics 455 (2023) 169396

t
a

T

w
d
d

A

T
d
t

I
o
d

w

according to the initial conditions, where the function H(t − t ′) is the usual Heaviside function. It is
hen easy to observe that the first-order correction G(1)

yy is zero because it satisfies the same equation
s G(0)

xy with the same boundary conditions. This is not true for G(1)
xy because G(0)

yy is not zero:

(∂2
t + |k⃗|

2
)G(1)

xy + iΘ̇kzG(0)
yy = 0. (66)

he solution of this equation has the form of a convolution integral,

Θ0G(1)
xy = ikz

∫
∞

−∞

dω Gyy(t, ω)F(Θ̇G(0)
yy )(ω), (67)

here F(Θ̇G(0)
yy )(ω) is the FT of Θ̇G(0)

yy in ω. It now becomes necessary to know the specific time
ependence of the axion field in order to evaluate the Fourier Transform of the product of the time
erivative of the axion field and the Green’s function,

F(Θ̇G(0)
yy )(ω) = Θ0ωa

∫
dt ′eiωt ′ cos (ωat ′)G(0)

yy (t
′)

=
Θ0ωa

2

[
1

(ω − ωa)2 − |k⃗|
2 +

1

(ω + ωa)2 − |k⃗|
2

]
. (68)

nalogously, we obtain:

G̃(1)
xy = i|k⃗|

Θ0ωa

2
1

ω2 − |k⃗|
2

[
1

(ω − ωa)2 − |k⃗|
2 +

1

(ω + ωa)2 − |k⃗|
2

]
, (69)

G̃(2)
yy = G̃(2)

xx = −|k⃗|
2 Θ2

0ω
2
a

4
1

ω2 − |k⃗|
2

[
1

(ω − ωa)2 − |k⃗|
2 +

1

(ω + ωa)2 − |k⃗|
2

]2

. (70)

his is a result compatible with what could have been expected from the HF approximation
iscussed above. It is now understandable that according to the results above, a useful ansatz for
he expansion is

G̃jk(k⃗, ω) ∼ G̃(0)
jk (k⃗, ω) + G̃(1)

jk (k⃗, ω) + G̃(2)
jk (k⃗, ω), (71)

where

G̃(0)
jk (k⃗, ω) =

1
(ω2 − k2)

, (72a)

G̃(1)
jk (k⃗, ω) =

i
(ω2 − k2)2

[
1

(ω − ωa)2 − |k⃗|
2 +

1

(ω + ωa)2 − |k⃗|
2

]
ϵjklβl, (72b)

G̃(2)
jk (k⃗, ω) =

β2

(ω2 − k2)

[
1

(ω − ωa)2 − |k⃗|
2 +

1

(ω + ωa)2 − |k⃗|
2

][
δjk +

ϵjklβl

ω2 − k2

]
+ (72c)

+
1

(ω2 − k2)

[
1

(ω − ωa)2 − |k⃗|
2 +

1

(ω + ωa)2 − |k⃗|
2

]2

Θ2
0ω

2
akjkk. (72d)

t is worth mentioning that the results for axion oscillating background are compatible with models
f axion echo, treated recently in Ref. [39]. The terms needed in that context can be worked out as
one before with a constant time derivative.
It is also possible in this case to evaluate the second-order contribution to energy density:

ρ(2)(ω) dω = dω ω2
[
1
2
f (ω, Θ0, ωa) +

1
eω/T − 1

f (ω, Θ0, ωa)
]

, (73)

here

f (ω, Θ0, ωa) =
Θ2

0ω
2
aω(8ω4

+ ω4
a )

2 2 2 . (74)

2(ω + ωa)|ω − ωa|(ωa − 4ω )

14
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Fig. 1. Graph of the function f in Eq. (74) with Θ0 = 1. Notice that for ω > ωa we have the expected behaviour from
q. (41), whose infrared cut-off is the peak at ω = ωa , associated with the limiting case of decay of one axion to only one
etectable photon. Furthermore, we have a peak at ω =

ωa
2 , a result compatible with the axion echo phenomenon [39],

o the physical process behind is the decay of an axion of energy ωa to two photons with energy ωa
2 .

A numerical plot of the function f is displayed in Fig. 1: from it one could notice how the validity
of an expression of Casimir force between two conducting plates analogous to the case of time
increasing axion field is true for L−1

≫ ωa, as mentioned before. For bigger L one appreciates the
deviations from that case and consider that the behaviour of the modification to energy density
going as 1/ω needs to be corrected with 1/|ω − ωa| and has a lower cut-off at ω = ωa. Furthermore,
one needs to take care of the additional contribution of ‘‘axion echo’’ [39] at ω =

ωa
2 .

