ON MULTIPLICITIES OF COCHARACTERS FOR ALGEBRAS WITH SUPERINVOLUTION

ANTONIO IOPPOLO AND FABRIZIO MARTINO

Abstract

In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.

1. Introduction

Let F be a field of characteristic zero and let A be an F-algebra. In this paper we deal with \mathbb{Z}_{2}-graded algebras (superalgebras) endowed with a superinvolution *.

Algebras with superinvolution are a natural generalization of the algebras with involution. Indeed, as the set of symmetric elements of an algebra with involution with respect to the symmetrized product $a \circ b=a b+b a$ is a Jordan algebra and the set of skew elements with respect to the Lie product $[a, b]=a b-b a$ is a Lie algebra, similarly the set of symmetric elements of an algebra with superinvolution with respect to the supersymmetrized product $a \circ b=a b+(-1)^{|a||b|} b a$ forms a Jordan superalgebra and the skew elements under the graded bracket $[a, b]=a b-(-1)^{|a||b|} b a$ form a Lie superalgebra. One can find several examples of Jordan and Lie simple superalgebras for instance in [17] and [25].

Similarly to the ordinary case, one can attach to a superalgebra with superinvolution A two special numerical sequences. The first one is the *-codimension sequence, $c_{n}^{*}(A), n=1,2, \ldots$, where $c_{n}^{*}(A)$ denote the dimension of the space of multilinear polynomials in $n *$-variables in the corresponding relatively free superalgebra with superinvolution of countable rank. The second numerical sequence is the $*$-colength sequence, $l_{n}^{*}(A), n=1,2, \ldots$, that is the sum of the multiplicities in the decomposition of the $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter $\chi_{n_{1}, \ldots, n_{4}}(A)$, for all $n=n_{1}+\cdots+n_{4} \geq 1$. Recall that the $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter is the character corresponding to the action of the group $S_{n_{1}} \times \cdots \times S_{n_{4}}$ on $P_{n_{1}, \ldots, n_{4}}(A)$, the space of multilinear $*$-polynomials in n_{1} even symmetric variables, n_{2} even skew variables, n_{3} odd symmetric variables and n_{4} odd skew variables, modulo the *-identities of A, by permutation of the variables of the same homogeneous degree which are all symmetric or all skew at the same time with respect to the superinvolution $*$.

Given a variety of superalgebras with superinvolution \mathcal{V}, its growth is defined as the growth of the $*$-codimension sequence of any superalgebra with superinvolution A generating \mathcal{V}, i.e., $\mathcal{V}=\operatorname{var}^{*}(A)$. We say that \mathcal{V} has polynomial growth if $c_{n}^{*}(\mathcal{V})$ is polynomially bounded and we say that \mathcal{V} has almost polynomial growth if $c_{n}^{*}(\mathcal{V})$ is not polynomially bounded but every proper subvariety of \mathcal{V} has polynomial growth.

Recently, superalgebras with superinvolution have been extensively studied in several papers. In $[6,7]$ the authors proved that, as in the ordinary case, $c_{n}^{*}(A)$ is exponentially bounded and they also classified the superalgebras with superinvolution generating varieties of almost polynomial growth. It turned out that a variety of superalgebras with superinvolution \mathcal{V} has polynomial growth if and only if it does not contain a list of five suitable superalgebras with superinvolution generating the only varieties of almost polynomial growth.

In $[7,15]$, the authors classified the subvarieties of each variety of almost polynomial growth by giving a complete list of finite dimensional superalgebras with superinvolution generating them.

In $[11,12]$, Giambruno and Zaicev answered in the affirmative to a famous conjecture posed by Amitsur in the eighties: the exponential growth of the codimension sequence of a PI-algebra is an

[^0]integer. In the setting of superalgebras with superinvolution, the analogous result was given by Ioppolo in [14].

Other results were proved in the setting of matrix superalgebras with superinvolution. In [8] the authors gave an analogue of the Amitsur-Levitzki theorem concerning the minimal degree of standard identities whereas in [16], it was proved that on the $n \times n$ upper-triangular matrix algebra $U T_{n}$, over an algebraically closed field F of characteristic zero, there are only two classes of inequivalent superinvolutions.

Finally, in 2017, Aljadeff, Giambruno and Karasik showed that any algebra with involution has the same identities of the Grassmann envelope of a finite dimensional superalgebra with superinvolution (see [1]).

The purpose of this paper is to give a characterization of superalgebras with superinvolution with multiplicities of the corresponding $\left(n_{1}, \ldots, n_{4}\right)$-cocharacters bounded by a constant.

In [21] such a characterization was given in the setting of algebras with ordinary polynomial identities. More precisely, the authors proved that the multiplicities of the S_{n}-cocharacter of a variety \mathcal{V} are bounded by a constant if and only if \mathcal{V} does not contain the algebra $U T_{2}$. A similar result was obtained by Otera in [23] for finitely generated superalgebras: in this case the variety of superalgebras \mathcal{V} does not contain the superalgebra $U T_{2}$ (trivial grading) and $U T_{2}^{\text {sup }}$, i.e., the algebra $U T_{2}$ with the canonical non-trivial \mathbb{Z}_{2}-grading. The latter characterization was extended in [3] for G-graded algebras, where G is any finite abelian group, by excluding from the variety of G-graded algebras \mathcal{V} the algebra $U T_{2}$ with any G-grading. Finally, in [28], Vieira studied the same problem in the setting of finitely generated algebras with involution.

Here we deal with finitely generated superalgebras with superinvolution. If A is such an algebra, we give some conditions on $\operatorname{var}^{*}(A)$ ensuring that the multiplicities of its $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter are bounded by a constant. In particular, we prove that this happens when $\operatorname{var}^{*}(A)$ does not contain the algebra M, a suitable 4-dimensional subalgebra of the algebra of 4×4 upper triangular matrices endowed with trivial grading and reflection superinvolution, $M^{\text {sup }}$, i.e., the algebra M with a non-trivial grading and reflection superinvolution and $M_{0,2}(F)$, the algebra of 2×2 matrices with trivial grading and orthosymplectic superinvolution.

As a direct consequence, in the last section, we shall see that the $*$-codimension sequence of A grows polynomially if and only if there exists a constant k such that $l_{n}^{*}(A) \leq k$, for all $n \geq 1$.

2. Preliminaries

Let F be a field of characteristic zero and $A=A_{0} \oplus A_{1}$ an associative superalgebra over F endowed with a superinvolution $*$. The subspaces A_{0} and A_{1} satisfy the conditions $A_{0} A_{0}+A_{1} A_{1} \subseteq$ A_{0} and $A_{0} A_{1}+A_{1} A_{0} \subseteq A_{1}$ and their elements are called homogeneous of degree zero (even elements) and of degree one (odd elements), respectively. A superinvolution on A is a graded linear map $*: A \rightarrow A$ such that $\left(x^{*}\right)^{*}=x$, for all $x \in A$, and $(a b)^{*}=(-1)^{|a||b|} b^{*} a^{*}$, for elements $a, b \in A$ of homogeneous degree $|a|,|b|$, respectively. Since $\operatorname{char} F=0$, we can write $A=A_{0}^{+} \oplus A_{0}^{-} \oplus A_{1}^{+} \oplus A_{1}^{-}$, where, for $i=0,1, A_{i}^{+}=\left\{a \in A_{i}: a^{*}=a\right\}$ and $A_{i}^{-}=\left\{a \in A_{i}: a^{*}=-a\right\}$ denote the sets of homogeneous symmetric and skew elements of A_{i}, respectively. From now on we shall refer to a superalgebra with superinvolution as a $*$-algebra.

As in the case of graded algebras or of algebras with involution, one can define a superinvolution on the free algebra $F\langle X\rangle$ in a natural way. We write the set X as the union of two disjoint infinite sets Y and Z, requiring that their elements are of homogeneous degree 0 and 1 , respectively. Then each set is written as the disjoint union of two other infinite sets of symmetric and skew elements, respectively. The free superalgebra with superinvolution is denoted by $F\langle Y \cup Z, *\rangle$ and it is generated by symmetric and skew elements of even and odd degree. We write

$$
F\langle Y \cup Z, *\rangle=F\left\langle y_{1}^{+}, y_{1}^{-}, z_{1}^{+}, z_{1}^{-}, y_{2}^{+}, y_{2}^{-}, z_{2}^{+}, z_{2}^{-}, \ldots\right\rangle,
$$

where y_{i}^{+}stands for a symmetric variable of even degree, y_{i}^{-}for a skew variable of even degree, z_{i}^{+}for a symmetric variable of odd degree and z_{i}^{-}for a skew variable of odd degree.

We denote by $\mathrm{Id}^{*}(A)=\{f \in F\langle Y \cup Z, *\rangle \mid f \equiv 0$ on $A\}$ the T_{2}^{*}-ideal of $*$-identities of A, i.e., $\operatorname{Id}^{*}(A)$ is an ideal of $F\langle Y \cup Z, *\rangle$ invariant under all \mathbb{Z}_{2}-graded endomorphisms of the free superalgebra commuting with the superinvolution $*$.

Given polynomials $f_{1}, \ldots, f_{n} \in F\langle Y \cup Z, *\rangle$ we shall denote by $\left\langle f_{1}, \ldots, f_{n}\right\rangle_{T_{2}^{*}}$ the T_{2}^{*}-ideal generated by f_{1}, \ldots, f_{n}. Moreover, in order to simplify the notation, we shall denote by y any even variable, by z any odd variable and by x an arbitrary variable.

It is well known that in characteristic zero, every $*$-identity is equivalent to a system of multilinear $*$-identities. Hence if we denote by

$$
P_{n}^{*}=\operatorname{span}_{F}\left\{w_{\sigma(1)} \cdots w_{\sigma(n)} \mid \sigma \in S_{n}, \quad w_{i} \in\left\{y_{i}^{+}, y_{i}^{-}, z_{i}^{+}, z_{i}^{-}\right\}, i=1, \ldots, n\right\}
$$

the space of multilinear polynomials of degree n in $y_{1}^{+}, y_{1}^{-}, z_{1}^{+}, z_{1}^{-}, \ldots, y_{n}^{+}, y_{n}^{-}, z_{n}^{+}, z_{n}^{-}$(i.e., y_{i}^{+}or y_{i}^{-}or z_{i}^{+}or z_{i}^{-}appears in each monomial at degree 1) the study of $\operatorname{Id}^{*}(A)$ is equivalent to the study of $P_{n}^{*} \cap \operatorname{Id}^{*}(A)$, for all $n \geq 1$. The non-negative integer

$$
c_{n}^{*}(A)=\operatorname{dim}_{F} \frac{P_{n}^{*}}{P_{n}^{*} \cap \operatorname{Id}^{*}(A)}, n \geq 1
$$

is called the n-th $*$-codimension of A.
The sequence $c_{n}(A)$ of the ordinary codimensions was introduced by Regev in [26] where it was proved that, if A satisfies a non-trivial polynomial identity, then $c_{n}(A)$ is exponentially bounded. An analogue result holds for $*$-algebras (see [6]).

