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ments are unknown or missing. Our framework is applied on a synthetic realistic environment within the
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1 Introduction

Water scarcity is an ever-growing concern that affects communities and ecosystems worldwide
[1, 2]. The increasing demand for clean, potable water, together with the impact of climate change,
has motivated the research on improving the use of water resources. According to government
reports and available data [3], the result provided by the European Commission for the Europe
region is approximately 26% of wasted water, with a spike of 45% in some specific areas [4].

The scarcity of water underscores the need for particular attention to be paid to the correct
and efficient use of Water Distribution Systems (WDSs) also given their poor condition due to
aging and unmaintained infrastructures.
This motivates the design of new technological and modeling tools for effective monitoring. A
WDS comprises water sources, water treatments, pumping stations, a water distribution net-
work (WDN), and finally, the end users. A WDN encompasses junctions, tanks and reservoirs
pipes, pumps, and valves. The junctions can serve as water supply or demand points to and from
the network, while the tank(s) or reservoir(s) inject water into the system and represent finite or
virtually infinite water sources.
Traditional monitoring approaches have often relied on manual inspections or simplistic models,
which can be time-consuming, labour-intensive, and prone to errors [5].

For these reasons, we focus on the possibility to monitor WDNs with the Internet of Things
(IoT), specifically using sensor meters measuring the water flow, that employ low-power wireless
technologies to transfer information to central data collection and processing centers. However,
two important aspects must be considered:

(1) It is very difficult and costly to equip all branches of the distribution network with water
sensors;

(2) Some of these sensors might not function properly leading to inaccurate measurements or
due to battery issues may not measure at all the flow giving rise to “unmeasured nodes”, as
indicated in the following.

Therefore, we propose an approach that aims to optimize the use of the available sensors by iden-
tifying which sensors are the best to use. Our target is twofold: (i) to maximize the accuracy of
water flow measurements (represented as a signal on a graph) and (ii) to minimize the energy
consumption associated with data collection and transmission. By optimizing either the positions
of the sensors or selecting which sensors transmit their measured data, we aim to maximize data
accuracy while minimizing energy consumption, even in the presence of noise. This approach not
only enhances the efficiency and reliability of the water distribution system, but also ensures that
the monitoring solution is both cost-effective and scalable. It is possible to include this method
inside the more general framework in [6]. As far as we know, an approach that simultaneously
considers the quality of the reconstructed measurement and the energy consumption of the IoT
sensors for water measures transmission has not been previously addressed in the literature.
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Fig. 1. A LoRaWAN architecture where LoRaWAN devices are positioned along pipes within the WDS to

collect data from meter sensors.

The considered scenario is the following (Figure 1): Wireless sensor meters are connected with
one or more Gateways (GWs) that forward packets to a Network Server (NS) and to the cor-
responding IoT applications servers. In this context, challenges in water monitoring using IoT
devices are:

(1) deploying each sensor incurs a cost (for both the device and the deployment itself);
(2) each sensor consumes energy when transmitting its data;
(3) certain areas or pipes may be inaccessible for sensor node placement;
(4) some sensors might be physically damaged or have low battery levels.

Theoretically, we could place a sensor meter (i.e., a measurement point) at every link of a
WDN, but given the aforementioned issues, in practice, only a subset of sensors can be used for
monitoring.

Concerning the communication technology to be used by sensor devices, there are no universal
standards for WDS monitoring. IoT chips with low power consumption and long-distance wireless
communication capability are ideal for these purposes, like WiFi-based, cellular networks or LoW
Power WAN (LPWAN). LPWAN devices are expected to dominate the field [7], with different
infrastructure requirements: (i) cellular infrastructure-dependent, such as NB-IoT; (ii) third-party
infrastructure reliant, like SigFox; and (iii) Autonomous LPWANs, such as Long Range Wide
Area Network (LoRaWAN) [8]. Cellular technology-based LPWANs offer wide coverage, capac-
ity, battery life, quality of service, and security but are not cost-effective due to subscription fees
and dependence on commercial networks. SigFox [9], a patented network, spurred rapid innova-
tion by increasing competition among LPWAN technologies. LoRaWAN offers numerous benefits,
including low power consumption, extensive coverage, simplicity, and easy management due to
its characteristics. However, it faces potential scalability issues in large-scale scenarios. This study
targets the LoRaWAN technology, enabling real-time analysis and processing of the vast amounts
of data generated by connected devices within the network edge.

We propose GraphSmart, a graph-based method designed to increase the precision of water
flow reconstruction and boost energy efficiency within the WDS. Leveraging graph theory, we
represent and analyze the topology of a distribution network, followed by a graph transformation
that aims to extract the minimum set of nodes needed for accurate network flow reconstruction.
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In addition, we propose an extended model to include the possibility that some nodes draw water
from the network. We refer to this additional virtual flow as “demand values”.

We first apply our method to a use case with the aim to deeply understand the functioning of
GraphSmart method in different scenarios, such as with and without demand values.

Then, the proposed approach is applied to LoRaWAN technology, identified as the most suitable
IoT solution for the specific scenario. We develop a model that incorporates considerations for
sensor energy consumption due to their communication ability, acknowledging the non-uniform
energy usage of individual nodes due to variations in wireless coverage and radio parameters. This
model accounts for the peculiarity of single-node energy consumption within the context of the
wireless environment. In order to perform the simulation of GraphSmart in a realistic setting, we
use the EPANET (US Environmental Protection Agency water NETwork) software and the
NS-3 simulator. These tools are widely recognized in the literature as the most suitable for evaluat-
ing WDN and LoRaWAN scenarios, respectively. We have analyzed a practical WDN network and
presented its corresponding LoRaWAN integration, considering optimal GWs placement and ra-
dio coverage parameters. Furthermore, we provide an in-depth analysis of the energy consumption
profile of LoRaWAN devices, which is used to calibrate the simulation parameters. In this scenario,
we perform additional analyses to merge considerations as for the accuracy in reconstructing the
flow from a subset of measurements and the energetic consumption of the communication net-
work. Our findings prove the potential and the innovation of GraphSmart to obtain a green and
accurate IoT water monitoring.

Taken together, the key contributions of this paper are:

— We introduce a graph model for WDSs, based on Graph Signal Processing (GSP) theory
specifically designed for water flow monitoring. In this manner, it is possible to interpret
the water flow as a signal on a graph. We also extend this model to the presence of demand
values, namely, the possibility that nodes draw water from the network.

— We provide a method, named GraphSmart, to establish a sensor ranking that considers node
centrality measures and we design a green flow reconstruction algorithm. The goal is to
reconstruct the water flow for a minimum set of available measure. In addition, the ranking
procedures suggest the preferred locations to place those sensors.

— We apply our method to a realistic WDN. We demonstrate that our approach simultaneously
ensures an accurate flow monitoring and a reduced IoT energy consumption, that means cost
savings and enhanced environmental sustainability.

— We provide a synthetic dataset containing realistic WDN settings derived by using the
EPANET and NS-3 simulators. It is a publicly available repository in [10]. It can be adopted by
the scientific community to test other approaches in a LoRaWAN network communication
scenarios applied to WDSs.

The rest of the paper is organized as follows. Section 2 discusses related work on graph-based
methods and LoRaWAN applications for WDSs. In Section 3 we introduce the GraphSmart method,
while in Section 4 we apply it on several synthetic networks emulating different scenarios. In
Section 5 we introduce a study of the LoRaWAN network, including radio parameters and an
energy model. In Section 6 we report results of the proposed method on a realistic WDN. Section
8 concludes the paper. For the sake of readability, we report in Table 1 the list of acronyms.

2 Related Work

The presented approach is based on GSP theory specifically designed for water flow monitoring.
The main idea is to interpret the water flow as a signal on graph. In this section, we present
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Table 1. List of Acronyms

Acronym Definition Acronym Definition
ADR Adaptive Data Rate MILP Mixed Integer Linear Programming
CNN Convolutional Neural Networks MSE Mean Square Error
DER Data Extraction Rate NS Network Server
DFS Depth First Search RSSI Receiver Signal Strength Indicator
DMA District Meter Areas SF Spreading Factor
GHR Graph-based Head Reconstruction SoG Signal on Graph
GSP Graph Signal Processing SPQ Successive Quadratic Programming
GW Gateway SVM Support Vector Machines
IoT Internet of Things WDN Water Distribution Networks
LoRaWAN Long Range Wide Area Network WDS Water Distribution System
LPWAN Low Power Wide Area Networks WNTR Water Network Tool for Resilience

the state-of-the-art research on graph-based approaches, specifically thought for WDS and recent
activities on communication technologies for this specific application.

In general, GSP is an emerging research domain recently proposed to analyze data defined
on non-Euclidean domains, such as graphs. According to the GSP framework, the structure of
a generic graph, that is constituted by nodes and edges, is integrated by signal, that results associ-
ated to each graph node. In this context, the operations defined for classical signal processing, such
as filtering, compressing and frequency transform, have been reformulated on the graph domain
[11]. More precisely, researchers have recently developed methods to capture essential graph char-
acteristics, such as dynamic correlations [12] or non-linearities in the interacting system, that can
be described as the succession of states possibly modeled as a Markov model [13] or to multi-kernel
learning approaches [14].

