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Abstract. In this paper we deal with finitely generated superalgebras with superinvolution,
satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a con-

stant. Along the way, we prove that the codimension sequence of such algebras is polynomially

bounded if and only if their colength sequence is bounded by a constant.

1. Introduction

Let F be a field of characteristic zero and let A be an F -algebra. In this paper we deal with
Z2-graded algebras (superalgebras) endowed with a superinvolution ∗.

Algebras with superinvolution are a natural generalization of the algebras with involution. In-
deed, as the set of symmetric elements of an algebra with involution with respect to the symmetrized
product a ◦ b = ab + ba is a Jordan algebra and the set of skew elements with respect to the Lie
product [a, b] = ab − ba is a Lie algebra, similarly the set of symmetric elements of an algebra
with superinvolution with respect to the supersymmetrized product a ◦ b = ab+ (−1)|a||b|ba forms
a Jordan superalgebra and the skew elements under the graded bracket [a, b] = ab − (−1)|a||b|ba
form a Lie superalgebra. One can find several examples of Jordan and Lie simple superalgebras
for instance in [17] and [25].

Similarly to the ordinary case, one can attach to a superalgebra with superinvolution A two
special numerical sequences. The first one is the ∗-codimension sequence, c∗n(A), n = 1, 2, . . .,
where c∗n(A) denote the dimension of the space of multilinear polynomials in n ∗-variables in the
corresponding relatively free superalgebra with superinvolution of countable rank. The second nu-
merical sequence is the ∗-colength sequence, l∗n(A), n = 1, 2, . . ., that is the sum of the multiplicities
in the decomposition of the (n1, . . . , n4)-cocharacter χn1,...,n4

(A), for all n = n1 + · · · + n4 ≥ 1.
Recall that the (n1, . . . , n4)-cocharacter is the character corresponding to the action of the group
Sn1 × · · · × Sn4 on Pn1,...,n4(A), the space of multilinear ∗-polynomials in n1 even symmetric vari-
ables, n2 even skew variables, n3 odd symmetric variables and n4 odd skew variables, modulo the
∗-identities of A, by permutation of the variables of the same homogeneous degree which are all
symmetric or all skew at the same time with respect to the superinvolution ∗.

Given a variety of superalgebras with superinvolution V, its growth is defined as the growth of the
∗-codimension sequence of any superalgebra with superinvolution A generating V, i.e., V = var∗(A).
We say that V has polynomial growth if c∗n(V) is polynomially bounded and we say that V has
almost polynomial growth if c∗n(V) is not polynomially bounded but every proper subvariety of V
has polynomial growth.

Recently, superalgebras with superinvolution have been extensively studied in several papers. In
[6, 7] the authors proved that, as in the ordinary case, c∗n(A) is exponentially bounded and they also
classified the superalgebras with superinvolution generating varieties of almost polynomial growth.
It turned out that a variety of superalgebras with superinvolution V has polynomial growth if and
only if it does not contain a list of five suitable superalgebras with superinvolution generating the
only varieties of almost polynomial growth.

In [7, 15], the authors classified the subvarieties of each variety of almost polynomial growth by
giving a complete list of finite dimensional superalgebras with superinvolution generating them.

In [11, 12], Giambruno and Zaicev answered in the affirmative to a famous conjecture posed by
Amitsur in the eighties: the exponential growth of the codimension sequence of a PI-algebra is an
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integer. In the setting of superalgebras with superinvolution, the analogous result was given by
Ioppolo in [14].

Other results were proved in the setting of matrix superalgebras with superinvolution. In [8]
the authors gave an analogue of the Amitsur-Levitzki theorem concerning the minimal degree
of standard identities whereas in [16], it was proved that on the n × n upper-triangular matrix
algebra UTn, over an algebraically closed field F of characteristic zero, there are only two classes
of inequivalent superinvolutions.

Finally, in 2017, Aljadeff, Giambruno and Karasik showed that any algebra with involution has
the same identities of the Grassmann envelope of a finite dimensional superalgebra with superin-
volution (see [1]).

The purpose of this paper is to give a characterization of superalgebras with superinvolution
with multiplicities of the corresponding (n1, . . . , n4)-cocharacters bounded by a constant.

In [21] such a characterization was given in the setting of algebras with ordinary polynomial
identities. More precisely, the authors proved that the multiplicities of the Sn-cocharacter of a
variety V are bounded by a constant if and only if V does not contain the algebra UT2. A similar
result was obtained by Otera in [23] for finitely generated superalgebras: in this case the variety
of superalgebras V does not contain the superalgebra UT2 (trivial grading) and UT sup2 , i.e., the
algebra UT2 with the canonical non-trivial Z2-grading. The latter characterization was extended
in [3] for G-graded algebras, where G is any finite abelian group, by excluding from the variety of
G-graded algebras V the algebra UT2 with any G-grading. Finally, in [28], Vieira studied the same
problem in the setting of finitely generated algebras with involution.

Here we deal with finitely generated superalgebras with superinvolution. If A is such an algebra,
we give some conditions on var∗(A) ensuring that the multiplicities of its (n1, . . . , n4)-cocharacter
are bounded by a constant. In particular, we prove that this happens when var∗(A) does not
contain the algebra M , a suitable 4-dimensional subalgebra of the algebra of 4×4 upper triangular
matrices endowed with trivial grading and reflection superinvolution, Msup, i.e., the algebra M
with a non-trivial grading and reflection superinvolution and M0,2(F ), the algebra of 2×2 matrices
with trivial grading and orthosymplectic superinvolution.

As a direct consequence, in the last section, we shall see that the ∗-codimension sequence of A
grows polynomially if and only if there exists a constant k such that l∗n(A) ≤ k, for all n ≥ 1.

2. Preliminaries

Let F be a field of characteristic zero and A = A0 ⊕ A1 an associative superalgebra over F
endowed with a superinvolution ∗. The subspaces A0 and A1 satisfy the conditions A0A0+A1A1 ⊆
A0 and A0A1 + A1A0 ⊆ A1 and their elements are called homogeneous of degree zero (even
elements) and of degree one (odd elements), respectively. A superinvolution on A is a graded
linear map ∗ : A → A such that (x∗)∗ = x, for all x ∈ A, and (ab)∗ = (−1)|a||b|b∗a∗, for
elements a, b ∈ A of homogeneous degree |a|, |b|, respectively. Since charF = 0, we can write
A = A+

0 ⊕A
−
0 ⊕A

+
1 ⊕A

−
1 , where, for i = 0, 1, A+

i = {a ∈ Ai : a∗ = a} and A−i = {a ∈ Ai : a∗ = −a}
denote the sets of homogeneous symmetric and skew elements of Ai, respectively. From now on
we shall refer to a superalgebra with superinvolution as a ∗-algebra.

As in the case of graded algebras or of algebras with involution, one can define a superinvolution
on the free algebra F 〈X〉 in a natural way. We write the set X as the union of two disjoint infinite
sets Y and Z, requiring that their elements are of homogeneous degree 0 and 1, respectively.
Then each set is written as the disjoint union of two other infinite sets of symmetric and skew
elements, respectively. The free superalgebra with superinvolution is denoted by F 〈Y ∪ Z, ∗〉 and
it is generated by symmetric and skew elements of even and odd degree. We write

F 〈Y ∪ Z, ∗〉 = F 〈y+1 , y
−
1 , z

+
1 , z

−
1 , y

+
2 , y

−
2 , z

+
2 , z

−
2 , . . .〉,

where y+i stands for a symmetric variable of even degree, y−i for a skew variable of even degree,
z+i for a symmetric variable of odd degree and z−i for a skew variable of odd degree.