This last contribution has a straightforward physical interpretation :it is associated to the
roduction of virtual photons with frequency ω =

ωa
2 from the decay of an axion, while the peak

t ω = ωa is associated to a decay of one axion to only one detectable photon.

.4. A possible way to boost axionic Casimir effect in a current universe experimental set-up

In this subsection we will consider a dielectric system containing two interfaces separating media
f refractive indices n1 and n2 inside an uniform magnetic field Be and we assume that the media
re elastic so that medium 2 can be ‘‘turned back’’ and glued to the left side of medium 1. This is a
ing-formed system that we have been treated in Ref. [40], but we extend the theory treated there.

Fig. 2 shows the configuration and here we treat the most fundamental results from [40] in order
o develop here our new results relative to axion-induced radiation pressure.

σ is the length coordinate along the string, such that the two junctions are at σ = 0 and σ = LI .
The total length of the string is L = LI + LII and the junctions σ = 0 and σ = L are overlapping. The
string is lying in the xy plane, and a strong uniform magnetic field Be is applied in the z direction.
In Ref. [40] we evaluated the stationary oscillations of the electromagnetic oscillations in the string.
If EI (σ , t) and EII (σ , t) are the electric fields in the two regions, we have in complex representation

EI (σ , t) = ξIein1ωσ−iωt
+ ηIe−in1ωσ−iωt , (75a)

in2ω(σ−LI )−iωt −in2ω(σ−LI )−iωt
EII (σ , t) = ξIIe + ηIIe , (75b)

15
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Fig. 2. Geometry and notation of the closed string of interest.
Source: Figure from Ref. [40].

here ξI , ηI , ξII , ηII are constants. Analogously, using the relationship H = nE, one gets the magnetic
ields. One could treat such a system by considering a generic ω, however, as we discussed in
ef. [40], the axion-generated oscillations would be suppressed by a factor δ(ω − ωa), so the only
elevant frequency is ωa for our purposes. Then, we take ω = ωa in the following. By imposing the
boundary conditions at the junctions to be closed, we found it for particular cases and here we deal
with a particular case of interest, namely when n2 becomes large in comparison to n1 so that the
ratio x → 0 and we consider the case where the length LI → 0, corresponding to a kind of point
defect sitting on an otherwise uniform string. As δ1 → 0 in this case, we see that

ξI =
E0
2ε1

, x → 0, LI → 0, (76)

which is a real quantity. We also have for this last case:

ηI = ξI , (77)

ηII = ξII = 0. (78)

We have then an electromagnetic energy density u1def inside the point defect:

u1def =
E2
0

4ϵ1
. (79)

t is then worth mentioning the similarities and differences with the system of a single dielectric
late treated by Millar et al. [15]. Indeed our system is like the one in [15], but when the two
utward dielectric media are closed to form a ring. That suggests the possibility that the case of a
losed ring with N multiple dielectric plates could be of interest, since we could expect to have an
nhancement of ∼ N2 for u1def as in the setup of [15].
The treatment of a ring with multiple regions (e.g. multiple point defects) is surely very

omplicated analytically and would need a numerical treatment. This can be subject of future works,
long with other possible geometries, such a cylindrical one with multiple conducting or dielectric
lates, as mentioned in [40]. Here we just give an order of magnitude of the expected radiation
ressure p. If we consider the behaviour of p going as ∼ N2, we have:

p ∼ N2 E2
0

4ϵ1
. (80)

If we take from the system in Ref. [15] with the following orientative values Be ∼ 10 T, Θ0 ∼ 10−21,
ϵ1 ∼ 1, N ∼ 80, one gets:

p ∼ 3.2 × 10−13 1
(

Θ0
−21

)2 ( N
)2 ( Be

)2

Pa . (81)

ϵ1 10 80 10 T
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It is worth noticing that for the orientative values we get a pressure that is just one order of
magnitude lower than the lowest pressures gotten in laboratory (see e.g. Refs. [41,42]), but it would
be possible to get or overcome those values of pressure with a bigger number N .

. Optical properties of a toy model and axion domain walls

The purpose of this subsection is to study the propagation of an electromagnetic wave in the
resence of a toy model for the axion domain wall. The toy wall is taken to be a planar sheet in
hich the axion field increases linearly with the longitudinal coordinate z between z = 0 and
= L and it is constant and uniform outside. We assume a static wall, so a = a(z) only, thus no

ime dependence. As mentioned above, we first consider a space-dependent axion field with planar
ymmetry:

Θ(z) =

⎧⎪⎨⎪⎩
0 if z < 0,
Θ0
L z if 0 < z < L,

Θ0 if z > L.