If \mathcal{V} is a variety of $*$-algebras ($*$-variety) generated by A, i.e., $\mathcal{V}=\operatorname{var}^{*}(A)$, then we write $c_{n}^{*}(\mathcal{V})=c_{n}^{*}(A)$. We shall say that \mathcal{V} has polynomial growth if there exist k, l such that $c_{n}^{*}(\mathcal{V}) \leq k n^{t}$ and that \mathcal{V} has almost polynomial growth if $c_{n}^{*}(\mathcal{V})$ is not polynomially bounded but every proper subvariety of \mathcal{V} has polynomial growth.

Let now $n \geq 1$ and write $n=n_{1}+\cdots+n_{4}$ as a sum of four non-negative integers. We denote by $P_{n_{1}, \ldots, n_{4}} \subseteq P_{n}^{*}$ the vector space of multilinear $*$-polynomials in which n_{1} variables are symmetric of even degree, n_{2} variables are skew of even degree, n_{3} variables are symmetric of odd degree and n_{4} variables are skew of odd degree. The group $S_{n_{1}} \times \cdots \times S_{n_{4}}$ acts on the left on the vector space $P_{n_{1}, \ldots, n_{4}}$ by permuting the variables of the same homogeneous degree which are all symmetric or all skew at the same time. Thus $S_{n_{1}}$ permutes the variables $y_{1}^{+}, \ldots, y_{n_{1}}^{+}, S_{n_{2}}$ permutes the variables $y_{1}^{-}, \ldots, y_{n_{2}}^{-}$, and so on. In this way $P_{n_{1}, \ldots, n_{4}}$ becomes an $\left(S_{n_{1}} \times \cdots \times S_{n_{4}}\right)$-left module. Now, $P_{n_{1}, \ldots, n_{4}} \cap \operatorname{Id}^{*}(A)$ is invariant under this action and so the vector space

$$
P_{n_{1}, \ldots, n_{4}}(A)=\frac{P_{n_{1}, \ldots, n_{4}}}{P_{n_{1}, \ldots, n_{4}} \cap \operatorname{Id}^{*}(A)}
$$

is an $\left(S_{n_{1}} \times \cdots \times S_{n_{4}}\right)$-left module with induced action. We denote by $\chi_{n_{1}, \ldots, n_{4}}(A)$ its character and we call it the $\left(n_{1}, \ldots, n_{4}\right)$-th cocharacter of A.

If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ is a partition of n, we write $\lambda \vdash n$. It is well-known that there is a one-to-one correspondence between partitions of n and irreducible S_{n}-characters. Hence if $\lambda \vdash n$, we denote by χ_{λ} the corresponding irreducible S_{n}-character. If $\lambda(1) \vdash n_{1}, \ldots, \lambda(4) \vdash n_{4}$ are partitions we write $\langle\lambda\rangle=(\lambda(1), \ldots, \lambda(4)) \vdash\left(n_{1}, \ldots, n_{4}\right)$ or $\langle\lambda\rangle \vdash n$ and we say that $\langle\lambda\rangle$ is a multipartition of $n=n_{1}+\cdots+n_{4}$. Since char $F=0$, by complete reducibility, $\chi_{n_{1}, \ldots, n_{4}}(A)$ can be written as a sum of irreducible characters

$$
\begin{equation*}
\chi_{n_{1}, \ldots, n_{4}}(A)=\sum_{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)} m_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)} \tag{1}
\end{equation*}
$$

where $m_{\langle\lambda\rangle} \geq 0$ is the multiplicity of $\chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)}$ in $\chi_{n_{1}, \ldots, n_{4}}(A)$.
Another numerical sequence that can be attached to a $*$-algebra A is the sequence of $*$-colengths. If $\chi_{n_{1}, \ldots, n_{4}}(A)=\sum_{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)} m_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)}$ is the decomposition of the $\left(n_{1}, \ldots, n_{4}\right)$-th cocharacter of A, then the n-th colength of A is defined as

$$
l_{n}^{*}(A)=\sum_{\substack{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right) \\ n_{1}+\cdots+n_{4}=n}} m_{\langle\lambda\rangle} .
$$

We conclude this section by recalling some basic results concerning the sequences of cocharacters and colengths.
Remark 2.1. Let A and B be two *-algebras such that

$$
\chi_{n_{1}, \ldots, n_{4}}(A)=\sum m_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)} \quad \text { and } \quad \chi_{n_{1}, \ldots, n_{4}}(B)=\sum m_{\langle\lambda\rangle}^{\prime} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)} .
$$

1. If $B \in \operatorname{var}^{*}(A)$, then $m_{\langle\lambda\rangle}^{\prime} \leq m_{\langle\lambda\rangle}$, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$ and $l_{n}^{*}(B) \leq l_{n}^{*}(A)$, for all n.
2. The direct sum $A \oplus B$ is also $a *$-algebra, with superinvolution induced by the superinvolutions defined on A and B. Moreover, if

$$
\chi_{n_{1}, \ldots, n_{4}}(A \oplus B)=\sum_{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)} \bar{m}_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)}
$$

is the decomposition of the $\left(n_{1}, \ldots, n_{4}\right)$-th cocharacter of $A \oplus B$, then $\bar{m}_{\langle\lambda\rangle} \leq m_{\langle\lambda\rangle}+m_{\langle\lambda\rangle}^{\prime}$, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$.

3. *-varieties of almost polynomial growth

In this section we shall introduce three finite dimensional $*$-algebras generating varieties of almost polynomial growth.

First we want to highlight that any finitely generated $*$-algebra has the same polynomial identities of a finite dimensional $*$-algebra in case of an algebraically closed field of characteristic zero. In fact the following result holds.

Theorem 3.1. [1]. Let \mathcal{V} be a *-variety generated by a finitely generated $*$-algebra B over an algebraically closed field F, satisfying an ordinary identity. Then $\mathcal{V}=\operatorname{var}^{*}(C)$, for some finite dimensional *-algebra C over F.

In light of the previous theorem, from now on it suffices to study only finite dimensional *algebras.

Let $F \oplus F$ be the two dimensional group algebra of \mathbb{Z}_{2}. We denote by D the algebra $F \oplus F$ with trivial grading and exchange superinvolution ex given by $(a, b)^{e x}=(b, a)$, for all $(a, b) \in D$. Such a $*$-algebra was extensively studied in [6, 9]. It generates a $*$-variety of almost polynomial growth, $\operatorname{Id}^{*}(D)=\left\langle\left[x_{1}, x_{2}\right], z^{+}, z^{-}\right\rangle_{T_{2}^{*}}$ and, if $\chi_{n_{1}, \ldots, n_{4}}(D)=\sum_{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)} m_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)}$ is the $\left(n_{1}, \ldots, n_{4}\right)$-th cocharacter of $D, n_{1}+\cdots+n_{4}=n$, then

$$
m_{\langle\lambda\rangle}= \begin{cases}1 & \text { if }\langle\lambda\rangle=\left(\left(n_{1}\right),\left(n_{2}\right), \emptyset, \emptyset\right), n_{1}+n_{2}=n \\ 0 & \text { otherwise }\end{cases}
$$

As a consequence,

$$
\begin{equation*}
l_{n}^{*}(D)=n+1, \text { for all } n \geq 1 \tag{2}
\end{equation*}
$$

Let now

$$
M=F\left(e_{11}+e_{44}\right) \oplus F\left(e_{22}+e_{33}\right) \oplus F e_{12} \oplus F e_{34},
$$

be a subalgebra of $U T_{4}$, the algebra of 4×4 upper-triangular matrices, endowed with the reflection involution \circ, i.e., the involution obtained by reflecting a matrix along its secondary diagonal. Hence, if $a=\alpha\left(e_{11}+e_{44}\right)+\beta\left(e_{22}+e_{33}\right)+\gamma e_{12}+\delta e_{34}$ then

$$
a^{\circ}=\alpha\left(e_{11}+e_{44}\right)+\beta\left(e_{22}+e_{33}\right)+\delta e_{12}+\gamma e_{34}
$$

If we regard M as endowed with trivial grading, then the above involution is a superinvolution. Such a $*$-algebra (see $[6,22]$) generates a $*$-variety of almost polynomial growth with T_{2}^{*}-ideal of identities $\operatorname{Id}^{*}(M)=\left\langle y_{1}^{-} y_{2}^{-}, z^{+}, z^{-}\right\rangle_{T_{2}^{*}}$. Moreover, if $\chi_{n_{1}, \ldots, n_{4}}(M)=\sum_{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)} m_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes$ $\cdots \otimes \chi_{\lambda(4)}$ is the $\left(n_{1}, \ldots, n_{4}\right)$-th cocharacter of $M, n_{1}+\cdots+n_{4}=n$, then

$$
m_{\langle\lambda\rangle}= \begin{cases}1 & \text { if }\langle\lambda\rangle=((n), \emptyset, \emptyset, \emptyset) \tag{3}\\ q+1 & \text { if }\langle\lambda\rangle=((p+q, p),(1), \emptyset, \emptyset), 2 p+q=n-1 \\ q+1 & \text { if }\langle\lambda\rangle=((p+q, p), \emptyset, \emptyset, \emptyset), 2 p+q=n \\ q+1 & \text { if }\langle\lambda\rangle=((p+q, p, 1), \emptyset, \emptyset, \emptyset), 2 p+q=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

and so

$$
l_{n}^{*}(M)= \begin{cases}\frac{3 n^{2}+4}{4} & \text { if } n \text { is even } \tag{4}\\ \frac{3 n^{2}+5}{4} & \text { if } n \text { is odd }\end{cases}
$$

Next we consider a non-trivial grading on M : we denote by $M^{\text {sup }}$ the algebra M with grading $M_{0}=F\left(e_{11}+e_{44}\right) \oplus F\left(e_{22}+e_{33}\right)$ and $M_{1}=F e_{12} \oplus F e_{34}$. Notice that the reflection involution on $M^{\text {sup }}$ is a superinvolution, since $M_{1}^{2}=0$. The $*$-algebra $M^{\text {sup }}$ generates a $*$-variety of almost polynomial growth with $\mathrm{Id}^{*}\left(M^{\text {sup }}\right)=\left\langle y^{-}, z_{1} z_{2}\right\rangle_{T_{2}^{*}}$. Moreover, if $\chi_{n_{1}, \ldots, n_{4}}\left(M^{\text {sup }}\right)=$ $\sum_{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)} m_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)}$ is the $\left(n_{1}, \ldots, n_{4}\right)$-th cocharacter of $M^{\text {sup }}, n_{1}+\cdots+n_{4}=n$, then

$$
m_{\langle\lambda\rangle}= \begin{cases}1 & \text { if }\langle\lambda\rangle=((n), \emptyset, \emptyset, \emptyset) \tag{5}\\ q+1 & \text { if }\langle\lambda\rangle=((p+q, p), \emptyset,(1), \emptyset) \\ q+1 & \text { if }\langle\lambda\rangle=((p+q, p), \emptyset, \emptyset,(1)) \\ 0 & \text { otherwise }\end{cases}
$$

where $p, q \geq 0$ and $2 p+q+1=n$ (see [6, 10]). It follows that

$$
l_{n}^{*}\left(M^{\text {sup }}\right)=\left\{\begin{array}{ll}
\frac{n^{2}+2 n+2}{2} & \text { if } n \text { is even } \tag{6}\\
\frac{n^{2}+2 n+3}{2} & \text { if } n \text { is odd }
\end{array} .\right.
$$

The above $*$-algebras characterize the $*$-varieties of polynomial growth.
Theorem 3.2. [6, Theorem 5.1] Let A be a finite dimensional *-algebra. Then var* (A) has polynomial growth if and only if $D, M, M^{\text {sup }} \notin \operatorname{var}^{*}(A)$.