GSP theory has found practical applications in various domains, including biological systems
[15] and sensor networks [16], where graphs naturally represent the underlying data structure. In
the context of the WDSs, which consist of interconnected pipelines and nodal junctions equipped
with advanced sensor technology, the graph representation is an intuitive approach. By modeling
WDSs as graphs, the physical connections of the system are represented by graph links, and the
junctions are represented by graph nodes [17, 18].

In the context of water distribution networks, graph signal processing has recently proved its
capabilities [19] in graph learning, in clustering [20] to identify sub-networks and in sectorization
projects [21], with particular attention to assess their resilience [22]. Moreover, a large part of the
research activity concerning graph theory has mainly focused on the detection of water leakages
[23] also using modeling tools [24, 25] and graph neural networks.

The work referenced in our discussion is contrasted with the approach we have presented in
Table 2. This table provides a comprehensive overview of various graph-based models employed
in water distribution systems, highlighting the different approaches, features analyzed, and tools
utilized in each study. Considering the eight pieces of work, we observed that all of them utilize
graph theory. Two studies primarily focus on sectorization, while another two concentrate on
dimension reduction and redundancy computation, respectively. Three studies are dedicated to
leakage detection, with the remaining one centered on pressure estimation. The present work
focuses on flow reconstruction for green IoT nodes positioning. The Line Graph model and Node
Ranking were employed to analyze flow, utilizing the WNTR and NS-3 tools.

Although graph-based approaches have been explored in the context of water supply systems,
many unsolved questions persist. Indeed, accurate and stable methods for WDS monitoring are
still missing and other problems related to the IoT application, such as the number of sensors and
their location are needed to reconstruct the water flow in the network. In this work, we deal with
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Table 2. Comparison of Graph-based Models Applied in WDN

Reference Study Nodes/pipes Models Features Tools

[17]
Sectorization

based on graph theory
182/282 DFS algorithm Pressure WDNetXL

[18]
Network dimension reduction

based on graph theory
46/71 SQP technique Pressure and Flow –

[21]
Sectorization

based on graph theory
195/270 DFS algorithm Flow

AutoCAD-based computer
system SCADRED

[22]
Compute route redundancy and capacity

based on graph theory
2416/2638

K-Shortest Paths Index
for DMA-based graph

Demand -

[25]
Leakage Detection

based on CNN-SVM and graph theory
12/17

1D-CNN-SVM
and a graph model

Leakage TensorFlow and Python

[24]
Sectorization and leak detection

based on graph theory
150/155 MILP formulations Flow –

[19]
Pressure reconstruction
based on graph theory

100/- GHR algorithm Pressure EPANET

[23]
Leakage detection

based on graph theory
268/-

Vertex classification
via pagerank

Pressure
WNTR, NetworkX

and PyGSP (Python)

Present work
Flow reconstruction

based on graph theory
83/85 and 815/1125

Line Graph model
and Node Ranking

Flow WNTR and NS3

the problem of network flow reconstruction in an optimal way. To the best of our knowledge,
there are no existing works that combine IoT and graph-based flow reconstruction in the context
of WDS.

In this context, the successful application of the aforementioned techniques relies on two
crucial factors: the technology used for data collection from sensors and a thorough analysis of the
energy impact of the applied methodology. In this regard, the authors in [7] show a comparative
analysis of the available IoT technologies in the WDS field. After analyzing extensive literature,
Wi-Fi was chosen as the principal technology, followed by LoRaWAN and cellular IoT. Wi-Fi is
the most popular choice for IoT applications, but only because the considered literature includes
older research scenarios. Indeed, three factors will make LoRaWAN technology dominant in
the future WDS scenario. The first factor is the operating frequency. Higher RF frequencies are
blocked by walls, trees, and other obstructions, but lower RF frequencies are less susceptible to
these issues. That is why cellular and LoRaWAN have lower operating frequencies compared to
Wi-Fi. Moreover, if the device is only a sensor node and requires only periodic transmission, then
LoRaWAN is a good choice. Two other crucial factors are power consumption and the range of
the device. LoRaWAN and cellular have a similar range of about 10 km, but cellular technology
has a greater impact on energy consumption. Motivated by these considerations, we have opted
to utilize LoRaWAN as the technology to establish the infrastructure for collecting measurements
from WDSs.

Finally, regarding the energy impact, sensors with minimal power consumption need to be
paired with high-energy-efficient communication technologies to enable the sensors to have en-
ergy autonomy for several years. By combining long-range wireless communication with low
power consumption, LoRaWAN technology allows for extended battery life [26]. In conclusion,
it is important to highlight the significant impact of the proposed solution, particularly in terms
of high-level flow reconstruction. By effectively reconstructing the flow within the WDS, our ap-
proach enables the possibility of reducing the number of sensors required and consequently the
total consumed energy.

3 The GraphSmart Method for Water Monitoring

In this section, we first give an overview of the proposed approach and afterwards, we delve
into the definition of its specific implementation steps. Figure 2 shows the workflow of the
GraphSmart method, where: (i) we model the flow data acquisition by a graph representation G of
the physical network; (ii) we introduce an alternative graph representation GL where we associate
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Fig. 2. The figure outlines the proposed method: The first step consists in the generation of a graph related

to the physical structure of the network. The second step is the development of an alternative representation

through the line graph where flow information is associated to nodes. Then we propose a node ranking by

their reconstruction relevance. Finally, we have a reconstruction algorithm that leverages graph topology

and selects a minimum set of flow measurements for reconstruction. Specifically, according to the ranking

found in the second phase, the measurements of nodes highlighted by red circles (nodes 2,3,5,6,8,10) are not

collected, but reconstructed from other nodes (nodes 1,4,7,9) equipped with active sensors.

Table 3. Table of Main Notations

Notation Description

G,V ,E original graph, set of nodes of G, set of edges of G

GL ,VL ,EL line graph, set of nodes of GL , set of edges of GL

A, AF LOW , binary adjacency matrix of G, weighted adjacency matrix of G,
AL ,AEXT binary adjacency matrix of GL , extended binary adjacency matrix with water demands

B,BF LOW binary incidence matrix, weighted incidence matrix

¯
f ,

¯
f U ,

¯
f K flow vector, unmeasured components of

¯
f , measured components of

¯
f

the flow information to the graph nodes, and we rank the nodes based on their relevance for flow
reconstruction; and (iii) we provide the reconstruction algorithm based on the knowledge of the
graph topology and of a reduced number of flow measurements.

We describe the three steps represented in the figure in the following subsections. For the sake
of readability, we report a list of the main notations of the paper in Table 3.

3.1 Data Acquisition and Physical Graph model

The initial step of the algorithm represented in Figure 2 is the mapping of a WDN into a graph
to capture the complex structure and dynamics of those systems. According to this representa-
tion, the network is translated into a graph G=(V , E), that is a mathematical model represented
through its N nodes (or vertices) and Ne links (or edges). The adjacency matrix A ∈ RN×N is here
modeled as a binary matrix whose generic element ai j is 1 if there is a pipe between junctions i
and j, otherwise it is 0. In the context of water distribution networks, the standard way to build
the graph consists in associating links to pipes and nodes to points where the pipes cross and
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Fig. 3. Example of a line graph representation. In subfigure (a) we have the original directed graph, with

N = 9 nodes and Ne = 10 links. The orange numbers associated to each link enumerates graph edges

and they visually constitute the nodes for the line graph. In subfigure (b) we have the corresponding line

graph made by Ne nodes. Each node correspond to a link of the original graph. In subfigure (c) we have

the extension to the demand values. Indeed, some graph nodes of the original graph require water from the

network. It is modeled by an outgoing virtual flow. The virtual flows in original graph generates virtual nodes

in the line graph, that are represented in subfigure (d).

that can be usually equipped by sensors [27]. This graph carries information about the physical
layout and functionality of the WDN. Indeed, the graph nodes correspond to junctions, essential
components of the distribution system. The edges model the physical connections, typically pipes,
allowing the water flow between different points in the network. The graph reflects the topological
intricacies of the water distribution network, providing a mathematical representation that aids in
understanding the network’s architecture.

Together with the binary adjacency matrix A that structurally models the possible presence of
a pipe between junctions of a WDN, we introduce a weighted version of the adjacency matrix
AF LOW , where each element is scaled by the water flow f associated to that specific junction.
Advanced techniques, such as Signal on Graph (SoG) analysis, can be employed within this
framework to learn complex representations of the WDN. SoG methods have the capability to
capture spatial and temporal dependencies, offering a more sophisticated understanding of the
network’s behavior and enhancing the accuracy of predictive models.

In Figure 3(a) we have an example of a graph with N = 9 nodes and Ne = 10 edges (both
represented in blue) that will be used in the following subsection to present the approach.