(82)

The model was treated earlier in Ref. [37]: we will here make some corrections. It serves as a toy
model for ‘localized’ axion configurations since space-dependent axion configurations have typical
lengths L ∼ m−1

a . We will now investigate the axion modifications of the electromagnetic wave in
the system. We mention in passing that possible other approximation could be:

Θ(z) =
Θ0

2

[
tanh

( z
L

)
− 1

]
. (83)

As shown in Ref. [21] the ‘effective field’ in Axion-Modified Maxwell equations for an actual
osmological static axion domain wall gets two contributions: one α0(z) from the phase of Peccei–
uinn field, i.e. the axion field and γ0(z) from the neutral pion field, since the pion has an interaction
erm to electromagnetic field analogous to Eq. (1). The two contributions are related because of the
quilibrium condition for a static wall:

tan γ0 = −ξ tanα0, (84)

here ξ =
mu−md
mu+md

, where mu is the mass of the up quark and md is the mass of down quark. In our
umerical evaluation here we used the value ξ = 0.3 as done by Ref. [21] and we evaluated α0(z)
y solving numerically the equation:

1
m2

a

d2α0

dz2
=

sinα0 cosα0√
cos2 α0 + ξ 2 sin2 α0

, (85)

obtained by the same Ref. [21]. We plot one of the possible solutions of Eq. (85) in Fig. 3. It is worth
noticing that it is a ‘localized’ axion configuration whose typical length is of the order of m−1

a .

6.1. Exact calculations for toy model

As above, we consider an axion configuration that is dependent on z only. At first, we assume
β(z) = ∂zΘ(z) to be an arbitrary function of z. The incident electromagnetic wave is propagating
along the z-axis and is transversely polarized (the same configuration was assumed in Ref. [21]).
This configuration is useful because a domain wall is invariant under Lorentz boosts parallel to the
wall surface, so it is always possible to find a reference frame where the wave is incident normally,
as also noticed in the same [21].

This simplifies the calculations to the first order in the 4-potential because the effective axion
charge density is zero. We then consider the following equation:

□A⃗ = −∇Θ ∧
∂A⃗

, (86)

∂t
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Fig. 3. Explicit graph of the static axion domain wall configuration Θ(z) = gaγ γ a(z) where a(z) = γ0(z)+α0(z) is reported
in solid line in blue, evaluated as the ones in Ref. [21]. We reported also the correspondent values for γ0(z) and α0(z).

nd search for an exact solution. We calculate the FT of this equation in time t and in the x and y
oordinates, and get the following expressions for the FT components of the vector potential:

(−∂2
z − κ2)Ax = iωβ(z)Ay,

(−∂2
z − κ2)Ay = −iωβ(z)Ax,

(−∂2
z − κ2)Az = 0.

(87)

When kx = ky = 0, we have κ = ω. Eqs. (87) imply that the gauge fields defined as A± = Ax ± iAy
satisfy:

(−∂2
z − κ2)A± = ±ωβ(z)A±. (88)

From now on we assume to deal with the toy model configuration (82), so β(z) = 0 outside the
wall, while β(z) =

Θ0
L = βz inside the wall. We notice that the axion configuration (82) has not

ell-defined values of the z derivative at z = 0, L since the derivative has a Heaviside behaviour
n such points. However, this is not problematic for treating Eq. (86) since it just tells us that the
econd z-derivative of vector potential has a Heaviside behaviour, but vector potential and its first
-derivative are continuous.
Indeed, in the following calculations we basically solve Eq. (86) for the regions z < 0, z > L and

< z < L (where β(z) is well-defined) and then impose continuity of vector potential and its first
z-derivative. This last procedure would be also good in the case one considers axion configurations
like (83) where there would not be Heaviside-like behaviours.

Moreover, we consider a plane wave propagating along z. Then, the Eqs. (88) can be interpreted
as follows. For the field A− we have a usual harmonic oscillator with frequency α− =

√
ω2 + ωβ(z)

nside (and outside) the domain wall, while for the field A+ we have a damped wave inside the
omain wall if ω > β . The gauge fields A correspond to left/right circular polarizations, so the
z ±

18
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basic properties are consequently different for a left circular polarized wave and a right circular
polarized one. We now evaluate the reflected component of the incident orthogonal wave. Recall
the geometry: the leftmost region is z < 0, the slab region is 0 < z < L, and the rightmost region
s z > L. The continuity conditions at the walls are that the A± fields as well as their z derivatives
re continuous. Thus in the leftmost region,

A±(z)left = A±e−iκz
+ B±eiκz, (89)

where the B term is the reflected wave. The wave transmitted outside the slab is

A±(z)right = C±e−iκz . (90)