As a consequence we have the following corollary.
Corollary 3.1. [6, Corollary 5.1] The *-algebras $M, M^{\text {sup }}$ and D are the only finite dimensional *-algebras generating varieties of almost polynomial growth.

4. On the Wedderburn-Malcev decomposition

In this section we analyze the Wedderburn-Malcev decomposition of a finite dimensional *algebra A, in case $M, M^{\text {sup }} \notin \operatorname{var}^{*}(A)$. We shall prove that the simple components of the semisimple part of such a decomposition can be chosen only in a list of five $*$-algebras.

In [6], the authors gave an analogue of the Wedderburn-Malcev decomposition in the setting of finite dimensional $*$-algebras. In order to present such a result we first recall some definitions. An ideal (subalgebra) I of an algebra A with superinvolution $*$ is a $*$-ideal (subalgebra) of A if it is a graded ideal (subalgebra) and $I^{*}=I$. The algebra A is a simple $*$-algebra if $A^{2} \neq 0$ and A has no non-trivial *-ideals.

Theorem 4.1. [6, Theorem 4.1] Let A be a finite dimensional $*$-algebra over a field F of characteristic 0 . Then there exists a semisimple $*$-subalgebra B such that $A=B+J(A)$ and $J(A)$ is a *-ideal of A. Moreover $B=B_{1} \oplus \cdots \oplus B_{k}$, where B_{1}, \ldots, B_{k} are simple $*$-algebras.

Next we shall present the classification of the finite dimensional simple $*$-algebras over an algebraically closed field F. Recall that if A and B are two superalgebras endowed with superinvolutions $*$ and \star, respectively, then $(A, *)$ and (B, \star) are isomorphic, as $*$-algebras, if there exists an isomorphism of superalgebras $\psi: A \rightarrow B$ such that $\psi\left(x^{*}\right)=\psi(x)^{\star}$, for all $x \in A$.

If $n=k+h$, then the matrix algebra $M_{n}(F)$ becomes a superalgebra, denoted by $M_{k, h}(F)$, with grading

$$
\begin{aligned}
& \left(M_{k, h}(F)\right)_{0}=\left\{\left.\left(\begin{array}{cc}
X & 0 \\
0 & T
\end{array}\right) \right\rvert\, X \in M_{k}(F), T \in M_{h}(F)\right\}, \\
& \left(M_{k, h}(F)\right)_{1}=\left\{\left.\left(\begin{array}{cc}
0 & Y \\
Z & 0
\end{array}\right) \right\rvert\, Y \in M_{k \times h}(F), Z \in M_{h \times k}(F)\right\} .
\end{aligned}
$$

In [24], Racine proved that, up to isomorphism and if the field F is algebraically closed and of characteristic different from 2 , it is possible to define on $M_{k, h}(F)$ only the following superinvolutions.

1. The transpose superinvolution denoted trp, defined for $h=k$ by

$$
\left(\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right)^{\operatorname{trp}}=\left(\begin{array}{cc}
T^{t} & -Y^{t} \\
Z^{t} & X^{t}
\end{array}\right)
$$

where t is the usual transpose.
2. The orthosymplectic superinvolution osp, defined when $h=2 l$ is even by

$$
\left(\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right)^{o s p}=\left(\begin{array}{cc}
I_{k} & 0 \\
0 & Q
\end{array}\right)^{-1}\left(\begin{array}{cc}
X & -Y \\
Z & T
\end{array}\right)^{t}\left(\begin{array}{cc}
I_{k} & 0 \\
0 & Q
\end{array}\right)=\left(\begin{array}{cc}
X^{t} & Z^{t} Q \\
Q Y^{t} & -Q T^{t} Q
\end{array}\right)
$$

where $Q=\left(\begin{array}{cc}0 & I_{l} \\ -I_{l} & 0\end{array}\right)$ and I_{k}, I_{l} are the $k \times k, l \times l$ identity matrices, respectively.
Furthermore, if A is a superalgebra, we denote by $A^{\text {sop }}$ the superalgebra with the same graded vector space structure of A and product given on homogeneous elements $a, b \in A^{s o p}$ by

$$
a \circ b=(-1)^{|a||b|} b a
$$

The direct sum $R=A \oplus A^{\text {sop }}$ is a superalgebra with $R_{0}=A_{0} \oplus A_{0}^{\text {sop }}$ and $R_{1}=A_{1} \oplus A_{1}^{\text {sop }}$ and it is endowed with the exchange superinvolution

$$
(a, b)^{*}=(b, a) .
$$

For example, if we consider the superalgebra $Q(n)=M_{n}(F \oplus c F)=Q(n)_{0} \oplus Q(n)_{1}$, where $Q(n)_{0}=M_{n}(F)$ and $Q(n)_{1}=c M_{n}(F)$, with $c^{2}=1$, then $Q(n) \oplus Q(n)^{s o p}$ is a $*$-algebra with exchange superinvolution.

The following theorem gives the classification of the finite dimensional simple $*$-algebras over an algebraically closed field F.

Theorem 4.2 ([2, 13, 24]). Let A be a finite dimensional simple *-algebra over an algebraically closed field F of characteristic different from 2. Then A is isomorphic to one of the following:
(1) $M_{k, h}(F)$ with the orthosymplectic or the transpose superinvolution,
(2) $M_{k, h}(F) \oplus M_{k, l}(F)^{\text {sop }}$ with the exchange superinvolution,
(3) $Q(n) \oplus Q(n)^{\text {sop }}$ with the exchange superinvolution.

Since any finite dimensional $*$-algebra A can be naturally embedded into the $*$-algebra $A \otimes_{F} \bar{F}$, which is finite dimensional over the algebraic closure $\bar{F} \supseteq F$, then, without loss of generality, we may assume that a finite dimensional $*$-algebra A over a field F of characteristic zero has a Wedderburn-Malcev decomposition such that any $*$-simple component $A_{i}, i=1, \ldots, m$, is isomorphic to one of the algebras in the previous theorem.

Now we can focus our attention to the proof of the main result of this section, concerning finite dimensional *-algebras not containing M and $M^{\text {sup }}$. Recall that they are subalgebras of $U T_{4}(F)$ with trivial and natural grading, respectively, both endowed with the reflection superinvolution o. To reach our goal we have to prove first several lemmas.

Lemma 4.1. Let A be $a *$-algebra. If $M \notin \operatorname{var}^{*}(A)$, then $\left(M_{k, k}(F), \operatorname{trp}\right) \notin \operatorname{var}^{*}(A)$, for any $k \geq 2$.
Proof. Suppose by contradiction that $\left(M_{k, k}(F), \operatorname{trp}\right) \in \operatorname{var}^{*}(A)$ and let us consider its subalgebra

$$
C=\operatorname{span}_{F}\{\underbrace{e_{11}+e_{k+1, k+1}}_{a}, \underbrace{e_{22}+e_{k+2, k+2}}_{b}, \underbrace{e_{12}}_{c}, \underbrace{e_{k+2, k+1}}_{c^{*}}\} \subseteq\left(M_{k, k}(F), \operatorname{trp}\right),
$$

spanned by four elements of homogeneous degree zero and with induced superinvolution. Here the $e_{i j}$'s are the usual matrix units.

Now let $\left\{e_{11}+e_{44}, e_{22}+e_{33}, e_{12}, e_{34}\right\}$ be a basis of the $*$-algebra M. Then the map $\varphi: M \rightarrow C$ given by

$$
\varphi\left(e_{11}+e_{44}\right)=a, \quad \varphi\left(e_{22}+e_{33}\right)=b, \quad \varphi\left(e_{12}\right)=c, \quad \varphi\left(e_{34}\right)=c^{*}
$$

is clearly an isomorphism of superalgebras. Moreover, for all $X \in M, \varphi\left(X^{\circ}\right)=\varphi(X)^{\text {trp }}$ and so M and C are isomorphic as $*$-algebras. This implies $M \cong C \in \operatorname{var}^{*}\left(\left(M_{k, k}(F), \operatorname{trp}\right)\right) \subseteq \operatorname{var}^{*}(A)$, a contradiction.

Lemma 4.2. If $M \notin \operatorname{var}^{*}(A)$, then $\left(M_{k, 2 l}(F)\right.$, osp $) \notin \operatorname{var}^{*}(A)$, for any $k \geq 2$ or $l \geq 2$.

Proof. Suppose by contradiction that $\left(M_{k, 2 l}(F), o s p\right) \in \operatorname{var}^{*}(A)$.
First let $l \geq 2$. We consider the following four even elements of $\left(M_{k, 2 l}(F)\right.$,osp $)$:

$$
\begin{aligned}
& a=e_{k+1, k+1}+e_{k+l+1, k+l+1}, \quad b=e_{k+1, k+l+2}-e_{k+l+1, k+2}, \\
& c=e_{k+l+2, k+1}-e_{k+2, k+l+1}, \\
& d=e_{k+2, k+2}+e_{k+l+2, k+l+2} .
\end{aligned}
$$

Let $C=\operatorname{span}_{F}\{a, b, c, d\}$ be a subalgebra of $\left(M_{k, 2 l}(F)\right.$,osp) with induced superinvolution. If $\left\{e_{11}, e_{12}, e_{21}, e_{22}\right\}$ is a basis of the $*$-algebra $\left(M_{2}(F), t\right)$, endowed with trivial grading and transpose involution, then the linear map $\varphi: C \rightarrow M_{2}(F)$, such that

$$
\varphi(a)=e_{11}, \varphi(b)=e_{12}, \varphi(c)=e_{21}, \varphi(d)=e_{22}
$$

is an isomorphism of $*$-algebras. Moreover, by [28, Remark 3.2] and recalling that here the grading is trivial, we have that $M \in \operatorname{var}^{*}\left(\left(M_{2}(F), t\right)\right)=\operatorname{var}^{*}(C) \subseteq \operatorname{var}^{*}\left(\left(M_{k, 2 l}(F), o s p\right)\right) \subseteq \operatorname{var}^{*}(A)$, a contradiction.

We are left with the case $l=0,1$ and $k \geq 2$. Let C be the subalgebra of ($M_{k, 2 l}(F)$,osp) generated by $e_{11}, e_{12}, e_{21}, e_{22}$. Clearly, C is a $*$-algebra with induced grading (trivial) isomorphic to $\left(M_{2}(F), t\right)$. Hence we reach a contradiction as before and we are done also in this case.