3.2 Line Graph model Transformation and Node Ranking

In this subsection, we will present the following steps of the GraphSmart method presented in
(Figure 2), that involves a graph transformation and the identification of the node ranking.

With the aim to identify an optimal edge monitoring strategy, we work on an alternative domain
where the flow values are associated to a node rather than a link, and the theoretically grounded
reconstruction techniques are available [28]. Specifically, we resort to the line graph GL = (VL , EL)
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associated to the original network graph G. Each nodev ∈ VL of the line graph GL is associated to
one and only one link e ∈ E in the original graph G; besides, two nodesv1,v2 ∈ VL are connected
if and only if the corresponding links e1, e2 ∈ E of the original graph originate from a common
vertex v ∈ V [29–31]. The proposed model is based on measurements on the links (pipes of the
water network) that were available from the hydraulic model and simulator, specifically water flow
measurements. In this context, the line graphs offer different theoretical advantages, such as the
fact that the known and unknown data appear as signal at the nodes, and this can be exploited
for flow estimation or measurements ranking. Fundamentally, the intrinsic physical constraints
among the flows at the input/output of a physical junction are naturally and compactly written in
terms of the line graph topology. We report a toy case example of how to derive a line graph in
Figure 3(b). Here we represent line graph made by Ne nodes correspondent to the original graph
in subfigure (a). It is possible to visually verify that each link in (a), that is enumerated with orange
points, corresponds to a node (orange node) in (b).

After associating the original link and its flow value with a node in the line graph, we can apply
GSP to the line graph and reconstruct the flows from a limited set of measurements. Indeed, in the
original graph representation of a WDN, the information of interest corresponds to the hydraulic
flow associated with each link (or pipe). However, to apply SoGs method at the node level, a line
graph transformation of this original graph representation is needed. Specifically, this redefines
the graph such that the nodes, instead of the links, become the primary carriers of the hydraulic
flow information. This adjustment allows for the application of the SoG method directly on the
nodes of the graph.

The adjacency matrix of the line graph AL ∈ RNe×Ne depends on the adjacency matrix of the
original graph A:

AL = BB
T − 2I (1)

The incidence matrix B can be easily derived from the adjacency matrix since it represents just
a different way to describe the interactions between graph nodes. Indeed, B contains a number of
rows equal to the number of nodes of G and a number of columns equal to the number of existing
edges Ne . It is a binary matrix, whose generic element bi j is 1 if the node i is implied in the j − th
link, otherwise it is zero.

We now propose a node ranking strategy on the line graph, that corresponds to sorting the links
(i.e., junctions) in the original graph. In detail, we rank the nodes of the line graph GL according
to their predictability from the neighbors. With this ranking, we can infer which flow values are
straightforwardly predicted and which instead must be measured to reconstruct the flow with a
targeted accuracy. The rationale behind the ranking is that central nodes can be predicted from
their neighbors better than less interconnected ones.

Therefore, when only a reduced number of measurements can be collected, these should cor-
respond to the least interconnected nodes of the line graph GL . Remarkably, these nodes in GL

correspond to less interconnected links of the original graph G, such as links across different node
clusters. This is coherent with recent research findings [32], indicating that such links significantly
impact the network’s algebraic properties. In line with this approach, we focus on node centrality
[33] to capture its interconnections within the network.

We assess the centrality of the nodes VL belonging to the line graph GL using different cen-

trality estimators [33], namely the “betweenness” c(b)n , the “closeness” c(c)n , and the “pagerank” c
(p)
n

centrality metrics.

The “betweenness” centrality metric c(b)n of the n-th node vn ∈ VL depends on how many times
this latter is included in the shortest paths Pi j = {vi , . . . ,vj }, i, j = 0, . . .N − 1 between each and
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every graph node pair (vi ,vj ) ∈ VL , and it is computed as follows:

c(b)n =
∑

∀(vi ,vj )∈VL

|{Pi j s .t . vn ∈ Pi j }|

|Pi j |

where |S| denotes the cardinality of the set S.

The “closeness” centrality metric c(c)n of the n-th nodevn ∈ VL depends on its distance from each
and every other graph node vj ∈ VL, j � i , and it is computed as follows:

c(c)n =
1∑

∀(vj )∈VL, j�i

di j

where di j is the distance between nodes i and j.

The “pagerank” metric c
(p)
n of the n-th node vn ∈ VL depends on how many times this latter

is included in random walks. This algorithm determines the centrality based on how much each
node appears within the shortest paths of the network.1 Wi j = {vi , . . . ,vj }, i, j = 0, . . .N − 1
between each and every graph node pair (i, j), i, j = 0, . . .N − 1

c
(p)
n =

∑
∀(vi ,vj )∈VL

|{Wi j s .t . vn ∈ Wi j }|

|Wi j |

3.3 Green Reconstruction Algorithm

In this subsection, we introduce our proposed reconstruction algorithm, graphically represented
as the last step of Figure 2. We recognize that within the system, there may be unmeasured nodes.
These are nodes in the network that lack corresponding measurements or data points. This absence
of data can occur for various reasons: either no sensor has been installed at these nodes, or the
existing sensors are inactive, possibly due to being in sleep mode or having depleted batteries

According to the ranking proposed in the previous subsection phase, the measures at the most
central nodes (highlighted by red circles) are not collected but reconstructed from adjacent, rele-
vant nodes. This is illustrated in the right subfigure of Figure 2, where active sensors correspond
to nodes 1,4,7,9, while unmeasured nodes are 2,3,5,6,8,10.

It means that we discard measurements at the most central nodes in GL , while keeping those
at the least central ones, which are less predictable from their neighborhood. The centrality based
ranking will identify the nodes that can be discarded without affecting the flow reconstruction
accuracy.

In order to develop the reconstruction algorithm, we resort to the well-established WDS model
adopted in the literature, e.g., in the Hardy-Cross method [34]. In our GraphSmart model, we
assume that the water flow follows a distribution pattern where every junction adheres to the
principle of continuity. The continuity equation dictates that the algebraic sum of flow rates in
pipes converging at a node, along with any external flows, must be zero. These flows must meet
the continuity requirement at every junction, i.e., the algebraic sum of the flow rates in the pipes
connecting a junction, together with any demand flows, is zero. We have a condition on the water
flow that means that the sum of inflows is equal to the outflows for every node in the graph if we
assume the absence of leakage:

AFLOW ·
¯
1 =

¯
0 (2)

1The random walks are generated by selecting the successor of a node with probability 0.85 out of its neighbors and with

probability 0.15 among all the other remaining network nodes.
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From Equation (1) it is possible to rewrite this condition in terms of incidence matrix BFLOW

computed from AFLOW:

BFLOW ·
¯
1 =

¯
0 (3)

A different perspective can be obtained by considering the incidence matrix of the physical
graph B, i.e., when the adjacency matrix A is the binary symmetric matrix that represents the
presence of a pipe between two nodes. In this manner, the condition expressed in Equation (3) can
be formulated as follows:

B ·
¯
f =

¯
0 (4)

We assume to know only NeK values of
¯
f , that represents the water flows, while the remaining

NeU are the unmeasured nodes. For the sake of clarity, we identify two components
¯
f K and

¯
f U

that correspond respectively to the known and unknown values of the signal
¯
f .

[BU |BK ]

[
¯
f U

¯
f K

]
=

¯
0

where B
U and B

K are the columns of the matrix B that are multiplied for
¯
f U and

¯
f U , respectively.

Let us remark that all the elements of B are known since they correspond to the geometry of the
connections on the network. Following the development of the equations, it is possible to obtain
a mathematical expression to compute

¯
f U , i.e., the unknown values of the SoG representing the

water flow in the network:

¯
f U = B

U+ · B
K ·

¯
f K (5)

where ·+ is the pseudo-inverse of the original matrix.

Extention to the case of water demands. The original WDS network model encompasses infras-
tructure elements and consumer endpoints. The associated line graph allows us to effectively es-
timate the flow within the network using a reduced number of sensors. Let us now delve into the
representation of consumer endpoints. Each consumer endpoint involves an incoming flow, i.e.,
the water supplied by the network, and an outgoing flow, i.e., the water demanded by the con-
sumer, that we refer to as demand value. The incoming water flow is associated to the physical
connection of the endpoint with the infrastructure, and hence to a network edge. The outgoing
flow is not directly tied to a physical connection. This notwithstanding, we can represent it by
introducing in G an additional edge that connects the endpoint to a virtual boundary node, which
does not correspond to a physical point of the network. This extended graph G�§� contains Ne con-
nections related to the physical pipes and Ne associated to demand values. With this extension,
the adjacency matrix of the physical graph including demand values is Aext ∈ R2N×2N :

Aext =

[
A I
0 0

]
(6)

where I is the identity matrix I ∈ RN×N .
With this considerations, the adjacency matrix can be organized in blocks where we recognize

the original adjacency matrix A, that models the physical structure of the network.Then we have
another block I ∈ RN×N that reflects the possibility that each of the N nodes has a virtual outflow
towards virtual boundary node. All the other elements of Aext are zero since the virtual nodes
cannot be connected in other ways.