To simplify the notation, we write α instead of α±, and we consider α to be the frequency inside
the domain wall:

A±(z)in = A′

±
e−iαz

+ B′

±
eiαz . (91)

where A′
±

is the wave transmitted inside the wall. In order to evaluate the reflection coefficient
defined as R± =

B±

A±
and the internal transmission coefficient (defined as T± =

A′
±

A±
), we need to

mpose the continuity conditions on the surfaces z = 0 and z = L:⎧⎪⎪⎨⎪⎪⎩
A + B = A′

+ B′ Continuity of A± at z=0,
ωA − ωB = αA′

− αB′ Continuity of first derivatives of A± at z=0,
e−iαLA′

+ eiαLB′
= Ce−iωL Continuity of A± at z=L,

−iαe−iαLA′
+ iαeiαLB′

= −iωCe−iωL Continuity of first derivatives of A± at z=L.

(92)

rom it we get

T =
2e2iαLω(α + ω)

(−1 + e2iαL)α2 + (−1 + e2iαL)ω2 + 2(1 + e2iαL)αω
, (93a)

R = −
(−1 + e2iαL)(α2

− ω2)
(−1 + e2iαL)α2 + (−1 + e2iαL)ω2 + 2(1 + e2iαL)αω

. (93b)

ome fundamental properties of the reflection coefficient are shown in Figs. 4 and 5. Modules and
hases are given, where we have taken the unit frequency to be 1/L and Θ0 = 10−3. We notice
hat there is most reflection, for both modes, when ω = 0 and ω =

Θ0
L but there is still reflection

t higher frequencies at intervals of ω =
Θ0
L .

6.2. Dispersion relation

In the previous section we obtained the following dispersion relation for the toy model (82):

ω2
− k2z = ∓ωβ(z), (94)

implying

ω± =

√(
k2z +

1
4
β2(z)

)
±

1
2
β(z). (95)

his is the same dispersion relation as obtained in [37]. However, this is not the general dispersion
elation because, as discussed in the previous section, it applies to a single linear polarization only
n its reference frame where the wave vector lies along z direction. Applying an inverse Lorentz
oost (so in x and y directions) we can generalize the relation to take the following form, similar
o the one obtained in Ref. [23]:

ω =

√k2x + k2y +

(√(
k2z +

1
4
β2
z

)
±

1
2
βz

)2

. (96)
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Fig. 4. Plot of reflection coefficient modulus for + (red) and - (blue)polarizations.

Fig. 5. Plot of reflection coefficient phase for + (orange) and - (blue) polarizations.

. Space-dependent axion field. Casimir aspects

We now consider the simplest case of a planar symmetry in which the axion field is constant in
ime but depends on the longitudinal coordinate z only. The gradient of the field is thus directed
long the z-axis; we will denote it ∇zΘ = β(z). We get then the following equations for the reduced
reen’s function in component form:

− (∂2
z + ω2

− k2y)gxx + ikx(∂zgzx + ikygyx) − iωβ(z)gyx = −δ(z − z ′), (97a)

− (∂2
+ ω2

− k2)g + ik (∂ g + ik g ) + iωβ(z)g = −δ(z − z ′), (97b)
z x yy y z zy x xy xy

20
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− κ2gzz + ∂z(ikxgxz + ikygyz) = −δ(z − z ′), (97c)

nd

− (∂2
z + ω2

− k2x )gyx + iky(ikxgxx + ∂zgzx) + iωβ(z)gxx = 0, (98a)

− (∂2
z + ω2

− k2y)gxy + ikx(ikygyy + ∂zgzy) − iωβ(z)gyy = 0 (98b)

− (∂2
z + ω2

− k2y)gxz + +ikx(ikygyz + ∂zgzz) = 0, (98c)

− κ2gzi + ∂z(ikygyi + ikxgxi) = 0 if i ̸= z, (98d)

s well as other analogous expressions. We here develop briefly the case of the domain wall.