We denote by Id∗(A) = {f ∈ F 〈Y ∪ Z, ∗〉 | f ≡ 0 on A} the T ∗2 -ideal of ∗-identities of A,
i.e., Id∗(A) is an ideal of F 〈Y ∪ Z, ∗〉 invariant under all Z2-graded endomorphisms of the free
superalgebra commuting with the superinvolution ∗.
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Given polynomials f1, . . . , fn ∈ F 〈Y ∪ Z, ∗〉 we shall denote by 〈f1, . . . , fn〉T∗2 the T ∗2 -ideal
generated by f1, . . . , fn. Moreover, in order to simplify the notation, we shall denote by y any even
variable, by z any odd variable and by x an arbitrary variable.

It is well known that in characteristic zero, every ∗-identity is equivalent to a system of multi-
linear ∗-identities. Hence if we denote by

P ∗n = spanF

{
wσ(1) · · ·wσ(n) | σ ∈ Sn, wi ∈

{
y+i , y

−
i , z

+
i , z

−
i

}
, i = 1, . . . , n

}
the space of multilinear polynomials of degree n in y+1 , y

−
1 , z

+
1 , z

−
1 , . . . , y

+
n , y

−
n , z

+
n , z

−
n (i.e., y+i or

y−i or z+i or z−i appears in each monomial at degree 1) the study of Id∗(A) is equivalent to the
study of P ∗n ∩ Id∗(A), for all n ≥ 1. The non-negative integer

c∗n(A) = dimF
P ∗n

P ∗n ∩ Id∗(A)
, n ≥ 1,

is called the n-th ∗-codimension of A.
The sequence cn(A) of the ordinary codimensions was introduced by Regev in [26] where it was

proved that, if A satisfies a non-trivial polynomial identity, then cn(A) is exponentially bounded.
An analogue result holds for ∗-algebras (see [6]).

If V is a variety of ∗-algebras (∗-variety) generated by A, i.e., V = var∗(A), then we write
c∗n(V) = c∗n(A). We shall say that V has polynomial growth if there exist k, l such that c∗n(V) ≤ knt
and that V has almost polynomial growth if c∗n(V) is not polynomially bounded but every proper
subvariety of V has polynomial growth.

Let now n ≥ 1 and write n = n1 + · · ·+n4 as a sum of four non-negative integers. We denote by
Pn1,...,n4

⊆ P ∗n the vector space of multilinear ∗-polynomials in which n1 variables are symmetric
of even degree, n2 variables are skew of even degree, n3 variables are symmetric of odd degree and
n4 variables are skew of odd degree. The group Sn1

×· · ·×Sn4
acts on the left on the vector space

Pn1,...,n4 by permuting the variables of the same homogeneous degree which are all symmetric or all
skew at the same time. Thus Sn1

permutes the variables y+1 , . . . , y
+
n1

, Sn2
permutes the variables

y−1 , . . . , y
−
n2

, and so on. In this way Pn1,...,n4 becomes an (Sn1 × · · · × Sn4)-left module. Now,
Pn1,...,n4

∩ Id∗(A) is invariant under this action and so the vector space

Pn1,...,n4(A) =
Pn1,...,n4

Pn1,...,n4 ∩ Id∗(A)

is an (Sn1
× · · · × Sn4

)-left module with induced action. We denote by χn1,...,n4
(A) its character

and we call it the (n1, . . . , n4)-th cocharacter of A.
If λ = (λ1, . . . , λr) is a partition of n, we write λ ` n. It is well-known that there is a one-to-one

correspondence between partitions of n and irreducible Sn-characters. Hence if λ ` n, we denote
by χλ the corresponding irreducible Sn-character. If λ(1) ` n1, . . . , λ(4) ` n4 are partitions we
write 〈λ〉 = (λ(1), . . . , λ(4)) ` (n1, . . . , n4) or 〈λ〉 ` n and we say that 〈λ〉 is a multipartition of
n = n1 + · · ·+n4. Since charF = 0, by complete reducibility, χn1,...,n4

(A) can be written as a sum
of irreducible characters

(1) χn1,...,n4
(A) =

∑
〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4),

where m〈λ〉 ≥ 0 is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(4) in χn1,...,n4
(A).

Another numerical sequence that can be attached to a ∗-algebra A is the sequence of ∗-colengths.
If χn1,...,n4(A) =

∑
〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4) is the decomposition of the (n1, . . . , n4)-th

cocharacter of A, then the n-th colength of A is defined as

l∗n(A) =
∑

〈λ〉`(n1,...,n4)
n1+···+n4=n

m〈λ〉.

We conclude this section by recalling some basic results concerning the sequences of cocharacters
and colengths.

Remark 2.1. Let A and B be two ∗-algebras such that

χn1,...,n4
(A) =

∑
m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4) and χn1,...,n4

(B) =
∑

m′〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4).
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1. If B ∈ var∗(A), then m′〈λ〉 ≤ m〈λ〉, for all 〈λ〉 ` (n1, . . . , n4) and l∗n(B) ≤ l∗n(A), for all n.

2. The direct sum A⊕B is also a ∗-algebra, with superinvolution induced by the superinvolu-
tions defined on A and B. Moreover, if

χn1,...,n4(A⊕B) =
∑

〈λ〉`(n1,...,n4)

m̄〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4)

is the decomposition of the (n1, . . . , n4)-th cocharacter of A⊕B, then m̄〈λ〉 ≤ m〈λ〉+m′〈λ〉,

for all 〈λ〉 ` (n1, . . . , n4).

3. ∗-varieties of almost polynomial growth

In this section we shall introduce three finite dimensional ∗-algebras generating varieties of
almost polynomial growth.

First we want to highlight that any finitely generated ∗-algebra has the same polynomial iden-
tities of a finite dimensional ∗-algebra in case of an algebraically closed field of characteristic zero.
In fact the following result holds.

Theorem 3.1. [1]. Let V be a ∗-variety generated by a finitely generated ∗-algebra B over an
algebraically closed field F , satisfying an ordinary identity. Then V = var∗(C), for some finite
dimensional ∗-algebra C over F .

In light of the previous theorem, from now on it suffices to study only finite dimensional ∗-
algebras.

Let F ⊕ F be the two dimensional group algebra of Z2. We denote by D the algebra F ⊕ F
with trivial grading and exchange superinvolution ex given by (a, b)ex = (b, a), for all (a, b) ∈ D.
Such a ∗-algebra was extensively studied in [6, 9]. It generates a ∗-variety of almost polynomial
growth, Id∗(D) = 〈[x1, x2], z+, z−〉T∗2 and, if χn1,...,n4

(D) =
∑
〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4)
is the (n1, . . . , n4)-th cocharacter of D, n1 + · · ·+ n4 = n, then

m〈λ〉 =

{
1 if 〈λ〉 = ((n1), (n2), ∅, ∅), n1 + n2 = n

0 otherwise
.

As a consequence,

(2) l∗n(D) = n+ 1, for all n ≥ 1.

Let now

M = F (e11 + e44)⊕ F (e22 + e33)⊕ Fe12 ⊕ Fe34,
be a subalgebra of UT4, the algebra of 4×4 upper-triangular matrices, endowed with the reflection
involution ◦, i.e., the involution obtained by reflecting a matrix along its secondary diagonal.
Hence, if a = α(e11 + e44) + β(e22 + e33) + γe12 + δe34 then

a◦ = α(e11 + e44) + β(e22 + e33) + δe12 + γe34.