With this position, the reconstruction algorithm applies regardless of whether there are outgo-
ing flows at the consumer endpoints. Indeed, we seamlessly handle the water flows exiting the
network at the consumer endpoints just like the flows within the network. These outgoing flows
may be known (e.g., spilled out water from consumer measured from utility meter) or unknown
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Fig. 4. Example use case representation. In (a) we have the original graph represented by graph links. In (b)

we have the corresponding line graph. The color scale associated with the nodes of the line graph corresponds

to their centrality, as measured by the PageRank algorithm. In (c) we report the MSE between ground truth

and reconstructed flow values of the line graph as a function of the number of unmeasured sensors. In the

black line, the unmeasured nodes are ranked according to their descending centrality, while in the blue line

they are randomly sorted. In (d) we have the condition number for inversion, which measures the quality of

the inversion in Equation (7).

(e.g., presence of leakage in some point of the WDS infrastructure), depending on the specific ob-
served WDS network. We graphically show the presence and the effect of the addition of virtual
nodes in Figure 3(c). We have the green links in subfigure (c) representing the endpoints flow, and
the associated line graph Figure 3(d), where the corresponding nodes are also highlighted in green
in the transformed line graph.

4 GraphSmart Algorithm Evaluation

In this section, we focus on realistic WDN networks and we study the accuracy of the reconstruc-
tion, quantified by the Mean Square Error (MSE) between the ground truth

¯
fj , j = 0, . . .N − 1

and the reconstructed flow ˆ
¯
f

j
, j = 0, . . .N − 1, computed as:

∑N−1
j=0 ( ˆ

¯
f

j
−

¯
fj )

2. We relate the accu-

racy to the number of available sensors, and we show that the approach leads to energy efficient
monitoring system. We present the performance of the proposed method in two different cases.

In order to better understand the key ideas and the algorithm steps, the first case shows results
on an example network with a limited number of links, with and without demand values. Then, the
second case presents the results of the proposed approach in a complex WDN scenario, extracted
from a real infrastructure and obtained by the EPANET tool, which is a software able to generate
WDN with real physical constraints associated with the water flow.

4.1 Results on Example Use Case

In this subsection, we provide results from a case study with the objective of understanding the
functionality of the proposed approach. This analysis numerically illustrates the different stages
of the proposed algorithm within a controlled scenario, as depicted in Figure 4. Specifically, we
consider the graph of a WDN with N = 8 nodes 1, 2..N and Ne = 7 edges f1, f2, ..., fNe

depicted in
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Figure 4(a). Then, we derive the associated line graph as in Equation (1) that is made by Ne nodes,
where each node corresponds to a link in the original graph, represented in Figure 4(b). The node
centrality of the line graph is calculated using the pagerank algorithm as outlined in Section 3.
We represent the node centrality by the color of the nodes in Figure 4(b), with color scale levels
indicated in the figure legend. As illustrated in the figure, the node with the highest centrality
value is situated at the center of the graph (Ne = 2), which corresponds to node N = 2 in the
original graph.

According to the proposed approach, this node is a strong candidate for removal as it represents
a location where the flow can be more readily reconstructed. Our key hypothesis is that the first
nodes, i.e., the most central nodes, are less important in the reconstruction algorithm.

In order to test this idea, we start to eliminate the values associated with the first ranked node
and we apply the reconstruction algorithm. After the reconstruction algorithm, we compute the
MSE between the reconstructed and ground truth node signal value. Let us remark that this opera-
tion corresponds in the original graph, to the reconstruction of the unmeasured water flow values
through the others.

We replicate these steps after the elimination of other node values according to their centrality
and we obtain the results in the black line of Figure 4(c). Results show that we can switch-off the
five most central nodes and perfectly reconstruct their values, that means that only the two less
central nodes, i.e., f7 and f1 (depicted in blue according to the color scale), are needed to completely
recover the node signals.

To assess whether the ranking has an impact on the algorithm’s ability to reconstruct the net-
work, we replicate the same procedure but with a random ranking of the nodes (blue line in the
figure). In this scenario, the performance deteriorates because there is a higher probability of re-
moving nodes with lower centrality first. This indicates that the order of node removal, based on
their centrality, plays a significant role in the successful reconstruction of the network flow.

Finally, in Figure 4(d) we report the condition number for inversion C defined as C(BU ) =

| |BU | | · | |B−1U | |. This metric is frequently used in literature to gauge the reliability of algorithms,
particularly those involving matrix inversions [35]. A small condition number for inversion im-
plies that the problem is well-conditioned, meaning the solution is stable and reliable. Conversely,
a large condition number signifies an ill-conditioned problem. In such a case, minor changes in
the input can lead to significant changes in the output, making the solution less reliable and more
sensitive to input variations.

In our applications, a large C means that the quality of the inversion of the matrix B
U is poor.

The analysis of the condition number shows that when all the node measurements, corresponding
to the water flows, are available,C is low, meaning that the inversion of B

U is well performed. As
we eliminate node values and reconstruct them through the others, the condition number increases
and the problem becomes ill-conditioned making impossible the correct reconstruction of the node
values.

To assess the case where physical demands are present in the network, we now perform the
analyses in a modified version of the previous graph, in which we have additional edges repre-
senting demand values, i.e., the possibility that nodes of the network have additional outflows.
This is represented in Figure 5(a). According to the proposed model, anticipated in Section 3, we
represent the water demand as an additional outgoing flow from each node of the network that
demands water to the network. The virtual edges representing demand values are in green (f8, f9,
f10, f11, f12, f13) in Figure 5(a) and they connect physical nodes, i.e., 1, 2, 3, 4, 5, 6, 7, 8, with virtual
additional nodes, i.e., 9, 10, 11, 12, 13, 14.

From the original graph with those extensions, we derive the line graph in Figure 5(b) according
to Equation (1) and we compute the node centrality with pagerank algorithm. The node centrality
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Fig. 5. Example use case representation in the presence of demand values. In (a) we have the original graph

represented by graph links coloured in blue, and demand values, represented by additional nodes and links

colored in green. In (b) we have the associated line graph. The color associated to the nodes of the line graph

corresponds to their centrality, as measured by the pagerank algorithm. In (c) we report the MSE between

ground truth and reconstructed node values of the line graph as function of the number of unmeasured

nodes. In the black line, the unmeasured nodes are ranked according to their descending centrality, while in

the blue line, they are randomly sorted. In (d) we have the condition number for inversion, which measures

the quality of the inversion in Equation (7).

is represented as the color of the nodes. Following the same approach explained for the previous
analysis, we derive the MSE between the reconstructed and the ground truth node values as a
function of the number of unmeasured nodes, reported in Figure 5(c). Our results show that the
reconstruction error if we properly rank the nodes of the line graph remains low (i.e., almost zero)
for a larger number of unmeasured nodes as compared to the absence of ranking. Specifically, we
can eliminate 6 over 13 node values and correctly recover the signal.

Let us remark the insertion of demand values has caused a decrease in the percentage of elim-
inable node values. Indeed in the absence of demand values, we can switch-off a percentage of 71%
of total nodes while in the presence of demand values, this percentage falls to 46%. This point is
in line with the model since we do not change the topology of the network but we just have addi-
tional virtual nodes that relate to the original nodes of the graph and, consequently, the number
of umeasuring nodes that we can allow for a specific topology does not significantly change.

4.2 Results on Realistic WDN

To test GraphSmart in a realistic infrastructure, we utilized a pre-defined network model extracted
from a real infrastructure and available in the Open Water Analytics community public repository
[36]. We consider EPANET and the Water Network Tool for Resilience (WNTR) [37] to gener-
ate our desired hydraulic data. WNTR is a Python package designed to simulate real-time WDN.
WNTR interfaces EPANET, which is an open source software to model hydraulic and quality dy-
namics of a WDN [38]. EPANET takes into account the topological structure of the pipeline system
along with a set of initial conditions (e.g., pipe diameter) and rules of how the system is operated
so that it can compute flows and pressures throughout the network for a specific period of time.
The simulator can add leaks to the network using a leak model [39].
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Table 4. Attributes of the Pipes

Element Description Unit

hour A timestamp representing the time-interval we are currently watching
in the simulation

H:M:S

linkID Unique ID of a link inside the network Not applicable
start_node The source node of the link Not applicable
end_node The target node of the link Not applicable
flowrate The flow rate of the water inside the pipe at the current timestamp GPM: gal/min
velocity The velocity of the water inside the pipe at the current timestamp ft/s

The flow direction within these pipes is determined by the difference in hydraulic head (the internal energy per weight

of water or pump effect), with water flowing from the end with higher hydraulic head to the end with lower head.