Lemma 4.3. If $M^{\text {sup }} \notin \operatorname{var}^{*}(A)$, then $\left(M_{1,2}(F)\right.$, osp $) \notin \operatorname{var}^{*}(A)$.
Proof. In order to prove the lemma we shall show that $M^{\text {sup }} \in \operatorname{var}^{*}\left(M_{1,2}(F)\right.$,osp $)$. If not, we would have that $\mathrm{Id}^{*}\left(\left(M_{1,2}(F), o s p\right)\right) \nsubseteq \mathrm{Id}^{*}\left(M^{\text {sup }}\right)$ and so there would exist a non-zero multilinear polynomial f such that $f \in \operatorname{Id}^{*}\left(\left(M_{1,2}(F)\right.\right.$,osp $\left.)\right)$ and $f \notin \mathrm{Id}^{*}\left(M^{s u p}\right)$. In order to reach a contradiction we need only to show that f is actually the zero polynomial. Since by [10, Theorem 6.3] $\operatorname{Id}^{*}\left(M^{\text {sup }}\right)=\left\langle y^{-}, z_{1} z_{2}\right\rangle_{T_{2}^{*}}$, then f is either $f=\alpha z($ when $n=1)$ or $f=\beta y_{1}^{+} \cdots y_{n}^{+}$or

$$
\begin{equation*}
f=\sum_{I} \alpha_{I} y_{i_{1}}^{+} \cdots y_{i_{k}}^{+} z y_{j_{1}}^{+} \cdots y_{j_{n-k-1}}^{+}, \tag{7}
\end{equation*}
$$

with $i_{1}<\cdots<i_{k}, j_{1}<\cdots<j_{n-k-1}$ and $I=\left\{i_{1}, \ldots, i_{k}\right\}$.
In the first two cases, it is easy to see, by making a suitable evaluation, that f must be the zero polynomial.

Now, consider the case in which f is as in (7). Suppose that there exists $\alpha_{I} \neq 0$, for some I. Then by making the evaluation $y_{i_{1}}^{+}=\cdots=y_{i_{k}}^{+}=e_{11}, y_{j_{1}}^{+}=\cdots=y_{j_{n-k-1}}^{+}=e_{22}+e_{33}$ and $z=e_{12}$, one gets $\alpha_{I} e_{12}=0$. Thus $\alpha_{I}=0$, a contradiction. Therefore we have proved that f is the zero polynomial and we are done.

Lemma 4.4. If $M^{\text {sup }} \notin \operatorname{var}^{*}(A)$, then $B=\left(M_{k, h}(F) \oplus M_{k, h}(F)^{\text {sop }}\right.$, ex $) \notin \operatorname{var}^{*}(A)$, for any k, h such that $k+h>1$.

Proof. Suppose by contradiction that $B=\left(M_{k, h}(F) \oplus M_{k, h}(F)^{s o p}, e x\right) \in \operatorname{var}^{*}(A)$.
Let $l=k+h-1$ and let $C=C_{0} \oplus C_{1}$ be a subalgebra of B with

$$
C_{0}=\operatorname{span}_{F}\{\underbrace{\left(e_{11}, e_{11}\right)}_{a}, \underbrace{\left(e_{l, l}, e_{l, l}\right)}_{b}\} \text { and } C_{1}=\operatorname{span}_{F}\{\underbrace{\left(e_{1, l}, 0\right)}_{c}, \underbrace{\left(0, e_{1, l}\right)}_{c^{*}}\} .
$$

The map $\varphi: M^{\text {sup }} \rightarrow C$ given by

$$
\varphi\left(e_{11}+e_{44}\right)=a, \quad \varphi\left(e_{22}+e_{33}\right)=b, \quad \varphi\left(e_{12}\right)=c, \quad \varphi\left(e_{34}\right)=c^{*}
$$

is clearly an isomorphism of superalgebras such that, for all $X \in M^{s u p}, \varphi\left(X^{\circ}\right)=\varphi(X)^{e x}$. Hence $M^{\text {sup }}$ and C are isomorphic as $*$-algebras and this implies that $M^{s u p} \cong C \in \operatorname{var}^{*}(B) \subseteq \operatorname{var}^{*}(A)$, a contradiction.

With a similar argument, one can also prove the following lemma.
Lemma 4.5. If $M \notin \operatorname{var}^{*}(A)$, then $\left(Q(n) \oplus Q(n)^{s o p}, e x\right) \notin \operatorname{var}^{*}(A)$, for any $n>1$.
We say that a commutative $*$-algebra $A=A_{0} \oplus A_{1}$ is endowed with the trivial superinvolution if $A_{1}=0$ and $*$ is the identity map.

By putting together the previous lemmas, we get the following result.

Corollary 4.1. Let A be a finite dimensional *-algebra with Wedderburn-Malcev decomposition $A=A_{1} \oplus \cdots \oplus A_{m}+J$. If $M, M^{\text {sup }} \notin \operatorname{var}^{*}(A)$, then for each $i=1, \ldots, m$, either $A_{i} \cong F$ with trivial superinvolution or $A_{i} \cong D$ or $A_{i} \cong\left(M_{1,1}(F)\right.$, $\left.\operatorname{trp}\right)$ or $A_{i} \cong\left(M_{0,2}(F)\right.$, osp $)$ or $A_{i} \cong$ $\left(Q(1) \oplus Q(1)^{s o p}, e x\right)$.

Finally, we are in a position to prove the main theorem of this section.
Theorem 4.3. Let A be a finite dimensional *-algebra such that $M, M^{\text {sup }} \notin \operatorname{var}^{*}(A)$. Then $\operatorname{var}^{*}(A)=\operatorname{var}^{*}\left(B_{1} \oplus \cdots \oplus B_{m}\right)$, where, for each $i=1, \ldots, m, B_{i}$ is isomorphic to one of the following algebras:

1. $F+J_{i}$, with trivial superinvolution on F,
2. $D+J_{i}$ and exchange superinvolution on D,
3. $M_{1,1}(F)+J_{i}$ and transpose superinvolution on $M_{1,1}(F)$,
4. $M_{0,2}(F)+J_{i}$ and orthosymplectic superinvolution on $M_{0,2}(F)$,
5. $Q(1) \oplus Q(1)^{\text {sop }}+J_{i}$ and exchange superinvolution on $Q(1) \oplus Q(1)^{\text {sop }}$,
where J_{i} is the Jacobson radical of B_{i}.
Proof. By Corollary 4.1, we can decompose $A=A_{1} \oplus \cdots \oplus A_{m}+J$, where, for each $i=1, \ldots, m$, A_{i} is isomorphic either to F with trivial superinvolution or to D with exchange superinvolution or to $M_{1,1}(F)$ with transpose superinvolution or to $M_{0,2}(F)$ with orthosymplectic superinvolution or to $Q=Q(1) \oplus Q(1)^{\text {sop }}$ with exchange superinvolution.

Suppose by contradiction that there exist two $*$-simple components, say A_{1} and A_{2}, such that $A_{1} J A_{2} \neq 0$. Hence $a_{1} u a_{2} \neq 0$, for some $a_{1} \in A_{1}, u \in J$ and $a_{2} \in A_{2}$. It clearly follows that $e_{1} u e_{2} \neq 0$, where e_{1} and e_{2} are the unit elements of A_{1} and A_{2}, respectively.

Let $B=A_{1} \oplus A_{2}+J$ be an algebra with induced superinvolution $*$ and let $k \geq 1$ be such that $u \in J^{k}$ and $u \notin J^{k+1}$. We set $\bar{B}=B / J^{k+1}$ and we can write $\bar{B}=C_{1} \oplus C_{2}+\bar{J}$, where $C_{i} \cong A_{i}$, $i=1,2$ and \bar{J} is the Jacobson radical of \bar{B}. Since J^{k+1} is stable under $*$, then \bar{B} has induced superinvolution. Write $\bar{a}=\overline{e_{1}}$ and $\bar{b}=\overline{e_{2}}$ for the images of e_{1} and e_{2}, respectively. If $\bar{c}=\bar{a} \bar{u} \bar{b}$, then $\bar{c}^{*}=\bar{b} \bar{u}^{*} \bar{a}$.

We now define the algebra $R=\operatorname{span}\left\{\bar{a}, \bar{b}, \bar{c}, \bar{c}^{*}\right\}$. It is easy to check that R has the same multiplication table of the algebra $M=F\left(e_{11}+e_{44}\right) \oplus F\left(e_{22}+e_{33}\right) \oplus F e_{12} \oplus F e_{34}$. Therefore we get that R is isomorphic to the algebra M with trivial grading and reflection superinvolution or to the algebra $M^{s u p}$, i.e., the algebra M with natural grading and reflection superinvolution, according to the homogeneous degree of $u \in J$ (and so of \bar{c}). But in both cases we reach a contradiction. Thus we must have that

$$
\begin{equation*}
A_{i} J A_{k}=A_{i} A_{k}=0, \text { for all } i \neq k \tag{8}
\end{equation*}
$$

Set $B_{i}=A_{i}+J, i=1, \ldots, m$. Then $A=A_{1} \oplus \cdots \oplus A_{m}+J=\left(A_{1}+J\right)+\cdots+\left(A_{m}+J\right)=$ $B_{1}+\cdots+B_{m}$. Furthermore, for each $i=1, \ldots, m, J_{i} \subseteq B_{i}$ is the Jacobson radical of B_{i} and $B_{i} / J_{i} \cong A_{i}$. Hence, each B_{i} is isomorphic to one of the algebras 1., 2., 3., 4. or 5.. By standard arguments (see for example [28, Lemma 4.6]), we get that

$$
\operatorname{Id}^{*}\left(B_{1}+\cdots+B_{m}\right)=\operatorname{Id}^{*}\left(B_{1}\right) \cap \cdots \cap \operatorname{Id}^{*}\left(B_{m}\right)
$$

Since $A=B_{1}+\cdots+B_{m}$ and $\operatorname{Id}^{*}\left(B_{1}\right) \cap \cdots \cap \operatorname{Id}^{*}\left(B_{m}\right)=\operatorname{Id}^{*}\left(B_{1} \oplus \cdots \oplus B_{m}\right)$, this implies that $\mathrm{Id}^{*}(A)=\mathrm{Id}^{*}\left(B_{1} \oplus \cdots \oplus B_{m}\right)$. Hence var* $(A)=\operatorname{var}^{*}\left(B_{1} \oplus \cdots \oplus B_{m}\right)$ and the proof is complete.

5. Classifying *-Algebras with bounded multiplicities of the cocharacter

In this section we shall prove the main theorem of this paper, dealing with finitely generated *-algebras with multiplicities of the $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter bounded by a constant.

Recall that, according to the representation theory of $G L_{n}$, if a $*$-algebra A has $\left(n_{1}, \ldots, n_{4}\right)$ cocharacter

$$
\begin{equation*}
\chi_{n_{1}, \ldots, n_{4}}(A)=\sum_{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)} m_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)}, \tag{9}
\end{equation*}
$$

where $\langle\lambda\rangle=(\lambda(1), \ldots, \lambda(4)) \vdash\left(n_{1}, \ldots, n_{4}\right)$, then $m_{\langle\lambda\rangle}$ is the maximal number of linearly independent highest weight vectors associated to the multipartition $\langle\lambda\rangle$. Moreover, a highest weight
vector is obtained from the polynomial corresponding to an essential idempotent by identifying the variables whose indices lie in the same row of the corresponding Young tableau (see for instance [4, Chapter 12]).