.1. Casimir force on domain wall

We can manipulate the Eqs. (97) and (98) and the other equations by some preliminary
anipulations. Combining ((97) a), ((98) a) and (98) we can get the two following coupled equations

or gxx and gyy:

ω2
(

∂2
z + κ2

+ iβ(z)
kxky
ω

)
gxx + iωβ(z)(ω2

− k2x )gyx = (ω2
− k2x )δ(z − z ′),

ω2
(

∂2
z + κ2

− iβ(z)
kxky
ω

)
gyx − iωβ(z)(ω2

− k2y)gxx = −kxkyδ(z − z ′).
(99)

t is convenient to define ge
ij = −ω2gij and we notice it is also convenient to define the functions

g±(z, z ′) = ge
xx(z, z

′) + γ±(k̃, ω)ge
yx(z, z

′), (100)

here

γ±(k̃, ω) =
kxky ± iωκ

ω2 − k2y
. (101)

e then get the following simpler equations:[
∂2
z + κ2

± β(z)κ
]
g± =

[
ω2κ2

ω2 − k2y
∓

iωκkxky
ω2 − k2y

]
δ(z − z ′). (102)

From solving Eq. (102) it is then straightforward to find gxx and gyx and from these two can find gzx.
It is also easy to find an analogous1 result with gyy, gxy and gzy:[

∂2
z + κ2

± β(z)κ
]
g̃± =

[
ω2κ2

ω2 − k2x
∓

iωκkxky
ω2 − k2x

]
δ(z − z ′), (103)

where

g̃±(z, z ′) = ge
yy(z, z

′) + γ̃±(k̃, ω)ge
xy(z, z

′). (104)

e notice then that for expressions such as g̃±(z, z ′) and g±(z, z ′) we need from the continuity of
Green’s function and their equation to have for z, z ′ < 0:

g±(z, z ′) ∝
1
2κ

(e−iκ|z−z′|
+ R±(κ)eiκ(z+z′)), (105)

here R±(κ) are exactly the reflection coefficients (93). Then, if we calculate the zz compo-
ent of Energy–momentum tensor by expression (28), we can get after a lot of calculations the
emperature-dependent Casimir force per unit area:

f (T , L) = −T
∑
±

+∞
′∑

m

∫
+∞

ζm

κ2dκ
|R±(κ)|2e−2L

√
q2±qβz

1 − |R±(κ)|2e−2L
√

q2±qβz
. (106)

1 It is trivial that it is analogous because the system is invariant under rotation around z-axis.
21
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In the following Subsection, we discuss its high temperature limit (L−1
≪ T ), that can be obtained

y considering the first term m = 0 in the sum and it is equal to:

f (T , L) = 2
∫

d3k
(2π )3

[
R2

+
(kz) + R2

−
(kz)

] k2z
ω

1
eβω − 1

H(kz) =

= 2
∫

d2k
(2π )3

∫
+∞

0
dkz

[
R2

+
(kz) + R2

−
(kz)

] k2z
ω

1
eβω − 1

,

(107)

t can be demonstrated by calculating the last integral in the variables kx and ky. However, it is very
ard to develop the calculations with the exact explicit expressions (93) of R2

+
(κ). In the following,

e approximate the reflection coefficients R±(κ) in a similar way as in Ref. [21] and also based on
ur results for the toy model. For simplicity we define the useful quantity mL =

Θ0
L .

The reflection coefficients can be approximated to be R2
+
(kz) ∼ ζmL δ(kz) and R2

−
(kz) ∼

mL [δ(kz + mL) + δ(kz − mL)] where ζ is a numerical factor such that fits better the behaviour
f the reflection coefficients. This can be justified by noticing that, although the exact behaviours
f the square module of R±(kz) are complicated, it is clear that a crucial frequency for our system is
he same mL, and by the graphs in Figs. 4 and 5 and a qualitative description of them, they can be
pproximated to be R2

+
(kz) ∼

ζ

π
Θ2

0m
2
L
sin2 (kz/mL)

k2z
and R2

−
(kz) ∼

ζ

π
Θ2

0
sin2 (kz/mL−1)
(kz/mL−1)2

. Then one exploits
he distributional relation:

sin2 (ϵt)
t2

∼ πϵδ(t) for ϵ → 0, (108)

nd we can get the expressions if ϵ = (mL)−1.
The use of the Dirac delta limit is only useful for simplifying the calculations, however, an exact

calculation would correspond to taking care of the secondary peaks of the graphs in Fig. 4 along
with the detailed structure of them and also of the main peak (the last one is namely kz = 0 for

−(kz) and kz = mL for R+(kz)) just modify the numerical factor ζ . The Dirac delta approximation
hen takes care of the main contribution coming from the main peak of Fig. 4, approximating it as
strict peak.

.2. Evaluation of the temperature-dependent electromagnetic pressure on domain wall

As we mentioned previously, the calculation of the Temperature dependent Casimir pressure
cting on an axion domain wall is not immediate. We can anyway get a first physical idea by getting
he expression (107), making a calculation similar to the one made by Huang and Sikivie [21] and
o the one made in Ref. [22], that also highlights the physical meaning and let us extend the result
o non-static walls.