Table 5. Attributes of the Nodes

Element Description Unit

hour A timestamp representing the time-interval we are currently watching in the
simulation

H:M:S

nodeID Unique ID of a node inside the network Not applicable
demand Rate of water withdrawal from the network. A negative value is used to

indicate an external source of flow into the junction
GPM: gal/min

head Hydraulic head (i.e., elevation + pressure head) of water in the node of the WDN ft
pressure Measured pressure in the node of the WDN psi
x_pos,y_pos Coordinates of the node meters
node_type A string which tells the type of the node (i.e., “Junction”, “Reservoir”, “Tank”) Not applicable

Each node can be configured with a specific base demand pattern which represents the water request of the user

during the whole simulation changing at a step size of an hour.

The tools analyze the geometric structure of a pipeline system, taking into account various initial
conditions such as pipe roughness and diameter, as well as operational rules. By doing so, it is able
to calculate flows, pressures, and water quality parameters (such as disinfection concentrations
and water age) throughout the network for a specific time period.

By using these tools we generate a suitable dataset to apply the proposed method. To facilitate
data analysis, we have chosen to export physical WDN values evolving during the time into two
“Comma-Separated Values" (CSV) files, the first one which is related to the WDN junctions
(nodes) and includes the physical objects that constitute the distribution system as well as its
running parameters, and the second one which is related to the WDN pipes (links). Table 4
and Table 5 contain the comprehensive set of features and fields associated with the links and
nodes, respectively, as reflected in the provided dataset that is publicly available on our GitHub
page [10].

Specifically, our focus was on the networks illustrated in Figure 6. This network comprises a
total of n = 83 junctions and m = 1 reservoir. Each node within the network can be customized
with a specific base demand pattern, representing the water requirements of the users throughout
the simulation. The demand pattern changes at an hourly interval and is evenly distributed within
a given range. In this study, we examined two scenarios: the first scenario excluded demand con-
figuration for the nodes, allowing water flow throughout the network while preventing any water
spillage. The second scenario involved configuring the nodes to have a demand evenly distributed
within a specified range.

The figure employs two color scales to represent the demand values of the nodes (indicated
by the color of the circle markers) and the flow within the pipes (indicated by the color of the
connection segments between nodes). Both were measured in GPM: gal/min. The reservoir,
identified by the label “7384," is positioned on the left side of the network, with the predominant
flow direction being from left to right. As we move away from the reservoir, both the total demand
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Fig. 6. Selected realistic WDN branch with 83 junctions and one reservoir. Junctions demands and pipes

flows measurements are represented in the figure by color depicted in the two legends scale.

value and the pressure at the junctions decrease due to the demand from the junctions on the left
side. The links correspond to pipes and they are represented with an arrow in order to show the
direction of the water flow.

We conducted a simulation encompassing a one-month running experiment. To ensure the repri-
cability of our experiments, the dataset of this experiment can be found in the publicly available
repository provided in [10].

We now apply the proposed method to this realistic network. We firstly derive the binary ad-
jacency matrix whose generic element Ai j is equal to 1 if there is a link connecting the node i
to the node j. Then we derive the incidence matrix B and the adjacency matrix of the associated
line graph AL as in Equation (1) and rank the nodes in this transformed space according to their
centrality, measured by the pagerank algorithm.

In Figure 7(a) we have the line graph associated to the realistic network, where the color of
each node corresponds to their centrality. It is interesting to focus on the least central nodes,
represented in blue, which correspond to physically isolated nodes and are the most important
nodes for reconstruction.

In Figure 7(b) we report the MSE between reconstructed and ground truth node values as func-
tion of the number of unmeasured nodes in two cases, i.e. the ranking with pagerank centrality and
random sorting. Our findings show that by properly choosing the correct sorting for eliminating
the node values it is possible to have until 73 over 85 unmeasured nodes. In other words, it means
that we can place only 12 sensors on this network made by 85 nodes and we can completely re-
construct the network. We remark that if we randomly choose the sequence of unmeasured nodes,
the MSE severally increases when we eliminate only 37 sensor values.

We now consider the presence of demand values, that means that we add the possibility
that nodes demand water from the network. We compute the adjacency matrix in its ex-
tended expression Aext in Equation 6. In this case, the total number of links is equal to 168,
and consequently, the line graph in the presence of demand values has 168 nodes, shown in
Figure 8.
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Fig. 7. Results of GraphSmart in the EPANET realistic network. In subfigure (a) we have the line graph where

the color of each node corresponds to its centrality, measured by pagerank algorithm. In subfigure (b) we

report the MSE between reconstructed and ground truth node values as a function of the number of unmea-

sured nodes in two cases, i.e., the ranking with pagerank centrality (in black line with nodes highlighted

according to their centrality) and random sorting (in blue).

Fig. 8. Results of GraphSmart to the EPANET realistic network in presence of demand values. In subfigure

(a) we have the line graph where the color of each node corresponds to its centrality, measured by pagerank

algorithm. In subfigure (b) we report the MSE between reconstructed and ground truth node values as func-

tion of the number of unmeasured nodes in two cases, i.e., the ranking with pagerank centrality (in black

line with nodes highlighted according to their centrality) and random sorting (in blue).

We rank the nodes of the line graph according to their centrality and we represent it as color
of the nodes in Figure 8(a). We replicate the MSE analysis in this scenario and we prove that our
ranking enables us to have 71 unmeasured nodes over the 168 proposed locations, instead of 17 by
randomly eliminating node values.

A few remarks on the presented results are in order. Firstly, adding virtual links (and nodes) to
model water demand values does not change the graph topology and for this reason, the number
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of nodes that are unmeasured, given the topology of the network, does not significantly change
in the presence of demands. Secondly, the MSE is a step function, meaning that when the config-
uration of available node values enables the algorithm to reconstruct the water flow, the MSE is
close to zero. Then, as soon as a critical node for the reconstruction is removed the reconstruction
algorithm breaks and the MSE is on the same order of magnitude of the water flow. This consid-
eration motivates the oscillations of the MSE around the maximum value since the reconstruction
algorithm completely fails.

4.3 GraphSmart in the Presence of Perturbations

The results in the previous sections relate to the underlying assumption of deterministic measure-
ments acquired by IoT devices. Here, we consider an extension to the case of noisy measurements
with the aim to investigate the robustness of the approach in a more realistic scenario.

To this aim, we consider a perturbed scenario where measurements are affected by an additive

Gaussian noise at a different Signal-to-Noise Ratio (SNR). In this case, the measured flows ˆ
¯
f

differ from
¯
f for the normally distributed estimation error: ˆ

¯
f =

¯
f +

¯
w , with

¯
w being Gaussian

vector at a defined SNR.
In this context, the reconstruction formulation can be rewritten as follows:

ˆ
¯
f U = B

U+ · B
K · ˆ

¯
f K (7)

We now consider the WDN in Figure 6 with additive Gaussian noise on water flows at different
SNR values: SNR = 30db, 15db, 10db, to then apply the GraphSmart method. In Figure 9 we report
the reconstruction error as function of the number of unmeasured nodes NeU .

We firstly prove the robustness of our algorithm by demonstrating that additive noise until
30 dB does not change the curve with respect to that obtained in absence of noise, in Figure 7(c).
This high level of noise tolerance indicates that the algorithm is able to guarantee high accuracy in
noisy environments. We now consider the cases of SNR = 10, 15 db: we remark that after a first MSE
increase caused by the presence of high noise, it remains stable until it is not possible to correctly
reconstruct the water flows. Also in the noisy scenario, MSE exhibits a step-wise pattern, indicating
that the reconstruction error remains relatively stable by increasing the number of unmeasured
nodes, until a threshold is reached. Then, the reconstruction algorithm fails, and the error increases
to levels similar to those of the flow values.

These characteristics are crucial for real-world applications, especially in environments
commonly affected by noise or similar impairments, as they ensure the algorithm can be actually
applied.

5 IoT Monitoring Scenario for GraphSmart

Our approach is based on an IoT system of water sensors that are placed at the pipe of the WDNs
to collect measurements of the flow in the network.

In terms of the cost of LoRaWAN meter devices, there is a significant variation of prices ranging
from 50 to several hundreds of dollars. However, in our study, we are specifically referring to
devices that are installed in the backbone pipelines of WDNs, where also the installation and
maintenance processes could be complex.

Considering the growing emphasis on energy efficiency, the graph network can be harnessed to
suitable design of sensor placement and data transmission, thereby minimizing energy consump-
tion. The GraphSmart approach preserves the accuracy of network reconstruction while lowering
energy consumption. With the aim of achieving this objective, the process involves the identifica-
tion of critical nodes that offer essential information for flow reconstruction, while simultaneously
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Fig. 9. MSE varying the number of unmeasured nodes (NeU ) for different signal-to-noise-ratio (SNR) values.

minimizing energy consumption by sensors. To evaluate the GraphSmart approach in a LoRaWAN
network communication scenario, we thoroughly examine its energy-related characteristics.