If $\operatorname{dim}_{F} A_{0}^{+}=d_{1}, \operatorname{dim}_{F} A_{0}^{-}=d_{2}, \operatorname{dim}_{F} A_{1}^{+}=d_{3}$ and $\operatorname{dim}_{F} A_{1}^{-}=d_{4}$, then, in (9), we get $m_{\langle\lambda\rangle} \neq 0$ if and only if $h(\lambda(i)) \leq d_{i}$, for all $1 \leq i \leq 4$ (same idea of [5, Lemma 1.2]). Here $h(\lambda(i))$ stands for the high of the partition $\lambda(i)$, i.e., the number of the rows of $\lambda(i)$.

We start by proving the following lemma.
Lemma 5.1. Let $A=C+J$ be a finite dimensional $*$-algebra, where $J=J(A)$ is its Jacobson radical and C is $a *$-simple subalgebra of A isomorphic to either $\left(M_{1,1}(F), \operatorname{trp}\right)$ or $\left(Q(1) \oplus Q(1)^{\text {sop }}\right.$, ex $)$. If the $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter of A has decomposition as in (9), then there exist a constant N such that $m_{\langle\lambda\rangle} \leq N$, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$.
Proof. In the proof we follow the idea of [23, Lemma 7].
First, let C be isomorphic to $M_{1,1}(F)$ endowed with the transpose superinvolution and let $d=\operatorname{dim}_{F} A$. By hypothesis, one can choose

$$
\left\{a_{0}, a_{1}, \ldots, a_{d_{1}-1}\right\}, \quad\left\{b_{0}, b_{1}, \ldots, b_{d_{2}-1}\right\}, \quad\left\{c_{0}, c_{1}, \ldots, c_{d_{3}-1}\right\}, \quad\left\{e_{0}, e_{1}, \ldots, e_{d_{4}-1}\right\}
$$

basis of $A_{0}^{+}, A_{0}^{-}, A_{1}^{+}$and A_{1}^{-}, respectively, such that $a_{0} \in C_{0}^{+}, a_{1}, \ldots, a_{d_{1}-1} \in J_{0}^{+}, b_{0} \in C_{0}^{-}$, $b_{1}, \ldots, b_{d_{2}-1} \in J_{0}^{-}, c_{0} \in C_{1}^{+}, c_{1}, \ldots, c_{d_{3}-1} \in J_{1}^{+}, e_{0} \in C_{1}^{-}$and $e_{1}, \ldots, e_{d_{4}-1} \in J_{1}^{-}$. Moreover, let q be the smallest positive integer such that $J^{q}=0$.

Notice that if $q=1$, then $A \cong M_{1,1}(F)$ and, by [8, Theorem 5.1], we get that the multiplicities in (9) are bounded by a constant. So let us suppose $q \geq 2$ and prove that $m_{\langle\lambda\rangle} \leq N=d\left(q^{d}\right)^{d_{1} d_{2} d_{3} d_{4}}$, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$.

According to the considerations above, we may assume that $h(\lambda(i)) \leq d_{i}$, for all $1 \leq i \leq 4$. Let $\left(T_{\lambda(1)}, \ldots, T_{\lambda(4)}\right)$ be Young tableaux corresponding to $\langle\lambda\rangle$ and define, for all $1 \leq i \leq 4$,

$$
R_{T_{\lambda(i)}}^{+}=\sum_{\sigma \in R_{T_{\lambda(i)}}} \sigma \quad \text { and } \quad C_{T_{\lambda(i)}}^{-}=\sum_{\sigma \in C_{T_{\lambda(i)}}} \operatorname{sgn}(\sigma) \sigma,
$$

where $R_{T_{\lambda(i)}}$ and $C_{T_{\lambda(i)}}$ are the row and column stabilizers of $T_{\lambda(i)}$, respectively.
It is well-known that, for all $1 \leq i \leq 4$, the element $e_{T_{\lambda(i)}}=R_{T_{\lambda(i)}}^{+} C_{T_{\lambda(i)}}^{-}$is an essential idempotent in the group algebra $F S_{n_{i}}$. Similarly, the element $e=e_{T_{\lambda(1)}} e_{T_{\lambda(2)}} e_{T_{\lambda(3)}} e_{T_{\lambda(4)}}$ is an essential idempotent in the group algebra $F\left(S_{n_{1}} \times S_{n_{2}} \times S_{n_{3}} \times S_{n_{4}}\right)$.

Fixed $1 \leq i \leq 2$, for all $1 \leq j_{i} \leq d_{i}$ let $Y_{j_{i}}^{\lambda(i)}$ be the set of even variables (resp. symmetric or skew) whose indices lie in the j_{i}-th row of $T_{\lambda(i)}$. Similarly, fixed $3 \leq i \leq 4$, for all $1 \leq$ $j_{i} \leq d_{i}$, let $Z_{j_{i}}^{\lambda(i)}$ be the set of odd variables (resp. symmetric or skew) whose indices lie in the j_{i}-th row of $T_{\lambda(i)}$. It turns out that, for all $f \in P_{n_{1}, \ldots, n_{4}}$, the polynomial $e f$ is symmetric on each set $Y_{1}^{\lambda(1)}, \ldots, Y_{d_{1}}^{\lambda(1)}, Y_{1}^{\lambda(2)}, \ldots, Y_{d_{2}}^{\lambda(2)}, Z_{1}^{\lambda(3)}, \ldots, Z_{d_{3}}^{\lambda(3)}, Z_{1}^{\lambda(4)}, \ldots, Z_{d_{4}}^{\lambda(4)}$ and furthermore its variables are partitioned into the disjoint union of $d_{1}+d_{2}+d_{3}+d_{4}=d$ subsets

$$
\underbrace{Y_{1}^{\lambda(1)} \cup \cdots \cup Y_{d_{1}}^{\lambda(1)}}_{\text {symmetric even variables }} \cup \underbrace{Y_{1}^{\lambda(2)} \cup \cdots \cup Y_{d_{2}}^{\lambda(2)}}_{\text {skew even variables }} \cup \underbrace{Z_{1}^{\lambda(3)} \cup \cdots \cup Z_{d_{3}}^{\lambda(3)}}_{\text {symmetric odd variables }} \cup \underbrace{Z_{1}^{\lambda(4)} \cup \cdots \cup Z_{d_{4}}^{\lambda(4)}}_{\text {skew odd variables }}
$$

In order to simplify the notation, let us denote by $X_{T_{\langle\lambda\rangle}}$ such a decomposition.
Remark that, for all $\sigma_{i} \in S_{n_{i}}, 1 \leq i \leq 4, \sigma_{i} e_{T_{\lambda(i)}} \neq 0$. Hence, by setting $\eta=\left(\sigma_{1}, \ldots, \sigma_{4}\right)$, we get $\eta e \neq 0$. This implies that if ef $\neq 0$, where f is a multilinear *-polynomial, then ef and $\eta e f$ generate the same irreducible ($S_{n_{1}} \times \cdots \times S_{n_{4}}$)-module.

Take any f_{1}, \ldots, f_{m} multilinear $*$-polynomials generating different but isomorphic irreducible $\left(S_{n_{1}} \times \cdots \times S_{n_{4}}\right)$-modules corresponding to the same multipartition $\langle\lambda\rangle$. By the above remark, we can choose permutations $\eta_{1}, \ldots, \eta_{m} \in S_{n_{1}} \times \cdots \times S_{n_{4}}$ and a decomposition $X_{T_{\langle\lambda\rangle}}$ such that $\eta_{1} f_{1}, \ldots, \eta_{m} f_{m}$ are simultaneously symmetric on $Y_{j_{i}}^{\lambda(i)}, 1 \leq i \leq 2$, and $Z_{j_{i}}^{\lambda(i)}, 3 \leq i \leq 4$. Thus, without loss of generality, we may assume that f_{1}, \ldots, f_{m} satisfy this condition.

Let us now assume by contradiction that $m=m_{\langle\lambda\rangle}>N=d\left(q^{d}\right)^{d_{1} d_{2} d_{3} d_{4}}$. If we prove that A satisfies a *-identity of the type

$$
\begin{equation*}
f=\mu_{1} f_{1}+\cdots+\mu_{m} f_{m} \tag{10}
\end{equation*}
$$

where $\mu_{1}, \ldots, \mu_{m} \in F$ are not all zero, then we reach the contradiction, since this would imply that f_{1}, \ldots, f_{m} are linearly dependent modulo $\operatorname{Id}^{*}(A)$.

Since f_{1}, \ldots, f_{m} are multilinear, in order to prove that $f \equiv 0$, we can evaluate it only for elements of a basis of A. First, let us define substitutions of a special kind. We consider non-negative integers

$$
\alpha_{j_{1} 0}^{\lambda(1)}, \ldots, \alpha_{j_{1}\left(d_{1}-1\right)}^{\lambda(1)}, \beta_{j_{2} 0}^{\lambda(2)}, \ldots, \beta_{j_{2}\left(d_{2}-1\right)}^{\lambda(2)}, \gamma_{j_{3} 0}^{\lambda(3)}, \ldots, \gamma_{j_{3}\left(d_{3}-1\right)}^{\lambda(3)}, \delta_{j_{4} 0}^{\lambda(4)}, \ldots, \delta_{j_{4}\left(d_{4}-1\right)}^{\lambda(4)}
$$

such that, for all $1 \leq j_{i} \leq d_{i}$ and $1 \leq i \leq 4$,

$$
\sum_{i=0}^{d_{1}-1} \alpha_{j_{1} i}^{\lambda(1)}=\left|Y_{j_{1}}^{\lambda(1)}\right|, \quad \sum_{i=0}^{d_{2}-1} \beta_{j_{2} i}^{\lambda(2)}=\left|Y_{j_{2}}^{\lambda(2)}\right|, \quad \sum_{i=0}^{d_{3}-1} \gamma_{j_{3} i}^{\lambda(3)}=\left|Z_{j_{3}}^{\lambda(3)}\right|, \quad \sum_{i=0}^{d_{4}-1} \delta_{j_{4} i}^{\lambda(4)}=\left|Z_{j_{4}}^{\lambda(4)}\right| .
$$

For $j_{i}=1, \ldots d_{i}, 1 \leq i \leq 4$, we set $X_{j_{1}, \ldots, j_{4}}^{\langle\lambda\rangle}=Y_{j_{1}}^{\lambda(1)} \cup Y_{j_{2}}^{\lambda(2)} \cup Z_{j_{3}}^{\lambda(3)} \cup Z_{j_{4}}^{\lambda(4)}$. We say that an evaluation φ has type

$$
\left(\alpha_{j_{1} 0}^{\lambda(1)}, \ldots, \alpha_{j_{1}\left(d_{1}-1\right)}^{\lambda(1)}, \beta_{j_{2} 0}^{\lambda(2)}, \ldots, \beta_{j_{2}\left(d_{2}-1\right)}^{\lambda(2)}, \gamma_{j_{3} 0}^{\lambda(3)}, \ldots, \gamma_{j_{3}\left(d_{3}-1\right)}^{\lambda(3)}, \delta_{j_{4} 0}^{\lambda(4)}, \ldots, \delta_{j_{4}\left(d_{4}-1\right)}^{\lambda(4)}\right)
$$

if we replace the variables in the following way: for any fixed j_{1}, j_{2}, j_{3} and j_{4}, we evaluate the first $\alpha_{j_{1} 0}^{\lambda(1)}$ symmetric even variables from $X_{j_{1}, \ldots, j_{4}}^{\langle\lambda\rangle}$ for a_{0}, the next $\alpha_{j_{1} 1}^{\lambda(1)}$ symmetric even variables from $X_{j_{1}, \ldots, j_{4}}^{\langle\lambda\rangle}$ for a_{1}, and so on up to the last $\alpha_{j_{1}\left(d_{1}-1\right)}^{\lambda(1)}$ symmetric even variables for $a_{d_{1}-1}$. Similarly, we replace the first $\beta_{j_{2} 0}^{\lambda(2)}$ skew even variables from $X_{j_{1}, \ldots, j_{4}}^{\langle\lambda\rangle}$ for b_{0}, and so on up to the last $\beta_{j_{2}\left(d_{2}-1\right)}^{\lambda(2)}$ symmetric even variables for $b_{d_{2}-1}$. An analogous evaluation will be made by taking into account the symmetric and skew odd variables and the basis $\left\{c_{0}, c_{1}, \ldots, c_{d_{3}-1}\right\}$ and $\left\{e_{0}, e_{1}, \ldots, e_{d_{4}-1}\right\}$ of A_{1}^{+}and A_{1}^{-}, respectively.