Our results can be first applied to QCD axion domain walls, but also to ALP domain walls [22] and
verall strong topological insulators [23,27,43]. Namely, the last cited application can be the same
ystem treated in Ref. [23], if we consider the toy model configuration for the axion field (82), but
ithout the presence of two conducting plates, so the comparison between our results and the ones

n the cited reference is straightforward.
The idea is basically to calculate kinetically the radiation pressure acting on the toy model (82) at

emperature T , whose results can be also indicative for cosmological walls, as we discussed before.
f we have a circularly polarized electromagnetic wave incident on the axion domain wall this is
artly reflected as discussed in Section 6. We refer to Fig. 6 for the geometry of the system.
If the incident wave (that can be left-circularly or right-circularly polarized) has momentum

ensity that is equal to its energy density uem,±(ω) it is partly reflected back with momentum
ensity that is equal to R2

±
(kz) uem,±(ω) and partly transmitted with momentum density equal to

2
±
(kz) uem,±(ω), depending on its polarization.
We preliminary observe that, as also visible from what gotten for the toy model, the reflection

nd transmission coefficients can only depend on kz , since the motion parallel to the domain wall
annot affect the dynamics as the domain wall is invariant for parallel boosts. It then experiences[

2 (k ) cos θ2
]
u (ω) where δA is the differential area
variation of momentum equal to δt δA 2R

± z em,±

22
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Fig. 6. Visual representation useful for the calculation of radiation pressure acting on an axion domain wall.

and δt is the differential time. That expression is consequence of the relation R2
±
(kz) + T 2

±
(kz) = 1,

o 1 + R2
±
(kz) − T 2

±
(kz) = 2R2

±
(kz). If we divide by δA and δt we get the pressure exerted from that

ode with that specific polarization.
Summing on the two polarization and all frequencies, we get the following pressure PL acting

n the left of the static wall, similarly to what is obtained in Ref. [22]:

PL = P = 2
∫

d3k
(2π )3

[
R2

+
(kz) + R2

−
(kz)

] k2z
ω

1
eβω − 1

H(kz) =

= 2
∫

d2k
(2π )3

∫
+∞

0
dkz

[
R2

+
(kz) + R2

−
(kz)

] k2z
ω

1
eβω − 1

,

(109)

hich is equal to the pressure PR acting on the right of the wall because a static domain wall is
eft–right symmetric. H is the Heaviside function, taking care of just the contribution of photons
coming from left and here ω =

√
k2x + k2y + k2z , so we exploited the relation kz = ω cos θ .

The calculation of P is not trivial because it is dependent on the details of the axion configuration,
from which reflection coefficients depend. For the case of the toy model we can evaluate it by using
the obtained explicit expressions. In this way, the integral (109) becomes explicitly as:

PL = 2m3
L

∫
d2k

(2π )3
1√

k2 + m2
L

1

eβ

√
k2+m2

L − 1
, (110)

ince one can use the parity property of the integrand under the change of variable kz → −kz and
he defining property of the Dirac delta distribution

∫
∞

−∞
dxf (x) δ(x−x0) = f (x0). This integral can be

valuated by noticing that the integrand is dependent on the variable k =

√
k2x + k2y , on the physical

uantities m and β , so we can use polar coordinates and making the substitution k → k /m to
L i i L
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get an integral just dependent on βmL:

PL =
m4

L

π2

∫
+∞

0
dk′

k′

√
k′2 + 1

1

eβmL

√
k′2+1 − 1

. (111)

his integral can be evaluated by noticing that a primitive function (indefinite) integral F (x) of the
unction

f (x) =
x

√
x2 + 1

1

eα
√

x2+1 − 1
(112)

s trivially the function F (x) = α−1 ln (eα
√

x2+1
− 1)−

√
x2 + 1. Consequently, it can be easily found

hat

P =
m4

L

π2

[
1 −

T
mL

ln (eβmL − 1)
]

. (113)

e get then expressions agreeing partly with those mentioned in Ref. [21]:

P =
m3

L

π2 Te−
mL
T for T ≪ mL, (114a)