From the power consumption aspect, an ideal IoT chip needs to have very low power consump-
tion during operation, ultra-low deep sleep current, and long-distance communication capability.
The advent of LoRaWAN technology solves the problem of transmission distance, network signal
and power consumption, and is the most cost-effective, which is exactly what we are looking for-
ward to in the field of water meter reading applications [7]. Especially, in this work we focus on a
flow meters deployment.

In the subsequent sections, we begin by presenting the definition of an energy model for the
LoRaWAN flow meter device. Subsequently, we introduce the chosen simulation framework for
conducting our performance evaluation. Building upon this selected simulation framework, we
establish a precise scenario that faithfully aligns with the WDN deployment discussed in the pre-
ceding section, as well as the defined energy model.

LoRaWAN utilizes LoRa modulation, a Chirp Spread Spectrum modulation to facilitate long-
distance, low data rate communication within the sub-1GHz ISM bands. Communication between
sensors and GWs is spread out on different frequency channels and data rates. LoRaWAN uses up
to six different programmable Spreading Factors (SFs): 7, 8, 9, 10, 11, 12. Furthermore, the adopted
bandwidth can be configured: 125 kHz, 250 kHz and 500 kHz (typically 125 kHz for the 868 ISM
band). LoRa devices use a higher SF when the signal is weak or there is strong interference in the
used channel. For instance, if a device is located at a considerable distance from a GW, the signal
becomes weaker and thus requires a higher SF. Utilizing a higher SF results in a prolonged symbol
duration, and consequently, a longer ToA. This has a notable impact on power consumption. In-
deed, higher device energy consumption is associated with a higher SF, while lower consumption is
observed with a lower SF. This difference is mainly due to the transmission duration of each device,
which becomes more substantial when the SF is higher. The choice of the SF represents a trade-off
between communication range and packet duration or power consumption. The task of selecting
the optimal SF value lies with the network server, facilitated by the Adaptive Data Rate (ADR)
module. In this study, we focus on identifying the selection strategy for sensor meters within the
already deployed WDS network, which is characterized by the presence of only two GWs. These
gateways have been strategically placed to provide optimal coverage for all the existing devices.
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Table 6. LoRaWAN Scenario Simulation Parameters for the Realistic

WDN Considered in this Work

Parameter Value

Carrier Frequency (MHz) 863.0
Bandwidth (kHz) 125
Code Rate 4/5
Message size [byte] 20
Message Period 1 packet every 300 seconds
Number of gateway 2
Number of nodes 85
TXPower 14 dBm

Path loss values η = 2.9, σ 2 = 0, Lpl (40m) = −66 dB

Computer modeling and simulation are valuable methods for exploring system performance and
evaluating strategies without costly implementation. Simulation becomes particularly valuable in
IoT scenarios characterized by numerous nodes and large geographical areas. In the context of
LoRaWAN networks, simulation enables the design and evaluation of LoRa-based applications
prior to actual deployment. While various LoRaWAN simulation tools exist in the literature, a
study referenced in [40] identifies the NS-3 network simulator as the most suitable option.

NS-3 not only supports LoRaWAN technology but also offers extensive libraries [41]. NS-3 is
an open-source discrete-event network simulator written in C++ and Python. The NS-3 simulator
supports a wide variety of protocols such as Wi-Fi, LTE, IEEE 802.15.4, SigFox, LoRaWAN, and
further networks.

The integrated LoRaWAN module in NS-3 is designed to meet the requirements of Class A
devices. Class A devices are known for being the most power-efficient among the three available
classes in LoRaWAN (Class A, Class B, and Class C).

LoRaWAN NS-3 module considers N LoRaWAN sensors placed in a 2-dimensional space around
M gateways. In the simulator, the Receiver Signal Strength Indicator (RSSI) value, associated
with the sensor, depends on the distance between the device and the gateway according to the
Lpl (d) path loss model:

Lpl (d) = Lpl (d0) + 10η log

(
d

d0

)
+ χσ [dB] (8)

where Lpl (d0) is the mean path loss at the reference distance d0, η is the path loss exponent and

χσ ∼ N(0,σ 2) is the normal distribution with zero mean and σ 2 variance to account for shadowing.
Ultimately, we activate the channel capture effect to create a more realistic scenario. LoRa [42],

like all orthogonal modulations when different SFs are used, is highly resistant to Gaussian noise
as well as self-interference caused by colliding transmissions at the same SF. Indeed, in the event
of collisions among two or more transmitters, an even small difference of power, is sufficient to
correctly demodulate the strongest colliding signal [43]. This phenomenon, known as ”channel
capture,” has a profound impact on the scalability of LoRa technology, as deploying multiple GWs
can substantially increase the capture probability, thereby enhancing the overall network capacity.

This assumption is reasonable when the cell works in stable conditions, and collisions involving
multiple overlapping frames are rare or have a dominant contribution in the interfering power as
introduced in [44], [45].

Unless otherwise specified, Table 6 shows the scenario parameters used in our simulations. To
support the selection of a suitable path loss model, which includes a representative value for the
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Table 7. Current Consumption of the Devices in

Different Operating Modes

Device Transmit Receive Sensing Sleep

FiPy 170 mA 120 mA 110 mA 50 μA

TTGO 111 mA 61 mA 51 mA 30 μA

STM32WL55JC 28 mA 11 mA 1.4 mA 1.5 μA

propagation coefficient, we considered the study in [46]. Based on their findings, the value of η
equal to 2.9 was chosen, as it is the most representative value among those listed in the study
cited above.

LoRaWAN encompasses three categories of end devices, each with distinct characteristics. Class
A is specifically designed for metering applications and consumes minimal energy and it is con-
sidered for this study. Thus, we do not consider downlink (DL) transmissions, which involve
messages sent from gateways to end devices. As a result, sensor devices do not receive downlink
data. We believe this limitation is relatively minor, given that the majority of the traffic in the
selected scenario will be in the uplink (UL) direction.

In our research, we run experiments within a simulation tool to assess performances across dif-
ferent selected rankings. By profiling real device energy consumption, we accurately depict the
energy usage of individual device components. We focus on a LoRaWAN Class A network configu-
ration, characterized by end devices always initiating transmissions in a completely asynchronous
manner. One of the key system parameters in our scenario is the reporting periodicity denoted as
T , where each end device is allocated a unique initial reporting delay, following which it generates
a new packet every T seconds.

To maximize both the battery life of sensors and overall network capacity, LoRaWAN can man-
age the data rate and SF output for each sensor individually by means of an ADR scheme [47].
This mechanism determines the transmission parameters (SF and transmit power) of the device
based on the estimation of the link budget in the uplink and the threshold RSSI for decoding the
packet correctly at the current data rate. When the data rate is not achievable the ADR reduces it
(by increasing the SF) to provide connectivity to the device. Finally, the network will be optimized
to use the fastest data rate possible for each sensor.

In the applied scenario, at the onset of the simulation, each sensor receives an SF assignment
according to the following procedure. Initially, we calculate the power level received by each gate-
way from the sensor. Subsequently, we select the gateway that records the highest received power
and determine the SF based on that power level. In this assignment, we ensure that the sensor is
assigned the lowest SF that surpasses the sensitivity of the gateway. We refer to this procedure as
ADR in the next part of our work. The goal is to optimize communication between the sensor and
the gateway while maintaining efficient data transmission.

For what concerns the energy model, a LoRaWAN library for Class A in NS-3 has been previously
developed by [48], [49], and [50]. In this research, we perform an extensive study of LoRaWAN
sensors in terms of energy consumption. We conducted field experiments to evaluate the current
consumption in the four operating modes (sensing, transmitting, receiving, and sleeping). In par-
ticular, we estimated the power consumption of three devices, which include the SX1276 LoRa
transceiver. We used a Tektronix MSO 2024B oscilloscope with TCP0020 current probe to measure
the current absorbed by the sensors, and we set supply voltage at 3.3 V, devices transmission power
was set at 25 mW (14 dBm).

The average current consumption of the three considered sensors in all the four mentioned
states is outlined in Table 7. In particular, the table shows that in the three active states (transmit,
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receive, sensing), the power consumption of the STM32WL55JC device is lower than the FiPy
and TTGO devices. The reason for this difference is that the first two are systems specifically
designed for prototyping. As such, they include additional components that enhance consumption.
After evaluating the energy consumption characteristics of the devices, the decision was made
to concentrate the analysis exclusively on the STM32WL55JC device [51]. Indeed, this ultra-low
power device is highly suitable for large-scale green IoT deployment [52]. Thus, we use the results
to adapt the available energy consumption module in NS-3 to enable the evaluation of LoRaWAN
networks in terms of energy efficiency.

6 GraphSmart Integrated Performance Evaluation

In this section, we present the advantage results of the GraphSmart approach, where we include
the energy aspect, on the synthetic WDN presented in Section 4.2. To this goal, we leveraged the
NS-3 simulator module and conducted a series of assessments to gauge the performance metrics
of the IoT network. These tests encompassed evaluations of network performance, GWs coverage
and energy consumption.