In order to get a non-zero value of f in (10), we have to consider the nilpotency of J. Thus we get the following conditions:

1) $\sum_{i=1}^{d_{1}-1} \alpha_{j_{1} i}^{\lambda(1)} \leq q-1$,
2) $\sum_{i=1}^{d_{2}-1} \beta_{j_{2} i}^{\lambda(2)} \leq q-1$,
3) $\sum_{i=1}^{d_{3}-1} \gamma_{j_{3} i}^{\lambda(3)} \leq q-1$,
4) $\sum_{i=1}^{d_{4}-1} \delta_{j_{4} i}^{\lambda(4)} \leq q-1$.

Besides them, by definition we have some additional restrictions:
5) $\alpha_{j_{1} 0}^{\lambda(1)}=\left|Y_{j_{1}}^{\lambda(1)}\right|-\sum_{i=1}^{d_{1}-1} \alpha_{j_{1} i}^{\lambda(1)}$,
6) $\beta_{j_{2} 0}^{\lambda(2)}=\left|Y_{j_{2}}^{\lambda(2)}\right|-\sum_{i=1}^{d_{2}-1} \beta_{j_{2} i}^{\lambda(2)}$,
7) $\gamma_{j_{3} 0}^{\lambda(3)}=\left|Z_{j_{3}}^{\lambda(3)}\right|-\sum_{i=1}^{d_{3}-1} \gamma_{j_{3} i}^{\lambda(3)}$,
8) $\delta_{j_{4} 0}^{\lambda(4)}=\left|Z_{j_{4}}^{\lambda(4)}\right|-\sum_{i=1}^{d_{4}-1} \delta_{j_{4} i}^{\lambda(4)}$.

By taking into account conditions 1) - 8), it is clear that the number of distinct d_{i}-tuples $\left(\varepsilon_{j_{i} 0}^{\lambda(i)}, \ldots, \varepsilon_{j_{i}\left(d_{i}-1\right)}^{\lambda(i)}\right), \varepsilon \in\{\alpha, \beta, \gamma, \delta\}$, is less than $d_{i}, 1 \leq i \leq 4$.

It follows that the overall number of distinct special substitutions is at most $q^{d_{1}} q^{d_{2}} q^{d_{3}} q^{d_{4}}=$ $q^{d_{1}+d_{2}+d_{3}+d_{4}}=q^{d}$, for given $1 \leq j_{i} \leq d_{i}$ and $1 \leq i \leq 4$. Since the number of 4-tuples $\left(j_{1}, \ldots, j_{4}\right)$ is $d_{1} d_{2} d_{3} d_{4}$, it follows that the number \widetilde{N} of distinct types of substitutions is less than $N_{0}=$ $\left(q^{d}\right)^{d_{1} d_{2} d_{3} d_{4}}$.

Let us consider now all these \widetilde{N} special substitutions $\varphi_{1}, \ldots, \varphi_{\widetilde{N}}$ and construct the matrix $\left(u_{i j}\right)$, where, for all $1 \leq i \leq m$ and $1 \leq j \leq \widetilde{N}$,

$$
\varphi_{j}\left(f_{i}\right)=u_{i j}
$$

This matrix has m rows and \tilde{N} columns of elements of A. Since we are assuming that $m>N=$ $d N_{0}>\tilde{N}$, we have that the rows of $\left(u_{i j}\right)$ are linearly dependent. Hence there exist $\mu_{1}, \ldots, \mu_{m} \in F$ not all zero such that

$$
\sum_{i=1}^{m} \mu_{i} u_{i j}=0, \text { for all } 1 \leq j \leq \tilde{N}
$$

Thus

$$
0=\sum_{i=1}^{m} \mu_{i}\left(\varphi_{j}\left(f_{i}\right)\right)=\varphi_{j}\left(\sum_{i=1}^{m} \mu_{i} f_{i}\right)
$$

for all $1 \leq j \leq \tilde{N}$. This means that the polynomial $f=\sum_{i=1}^{m} \mu_{i} f_{i}$ is zero under all special substitutions $\varphi_{1}, \ldots, \varphi_{\widetilde{N}}$. Now it suffices to show that this implies that $f \in \operatorname{Id}^{*}(A)$.

To this end, let ρ be any substitutions of the variables of f in the elements of the basis of $A_{0}^{+}, A_{0}^{-}, A_{1}^{+}$and A_{1}^{-}. Let $l_{j_{1} 0}^{\lambda(1)}$ be the number of variables in $Y_{j_{1}}^{\lambda(1)}$ mapped by ρ to $a_{0}, l_{j_{1} 1}^{\lambda(1)}$ be the number of variables in $Y_{j_{1}}^{\lambda(1)}$ mapped by ρ to a_{1} and so on. Similarly, let $l_{j_{2} 0}^{\lambda(2)}$ be the number of variables in $Y_{j_{2}}^{\lambda(2)}$ mapped by ρ to $b_{0}, l_{j_{2} 1}^{\lambda(2)}$ be the number of variables in $Y_{j_{2}}^{\lambda(2)}$ mapped by ρ to b_{1} and so on. Analogously, let $l_{j_{3} k}^{\lambda(3)}$ and $l_{j_{4} h}^{\lambda(4)}, 1 \leq k \leq d_{3}-1,1 \leq h \leq d_{4}-1$, be the number of variables in $Z_{j_{3}}^{\lambda(3)}$ and $Z_{j_{4}}^{\lambda(4)}$ mapped by ρ to c_{k} and e_{h}, respectively. Since f is symmetric on each $Y_{1}^{\lambda(1)}, \ldots, Y_{d_{1}}^{\lambda(1)}, Y_{1}^{\lambda(2)}, \ldots, Y_{d_{2}}^{\lambda(2)}, Z_{1}^{\lambda(3)}, \ldots, Z_{d_{3}}^{\lambda(3)}, Z_{1}^{\lambda(4)}, \ldots, Z_{d_{4}}^{\lambda(4)}$, we get that, for all $\eta \in S_{n_{1}} \times \cdots \times S_{n_{4}}$ such that $\eta\left(Y_{j_{1}}^{\lambda(1)}\right)=Y_{j_{1}}^{\lambda(1)}, \eta\left(Y_{j_{2}}^{\lambda(2)}\right)=Y_{j_{2}}^{\lambda(2)}, \eta\left(Z_{j_{3}}^{\lambda(3)}\right)=Z_{j_{3}}^{\lambda(3)}$ and $\eta\left(Z_{j_{4}}^{\lambda(4)}\right)=Z_{j_{4}}^{\lambda(4)}$, for all $1 \leq j_{i} \leq d_{i}$ and $1 \leq i \leq 4$, we have

$$
\rho(f)=\rho(\eta f)=(\rho \eta) f
$$

In particular, we can choose η such that $\rho \eta$ is the special substitution of the type

$$
\left(l_{j_{1} 0}^{\lambda(1)}, \ldots, l_{j_{1}\left(d_{1}-1\right)}^{\lambda(1)}, l_{j_{2} 0}^{\lambda(2)}, \ldots, l_{j_{2}\left(d_{2}-1\right)}^{\lambda(2)}, l_{j_{3} 0}^{\lambda(3)}, \ldots, l_{j_{3}\left(d_{3}-1\right)}^{\lambda(3)}, l_{j_{4} 0}^{\lambda(4)}, \ldots, l_{j_{4}\left(d_{4}-1\right)}^{\lambda(4)}\right) .
$$

According to what was proved above, $\rho(f)=(\rho \eta) f=0$ and $f \in \mathrm{Id}^{*}(A)$, a contradiction. Hence we must have $m_{\langle\lambda\rangle} \leq N$, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$ and we get the desired conclusion.

A similar proof holds also in the case $C \cong Q(1) \oplus Q(1)^{\text {sop }}$, so we omit it.
Lemma 5.2. [28, Lemma 5.2] Let $A=C+J$ be a finite dimensional $*$-algebra, where $J=$ $J(A)$ is its Jacobson radical and C is a *-simple subalgebra of A isomorphic to either F with trivial superinvolution or D with trivial grading and exchange superinvolution. If the $\left(n_{1}, \ldots, n_{4}\right)$ cocharacter of A has decomposition as in (9), then there exist a constant N such that $m_{\langle\lambda\rangle} \leq N$, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$.

We highlight that in case $C \cong\left(M_{0,2}(F)\right.$, osp $)$, some computational difficulties arise. In fact, it seems that the technique from Lemma 5.1 does not work anymore. Notice that in the proof of [28, Lemma 5.1] there is some gap, hence we can only conjecture the following.
Conjecture 5.1. Let $A=C+J$ be a finite dimensional $*$-algebra, where $J=J(A)$ is its Jacobson radical and C is a *-simple subalgebra of A isomorphic to $\left(M_{0,2}(F)\right.$,osp $)$. If the $\left(n_{1}, \ldots, n_{4}\right)$ cocharacter of A has decomposition as in (9), then there exist a constant N such that $m_{\langle\lambda\rangle} \leq N$, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$.

Now we are ready to prove one of the main results of this paper.
Theorem 5.1. Let A be a finitely generated F-algebra with superinvolution $*$ satisfying an ordinary polynomial identity and let its $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter be as in (9). If $M, M^{\text {sup }},\left(M_{0,2}(F)\right.$, osp) \notin $\operatorname{var}^{*}(A)$ then there exists a constant N such that, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$, we have the inequality

$$
m_{\langle\lambda\rangle} \leq N
$$

Proof. By Theorem 3.1 we may assume that A is finite dimensional. Now, by using item 2 of Remark 2.1, Theorem 4.3 and Lemmas 5.1, 5.2, we get the desired conclusion.