If we regard M as endowed with trivial grading, then the above involution is a superinvolution.
Such a ∗-algebra (see [6, 22]) generates a ∗-variety of almost polynomial growth with T ∗2 -ideal of
identities Id∗(M) = 〈y−1 y

−
2 , z

+, z−〉T∗2 . Moreover, if χn1,...,n4(M) =
∑
〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗
· · · ⊗ χλ(4) is the (n1, . . . , n4)-th cocharacter of M , n1 + · · ·+ n4 = n, then

(3) m〈λ〉 =



1 if 〈λ〉 = ((n), ∅, ∅, ∅)
q + 1 if 〈λ〉 = ((p+ q, p), (1), ∅, ∅), 2p+ q = n− 1

q + 1 if 〈λ〉 = ((p+ q, p), ∅, ∅, ∅), 2p+ q = n

q + 1 if 〈λ〉 = ((p+ q, p, 1), ∅, ∅, ∅), 2p+ q = n− 1

0 otherwise

and so

(4) l∗n(M) =

{
3n2+4

4 if n is even

3n2+5
4 if n is odd

.
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Next we consider a non-trivial grading on M : we denote by Msup the algebra M with grading
M0 = F (e11 + e44) ⊕ F (e22 + e33) and M1 = Fe12 ⊕ Fe34. Notice that the reflection involu-
tion on Msup is a superinvolution, since M2

1 = 0. The ∗-algebra Msup generates a ∗-variety
of almost polynomial growth with Id∗(Msup) = 〈y−, z1z2〉T∗2 . Moreover, if χn1,...,n4(Msup) =∑
〈λ〉`(n1,...,n4)

m〈λ〉χλ(1)⊗· · ·⊗χλ(4) is the (n1, . . . , n4)-th cocharacter of Msup, n1 + · · ·+n4 = n,

then

(5) m〈λ〉 =


1 if 〈λ〉 = ((n), ∅, ∅, ∅)
q + 1 if 〈λ〉 = ((p+ q, p), ∅, (1), ∅)
q + 1 if 〈λ〉 = ((p+ q, p), ∅, ∅, (1))

0 otherwise

,

where p, q ≥ 0 and 2p+ q + 1 = n (see [6, 10]). It follows that

(6) l∗n(Msup) =

{
n2+2n+2

2 if n is even
n2+2n+3

2 if n is odd
.

The above ∗-algebras characterize the ∗-varieties of polynomial growth.

Theorem 3.2. [6, Theorem 5.1] Let A be a finite dimensional ∗-algebra. Then var∗(A) has
polynomial growth if and only if D,M,Msup 6∈ var∗(A).

As a consequence we have the following corollary.

Corollary 3.1. [6, Corollary 5.1] The ∗-algebras M,Msup and D are the only finite dimensional
∗-algebras generating varieties of almost polynomial growth.

4. On the Wedderburn-Malcev decomposition

In this section we analyze the Wedderburn-Malcev decomposition of a finite dimensional ∗-
algebra A, in case M,Msup /∈ var∗(A). We shall prove that the simple components of the semisim-
ple part of such a decomposition can be chosen only in a list of five ∗-algebras.

In [6], the authors gave an analogue of the Wedderburn-Malcev decomposition in the setting of
finite dimensional ∗-algebras. In order to present such a result we first recall some definitions. An
ideal (subalgebra) I of an algebra A with superinvolution ∗ is a ∗-ideal (subalgebra) of A if it is a
graded ideal (subalgebra) and I∗ = I. The algebra A is a simple ∗-algebra if A2 6= 0 and A has no
non-trivial ∗-ideals.

Theorem 4.1. [6, Theorem 4.1] Let A be a finite dimensional ∗-algebra over a field F of charac-
teristic 0. Then there exists a semisimple ∗-subalgebra B such that A = B + J(A) and J(A) is a
∗-ideal of A. Moreover B = B1 ⊕ · · · ⊕Bk, where B1, . . . , Bk are simple ∗-algebras.

Next we shall present the classification of the finite dimensional simple ∗-algebras over an alge-
braically closed field F . Recall that if A and B are two superalgebras endowed with superinvolu-
tions ∗ and ?, respectively, then (A, ∗) and (B, ?) are isomorphic, as ∗-algebras, if there exists an
isomorphism of superalgebras ψ : A→ B such that ψ(x∗) = ψ(x)?, for all x ∈ A.

If n = k + h, then the matrix algebra Mn(F ) becomes a superalgebra, denoted by Mk,h(F ),
with grading

(Mk,h(F ))0 =

{(
X 0
0 T

)
| X ∈Mk(F ), T ∈Mh(F )

}
,

(Mk,h(F ))1 =

{(
0 Y
Z 0

)
| Y ∈Mk×h(F ), Z ∈Mh×k(F )

}
.

In [24], Racine proved that, up to isomorphism and if the field F is algebraically closed and of
characteristic different from 2, it is possible to define on Mk,h(F ) only the following superinvolu-
tions.

1. The transpose superinvolution denoted trp, defined for h = k by(
X Y
Z T

)trp
=

(
T t −Y t
Zt Xt

)
,

where t is the usual transpose.
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2. The orthosymplectic superinvolution osp, defined when h = 2l is even by(
X Y
Z T

)osp
=

(
Ik 0
0 Q

)−1(
X −Y
Z T

)t(
Ik 0
0 Q

)
=

(
Xt ZtQ
QY t −QT tQ

)
,

where Q =

(
0 Il
−Il 0

)
and Ik, Il are the k × k, l × l identity matrices, respectively.

Furthermore, if A is a superalgebra, we denote by Asop the superalgebra with the same graded
vector space structure of A and product given on homogeneous elements a, b ∈ Asop by

a ◦ b = (−1)|a||b|ba.

The direct sum R = A⊕ Asop is a superalgebra with R0 = A0 ⊕ Asop0 and R1 = A1 ⊕ Asop1 and it
is endowed with the exchange superinvolution

(a, b)
∗

= (b, a) .

For example, if we consider the superalgebra Q(n) = Mn(F ⊕ cF ) = Q(n)0 ⊕ Q(n)1, where
Q(n)0 = Mn(F ) and Q(n)1 = cMn(F ), with c2 = 1, then Q(n) ⊕ Q(n)sop is a ∗-algebra with
exchange superinvolution.

The following theorem gives the classification of the finite dimensional simple ∗-algebras over
an algebraically closed field F .

Theorem 4.2 ([2, 13, 24]). Let A be a finite dimensional simple ∗-algebra over an algebraically
closed field F of characteristic different from 2. Then A is isomorphic to one of the following:

(1) Mk,h(F ) with the orthosymplectic or the transpose superinvolution,

(2) Mk,h(F )⊕Mk,l(F )sop with the exchange superinvolution,

(3) Q(n)⊕Q(n)sop with the exchange superinvolution.

Since any finite dimensional ∗-algebra A can be naturally embedded into the ∗-algebra A⊗F F̄ ,
which is finite dimensional over the algebraic closure F̄ ⊇ F , then, without loss of generality,
we may assume that a finite dimensional ∗-algebra A over a field F of characteristic zero has a
Wedderburn-Malcev decomposition such that any ∗-simple component Ai, i = 1, . . . ,m, is isomor-
phic to one of the algebras in the previous theorem.

Now we can focus our attention to the proof of the main result of this section, concerning finite
dimensional ∗-algebras not containing M and Msup. Recall that they are subalgebras of UT4(F )
with trivial and natural grading, respectively, both endowed with the reflection superinvolution ◦.
To reach our goal we have to prove first several lemmas.

Lemma 4.1. Let A be a ∗-algebra. If M 6∈ var∗(A), then (Mk,k(F ), trp) 6∈ var∗(A), for any k ≥ 2.

Proof. Suppose by contradiction that (Mk,k(F ), trp) ∈ var∗(A) and let us consider its subalgebra

C = spanF

e11 + ek+1,k+1︸ ︷︷ ︸
a

, e22 + ek+2,k+2︸ ︷︷ ︸
b

, e12︸︷︷︸
c

, ek+2,k+1︸ ︷︷ ︸
c∗

 ⊆ (Mk,k(F ), trp) ,

spanned by four elements of homogeneous degree zero and with induced superinvolution. Here the
eij ’s are the usual matrix units.