P =
m3

L

π2 T ln
(

T
mL

)
for T ≫ mL. (114b)

he first limiting case (114a) can be found by adopting the asymptotic expression ln (x − 1) ∼

n x−
1
x for x → +∞, where x is in our case eβmL . The second case (114b) can be obtained by using

ln (ex − 1) = ln x +
x
2 + O(x4) for x → 0 and leaving the more relevant term for T ≫ mL, i.e. the

ogarithm ln x.
We notice how our result (114b) is different from that claimed in Ref. [21], since here we get a

ehaviour going like ∼ m3
LT ln(T/mL), that is proportional to Θ3

0 , which is different from a behaviour
Θ2

0m
2
aT

2. This is a relevant difference and it is a consequence of the different dependence on
emperature T and the observation of the relevance of the threshold frequency mL, instead of L−1,
here the reflection coefficients are significant.
It is also of interest to treat the case of a domain wall moving at constant velocity v, namely along

he direction of the z-axis, relatively to the reference frame where the electromagnetic radiation
mission is an isotropic blackbody one at temperature T . In such a case, expressions for PL and PR
re similar to the ones in the static case v = 0, but there are two main differences. The first one
s that we do not expect PL and PR to be equal since the left–right symmetry is broken in such a
ase, while the second one relies on the need of taking care of the Doppler effect. Consequently we
et, similarly to Ref. [22],

PL,R =
m4

L

π2

∫
+∞

0
dk′

k′

√
k′2 + 1

1

eγ (v)βmL(
√

k′2+1±v) − 1
. (115)

here the + is valid for PL while - for PR. This integral can be calculated by noticing that the
ntegrand has a primitive function (indefinite integral) that is analogous to the one of static case.
ne then gets the exact solution:

PL,R =
1
π2m

4
Le

∓γ (v)βmLv

[
1 −

T
mL

ln (eβmL(1±v)
− 1)

]
. (116)

e highlight, as mentioned before, that the pressures in the limit βma ≫ 1 can be evaluated by just
ubstituting the Bose–Einstein distribution with the limiting Boltzmann factor e−γ (v)βma(

√
k′2+1±v),

which is indeed a good approximation for βma ≫ 1, since it is surely much bigger than 1. This
substitution is also true in the ultrarelativistic limit v ≃ 1 for the same reason. We have for such
limiting cases (βma ≫ 1 and/or v ≃ 1):

PL,R ∝ m3
LT
√
1 − v2e−γ (v)βmL(1±v) (117)

he non-relativistic regime v ≪ 1 can be well approximated by the solution (113) with v = 0.
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7.2.1. Application to axion cosmology
In the case of interest for Axion cosmology T ≫ mL, if we consider a static wall, we adopt the

expression (114b) for such a case. This result gives us a pressure:

P0
em ∼ 10−27

(
Θ0

10−3

)3 ( ma

10−2 eV

)3 ( T
1GeV

)[
1 + ln

(
10−14 T

ma

)]
MeV4. (118)

his very low pressure can be compared for example to gravitational pressure. Indeed, according
o Ref. [21] in the NDW = 1 case, a closed axion domain wall oscillates and radiates gravitational
energy and, if one neglects other contributions, the ‘equation of motion’ is:

dσs

dt
= −Pgrav = −Gσ 2

s , (119)

here G is the gravitational constant and σs is the surface energy density of the domain wall.
ccording to the values reported in Ref. [11] and the dynamics described by Eq. (119), we expect a
ife-time τgrav:

τgrav ∼ (Gσs)−1
∼ 2 × 106 s

(
109 GeV

fa

)
, (120)

nd a pressure Pgrav:

Pgrav ∼ Gσ 2
s ∼ 0.8375

(
fa

109 GeV

)2

MeV4. (121)

his last pressure is much bigger than P0
em for every reasonable axion mass, and with a temperature

T ≃ ΛQCD it is much worse for an actual domain wall since, according to Refs. [11,26], two
axion walls repulse each other with acceleration a = 2πGσs, so they reach a speed c into a time
τ ∼ (2πGσs)−1. That means that, if we qualitatively estimate the electromagnetic radiation by
considering approximately the velocity-dependent pressure (gotten with zero acceleration) we get
fainter pressures that approach to zero when v → 1. We can analogously get a partial life-time
associated to the electromagnetic radiation pressure (118) that is

τaγ γ =
σs

P0
em

∼ 35.75 × 1024
(

Θ0

10−3

)−3 ( ma

10−2 eV

)−3
(

T
1GeV

)−1 [
1 + ln

(
10−14 T

ma

)]−1

s.

(122)

his value is useful for comparisons with what one gets for NDW > 1 scenarios. In fact, as mentioned
efore, the cosmological scenario is problematic for NDW > 1 where there is the possibility of a
all-dominated Universe with an energy density inconsistent with observations. As shown e.g. by
ef. [11], the typical times for such disaster events would be the times τ2, where domain wall form,
nd the age of the Universe τDW where domain walls would dominate when NDW > 1.
The comparison of the times τDW and τ2 in the former reference with the very high decay life-

ime in Eq. (122), that is far bigger than the current age of the Universe, suggests us that the
lectromagnetic radiation pressure is irrelevant for the evolution of cosmological axion domain
alls.

