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A B S T R A C T

In this paper we establish the existence of one bounded periodic weak solution for a nonlinear
parametric differential problem via variational methods.

1. Introduction

The development of mathematical models of neurons for potential applications in artificial intelligence marks a significant
advancement in our understanding and replication of brain function. As the fundamental units of the nervous system, neurons
operate in complex, highly interconnected ways, making their study essential for the progress of AI technologies. Accurate
mathematical models enable the simulation of neuronal behavior, offering new insights into processes like information processing,
learning, and memory (see [1,2]). A building block of this framework is given by single neuron models, whose behavior is usually
described by nonlinear ordinary differential equations (ODEs). A deep understanding of how a single-cell takes part to the whole
process of propagating the information is then of fundamental interest. Several models have appeared in the literature (see for sake
of simplicity [3,4] and references therein) and the most successful example is the Hodgkin–Huxley model for cell excitability [5].
These results concern differential models of the first order, whereas Wheeler and Schieve [6] improved the Hopfield equation in [7]
adding an inertial term. Therefore, with the inclusion of inertia, the new master neuron equation becomes a second order differential
equation.

In this paper, we study the existence of a 𝑇 -periodic solution for the following class of nonlinear differential problem
{

−(𝑝(𝑡)𝑢′(𝑡))′ + 𝑞(𝑡)𝑢(𝑡) = 𝜆𝑓 (𝑡, 𝑢(𝑡)) in ]0, 𝑇 [,
𝑢(0) − 𝑢(𝑇 ) = 𝑢′(0) − 𝑢′(𝑇 ) = 0,

(P)

where we assume the following assumption

(H) 𝑇 , 𝜆 are positive constants, 𝑝, 𝑞 ∈ 𝐿∞([0, 𝑇 ]) are such that 𝑝(0) = 𝑝(𝑇 ), ess inf [0,𝑇 ]𝑝 > 0, ess inf [0,𝑇 ]𝑞 > 0 and 𝑓 ∶ [0, 𝑇 ] × R → R
is 𝐿1-Carathéodory.

Our approach is based on critical point theory and in particular we apply a local minimum theorem established by Bonanno [8].
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2. Variational framework

Let 𝐿2([0, 𝑇 ]) be the classical Lebesgue space equipped with the usual norm ‖ ⋅ ‖2 and denote by 𝐶∞
𝑇 the space of indefinitely

ifferentiable 𝑇 -periodic functions from R to R. Given 𝑢 ∈ 𝐿1([0, 𝑇 ]), we say that 𝜑 ∈ 𝐿1([0, 𝑇 ]) is the weak derivative of 𝑢 if

∫

𝑇

0
𝑢(𝑡)𝑣′(𝑡)d𝑡 = −∫

𝑇

0
𝜑(𝑡)𝑣(𝑡)d𝑡 for all 𝑣 ∈ 𝐶∞

𝑇 ,

and we denote 𝑢′ = 𝜑. Following the notation in the book of Mawhin-Willem [9], we denote with 𝑊 1,2
𝑇 the periodic Sobolev space

defined by

𝑊 1,2
𝑇 = {𝑢 ∈ 𝐿2([0, 𝑇 ]) ∶ 𝑢′ ∈ 𝐿2([0, 𝑇 ])},

ndowed with the usual norm ‖𝑢‖1,2 =
(

‖𝑢‖22 + ‖𝑢′‖22
)
1
2 . It is well known that 𝑊 1,2

𝑇 is a reflexive Banach space and 𝐶∞
𝑇 ⊂ 𝑊 1,2

𝑇 . We
assume that assumption (H) holds and we indicate with 𝐻1

𝑇 the Hilbert space 𝑊 1,2
𝑇 with the inner product

⟨𝑢, 𝑣⟩ = ∫

𝑇

0
𝑝(𝑡)𝑢′(𝑡)𝑣′(𝑡) d𝑡 + ∫

𝑇

0
𝑞(𝑡)𝑢(𝑡)𝑣(𝑡) d𝑡,

for all 𝑢, 𝑣 ∈ 𝐻1
𝑇 , which induces the following equivalent norm

‖𝑢‖ =
(

∫

𝑇

0
𝑝(𝑡)|𝑢′(𝑡)|2 d𝑡 + ∫

𝑇

0
𝑞(𝑡)|𝑢(𝑡)|2 d𝑡

)

1
2
.

lso, it is known that 𝐻1
𝑇 is compactly embedded in 𝐶([0, 𝑇 ]) and

‖𝑢‖∞ ≤ 𝛼̄‖𝑢‖ for some 𝛼̄ > 0. (1)

n particular, setting 𝑝− = ess inf 𝑡∈[0,𝑇 ]𝑝(𝑡) and 𝑞− = ess inf 𝑡∈[0,𝑇 ]𝑞(𝑡), by [10, Proposition 2.1] we have a possible numerical estimation
of the embedding constant

𝛼 =

√

𝑝− + 𝑇 2𝑞−
𝑇 𝑝−𝑞−

. (2)