Now let {e11 + e44, e22 + e33, e12, e34} be a basis of the ∗-algebra M . Then the map ϕ : M → C
given by

ϕ(e11 + e44) = a, ϕ(e22 + e33) = b, ϕ(e12) = c, ϕ(e34) = c∗,

is clearly an isomorphism of superalgebras. Moreover, for all X ∈ M , ϕ(X◦) = ϕ(X)trp and so
M and C are isomorphic as ∗-algebras. This implies M ∼= C ∈ var∗ ((Mk,k(F ), trp)) ⊆ var∗(A), a
contradiction. �

Lemma 4.2. If M 6∈ var∗(A), then (Mk,2l(F ), osp) 6∈ var∗(A), for any k ≥ 2 or l ≥ 2.
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Proof. Suppose by contradiction that (Mk,2l(F ), osp) ∈ var∗(A).
First let l ≥ 2. We consider the following four even elements of (Mk,2l(F ), osp):

a = ek+1,k+1 + ek+l+1,k+l+1, b = ek+1,k+l+2 − ek+l+1,k+2,

c = ek+l+2,k+1 − ek+2,k+l+1, d = ek+2,k+2 + ek+l+2,k+l+2.

Let C = spanF {a, b, c, d} be a subalgebra of (Mk,2l(F ), osp) with induced superinvolution. If
{e11, e12, e21, e22} is a basis of the ∗-algebra (M2(F ), t), endowed with trivial grading and transpose
involution, then the linear map ϕ : C →M2(F ), such that

ϕ(a) = e11, ϕ(b) = e12, ϕ(c) = e21, ϕ(d) = e22,

is an isomorphism of ∗-algebras. Moreover, by [28, Remark 3.2] and recalling that here the grading
is trivial, we have that M ∈ var∗ ((M2(F ), t)) = var∗(C) ⊆ var∗ ((Mk,2l(F ), osp)) ⊆ var∗(A), a
contradiction.

We are left with the case l = 0, 1 and k ≥ 2. Let C be the subalgebra of (Mk,2l(F ), osp)
generated by e11, e12, e21, e22. Clearly, C is a ∗-algebra with induced grading (trivial) isomorphic
to (M2(F ), t). Hence we reach a contradiction as before and we are done also in this case. �

Lemma 4.3. If Msup 6∈ var∗(A), then (M1,2(F ), osp) 6∈ var∗(A).

Proof. In order to prove the lemma we shall show that Msup ∈ var∗ (M1,2(F ), osp). If not, we
would have that Id∗ ((M1,2(F ), osp)) * Id∗(Msup) and so there would exist a non-zero multilinear
polynomial f such that f ∈ Id∗ ((M1,2(F ), osp)) and f 6∈ Id∗ (Msup). In order to reach a contra-
diction we need only to show that f is actually the zero polynomial. Since by [10, Theorem 6.3]
Id∗(Msup) = 〈y−, z1z2〉T∗2 , then f is either f = αz (when n = 1) or f = βy+1 · · · y+n or

(7) f =
∑
I

αIy
+
i1
· · · y+ikzy

+
j1
· · · y+jn−k−1

,

with i1 < · · · < ik, j1 < · · · < jn−k−1 and I = {i1, . . . , ik}.
In the first two cases, it is easy to see, by making a suitable evaluation, that f must be the zero

polynomial.
Now, consider the case in which f is as in (7). Suppose that there exists αI 6= 0, for some I.

Then by making the evaluation y+i1 = · · · = y+ik = e11, y+j1 = · · · = y+jn−k−1
= e22 + e33 and z = e12,

one gets αIe12 = 0. Thus αI = 0, a contradiction. Therefore we have proved that f is the zero
polynomial and we are done. �

Lemma 4.4. If Msup 6∈ var∗(A), then B = (Mk,h(F )⊕Mk,h(F )sop, ex) 6∈ var∗(A), for any k, h
such that k + h > 1.

Proof. Suppose by contradiction that B = (Mk,h(F )⊕Mk,h(F )sop, ex) ∈ var∗(A).
Let l = k + h− 1 and let C = C0 ⊕ C1 be a subalgebra of B with

C0 = spanF

(e11, e11)︸ ︷︷ ︸
a

, (el,l, el,l)︸ ︷︷ ︸
b

 and C1 = spanF

(e1,l, 0)︸ ︷︷ ︸
c

, (0, e1,l)︸ ︷︷ ︸
c∗

 .

The map ϕ : Msup → C given by

ϕ(e11 + e44) = a, ϕ(e22 + e33) = b, ϕ(e12) = c, ϕ(e34) = c∗,

is clearly an isomorphism of superalgebras such that, for all X ∈ Msup, ϕ(X◦) = ϕ(X)ex. Hence
Msup and C are isomorphic as ∗-algebras and this implies that Msup ∼= C ∈ var∗ (B) ⊆ var∗(A),
a contradiction. �

With a similar argument, one can also prove the following lemma.

Lemma 4.5. If M 6∈ var∗(A), then (Q(n)⊕Q(n)sop, ex) 6∈ var∗(A), for any n > 1.

We say that a commutative ∗-algebra A = A0 ⊕A1 is endowed with the trivial superinvolution
if A1 = 0 and ∗ is the identity map.

By putting together the previous lemmas, we get the following result.
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Corollary 4.1. Let A be a finite dimensional ∗-algebra with Wedderburn-Malcev decomposition
A = A1 ⊕ · · · ⊕ Am + J . If M,Msup 6∈ var∗(A), then for each i = 1, . . . ,m, either Ai ∼= F
with trivial superinvolution or Ai ∼= D or Ai ∼= (M1,1(F ), trp) or Ai ∼= (M0,2(F ), osp) or Ai ∼=
(Q(1)⊕Q(1)sop, ex).

Finally, we are in a position to prove the main theorem of this section.

Theorem 4.3. Let A be a finite dimensional ∗-algebra such that M,Msup 6∈ var∗(A). Then
var∗(A) = var∗(B1 ⊕ · · · ⊕ Bm), where, for each i = 1, . . . ,m, Bi is isomorphic to one of the
following algebras:

1. F + Ji, with trivial superinvolution on F ,

2. D + Ji and exchange superinvolution on D,

3. M1,1(F ) + Ji and transpose superinvolution on M1,1(F ),

4. M0,2(F ) + Ji and orthosymplectic superinvolution on M0,2(F ),

5. Q(1)⊕Q(1)sop + Ji and exchange superinvolution on Q(1)⊕Q(1)sop,

where Ji is the Jacobson radical of Bi.

Proof. By Corollary 4.1, we can decompose A = A1 ⊕ · · · ⊕Am + J , where, for each i = 1, . . . ,m,
Ai is isomorphic either to F with trivial superinvolution or to D with exchange superinvolution or
to M1,1(F ) with transpose superinvolution or to M0,2(F ) with orthosymplectic superinvolution or
to Q = Q(1)⊕Q(1)sop with exchange superinvolution.

Suppose by contradiction that there exist two ∗-simple components, say A1 and A2, such that
A1JA2 6= 0. Hence a1ua2 6= 0, for some a1 ∈ A1, u ∈ J and a2 ∈ A2. It clearly follows that
e1ue2 6= 0, where e1 and e2 are the unit elements of A1 and A2, respectively.