. Comparison with Faraday effect and chiral media and about the optical activity in axion
lectrodynamics

It is worth mentioning that the mode splittings are analogous to those encountered in the
araday effect, i.e., the polarization rotation that is proportional to the longitudinal strong magnetic
ield. For treatises of this effect, cf., for instance, [44,45]. Moreover, there is also a strong connection
ith the Casimir polarization rotation observed in a chiral medium when there is a strong trans-
erse magnetic field present. Cf. [46,47]. This effect has been treated for Axion Electrodynamics,
owever with fixed axion field that holds constant space and time derivatives, in Refs. [14,48]. It
25
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is indeed easy to notice how our theory with fixed axion background is equivalent to a modified
Electrodynamics with an additional Chern–Simons term:

La = −
1
2
pαAβ F̃αβ , (123)

f pα = gaγ γ ∂αa(x), regardless if axion derivatives are constant and uniform or not.
The theory of this modified electrodynamics when pα are constants is very well treated in

ef. [48]. Here we mention the similarities and the differences between our results and the ones
n [14,48], in order to highlight what we get when considering more physically interesting axion
onfigurations, such as a coherent oscillating axion field and an axion domain wall. As found
n Refs. [14,48], an Axion Electrodynamics theory with fixed axion field that holds constant and
niform derivatives is characterized by having an optically active vacuum

dΦ
dt

=
1
2
gaγ γ

√
µ

ε

(
ȧ +

ω

k2
k⃗ · ∇a

)
. (124)

his comes from the dispersion relation:

ω± =
|k⃗|

√
εµ

±
1
2
gaγ γ

√
µ

ε

(
ȧ +

ω

|k⃗|
2 k⃗ · ∇a

)
+ O(g2

aγ γ ), (125)

hich is compatible with the dispersion relations obtained in Sections 5.1 and 6.2. However, this is
ot enough to grasp all the properties of real axion backgrounds, such as an oscillating one and an
xion domain wall. These two are characterized by a typical frequency (in the case a(t) = a0 sin(ωat)
t is the axion frequency ωa, while for the toy model of domain wall it ismL =

Θ0
L ). The result is valid

n the limit of frequencies and wave numbers much bigger than the typical frequency, because they
orrespond to modes with very low wavelengths or periods, so they do not ‘appreciate’ the space–
ime variations of the derivatives of axion field. It is worth noticing that the deviations we got for
he two systems: a domain wall is characterized by having a more significant reflection coefficient at
z = mL =

Θ0
L , which means a very steady variation of the polarization plane near to the interface,

if compared to the variation of the axion field along the light trail (that is arbitrarily small for an
arbitrary small neighbourhood of the interface). Similarly, it happens with a(t) = a0 sin(ωat) that,
n the forementioned phenomenon of axion echo, we have production of a fainter radiation when
nputting an electromagnetic wave with frequency ω =

ωa
2 , that lets the polarization plane rotate

with a behaviour not described by the theory with constant axion derivatives. Furthermore, when
generating a strong magnetic field there is production of faint photons with frequency ω = ωa
inside an electromagnetic cavity (see Refs. [14,15,40]), so there is a phenomenon more similar to
the Faraday effect. Those arguments show how the validity of ‘achromaticity of the optical activity
of Axion Electrodynamics’ is only valid in the regime of ‘high frequencies’.

9. Conclusions

In this article we have treated the theory of zero-point energy modifications in Axion Electro-
dynamics with a focus on physical systems of interest for the High Energy Physics axion and the
effective axion field in topological insulators. We reviewed the theory of Axion Electrodynamics
and particularly the energy–momentum conservation in a linear dielectric and magnetic material.
Adopting the model of the oscillating axion background, we discussed the axion-induced modi-
fications to the Casimir force between two parallel plates by using the Green’s function method
and suggested a way of enhancing axion-induced Casimir force through a closed string of dielectric
point defects. We calculated the radiation pressure acting on a axion domain wall at temperature
T . Our results for an oscillating axion field and a domain wall are useful for ‘‘axionic topological
insulators’’ and experimental systems analogous to the ones showed e.g. by Jiang, Q. D., & Wilczek,
F. (2019) [46] and Fukushima et al. (2019) [23]. Finally, we compared our results, where we assume
time-dependent or space-dependent axion configurations, with the discussion of the optical activity
of Axion Electrodynamics by Sikivie (2021) [14] and Carrol et al. (1990) [48] and showed the
‘cromaticity’ of the vacuum in Axion Electrodynamics.
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Note: During the revision of our paper, a recent work [49] has appeared on arXiv, where the
uthors discuss also finite-temperature Casimir force in Axion Electrodynamics for other cases of
nterest.
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