6.1 WDN LoRaWAN Monitoring Scenario

The primary objective of the initial simulation campaign was to assess the impact of the selected
SF on energy consumption. Energy consumption was determined by monitoring the battery level
of the devices, initially set at 10,000 joules. Each device transmitted data at an average interval of
5 minutes and the battery level of each device was observed over a 24-hour experimental period.
The exact interval time was uniformly distributed within the range of 4 to 6 minutes, with the
value extracted at the end of each transmission. Finally, we calculated the total energy expended
across the entire LoRaWAN network by summing up the energy consumption of the network
devices.

Our focus in this study revolves around monitoring the flow rate within each pipe. To achieve
this, we position a sensor at the end of every link. As a result, the number of devices exceeds
the number of junctions, since multiple pipes may terminate at the same junction. In such cases,
multiple devices are positioned at the same location to monitor the flow at the end of multiple
pipes. In the end, we placed 85 monitoring LoRaWAN devices.

Lastly, based on the chosen network topology, we determine the optimal placement of GWs to
efficiently collect the monitoring data. The considered GWs positions are shown in Figure 10(a)
(triangular markers are the GWs) together with the coverage area when SF=12 (maximum coverage
area) is configured (represented by big blue circles). According to the coverage area, each GW is
able to receive only a subset of the total devices measurements. Figure 10(a) also shows the location
of the nodes and the SF values assigned by the ADR. For instance, the devices represented by the
black dots had an SF of 7 and were placed near the GWs, while it assigns higher SF values to devices
farther from the GWs, such as the devices represented by the yellow dots, which had an SF of 12.
In the figure, the legend exactly depicts the color assigned to each SF. Furthermore, Figure 10(b)
further analyzes the network’s energy consumption as a function of the number of inactive or
undeployed devices. This analysis considers scenarios where Adaptive Data Rate (ADR) is either
enabled or disabled. When ADR is disabled, all devices are configured to use the same spreading
factor (SF). Multiple simulations were conducted with devices using a fixed SF ranging from 7 to 12
and with ADR enabled. The objective was to evaluate the impact of the selected SF on the energy
efficiency of the entire network. In order to conduct the experiment, we randomly removed devices
following their initial order, with a regular interval of five steps.

Higher network energy consumption was observed with SF12 configuration for the devices,
while lower consumption was observed with SF7; this is due to the transmission duration of each
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Fig. 10. Devices deployment and SF values assigned by ADR in the proposed realistic scenario (a). Total

energy consumption in joule of the network as a function of the number devices present (b).

Fig. 11. DER as a function of the number of EDs in three representative scenarios, enabled ADR, all devices

configured with SF=12 and SF=7 (a). Frequency distributions of devices numbers based on their consumption

in the presence of ADR (b).

device, predominant when the SF is higher. The line depicted by triangular markers corresponds
to the scenario where ADR is enabled. In this case, the SF configuration of the devices is set as
shown in Figure 10(a). It should be noted that this particular scenario does not represent the
optimal energy efficiency. However, it is important to observe that low consumption with SF set
to 7 (optimal energy efficiency) does not necessarily imply optimal network efficiency. Indeed, it
is also crucial to evaluate the packet delivery ratio.

To this end, we extract the probability of correctly receiving a packet, which is a typical metric
considered for characterizing LoRaWAN systems (often called Data Extraction Rate - DER) of
the main three configured scenarios. Specifically, Figure 11(a) illustrates the trend of DER as a func-
tion of the number of devices in the network in three different scenarios: in the presence of active
ADR (up triangular markers), when all devices are set to SF7 (down triangular markers), and SF12
(circular marker). Based on these configurations, it can be observed that the DER parameter for
SF7 and SF12 drops below 60% when the two gateways serve more than 75 devices. Both scenarios
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negatively impact the performance of the devices, albeit for different reasons. In the case of SF=7
configuration, a significant number of devices are left out of coverage, resulting in a lower number
of packets being received from gateways. On the other hand, when SF=12 is configured, the longer
duration of the packets leads to multiple collisions, thereby reducing the probability of successful
reception.

Conversely, with ADR active, the DER remains above or equal to 90%, allowing for a maximum
number of serviceable devices up to 85. By comparing Figure 10(b) and Figure 11(a), results indicate
that the ADR increases data delivery success within the network while maintaining an acceptable
energy consumption, thereby increasing network energy efficiency.

To better visualize the consumption of the network devices, Figure 11(b) shows the frequency
distribution of network devices according to their 24-hour energy consumption in the presence of
ADR. Specifically, it is evident that the majority of devices within the studied network exhibit a
daily energy consumption of less than 20 joules, with these devices predominantly utilizing lower
SF values. Conversely, a subset of devices, approximately 18 out of the total 85, exhibit higher
daily energy consumption, attributed to their configuration with SF values of 11 and 12. We note
that in LoRaWAN, the duration of a packet doubles as the SF value increases by one unit. This
exponential increase in duration is the reason behind the corresponding exponential increase in
power consumption.

The introduction of ADR once again demonstrated notable improvements in energy efficiency.
For instance, if all devices had been consistently configured with an SF of 12, the entire set of
85 devices would have incurred an approximate daily energy consumption of 71 joules per device,
corresponding to 6,035 joules when considering the entire network. As a result, it can be concluded
that the adoption of ADR represents the optimal trade-off between energy consumption and net-
work throughput in this context. Nevertheless, energy efficiency can be further enhanced through
the GraphSmart approach, as discussed in the following subsection.

6.2 GraphSmart Energy Saving

This subsection presents a comprehensive analysis of the four ranking strategies presented in
Section 3.3. This analysis focuses on evaluating the performance of the GraphSmart strategies
in terms of both flow reconstruction MSE and energy efficiency. The goal is to identify the
most effective optimization strategy for selecting an optimal sensor deployment in the WDN
scenario.

We consider the MSE as a measure of reconstruction performance. We have demonstrated in
Section 4.2 that it performs as a step function, whose values rapidly change in a critical condition
when a necessary node value is unmeasured. To stress this point, we report in Figure 12 the
sensor deployment configuration at the critical step. It means that the presented figure is the
configuration just before the algorithm breaks. We have the line graph in subfigure (a) and the
original graph in subfigure (b). In blue we have nodes corresponding to active sensors while in
red we have unmeasured values to be reconstructed. It is interesting to remark that the following
removed link, that breaks the algorithm, is the 8644− 8646. We remark that this condition reflects
the optimal sensor deployment suggested by the algorithm because it corresponds to the mini-
mum set of active sensors that maintains the reconstruction accuracy and minimizes the energy
consumption.

We compare the results of four ranking strategies and their impact on the two key metrics:
MSE and energy consumption. By evaluating the performance of each strategy, we aim to provide
insights into the most suitable approach for achieving an optimal deployment. To facilitate the
analysis, we present a figure that visually depicts the results of the MSE and energy consumption
for each ranking strategy.
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Fig. 12. The sensor deployment configuration at the critical step. In subfigure (a) we have the line graph

associated to the EPANET realistic network. In red we have unmeasuring nodes (i.e., inactive or sensors that

can be not deployed at all) while in blue we have nodes corresponding to active sensors. Links needed to

reconstruct the signal are identified through the start and end node. In subfigure (b) we report with the same

colour code the configuration in the original graph and we observe the link position of the essential nodes

(represented in blue) for the reconstruction algorithm.

Figure 13 illustrates a comparison between the MSE of flow reconstruction and energy
consumption for the four rankings, pagerank, closeness, betweeness and random. Two subplots
sharing the same x-axis are represented in the figure. The first subplot shows the MSE error of the
network flow reconstruction versus the network energy consumption; the MSE is expressed as a
logarithmic scale and the error is reduced when the energy consumption increases. The network
energy consumption information is reported in the sharing axis.

The second subplot provides the number of unmeasuring devices as function of the energy con-
sumption. We remark, once again, that those sensors can be deployed but inactive or not deployed
at all. Intuitively, the energy consumption is high when few sensors are removed, while it decreases
when the number of unmeasured nodes increases. Both the subplots show four lines, one for each
ranking modality applied to remove sensors from the network.

With the aim to better understand the energy-reconstruction performance of GraphSmart we
can discuss Figure 13 in its entirety. Starting from the first subplot, we can fix a tolerated value
for the MSE and we can point to the correspondent logarithmic value (as shown by the arrows)
in the top figure. Then, we can derive the network energy consumption associated with the fixed
error value for the specific ranking procedure that we are considering. Finally, we can read the
number of sensors that can be turned off on the y-axis of the bottom figure in correspondence of
the derived network consumption.

Our findings show that pagerank is the method that produces the best-sorted devices list. Indeed,
after fixing the value of the tolerated error, the pagerank sorting algorithm enables us to turn off
the largest number of devices. This indicates that using pagerank as an optimization strategy for
choosing the optimal sensors deployment in the WDN scenario yields the best results in terms of
both MSE and energy consumption. In particular, Table 8 highlights that the pagerank algorithm
stands out as the best in terms of energy savings. This ranking is capable of reconstructing the
water network flow with only 20 installed devices and remarkable energy savings of 73.01%.