Although 𝛼 may not be the best constant for inequality (1), it is useful for our study. Put 𝐹 (𝑡, 𝑥) = ∫ 𝑥
0 𝑓 (𝑡, 𝑠) d𝑠 for every

(𝑡, 𝑥) ∈ [0, 𝑇 ] × R and consider the functionals 𝛷,𝛹 ∶𝐻1
𝑇 → R defined as

𝛷(𝑢) = 1
2
‖𝑢‖2, 𝛹 (𝑢) = ∫

𝑇

0
𝐹 (𝑡, 𝑢(𝑡)) d𝑡,

for all 𝑢 ∈ 𝐻1
𝑇 . Therefore, the so-called energy functional related to problem (P) is given by 𝐼𝜆(𝑢) = 𝛷(𝑢) − 𝜆𝛹 (𝑢) for all 𝑢 ∈ 𝐻1

𝑇 .
tandard computations show that 𝛷 and 𝛹 are 𝐶1-functionals and one has

𝐼 ′𝜆(𝑢)(𝑣) = ∫

𝑇

0

(

𝑝(𝑡)𝑢′(𝑡)𝑣′(𝑡) + 𝑞(𝑡)𝑢(𝑡)𝑣(𝑡)
)

d𝑡 − ∫

𝑇

0
𝑓 (𝑡, 𝑢(𝑡))𝑣(𝑡)d𝑡,

for all 𝑢, 𝑣 ∈ 𝐻1
𝑇 . In this paper we are interested in the existence of weak solutions for problem (P).

Definition 1. A function 𝑢 ∈ 𝐻1
𝑇 is called weak solution of (P) if

∫

𝑇

0
𝑝(𝑡)𝑢′(𝑡)𝑣′(𝑡)d𝑡 + ∫

𝑇

0
𝑞(𝑡)𝑢(𝑡)𝑣(𝑡)d𝑡 = 𝜆∫

𝑇

0
𝑓 (𝑡, 𝑢(𝑡))𝑣(𝑡)d𝑡,

for all 𝑣 ∈ 𝐶∞
𝑇 .

Note that if 𝑢 ∈ 𝐻1
𝑇 , then 𝑢 has a weak derivative 𝑢′ and as a consequence of the Fundamental Lemma in [9], it holds that

𝑢(0) = 𝑢(𝑇 ). Moreover, by the definition of weak solution it follows that 𝑝𝑢′ has a weak derivative, which ensures that 𝑢′(0) = 𝑢′(𝑇 ).
Therefore, if 𝑢 ∈ 𝐻1

𝑇 is a weak solution for problem (P), then it satisfies the boundary conditions. In addition, from Definition 1 it
follows that 𝑢 is a weak solution of (P) if and only if 𝑢 is a critical point of 𝐼𝜆, namely 𝐼 ′𝜆(𝑢)(𝑣) = 0 for all 𝑣 ∈ 𝐻1

𝑇 .
Hence, in order to investigate the existence of solutions for problem (P), we can study the existence of the critical points of the

energy functional. To this aim, our main tool is a local minimum theorem established by Bonanno in [8]. However, we use the
version of the result given in [11, Theorem 2.3].

3. Main results

In this section we present our main result on the existence of at least a non-zero bounded weak solution for problem (P) and, in
particular, we determine an interval of the parameter 𝜆 for which the problem admits such a solution.
2
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Theorem 2. Suppose that (H) holds and assume that there exist two positive constants 𝑐, 𝑑, with 𝑑 < 𝑐, such that

∫

𝑇

0
max
|𝑥|≤𝑐

𝐹 (𝑡, 𝑥) d𝑡

𝑐2
< 1

𝑇𝛼2‖𝑞‖∞

∫

𝑇

0
𝐹 (𝑡, 𝑑) d𝑡

𝑑2
. (h1)

hen, for each 𝜆 ∈ 𝛬𝑐,𝑑 ∶=
]

𝑇 ‖𝑞‖∞
2

𝑑2

∫ 𝑇
0 𝐹 (𝑡,𝑑) d𝑡

, 1
2𝛼2

𝑐2

∫ 𝑇
0 max

|𝑥|≤𝑐 𝐹 (𝑡,𝑥) d𝑡

[

, problem (P) admits at least a non-trivial weak solution 𝑢𝜆 ∈ 𝐻1
𝑇 such

that ‖𝑢𝜆‖∞ < 𝑐 and ‖𝑢𝜆‖ < 𝑐
𝛼 , with 𝛼 given in (2).

roof. In order to apply [11, Theorem 2.3] to the energy functional 𝐼𝜆 = 𝛷−𝜆𝛹 defined in Section 2, we notice that the functionals
and 𝛹 satisfy the required regularity assumptions. So, we first prove that there exist 𝑟 ∈ R and 𝑢̃ ∈ 𝑋, with 0 < 𝛷(𝑢̃) < 𝑟, such

hat
sup

𝑢∈𝛷−1(]−∞,𝑟[)
𝛹 (𝑢)

𝑟
<

𝛹 (𝑢̃)
𝛷(𝑢̃)

. (3)