It is remarkable to notice that if Conjecture 5.1 is true, then one can improve the results of Theorem 5.1 by proving the following.
Conjecture 5.2. Let A be a finitely generated F-algebra with superinvolution $*$ satisfying an ordinary polynomial identity and let its $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter be as in (9). Then $M, M^{\text {sup }} \notin$ $\operatorname{var}^{*}(A)$ if and only if there exists a constant N such that, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$, we have the inequality

$$
m_{\langle\lambda\rangle} \leq N
$$

In fact, the first implication can be proved as Theorem 5.1 by considering also Conjecture 5.1.
On the other hand, if $M \in \operatorname{var}^{*}(A)$ or $M^{\text {sup }} \in \operatorname{var}^{*}(A)$, then by (3) or (5) and Remark 2.1 we get a contradiction.

In the next lemma we find a condition ensuring that the multiplicities in (9) are equal to zero. Here $\lambda(i)_{j}$ stands for the number of boxes in the j-th row of the partition $\lambda(i)$. Moreover, if $\lambda(i) \vdash n_{i}$, then $\left|\lambda\left(n_{i}\right)\right|=n_{i}, 1 \leq i \leq 4$.
Lemma 5.3. Let A be a finite dimensional $*$-algebra such that $(M, \circ),\left(M^{\text {sup }}, \circ\right) \notin \operatorname{var}^{*}(A)$. Then there exists a constant q such that in (9) we have $m_{\langle\lambda\rangle}=0$ whenever

$$
\left(|\lambda(1)|-\lambda(1)_{1}\right)+\left(|\lambda(2)|-\left(\lambda(2)_{1}+\lambda(2)_{2}+\lambda(2)_{3}\right)\right)+\left(|\lambda(3)|-\lambda(3)_{1}\right)+\left(|\lambda(4)|-\lambda(4)_{1}\right) \geq q
$$

Proof. Let q be the smallest positive integer such that $J^{q}=0$, where J is the Jacobson radical of A. By contradiction, let us suppose that there exists $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$ such that $m_{\langle\lambda\rangle} \neq 0$ and
(11) $\left(|\lambda(1)|-\lambda(1)_{1}\right)+\left(|\lambda(2)|-\left(\lambda(2)_{1}+\lambda(2)_{2}+\lambda(2)_{3}\right)\right)+\left(|\lambda(3)|-\lambda(3)_{1}\right)+\left(|\lambda(4)|-\lambda(4)_{1}\right) \geq q$.

Then there exist four Young tableaux $T_{\lambda(1)}, \ldots, T_{\lambda(4)}$ and $f \in P_{n_{1}, \ldots, n_{4}}$ such that ef $\notin \operatorname{Id}^{*}(A)$, where $e=e_{T_{\lambda(1)}} e_{T_{\lambda(2)}} e_{T_{\lambda(3)}} e_{T_{\lambda(4)}}$, and $F\left(S_{n_{1}} \times \cdots \times S_{n_{4}}\right)$ ef is a minimal left ideal of the group algebra $F\left(S_{n_{1}} \times \cdots \times S_{n_{4}}\right)$. Set now $e^{\prime}=C_{T_{\lambda(1)}}^{-} e_{T_{\lambda(1)}} \cdots C_{T_{\lambda(4)}}^{-} e_{T_{\lambda(4)}}$. Since, in general, $0 \neq R_{T_{\lambda}}^{+} C_{T_{\lambda}}^{-} h$ implies $C_{T_{\lambda}}^{-} h \neq 0$, where h is a multilinear polynomial, we immediately get that $e^{\prime} f$ is not a $*-$ identity of A.

Moreover, it is clear that $e^{\prime} f$ is alternating on each $\lambda(i)_{1}$ sets of variables corresponding to the columns of $T_{\lambda(i)}$, for all $1 \leq i \leq 4$. In order to get a contradiction, we shall prove that $g=e^{\prime} f \in \operatorname{Id}^{*}(A)$.

To this end, since $M, M^{\text {sup }} \notin \operatorname{var}^{*}(A)$, Corollary 4.1 applies and we have that $A=A_{1} \oplus \cdots \oplus$ $A_{m}+J$, where, for each $1 \leq i \leq m$, either $A_{i} \cong F$ with trivial superinvolution or $A_{i} \cong D$ or $A_{i} \cong\left(M_{1,1}(F), \operatorname{trp}\right)$ or $A_{i} \cong\left(M_{0,2}(F)\right.$, osp $)$ or $A_{i} \cong\left(Q(1) \oplus Q(1)^{s o p}, e x\right)$. Moreover, by (8) we have that

$$
A_{i} J A_{k}=0 \text { and } A_{i} A_{k}=0, \text { for all } i \neq k
$$

Thus, in order to get a non-zero value of g, we must evaluate its variables with elements of J and elements of just a single $*$-simple component of A, say A_{i}.

In each case, $\operatorname{dim}_{F}\left(A_{i}\right)_{0}^{+}=1$ and so we can substitute at most one element of $\left(A_{i}\right)_{0}^{+}$in each alternating set of even symmetric variables. A similar argument holds also for the odd part, since $\operatorname{dim}_{F}\left(A_{i}\right)_{1}^{+} \leq 1$ and $\operatorname{dim}_{F}\left(A_{i}\right)_{1}^{-} \leq 1$.

Finally, $\operatorname{dim}_{F}\left(A_{i}\right)_{0}^{-} \leq 1$ or $\operatorname{dim}_{F}\left(A_{i}\right)_{0}^{-}=3$, in case $A_{i} \cong\left(M_{0,2}(F)\right.$, osp $)$. In the latter case, in order to have a non-zero value of g, we can substitute at most $\lambda(1)_{1}$ elements from $\left(A_{i}\right)_{0}^{+}$and at most $\lambda(2)_{1}+\lambda(2)_{2}+\lambda(2)_{3}$ elements from $\left(A_{i}\right)_{0}^{-}$(here we recall that $\left(A_{i}\right)_{1}=0$, so $\left.\lambda(3)=\lambda(4)=\emptyset\right)$. This means that we have to evaluate at least $\left(|\lambda(1)|-\lambda(1)_{1}\right)+\left(|\lambda(2)|-\left(\lambda(2)_{1}+\lambda(2)_{2}+\lambda(2)_{3}\right)\right)$ elements from J. Since we are assuming that $J^{q}=0$ and, by hypothesis, that condition (11) holds, we get $g \in \operatorname{Id}^{*}(A)$, a contradiction.

In case $\operatorname{dim}_{F}\left(A_{i}\right)_{0}^{-} \leq 1$, we can substitute at most one element of $\left(A_{i}\right)_{0}^{-}$in each alternating set of even skew variables. Thus we evaluate at most $\lambda(1)_{1}$ elements from $\left(A_{i}\right)_{0}^{+}, \lambda(2)_{1}$ elements from $\left(A_{i}\right)_{0}^{-}$and eventually $\lambda(3)_{1}$ elements from $\left(A_{i}\right)_{1}^{+}$and $\lambda(4)_{1}$ elements from $\left(A_{i}\right)_{1}^{-}$, according to $\operatorname{dim}_{F}\left(A_{i}\right)_{1}^{+}$and $\operatorname{dim}_{F}\left(A_{i}\right)_{1}^{-}$, respectively. By the considerations above, we have that at least

$$
\left(|\lambda(1)|-\lambda(1)_{1}\right)+\left(|\lambda(2)|-\lambda(2)_{1}\right)+\left(|\lambda(3)|-\lambda(3)_{1}\right)+\left(|\lambda(4)|-\lambda(4)_{1}\right)
$$

variables must be evaluated in elements of J. Since

$$
\begin{aligned}
& \left(|\lambda(1)|-\lambda(1)_{1}\right)+\left(|\lambda(2)|-\lambda(2)_{1}\right)+\left(|\lambda(3)|-\lambda(3)_{1}\right)+\left(|\lambda(4)|-\lambda(4)_{1}\right) \geq \\
& \left(|\lambda(1)|-\lambda(1)_{1}\right)+\left(|\lambda(2)|-\left(\lambda(2)_{1}+\lambda(2)_{2}+\lambda(2)_{3}\right)\right)+\left(|\lambda(3)|-\lambda(3)_{1}\right)+\left(|\lambda(4)|-\lambda(4)_{1}\right) \geq q
\end{aligned}
$$

we obtain that also in this case $g \in \operatorname{Id}^{*}(A)$, a contradiction. This concludes the proof.
We are now in a position to prove the following theorem.
Theorem 5.2. Let A be a finitely generated F-algebra with superinvolution $*$ satisfying an ordinary polynomial identity. If its $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter is as in (9), then the following conditions are equivalent:

1. $M, M^{\text {sup }} \notin \operatorname{var}^{*}(A)$.
2. There exists a constant q such that, for all $\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right), m_{\langle\lambda\rangle}=0$ whenever

$$
\left(|\lambda(1)|-\lambda(1)_{1}\right)+\left(|\lambda(2)|-\left(\lambda(2)_{1}+\lambda(2)_{2}+\lambda(2)_{3}\right)\right)+\left(|\lambda(3)|-\lambda(3)_{1}\right)+\left(|\lambda(4)|-\lambda(4)_{1}\right) \geq q .
$$

Proof. Since we may assume that A is finite dimensional, by Lemma 5.3 condition 1. implies condition 2.

Conversely, suppose by contradiction that $M \in \operatorname{var}^{*}(A)$ or $M^{\text {sup }} \in \operatorname{var}^{*}(A)$. In the first case, according to (3), if $\langle\lambda\rangle=((p+q, p),(1), \emptyset, \emptyset)$, then $m_{\langle\lambda\rangle}=q+1>0$. Thus $m_{\langle\lambda\rangle} \neq 0$, for any multipartition $\langle\lambda\rangle$ such that $\lambda(2)=(1), \lambda(3)=\lambda(4)=\emptyset$ and $|\lambda(1)|-\lambda(1)_{1}=q$ arbitrary large. Hence A does not satisfy condition 2. A similar argument holds also in case $M^{\text {sup }} \in \operatorname{var}^{*}(A)$, by considering in $(5)\langle\lambda\rangle=((p+q, p), \emptyset,(1), \emptyset)$ and thus $m_{\langle\lambda\rangle}=q+1$.

The proof is now complete.
We conclude this paper by proving the following corollary that relates the growth of the *codimension sequence of a finite dimensional $*$-algebra A with its $*$-colength. Recall that, for all $n \geq 1$ and for all n_{1}, \ldots, n_{4} such that $n_{1}+\cdots+n_{4}=n$, the n-th $*$-colength is defined as

$$
l_{n}^{*}(A)=\sum_{\substack{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right) \\ n_{1}+\cdots+n_{4}=n}} m_{\langle\lambda\rangle},
$$

where $m_{\langle\lambda\rangle}$ are the multiplicities of the irreducibles appearing in the $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter of A.
We want to highlight that a similar result concerning algebras with ordinary polynomial identities was proved by Kemer in [18], by Vieira in [27] in the setting of superalgebras and in [20] for algebras with involution.