Let B = A1 ⊕A2 + J be an algebra with induced superinvolution ∗ and let k ≥ 1 be such that
u ∈ Jk and u 6∈ Jk+1. We set B̄ = B/Jk+1 and we can write B̄ = C1 ⊕ C2 + J̄ , where Ci ∼= Ai,
i = 1, 2 and J̄ is the Jacobson radical of B̄. Since Jk+1 is stable under ∗, then B̄ has induced
superinvolution. Write ā = ē1 and b̄ = ē2 for the images of e1 and e2, respectively. If c̄ = āūb̄,
then c̄∗ = b̄ū∗ā.

We now define the algebra R = span{ā, b̄, c̄, c̄∗}. It is easy to check that R has the same
multiplication table of the algebra M = F (e11 + e44) ⊕ F (e22 + e33) ⊕ Fe12 ⊕ Fe34. Therefore
we get that R is isomorphic to the algebra M with trivial grading and reflection superinvolution
or to the algebra Msup, i.e., the algebra M with natural grading and reflection superinvolution,
according to the homogeneous degree of u ∈ J (and so of c̄). But in both cases we reach a
contradiction. Thus we must have that

(8) AiJAk = AiAk = 0, for all i 6= k.

Set Bi = Ai + J , i = 1, . . . ,m. Then A = A1 ⊕ · · · ⊕ Am + J = (A1 + J) + · · · + (Am + J) =
B1 + · · · + Bm. Furthermore, for each i = 1, . . . ,m, Ji ⊆ Bi is the Jacobson radical of Bi and
Bi/Ji ∼= Ai. Hence, each Bi is isomorphic to one of the algebras 1., 2., 3., 4. or 5.. By standard
arguments (see for example [28, Lemma 4.6]), we get that

Id∗(B1 + · · ·+Bm) = Id∗(B1) ∩ · · · ∩ Id∗(Bm).

Since A = B1 + · · · + Bm and Id∗(B1) ∩ · · · ∩ Id∗(Bm) = Id∗(B1 ⊕ · · · ⊕ Bm), this implies that
Id∗(A) = Id∗(B1⊕· · ·⊕Bm). Hence var∗(A) = var∗(B1⊕· · ·⊕Bm) and the proof is complete. �

5. Classifying ∗-algebras with bounded multiplicities of the cocharacter

In this section we shall prove the main theorem of this paper, dealing with finitely generated
∗-algebras with multiplicities of the (n1, . . . , n4)-cocharacter bounded by a constant.

Recall that, according to the representation theory of GLn, if a ∗-algebra A has (n1, . . . , n4)-
cocharacter

(9) χn1,...,n4(A) =
∑

〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4),

where 〈λ〉 = (λ(1), . . . , λ(4)) ` (n1, . . . , n4), then m〈λ〉 is the maximal number of linearly inde-
pendent highest weight vectors associated to the multipartition 〈λ〉. Moreover, a highest weight
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vector is obtained from the polynomial corresponding to an essential idempotent by identifying the
variables whose indices lie in the same row of the corresponding Young tableau (see for instance
[4, Chapter 12]).

If dimF A
+
0 = d1, dimF A

−
0 = d2, dimF A

+
1 = d3 and dimF A

−
1 = d4, then, in (9), we get

m〈λ〉 6= 0 if and only if h(λ(i)) ≤ di, for all 1 ≤ i ≤ 4 (same idea of [5, Lemma 1.2]). Here h(λ(i))
stands for the high of the partition λ(i), i.e., the number of the rows of λ(i).

We start by proving the following lemma.

Lemma 5.1. Let A = C+J be a finite dimensional ∗-algebra, where J = J(A) is its Jacobson rad-
ical and C is a ∗-simple subalgebra of A isomorphic to either (M1,1(F ), trp) or (Q(1)⊕Q(1)sop, ex).
If the (n1, . . . , n4)-cocharacter of A has decomposition as in (9), then there exist a constant N such
that m〈λ〉 ≤ N , for all 〈λ〉 ` (n1, . . . , n4).

Proof. In the proof we follow the idea of [23, Lemma 7].
First, let C be isomorphic to M1,1(F ) endowed with the transpose superinvolution and let

d = dimF A. By hypothesis, one can choose

{a0, a1, . . . , ad1−1} , {b0, b1, . . . , bd2−1} , {c0, c1, . . . , cd3−1} , {e0, e1, . . . , ed4−1} ,

basis of A+
0 , A−0 , A+

1 and A−1 , respectively, such that a0 ∈ C+
0 , a1, . . . , ad1−1 ∈ J+

0 , b0 ∈ C−0 ,
b1, . . . , bd2−1 ∈ J−0 , c0 ∈ C+

1 , c1, . . . , cd3−1 ∈ J+
1 , e0 ∈ C−1 and e1, . . . , ed4−1 ∈ J−1 . Moreover, let q

be the smallest positive integer such that Jq = 0.
Notice that if q = 1, then A ∼= M1,1(F ) and, by [8, Theorem 5.1], we get that the multiplicities in

(9) are bounded by a constant. So let us suppose q ≥ 2 and prove that m〈λ〉 ≤ N = d(qd)d1d2d3d4 ,
for all 〈λ〉 ` (n1, . . . , n4).

According to the considerations above, we may assume that h(λ(i)) ≤ di, for all 1 ≤ i ≤ 4. Let(
Tλ(1), . . . , Tλ(4)

)
be Young tableaux corresponding to 〈λ〉 and define, for all 1 ≤ i ≤ 4,

R+
Tλ(i)

=
∑

σ∈RTλ(i)

σ and C−Tλ(i) =
∑

σ∈CTλ(i)

sgn(σ)σ,

where RTλ(i) and CTλ(i) are the row and column stabilizers of Tλ(i), respectively.

It is well-known that, for all 1 ≤ i ≤ 4, the element eTλ(i) = R+
Tλ(i)

C−Tλ(i) is an essential

idempotent in the group algebra FSni . Similarly, the element e = eTλ(1)eTλ(2)eTλ(3)eTλ(4) is an

essential idempotent in the group algebra F (Sn1
× Sn2

× Sn3
× Sn4

).

Fixed 1 ≤ i ≤ 2, for all 1 ≤ ji ≤ di let Y
λ(i)
ji

be the set of even variables (resp. symmetric

or skew) whose indices lie in the ji-th row of Tλ(i). Similarly, fixed 3 ≤ i ≤ 4, for all 1 ≤
ji ≤ di, let Z

λ(i)
ji

be the set of odd variables (resp. symmetric or skew) whose indices lie in
the ji-th row of Tλ(i). It turns out that, for all f ∈ Pn1,...,n4 , the polynomial ef is symmetric

on each set Y
λ(1)
1 , . . . , Y

λ(1)
d1

, Y
λ(2)
1 , . . . , Y

λ(2)
d2

, Z
λ(3)
1 , . . . , Z

λ(3)
d3

, Z
λ(4)
1 , . . . , Z

λ(4)
d4

and furthermore its
variables are partitioned into the disjoint union of d1 + d2 + d3 + d4 = d subsets

Y
λ(1)
1 ∪ · · · ∪ Y λ(1)d1︸ ︷︷ ︸

symmetric even variables

∪Y λ(2)1 ∪ · · · ∪ Y λ(2)d2︸ ︷︷ ︸
skew even variables

∪ Z
λ(3)
1 ∪ · · · ∪ Zλ(3)d3︸ ︷︷ ︸

symmetric odd variables

∪Zλ(4)1 ∪ · · · ∪ Zλ(4)d4︸ ︷︷ ︸
skew odd variables

.

In order to simplify the notation, let us denote by XT〈λ〉 such a decomposition.

Remark that, for all σi ∈ Sni , 1 ≤ i ≤ 4, σieTλ(i) 6= 0. Hence, by setting η = (σ1, . . . , σ4), we
get ηe 6= 0. This implies that if ef 6= 0, where f is a multilinear ∗-polynomial, then ef and ηef
generate the same irreducible (Sn1

× · · · × Sn4
)-module.