Set 𝑟 = 𝑐2

2𝛼2 and note that for any 𝑢 ∈ 𝐻1
𝑇 such that 𝛷(𝑢) < 𝑟, by (1) it follows that ‖𝑢‖∞ ≤ 𝛼‖𝑢‖ ≤ 𝛼

√

2𝑟 = 𝑐. Hence, we get

sup
𝛷−1(]−∞,𝑟[)

𝛹 (𝑢)

𝑟
≤

sup
|𝑥|≤𝑐 ∫

𝑇

0
𝐹 (𝑡, 𝑥) d𝑡

𝑟
≤ 2𝛼2

∫

𝑇

0
max
|𝑥|≤𝑐

𝐹 (𝑡, 𝑥) d𝑡

𝑐2
. (4)

Now, let 𝑢̃(𝑡) = 𝑑 for all 𝑡 ∈ [0, 𝑇 ]. Clearly, 𝑢̃ ∈ 𝐻1
𝑇 and 𝛷(𝑢̃) ≤ 𝑑2𝑇 ‖𝑞‖∞

2 , so that

𝛹 (𝑢̃)
𝛷(𝑢̃)

≥ 2
𝑇 ‖𝑞‖∞

∫

𝑇

0
𝐹 (𝑡, 𝑑) d𝑡

𝑑2
. (5)

Combining (4), (5) and (h1), we get that

sup
𝛷−1(]−∞,𝑟[)

𝛹 (𝑢)

𝑟
≤ 2𝛼2

∫

𝑇

0
max
|𝑥|≤𝑐

𝐹 (𝑡, 𝑥) d𝑡

𝑐2
< 2

𝑇 ‖𝑞‖∞

∫

𝑇

0
𝐹 (𝑡, 𝑑) d𝑡

𝑑2
≤ 𝛹 (𝑢̃)

𝛷(𝑢̃)
.

It remains to prove that 0 < 𝛷(𝑢̃) < 𝑟. Clearly, we know that 0 < 𝛷(𝑢̃) ≤ 𝑑2𝑇 ‖𝑞‖∞
2 , so we only need to verify that 𝑑2 < 1

𝑇𝛼2‖𝑞‖∞
𝑐2.

Arguing by contradiction, suppose that 𝑑2 ≥ 1
𝑇𝛼2‖𝑞‖∞

𝑐2 and exploiting this together with the assumption 𝑑 < 𝑐, we obtain

∫

𝑇

0
max
|𝑥|≤𝑐

𝐹 (𝑡, 𝑥) d𝑡

𝑐2
≥

∫

𝑇

0
𝐹 (𝑡, 𝑑) d𝑡

𝑐2
≥ 1

𝑇𝛼2‖𝑞‖∞

∫

𝑇

0
𝐹 (𝑡, 𝑑) d𝑡

𝑑2
,

that is in contradiction with hypothesis (h1). Then, assumption (3) is verified. In order to prove that the energy functional 𝐼𝜆 satisfies
the (PS)[𝑟]-condition, one can follow the proof of [12, Theorem 3.1].

Finally, note that 𝛬𝑐,𝑑 is nonempty because of (h1). So, Theorem 2.3 in [11] ensures the existence of at least a bounded weak
olution 𝑢𝜆 for each 𝜆 ∈ 𝛬𝑐,𝑑 . □

Finally, we provide an existence result for the autonomous problem, i.e. when the nonlinear term does not depend explicitly on
, which is the case of many applications. Therefore, we deal with the following problem

{

−(𝑝(𝑡)𝑢′(𝑡))′ + 𝑞(𝑡)𝑢(𝑡) = 𝜆𝑔(𝑢(𝑡)) 𝑡 ∈ ]0, 𝑇 [,
𝑢(0) − 𝑢(𝑇 ) = 𝑢′(0) − 𝑢′(𝑇 ) = 0,

(AP)

where 𝑔 ∶ [0, 𝑇 ] → R is continuous and nonnegative. In this case, we set

𝐺(𝑥) = ∫

𝑥

0
𝑔(𝑠) d𝑠 ∀ 𝑥 ∈ R and 𝛹 (𝑢) = ∫

𝑇

0
𝐺(𝑢(𝑡)) d𝑡 ∀ 𝑢 ∈ 𝐻1

𝑇 ,

and, arguing as in the proof of Theorem 2, the following result holds.

Theorem 3. Suppose that (H) holds and assume that there exist two positive constants 𝑐, 𝑑, with 𝑑 < 𝑐, such that
𝐺(𝑐)
𝑐2

< 1
𝑇𝛼2‖𝑞‖∞

𝐺(𝑑)
𝑑2

. (h2)

hen, for each 𝜆 ∈
]

‖𝑞‖∞
2

𝑑2

𝐺(𝑑) ,
1

2𝑇𝛼2
𝑐2

𝐺(𝑐)

[

problem (AP) admits at least a non-trivial weak solution 𝑢𝜆 ∈ 𝐻1
𝑇 such that ‖𝑢𝜆‖∞ < 𝑐 and

‖𝑢‖ < 𝑐 , with 𝛼 given in (2).
3
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