In order to prove the last result of this paper we first need the following lemma.
Lemma 5.4. The *-algebra D belongs to the $*$-variety generated by the $*$-algebra $\left(M_{0,2}(F)\right.$, osp $)$.
Proof. Let $D^{\prime}=\operatorname{span}_{F}\left\{e_{11}+e_{22}, e_{11}-e_{22}\right\}$ be a subalgebra of $M_{0,2}(F)$ spanned by two elements of homogeneous degree zero and with induced superinvolution. Now let $\{(1,1),(1,-1)\}$ be a basis of the $*$-algebra D. The linear map $\varphi: D \rightarrow D^{\prime}$ given by

$$
\varphi((1,1))=e_{11}+e_{22}, \quad \varphi((1,-1))=e_{11}-e_{22}
$$

is clearly an isomorphism of superalgebras. Moreover,

$$
\begin{gathered}
\varphi\left((1,1)^{e x}\right)=\varphi(1,1)=e_{11}+e_{22}=(\varphi(1,1))^{o s p} \\
\varphi\left((1,-1)^{e x}\right)=\varphi(-1,1)=-e_{11}+e_{22}=(\varphi(1,-1))^{o s p},
\end{gathered}
$$

and so φ is an isomorphism of $*$-algebras and the proof is complete.
Corollary 5.1. Let A be a finite dimensional algebra with superinvolution $*$ over a field of characteristic zero. Then $c_{n}^{*}(A)$ is polynomially bounded if and only if $l_{n}^{*}(A) \leq L$, for some constant L and for all $n \geq 1$.

Proof. First, let us suppose that $c_{n}^{*}(A)$ is polynomially bounded, say $c_{n}^{*}(A) \approx a n^{k}$, for some integer k and $a>0$. Then, by Theorem 3.2, it follows that $D, M, M^{\text {sup }} \notin \operatorname{var}^{*}(A)$. Let

$$
\chi_{n_{1}, \ldots, n_{4}}(A)=\sum_{\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)} m_{\langle\lambda\rangle} \chi_{\lambda(1)} \otimes \cdots \otimes \chi_{\lambda(4)}
$$

be the $\left(n_{1}, \ldots, n_{4}\right)$-cocharacter of A. By Lemma 5.4 it follows that also $\left(M_{0,2}(F), o s p\right) \notin \operatorname{var}^{*}(A)$. Hence Theorem 5.1 applies and so there exists a constant M such that $m_{\langle\lambda\rangle} \leq M$, for all multipartition $\langle\lambda\rangle$.

Furthermore, by Lemma 5.3, there exists q such that $m_{\langle\lambda\rangle}=0$ whenever
(12) $\left(|\lambda(1)|-\lambda(1)_{1}\right)+\left(|\lambda(2)|-\left(\lambda(2)_{1}+\lambda(2)_{2}+\lambda(2)_{3}\right)\right)+\left(|\lambda(3)|-\lambda(3)_{1}\right)+\left(|\lambda(4)|-\lambda(4)_{1}\right) \geq q$.

On the other hand, since $D \notin \operatorname{var}^{*}(A)$, by [7, Theorem 2.1], there exists $s \geq 1$ such that

$$
\begin{equation*}
y_{1}^{-} w_{1} y_{2}^{-} w_{2} \cdots y_{s}^{-} w_{s} \equiv 0 \text { on } A, \tag{13}
\end{equation*}
$$

where the $w_{i}^{\prime} s$ are (eventually empty) words in even variables (symmetric or skew).
Moreover, since $c_{n}^{*}(A) \approx a n^{k}$, we get that $z_{1} z_{2} \cdots z_{k+1} \equiv 0$ on A, where the $z_{i}^{\prime} s$ are any odd variables (consequence of [19, Theorem 5.1]). It trivially follows that

$$
\begin{equation*}
z_{1} w_{1} z_{2} w_{2} \cdots z_{k+1} w_{k+1} \equiv 0 \text { on } A \tag{14}
\end{equation*}
$$

where the $w_{i}^{\prime} s$ are (eventually empty) words in any kind of variables.
From (12) we trivially get that $m_{\langle\lambda\rangle}=0$ for any multipartition $\langle\lambda\rangle$ such that $|\lambda(1)|-\lambda(1)_{1} \geq q$. Similarly, due to to identity (14), if $|\lambda(3)|+|\lambda(4)| \geq k+1$ than $m_{\langle\lambda\rangle}=0$.

We are left to find a condition on $|\lambda(2)|$. We claim that, as soon as $m_{\langle\lambda\rangle} \neq 0$, it has to be $|\lambda(2)|<s(k+1)$. In fact, suppose by contradiction, that $m_{\langle\lambda\rangle} \neq 0$ and $|\lambda(2)| \geq s(k+1)$. Fix $|\lambda(3)|+|\lambda(4)|=t$, where $0 \leq t \leq k$. Then in each monomial of the corresponding highest weight vectors there are at most $t+1$ groups of even variables. Since $t+1$ is at most $k+1$ and we are assuming $|\lambda(2)| \geq s(k+1)$, it follows that there exists a group of even variables containing at least s even skew variables. Thus by (13), we get that each highest weight vector is an identity and $m_{\langle\lambda\rangle}=0$, a contradiction. The claim is proved.

Thus $m_{\langle\lambda\rangle}=0,\langle\lambda\rangle \vdash\left(n_{1}, \ldots, n_{4}\right)$, for $n=n_{1}+\cdots+n_{4}$ large enough.
Hence only a finite number of multipartitions $\langle\lambda\rangle$ satisfies the conditions $|\lambda(1)|-\lambda(1)_{1}<q$, $|\lambda(2)|<s(k+1)$ and $|\lambda(3)|+|\lambda(4)|<k+1$ and since $m_{\langle\lambda\rangle} \leq M$, for all $\langle\lambda\rangle$, if follows that, for any $\left(n_{1}, \ldots, n_{4}\right)$,

$$
l_{n}^{*}(A) \leq L, \text { for some constant } L
$$

Conversely, let us now assume that $l_{n}^{*}(A) \leq L$, for some L. By using Remark 2.1 and equations (2), (4) and (6), we get that $D, M, M^{\text {sup }} \notin \operatorname{var}^{*}(A)$. Thus by Theorem $3.2, c_{n}^{*}(A)$ must be polynomially bounded and this complete the proof.

Remark that, due to Theorem 3.1, the previous corollary holds also in case of finitely generated *-algebras.

References

[1] E. Aljadeff, A. Giambruno, Y. Karasik, Polynomial identities with involution, superinvolutions and the Grassmann envelope, Proc. Amer. Math. Soc. 145 (2017), no. 5, 1843-1857.
[2] Yu Bahturin, M. Tvalavadze, T. Tvalavadze, Group gradings on superinvolution simple superalgebras, Linear Algebra Appl. 431 (2009), no. 5-7, 1054-1069.
[3] A. Cirrito, A. Giambruno, Group graded algebras and multiplicities bounded by a constant, J. Pure Appl. Algebra 217 (2013), no. 2, 259-268.
[4] V. Drensky, Free algebras and PI-algebras. Graduate course in algebra, Springer-Verlag, Singapore, Singapore, 2000.
[5] V. Drensky, A. Giambruno, Cocharacters, codimensions and Hilbert series of the polynomial identities for 2×2 matrices with involution, Canad. J. Math. 46 (1994), 718-733.
[6] A. Giambruno, A. Ioppolo, D. La Mattina, Varieties of algebras with superinvolution of almost polynomial growth, Algebr. Represent. Theory 19 (2016), no. 3, 599-611.
[7] A. Giambruno, A. Ioppolo, D. La Mattina, Superalgebras with involution or superinvolution and almost polynomial growth of the codimensions, Algebr. Represent. Theory 22 (2019), no. 4, 961-976.
[8] A. Giambruno, A. Ioppolo, F. Martino, Standard polynomials and matrices with superinvolutions, Linear Algebra Appl. 504 (2016), 272-291.
[9] A. Giambruno, S. Mishchenko, Polynomial growth of the $*$-codimensions and Young diagrams, Comm. Algebra 29 (2001), no. 1, 277-284.
[10] A. Giambruno, R. B. dos Santos, A. C. Vieira, Identities of *-superalgebras and almost polynomial growth, Linear Multilinear Algebra 64 (2016), no. 3, 484-501.
[11] A. Giambruno, M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145-155.
[12] A. Giambruno, M. Zaicev, Exponential codimension growth of PI-algebras: an exact estimate, Adv. Math. 142 (1999), 221-243.
[13] C. Gomez-Ambrosi, I. P. Shestakov, On the Lie structure of the skew-elements of a simple superalgebra with involution, J. Algebra 208 (1998), 43-71.
[14] A. Ioppolo, The exponent for superalgebras with superinvolution, Linear Algebra Appl. 555 (2018), 1-20.
[15] A. Ioppolo, D. La Mattina, Polynomial codimension growth of algebras with involutions and superinvolutions, J. Algebra 472 (2017), 519-545.
[16] A. Ioppolo, F. Martino, Superinvolutions on upper-triangular matrix algebras, J. Pure Appl. Algebra 222 (2018), no. 8, 2022-2039.
[17] V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), no. 1, 8-96.
[18] A. R. Kemer, Varieties of finite rank, Proc. 15th All the Union Algebraic Conf., Krasnoyarsk, vol. 2 (1979) pp. 73 (in Russian).
[19] P. Koshlukov, D. La Mattina, Graded algebras with polynomial growth of their codimensions, J. Algebra 434 (2015), 115-137.
[20] D. La Mattina, T. S. Nascimento, A. C. Vieira, Minimal star-varieties of polynomial growth and bounded colength, J. Pure Appl. Algebra 222 (2018), 1765-1785.
[21] S. P. Mishchenko, A. Regev, M. V. Zaicev, A characterization of P.I. algebras with bounded multiplicities of the cocharacters, J. Algebra 219 (1999), no. 1, 356-368.
[22] S. Mishchenko, A. Valenti, A star-variety with almost polynomial growth, J. Algebra 223 (2000), no. 1, 66-84.
[23] F. C. Otera, Finitely generated PI-superalgebras with bounded multiplicities of the cocharacters, Comm. Algebra 33 (2005), no. 6, 1693-1707.
[24] M. L. Racine, Primitive superalgebras with superinvolution, J. Algebra 206 (1998), no. 2, 588-614.
[25] M. L. Racine, E. I. Zelmanov, Simple Jordan superalgebras with semisimple even part, J. Algebra 270 (2003), no. 2, 374-444.
[26] A. Regev, Existence of identities in $A \otimes B$, Israel J. Math. 11 (1972), 131-152.
[27] A. C. Vieira, Supervarieties of small graded colength, J. Pure Appl. Algebra 217 (2013), 322-333.
[28] A. C. Vieira, Finitely generated algebras with involution and multiplicities bounded by a constant, J. Algebra 422 (2015), 487-503.

IMECC, UNICAMP, Sérgio Buarque de Holanda 651, 13083-859 Campinas, SP, Brazil
Email address: ioppolo@ime.unicamp.br
Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi 34, 90123, Palermo, Italy

Email address: fabrizio.martino@unipa.it

[^0]: 2010 Mathematics Subject Classification. Primary 16R50, 16W50; Secondary 16R10.
 Key words and phrases. Superinvolution, Cocharacters, Multiplicities, Colength.
 A. Ioppolo was supported by the Fapesp post-doctoral grant number 2018/17464-3.