Take any f1, . . . , fm multilinear ∗-polynomials generating different but isomorphic irreducible
(Sn1

× · · · × Sn4
)-modules corresponding to the same multipartition 〈λ〉. By the above remark,

we can choose permutations η1, . . . , ηm ∈ Sn1 × · · · × Sn4 and a decomposition XT〈λ〉 such that

η1f1, . . . , ηmfm are simultaneously symmetric on Y
λ(i)
ji

, 1 ≤ i ≤ 2, and Z
λ(i)
ji

, 3 ≤ i ≤ 4. Thus,
without loss of generality, we may assume that f1, . . . , fm satisfy this condition.

Let us now assume by contradiction that m = m〈λ〉 > N = d(qd)d1d2d3d4 . If we prove that A
satisfies a ∗-identity of the type

(10) f = µ1f1 + · · ·+ µmfm,
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where µ1, . . . , µm ∈ F are not all zero, then we reach the contradiction, since this would imply
that f1, . . . , fm are linearly dependent modulo Id∗(A).

Since f1, . . . , fm are multilinear, in order to prove that f ≡ 0, we can evaluate it only for elements
of a basis of A. First, let us define substitutions of a special kind. We consider non-negative integers

α
λ(1)
j10

, . . . , α
λ(1)
j1(d1−1), β

λ(2)
j20

, . . . , β
λ(2)
j2(d2−1), γ

λ(3)
j30

, . . . , γ
λ(3)
j3(d3−1), δ

λ(4)
j40

, . . . , δ
λ(4)
j4(d4−1)

such that, for all 1 ≤ ji ≤ di and 1 ≤ i ≤ 4,

d1−1∑
i=0

α
λ(1)
j1i

= |Y λ(1)j1
|,

d2−1∑
i=0

β
λ(2)
j2i

= |Y λ(2)j2
|,

d3−1∑
i=0

γ
λ(3)
j3i

= |Zλ(3)j3
|,

d4−1∑
i=0

δ
λ(4)
j4i

= |Zλ(4)j4
|.

For ji = 1, . . . di, 1 ≤ i ≤ 4, we set X
〈λ〉
j1,...,j4

= Y
λ(1)
j1

∪ Y λ(2)j2
∪ Zλ(3)j3

∪ Zλ(4)j4
. We say that an

evaluation ϕ has type(
α
λ(1)
j10

, . . . , α
λ(1)
j1(d1−1), β

λ(2)
j20

, . . . , β
λ(2)
j2(d2−1), γ

λ(3)
j30

, . . . , γ
λ(3)
j3(d3−1), δ

λ(4)
j40

, . . . , δ
λ(4)
j4(d4−1)

)
,

if we replace the variables in the following way: for any fixed j1, j2, j3 and j4, we evaluate the first

α
λ(1)
j10

symmetric even variables from X
〈λ〉
j1,...,j4

for a0, the next α
λ(1)
j11

symmetric even variables from

X
〈λ〉
j1,...,j4

for a1, and so on up to the last α
λ(1)
j1(d1−1) symmetric even variables for ad1−1. Similarly, we

replace the first β
λ(2)
j20

skew even variables from X
〈λ〉
j1,...,j4

for b0, and so on up to the last β
λ(2)
j2(d2−1)

symmetric even variables for bd2−1. An analogous evaluation will be made by taking into account
the symmetric and skew odd variables and the basis {c0, c1, . . . , cd3−1} and {e0, e1, . . . , ed4−1} of
A+

1 and A−1 , respectively.
In order to get a non-zero value of f in (10), we have to consider the nilpotency of J . Thus we

get the following conditions:

1)

d1−1∑
i=1

α
λ(1)
j1i
≤ q − 1,

2)

d2−1∑
i=1

β
λ(2)
j2i
≤ q − 1,

3)

d3−1∑
i=1

γ
λ(3)
j3i
≤ q − 1,

4)

d4−1∑
i=1

δ
λ(4)
j4i
≤ q − 1.

Besides them, by definition we have some additional restrictions:

5) α
λ(1)
j10

= |Y λ(1)j1
| −

d1−1∑
i=1

α
λ(1)
j1i

,

6) β
λ(2)
j20

= |Y λ(2)j2
| −

d2−1∑
i=1

β
λ(2)
j2i

,

7) γ
λ(3)
j30

= |Zλ(3)j3
| −

d3−1∑
i=1

γ
λ(3)
j3i

,

8) δ
λ(4)
j40

= |Zλ(4)j4
| −

d4−1∑
i=1

δ
λ(4)
j4i

.

By taking into account conditions 1) - 8), it is clear that the number of distinct di-tuples(
ε
λ(i)
ji0

, . . . , ε
λ(i)
ji(di−1)

)
, ε ∈ {α, β, γ, δ}, is less than di, 1 ≤ i ≤ 4.

It follows that the overall number of distinct special substitutions is at most qd1qd2qd3qd4 =
qd1+d2+d3+d4 = qd, for given 1 ≤ ji ≤ di and 1 ≤ i ≤ 4. Since the number of 4-tuples (j1, . . . , j4)

is d1d2d3d4, it follows that the number Ñ of distinct types of substitutions is less than N0 =
(qd)d1d2d3d4 .
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Let us consider now all these Ñ special substitutions ϕ1, . . . , ϕÑ and construct the matrix (uij),

where, for all 1 ≤ i ≤ m and 1 ≤ j ≤ Ñ ,

ϕj(fi) = uij .

This matrix has m rows and Ñ columns of elements of A. Since we are assuming that m > N =

dN0 > Ñ , we have that the rows of (uij) are linearly dependent. Hence there exist µ1, . . . , µm ∈ F
not all zero such that

m∑
i=1

µiuij = 0, for all 1 ≤ j ≤ Ñ .

Thus

0 =

m∑
i=1

µi(ϕj(fi)) = ϕj

(
m∑
i=1

µifi

)
,

for all 1 ≤ j ≤ Ñ . This means that the polynomial f =
∑m
i=1 µifi is zero under all special

substitutions ϕ1, . . . , ϕÑ . Now it suffices to show that this implies that f ∈ Id∗(A).
To this end, let ρ be any substitutions of the variables of f in the elements of the basis of

A+
0 , A−0 , A+

1 and A−1 . Let l
λ(1)
j10

be the number of variables in Y
λ(1)
j1

mapped by ρ to a0, l
λ(1)
j11

be the number of variables in Y
λ(1)
j1

mapped by ρ to a1 and so on. Similarly, let l
λ(2)
j20

be the

number of variables in Y
λ(2)
j2

mapped by ρ to b0, l
λ(2)
j21

be the number of variables in Y
λ(2)
j2

mapped

by ρ to b1 and so on. Analogously, let l
λ(3)
j3k

and l
λ(4)
j4h

, 1 ≤ k ≤ d3 − 1, 1 ≤ h ≤ d4 − 1, be

the number of variables in Z
λ(3)
j3

and Z
λ(4)
j4

mapped by ρ to ck and eh, respectively. Since f is

symmetric on each Y
λ(1)
1 , . . . , Y

λ(1)
d1

, Y
λ(2)
1 , . . . , Y

λ(2)
d2

, Z
λ(3)
1 , . . . , Z

λ(3)
d3

, Z
λ(4)
1 , . . . , Z

λ(4)
d4

, we get that,

for all η ∈ Sn1
× · · · × Sn4

such that η(Y
λ(1)
j1

) = Y
λ(1)
j1

, η(Y
λ(2)
j2

) = Y
λ(2)
j2

, η(Z
λ(3)
j3

) = Z
λ(3)
j3

and

η(Z
λ(4)
j4

) = Z
λ(4)
j4

, for all 1 ≤ ji ≤ di and 1 ≤ i ≤ 4, we have

ρ(f) = ρ(ηf) = (ρη)f.