Taken together, we demonstrate that GraphSmart is an effective approach for optimizing the
deployment of resources in a WDN, and it is able to balance flow reconstruction accuracy and
energy efficiency.
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Fig. 13. Integrated results of efficient and accurate GraphSmart. The top subfigure shows the MSE in log-

arithmic scale vs. the energy consumption of the network. The bottom subfigure presents the number of

sensors that can be removed as function of the network energy consumption. The two figures share the

same x-axis and they can be read together. We can select the tolerated MSE (represented with the dot line)

and derive the network consumption associated to the centrality selected algorithm. Following the arrows

on the left we obtain the number of sensors that can be removed to obtain the desired reconstruction error.

In grey, we have the pagerank and in blue, the random cases.

7 On the Scalability and Computational Complexity of GraphSmart Reconstruction

Algorithm

7.1 Scalability

In order to test the scalability of the proposed GraphSmart method, we test it on a large WDN,
made by N = 815 nodes and Ne = 1125 pipes, that is represented in Figure 14(a). We replicate
all the steps of the algorithm by firstly deriving the line graph in Figure 14(b). Then, we compute
the MSE between reconstructed values and ground truth in order to quantify the ability of the
approach to correctly monitor the water distribution network in this large scenario. Our findings
show that the MSE increases as the number of unmeasured nodes increases in a similar way to
Figure 7(c). Indeed, we report a step-wise behavior of the MSE according to which it is possible to
derive the desired number of nodes that can be inactive while keeping the needed reconstruction
accuracy. For the sake of comparison, we report the MSE results obtained for a random selection
of nodes with the blue line of Figure 7(c). From the observation of the random node strategy for
the reconstruction, we conclude that the optimal ranking of nodes strongly impact the network
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Table 8. Ranking Comparison with Associated Energy Saving

Percentages

Ranking Installed sensor devices Energy saving (%)

Random 48 48.81
Betweenness 48 49.35

Closeness 48 58.11
Pagerank 20 73.01

Fig. 14. Results of GraphSmart to the realistic network with N = 815 and Ne = 1125. In subfigure (a) we have

the original graph with the scale of the deployment in km. In subfigure (b) we have the line graph where the

color of each node corresponds to its centrality, measured by pagerank algorithm. In subfigure (c) we report

the MSE between reconstructed and ground truth node values as function of the number of unmeasured

nodes in two cases, i.e., the ranking with pagerank centrality (in black line with nodes highlighted according

to their centrality) and random sorting (in blue).

monitoring and the high dimensionality of the WDN requires a careful node selection method,
which is well achieved with pagerank centrality ranking.

7.2 Computational Complexity

The computational complexity of the GraphSmart reconstruction algorithm, that is written in the
expression:

¯
f U = BU+ · BK ·

¯
f K , depends on:

— the pseudo-inverse computation of the matrix BU , that is o(N 2 ·Neu ), assuming that N≤ Neu ,
otherwise it is o(N · N 2

eu ) ;

— the matrix multiplication between BU+ and BK is o(Neu · N · Nek );
— the vector-matrix multiplications, that is o(Neu · Nek ).

The dominant term of the computation complexity of the GraphSmart algorithm is the pseu-
doinverse of BU+. In order to investigate the behavior of this term, we represent it in the plot
behind that corresponds to the new plot of Figure 15

This figure shows the behavior of the computational complexity of the dominant term (the
pseudo-inverse) for a WDN consisting of N = 815 nodes and Ne = 1125 links. The entire figure is
divided into two regions by a vertical dashed line at Neu = N = 815. The area to the left of this
line is shaded in orange, indicating the complexity region where the number of unmeasured nodes
(Neu ) of the line graph GL (Neu ) is less than the number of nodes N , while the area to the right
is shaded in light green, representing the complexity region where the number of unmeasured
nodes is Neu > N . This figure represents the mathematical shape of the computational cost of
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Fig. 15. Computational complexity varying the number of unmeasured nodes.

Table 9. Computational Time for Three Conditions of

Neu < N , Neu = N and Neu > N , that Respectively

Correspond to Neu = 600, Neu = 815, and Neu = 950, that are

the Points Associated to the Red Asterisks in Figure 15

WDN Neu < N Neu = N Neu > N
N = 815, Ne = 1125 0.22 s 0.54 s 0.58 s

The computational times are obtained with Intel(R) Core(TM)

i5-7200U CPU @ 2.50 GHz, 2712 Mhz, 2 cores, 4 logical processors.

the dominant term of GraphSmart but we also compute the computational time for the points
represented with red asterisks in the plot and we report them in the following table.

Table 9 reports the computational time for Neu = 600, Neu = 815, and Neu = 950, that respec-
tively corresponds to Neu < N , Neu = N , and Neu > N .

Analyzing the results in Table 9, it is possible to conclude that even in the presence of a network
made by more than a thousand of flow values to be reconstructed, computational times are below
or equal to 500ms (computational times are obtained with Intel(R) Core(TM) i5-7200U CPU @ 2.50
GHz, 2712 Mhz, 2 cores, 4 logical processors). This is compatible with reconstruction operations
that can be implemented by water operators to accurately monitor the WDN. Let us remark that
it is always possible to cluster the network in order to analyze in parallel the sub-networks with
the aim to further improve the computational time.

8 Conclusions and Future Work

The main purpose of this work is to introduce a novel method to optimize the monitoring of Water
Distribution Systems (WDSs) by an effective IoT sensor placement. WDSs consist of physical pipes
enabling the water flow and IoT sensors measuring features such as flow rates, pressure levels, and
water quality parameters. The hydraulic connectivity between nodes and pipes can be modeled
as a graph by possibly adding other physical properties, such as the resistance or the diameter of
pipes. In this scenario, sensor measurements acquired by an IoT network can be modeled as signals
defined in a networked domain.

In this paper, we analyze the line graph associated with the physical graph and we introduce
a graph signal processing-based approach to reconstruct the flow using a reduced number of
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sensors. Specifically, we took into consideration several node centrality measures for compar-
ison’s sake and we demonstrate the pagerank centrality computed in the line graph is able to
optimally identify which sensors are not needed and can be switched off. In comparison with
the alternative metrics, pagerank enables the accurate reconstruction of the water flow with
the minimum set of IoT measures. The proposed approach, named GraphSmart, is tested with
numerical simulations performed in a realistic LoRaWAN WDS scenario. We demonstrate that
the water flow is accurately reconstructed by strategic placement of a reduced number of sensors,
leading to significant energy savings, i.e., around 73%. The MSE shape also constitutes a way to
practically determine the number of sensors that have to be necessarily activated or deployed in
the network: if only a subset of the nodes are selected for flow reconstruction, starting from the
least central ones and in order of increasing centrality, the GraphSmart MSE intrinsically exhibits
a step-like behavior, so that for a given number of measurements the MSE drastically diminishes;
for a larger number of measurements, the MSE still diminishes, with a much slower slope. This
behavior, observed on networks of different sizes, and on different noise conditions, is the reason
for identifying an MSE-based threshold. Specifically, the threshold can be selected as the number
of nodes for which a slope discontinuity is observed.

Our study faces real-world challenges in the sensor deployment. Indeed, the LoRaWAN deploy-
ment scenario influences factors such as battery life or application scale. With the aim to manage
those critical aspects, we use the Adaptive Data Rate (ADR) modules and, in future work, strategic
gateway placements will be investigated. We remark that we tested our algorithm on several
WDNs and GraphSmart reconstruction algorithm always finds a reduced subset of required
sensors. This enhances network capacity by reducing measurement points, which corresponds to
a decreased network traffic and limited maintenance needs. Our monitoring strategy is resilient
to measurement losses since it ensures robustness in reconstructing unmeasured points.

The GraphSmart method has been applied to a realistic network, assuming that the IoT mea-
surements are repeated at a pace related to the WDS stationarity interval. In future work, we can
further reduce the number of IoT sensors by designing joint subsampling of the measurements
both in the time and space domains. This can be accomplished by a multilayer vertex-time repre-
sentation of the WDS network, where it is possible to jointly select samples in the vertex and time
domain. This would extend the analysis on GraphSmart sensor displacement to identify the time
resolution of IoT devices readings. Future work will address the analysis of a multilayer network
representing the physical flow constraints along time, in order to identify the location and timing
of IoT readings and improve the WDS flow reconstruction accuracy. From the perspective of the
wireless network, our plan is to incorporate the optimization of GW deployment into the approach
presented in this work.

Taken together, the GraphSmart method offers versatile and insightful mapping of water distri-
bution networks. By encompassing topology, hydraulic characteristics, and advanced optimization
techniques, our proposed approach contributes to a holistic understanding of the network’s com-
plexities, supporting endeavors to enhance efficiency, accuracy, and energy conservation within
water distribution systems. In conclusion, GraphSmart represents a potentially useful tool for wa-
ter operators that currently face problems related to water scarcity.
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