In particular, we can choose η such that ρη is the special substitution of the type(
l
λ(1)
j10

, . . . , l
λ(1)
j1(d1−1), l

λ(2)
j20

, . . . , l
λ(2)
j2(d2−1), l

λ(3)
j30

, . . . , l
λ(3)
j3(d3−1), l

λ(4)
j40

, . . . , l
λ(4)
j4(d4−1)

)
.

According to what was proved above, ρ(f) = (ρη)f = 0 and f ∈ Id∗(A), a contradiction. Hence
we must have m〈λ〉 ≤ N , for all 〈λ〉 ` (n1, . . . , n4) and we get the desired conclusion.

A similar proof holds also in the case C ∼= Q(1)⊕Q(1)sop, so we omit it. �

Lemma 5.2. [28, Lemma 5.2] Let A = C + J be a finite dimensional ∗-algebra, where J =
J(A) is its Jacobson radical and C is a ∗-simple subalgebra of A isomorphic to either F with
trivial superinvolution or D with trivial grading and exchange superinvolution. If the (n1, . . . , n4)-
cocharacter of A has decomposition as in (9), then there exist a constant N such that m〈λ〉 ≤ N ,
for all 〈λ〉 ` (n1, . . . , n4).

We highlight that in case C ∼= (M0,2(F ), osp), some computational difficulties arise. In fact, it
seems that the technique from Lemma 5.1 does not work anymore. Notice that in the proof of [28,
Lemma 5.1] there is some gap, hence we can only conjecture the following.

Conjecture 5.1. Let A = C+J be a finite dimensional ∗-algebra, where J = J(A) is its Jacobson
radical and C is a ∗-simple subalgebra of A isomorphic to (M0,2(F ), osp). If the (n1, . . . , n4)-
cocharacter of A has decomposition as in (9), then there exist a constant N such that m〈λ〉 ≤ N ,
for all 〈λ〉 ` (n1, . . . , n4).

Now we are ready to prove one of the main results of this paper.

Theorem 5.1. Let A be a finitely generated F -algebra with superinvolution ∗ satisfying an ordinary
polynomial identity and let its (n1, . . . , n4)-cocharacter be as in (9). If M,Msup, (M0,2(F ), osp) /∈
var∗(A) then there exists a constant N such that, for all 〈λ〉 ` (n1, . . . , n4), we have the inequality

m〈λ〉 ≤ N.

Proof. By Theorem 3.1 we may assume that A is finite dimensional. Now, by using item 2 of
Remark 2.1, Theorem 4.3 and Lemmas 5.1, 5.2, we get the desired conclusion. �
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It is remarkable to notice that if Conjecture 5.1 is true, then one can improve the results of
Theorem 5.1 by proving the following.

Conjecture 5.2. Let A be a finitely generated F -algebra with superinvolution ∗ satisfying an
ordinary polynomial identity and let its (n1, . . . , n4)-cocharacter be as in (9). Then M,Msup /∈
var∗(A) if and only if there exists a constant N such that, for all 〈λ〉 ` (n1, . . . , n4), we have the
inequality

m〈λ〉 ≤ N.

In fact, the first implication can be proved as Theorem 5.1 by considering also Conjecture 5.1.
On the other hand, if M ∈ var∗(A) or Msup ∈ var∗(A), then by (3) or (5) and Remark 2.1 we

get a contradiction.

In the next lemma we find a condition ensuring that the multiplicities in (9) are equal to zero.
Here λ(i)j stands for the number of boxes in the j-th row of the partition λ(i). Moreover, if
λ(i) ` ni, then |λ(ni)| = ni, 1 ≤ i ≤ 4.

Lemma 5.3. Let A be a finite dimensional ∗-algebra such that (M, ◦), (Msup, ◦) /∈ var∗(A). Then
there exists a constant q such that in (9) we have m〈λ〉 = 0 whenever

(|λ(1)| − λ(1)1) + (|λ(2)| − (λ(2)1 + λ(2)2 + λ(2)3)) + (|λ(3)| − λ(3)1) + (|λ(4)| − λ(4)1) ≥ q.

Proof. Let q be the smallest positive integer such that Jq = 0, where J is the Jacobson radical of
A. By contradiction, let us suppose that there exists 〈λ〉 ` (n1, . . . , n4) such that m〈λ〉 6= 0 and

(11) (|λ(1)| − λ(1)1)+(|λ(2)| − (λ(2)1 + λ(2)2 + λ(2)3))+(|λ(3)| − λ(3)1)+(|λ(4)| − λ(4)1) ≥ q.
Then there exist four Young tableaux Tλ(1), . . . , Tλ(4) and f ∈ Pn1,...,n4 such that ef /∈ Id∗(A),
where e = eTλ(1)eTλ(2)eTλ(3)eTλ(4) , and F (Sn1

× · · · × Sn4
)ef is a minimal left ideal of the group

algebra F (Sn1
×· · ·×Sn4

). Set now e′ = C−Tλ(1)eTλ(1) · · ·C
−
Tλ(4)

eTλ(4) . Since, in general, 0 6= R+
Tλ
C−Tλh

implies C−Tλh 6= 0, where h is a multilinear polynomial, we immediately get that e′f is not a ∗-
identity of A.

Moreover, it is clear that e′f is alternating on each λ(i)1 sets of variables corresponding to
the columns of Tλ(i), for all 1 ≤ i ≤ 4. In order to get a contradiction, we shall prove that
g = e′f ∈ Id∗(A).

To this end, since M,Msup /∈ var∗(A), Corollary 4.1 applies and we have that A = A1 ⊕ · · · ⊕
Am + J , where, for each 1 ≤ i ≤ m, either Ai ∼= F with trivial superinvolution or Ai ∼= D or
Ai ∼= (M1,1(F ), trp) or Ai ∼= (M0,2(F ), osp) or Ai ∼= (Q(1)⊕Q(1)sop, ex). Moreover, by (8) we
have that

AiJAk = 0 and AiAk = 0, for all i 6= k.

Thus, in order to get a non-zero value of g, we must evaluate its variables with elements of J
and elements of just a single ∗-simple component of A, say Ai.

In each case, dimF (Ai)
+
0 = 1 and so we can substitute at most one element of (Ai)

+
0 in each

alternating set of even symmetric variables. A similar argument holds also for the odd part, since
dimF (Ai)

+
1 ≤ 1 and dimF (Ai)

−
1 ≤ 1.

Finally, dimF (Ai)
−
0 ≤ 1 or dimF (Ai)

−
0 = 3, in case Ai ∼= (M0,2(F ), osp). In the latter case, in

order to have a non-zero value of g, we can substitute at most λ(1)1 elements from (Ai)
+
0 and at

most λ(2)1+λ(2)2+λ(2)3 elements from (Ai)
−
0 (here we recall that (Ai)1 = 0, so λ(3) = λ(4) = ∅).

This means that we have to evaluate at least (|λ(1)| − λ(1)1) + (|λ(2)| − (λ(2)1 + λ(2)2 + λ(2)3))
elements from J . Since we are assuming that Jq = 0 and, by hypothesis, that condition (11) holds,
we get g ∈ Id∗(A), a contradiction.

In case dimF (Ai)
−
0 ≤ 1, we can substitute at most one element of (Ai)

−
0 in each alternating

set of even skew variables. Thus we evaluate at most λ(1)1 elements from (Ai)
+
0 , λ(2)1 elements

from (Ai)
−
0 and eventually λ(3)1 elements from (Ai)

+
1 and λ(4)1 elements from (Ai)

−
1 , according

to dimF (Ai)
+
1 and dimF (Ai)

−
1 , respectively. By the considerations above, we have that at least

(|λ(1)| − λ(1)1) + (|λ(2)| − λ(2)1) + (|λ(3)| − λ(3)1) + (|λ(4)| − λ(4)1)

variables must be evaluated in elements of J . Since

(|λ(1)| − λ(1)1) + (|λ(2)| − λ(2)1) + (|λ(3)| − λ(3)1) + (|λ(4)| − λ(4)1) ≥
(|λ(1)| − λ(1)1) + (|λ(2)| − (λ(2)1 + λ(2)2 + λ(2)3)) + (|λ(3)| − λ(3)1) + (|λ(4)| − λ(4)1) ≥ q,
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we obtain that also in this case g ∈ Id∗(A), a contradiction. This concludes the proof. �

We are now in a position to prove the following theorem.

Theorem 5.2. Let A be a finitely generated F -algebra with superinvolution ∗ satisfying an ordinary
polynomial identity. If its (n1, . . . , n4)-cocharacter is as in (9), then the following conditions are
equivalent:

1. M,Msup /∈ var∗(A).

2. There exists a constant q such that, for all 〈λ〉 ` (n1, . . . , n4), m〈λ〉 = 0 whenever

(|λ(1)| − λ(1)1) + (|λ(2)| − (λ(2)1 + λ(2)2 + λ(2)3)) + (|λ(3)| − λ(3)1) + (|λ(4)| − λ(4)1) ≥ q.

Proof. Since we may assume that A is finite dimensional, by Lemma 5.3 condition 1. implies
condition 2.

Conversely, suppose by contradiction that M ∈ var∗(A) or Msup ∈ var∗(A). In the first case,
according to (3), if 〈λ〉 = ((p + q, p), (1), ∅, ∅), then m〈λ〉 = q + 1 > 0. Thus m〈λ〉 6= 0, for any
multipartition 〈λ〉 such that λ(2) = (1), λ(3) = λ(4) = ∅ and |λ(1)| − λ(1)1 = q arbitrary large.
Hence A does not satisfy condition 2. A similar argument holds also in case Msup ∈ var∗(A), by
considering in (5) 〈λ〉 = ((p+ q, p), ∅, (1), ∅) and thus m〈λ〉 = q + 1.

The proof is now complete. �

We conclude this paper by proving the following corollary that relates the growth of the ∗-
codimension sequence of a finite dimensional ∗-algebra A with its ∗-colength. Recall that, for all
n ≥ 1 and for all n1, . . . , n4 such that n1 + · · ·+ n4 = n, the n-th ∗-colength is defined as

l∗n(A) =
∑

〈λ〉`(n1,...,n4)
n1+···+n4=n

m〈λ〉,

where m〈λ〉 are the multiplicities of the irreducibles appearing in the (n1, ..., n4)-cocharacter of A.
We want to highlight that a similar result concerning algebras with ordinary polynomial iden-

tities was proved by Kemer in [18], by Vieira in [27] in the setting of superalgebras and in [20] for
algebras with involution.

In order to prove the last result of this paper we first need the following lemma.

Lemma 5.4. The ∗-algebra D belongs to the ∗-variety generated by the ∗-algebra (M0,2(F ), osp).

Proof. Let D′ = spanF {e11 + e22, e11 − e22} be a subalgebra of M0,2(F ) spanned by two elements
of homogeneous degree zero and with induced superinvolution. Now let {(1, 1), (1,−1)} be a basis
of the ∗-algebra D. The linear map ϕ : D → D′ given by

ϕ((1, 1)) = e11 + e22, ϕ((1,−1)) = e11 − e22,
is clearly an isomorphism of superalgebras. Moreover,

ϕ ((1, 1)
ex

) = ϕ (1, 1) = e11 + e22 = (ϕ (1, 1))
osp

,

ϕ ((1,−1)
ex

) = ϕ (−1, 1) = −e11 + e22 = (ϕ (1,−1))
osp

,

and so ϕ is an isomorphism of ∗-algebras and the proof is complete. �

Corollary 5.1. Let A be a finite dimensional algebra with superinvolution ∗ over a field of char-
acteristic zero. Then c∗n(A) is polynomially bounded if and only if l∗n(A) ≤ L, for some constant L
and for all n ≥ 1.

Proof. First, let us suppose that c∗n(A) is polynomially bounded, say c∗n(A) ≈ ank, for some integer
k and a > 0. Then, by Theorem 3.2, it follows that D,M,Msup /∈ var∗(A). Let

χn1,...,n4
(A) =

∑
〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4)

be the (n1, . . . , n4)-cocharacter of A. By Lemma 5.4 it follows that also (M0,2(F ), osp) /∈ var∗(A).
Hence Theorem 5.1 applies and so there exists a constant M such that m〈λ〉 ≤ M , for all multi-
partition 〈λ〉.

Furthermore, by Lemma 5.3, there exists q such that m〈λ〉 = 0 whenever

(12) (|λ(1)| − λ(1)1)+(|λ(2)| − (λ(2)1 + λ(2)2 + λ(2)3))+(|λ(3)| − λ(3)1)+(|λ(4)| − λ(4)1) ≥ q.
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On the other hand, since D /∈ var∗(A), by [7, Theorem 2.1], there exists s ≥ 1 such that

(13) y−1 w1y
−
2 w2 · · · y−s ws ≡ 0 on A,

where the w′is are (eventually empty) words in even variables (symmetric or skew).
Moreover, since c∗n(A) ≈ ank, we get that z1z2 · · · zk+1 ≡ 0 on A, where the z′is are any odd

variables (consequence of [19, Theorem 5.1]). It trivially follows that

(14) z1w1z2w2 · · · zk+1wk+1 ≡ 0 on A,

where the w′is are (eventually empty) words in any kind of variables.
From (12) we trivially get that m〈λ〉 = 0 for any multipartition 〈λ〉 such that |λ(1)|−λ(1)1 ≥ q.

Similarly, due to to identity (14), if |λ(3)|+ |λ(4)| ≥ k + 1 than m〈λ〉 = 0.
We are left to find a condition on |λ(2)|. We claim that, as soon as m〈λ〉 6= 0, it has to be

|λ(2)| < s(k + 1). In fact, suppose by contradiction, that m〈λ〉 6= 0 and |λ(2)| ≥ s(k + 1). Fix
|λ(3)| + |λ(4)| = t, where 0 ≤ t ≤ k. Then in each monomial of the corresponding highest weight
vectors there are at most t + 1 groups of even variables. Since t + 1 is at most k + 1 and we are
assuming |λ(2)| ≥ s(k+ 1), it follows that there exists a group of even variables containing at least
s even skew variables. Thus by (13), we get that each highest weight vector is an identity and
m〈λ〉 = 0, a contradiction. The claim is proved.

Thus m〈λ〉 = 0, 〈λ〉 ` (n1, . . . , n4), for n = n1 + · · ·+ n4 large enough.
Hence only a finite number of multipartitions 〈λ〉 satisfies the conditions |λ(1)| − λ(1)1 < q,

|λ(2)| < s(k + 1) and |λ(3)| + |λ(4)| < k + 1 and since m〈λ〉 ≤ M , for all 〈λ〉, if follows that, for
any (n1, . . . , n4),

l∗n(A) ≤ L, for some constant L.

Conversely, let us now assume that l∗n(A) ≤ L, for some L. By using Remark 2.1 and equations
(2), (4) and (6), we get that D,M,Msup /∈ var∗(A). Thus by Theorem 3.2, c∗n(A) must be
polynomially bounded and this complete the proof. �

Remark that, due to Theorem 3.1, the previous corollary holds also in case of finitely generated
∗-algebras.
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