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Spatio-temporal analysis of lightning point
process data in severe storms

Nicoletta D’Angelo, Milind Sharma, Marco Tarantino and Giada Adelfio

Abstract This paper deals with the analysis of the 19 May 2013 tornadic supercell
in central Oklahoma, exploiting point process theory to estimate the intensity of
lightning flashes. We develop a computational strategy to fit spatio-temporal Pois-
son models, including external covariates, to understand the role of environmental
spatio-temporal covariates on the occurrence of such lightning events.

Key words: Lightning data, Spatial Statistics, Point processes, Spatio-temporal
analysis

1 Introduction

This paper analyses data from the 19 May 2013 tornadic supercell in central Ok-
lahoma, USA. Per the U.S. National Weather Service (NWS) storm survey reports,
the supercell produced multiple tornadoes throughout its lifetime. The first tornado
had a damage rating of 0 on the enhanced Fujita (EF) scale (McDonald and Mehta,
2006) around 2122 UTC. Subsequently, two more EF1 tornadoes were reported at
2133 and 2153 UTC near Arcadia and Fallis, Oklahoma. The most intense tornado
occurred around 2213 UTC, inflicting an EF3 damage as it passed over the city of
Carney, Oklahoma. A detailed study of the electrical and polarimetric characteristics
of this storm can be found in Sharma et al. (2021). A comparison of the polarimetric
indicators of the updraft intensity with vertical velocity retrieved from dual-Doppler
wind synthesis for the same storm can be found in Wienhoff et al. (2018).
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A lightning mapping array (LMA) can map the initiation and subsequent prop-
agation of a lightning discharge in four dimensions (space-time; x, y, z, and t). A
lightning flash propagates as a bidirectional leader, emitting very high frequency
(VHF) signals from both negative and positive leaders. These signals, falling in the
60-66 MHz frequency range, can be detected by the LMA, which then triangulates
the spatio-temporal location of each VHF source (Rison et al., 1999). Lightning
data can be thought as spatio-temporal point patterns in different ways: (1) raw
VHF source points (can be binned in fixed size time window; too many); (2) flash
initiation centroids (one point per flash); (3) gridded flash products (e.g., flash extent
or flash initiation density). Scenarios (2) and (3) can further be classified as marked
point patterns since we have additional metadata for each flash or each grid point.

Point process methodology, rooted in statistical theory, enables the modelling of
events occurring in space and time, making it an ideal tool for studying flash initia-
tion patterns. In this paper, we exploit point process theory to estimate the intensity
of lightning flash initiation. In particular, the aim of the paper is to understand the
role of environmental spatio-temporal covariates on the occurrence of flash initia-
tion events. To this end, we develop a computational strategy to fit spatio-temporal
Poisson models, including external spatio-temporal covariates.

The structure of the paper is as follows. Section 2 introduces the data. In Section
3 we illustrate the proposed methodology to fit spatio-temporal Poisson processes
depending on external covariates. Then, Section 4 contains the results of the appli-
cation to the lighting data, and the paper ends with conclusions in Section 5.

2 Lightning data and spatio-temporal covariates

Since each lightning flash comprises multiple points, we usually use spatio-temporal
clustering techniques like DB-SCAN (density-based clustering algorithm; Ester
et al., 1996) to cluster points close to each other (in space-time) into lightning flashes
(Bruning, 2015). We retain all lightning flashes comprising ten or more VHF sources
when all sources occur within 3 km distance and 150 ms from the first identified
source in that flash (MacGorman et al., 2008).

Figure 1 (a) shows the plot of the total lightning flash rate (sum of intra-cloud
and cloud-to-ground flashes per minute) with three distinct phases in the lightning
flash rate: (First) Monotonic increase in flash rate between 20:02:00 and 20:30:00
UTC; (Second) Minor fluctuations but stable flash rate of ∼150 flashes per minute
between 20:30:01 and 21:05:00 UTC; (Third) Gradual decline in flash rate from
21:05:01 UTC onwards until the demise of the storm around 22:30:00 UTC. Figure
1 (b) depicts the multitype spatial point pattern, with the number of flashes in each
time frame being 2278, 5687 and 3457, respectively.
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Fig. 1: (a) total count of flashes per minute; (b) multitype spatial point pattern.

We use the surface meteorological variables data from the Oklahoma mesonet as
environmental covariates. For the purposes of this study, we use the 5-minute inter-
val data for dry bulb temperature (TAIR), relative humidity (RELH), and equivalent
potential temperature (THETA E), displayed in Figure 2. All of them are available at
5-minute intervals within a 60 km × 60 km box around the storm centre throughout
the analysis period and were measured at 1.5 m above the ground level.
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Fig. 2: Environmenal spatio-temporal covariates

3 Methodology

We assume that the template model is a Poisson process, with a parametric intensity
or rate function λ (u, t;θ) = exp(θ T Z(u, t)) with spatial and temporal coordinates
u∈W, t ∈ T , unknown prameters θ ∈Θ , and some spatio-temporal covariates Z(u, t)
(D’Angelo and Adelfio, 2023). The log-likelihood is

logL(θ) = ∑
i

λ (ui, ti;θ)−
∫

W

∫

T
λ (u, t;θ)dtdu (1)

up to an additive constant, where the sum is over all points ui in the point pattern x.
For estimation purposes, we use a finite quadrature approximation of the log-

likelihood. Renaming the data points as x1, . . . ,xn with (ui, ti) = xi for i = 1, . . . ,n,
then generate m additional “dummy points” (un+1, tn+1) . . . ,(um+n, tm+n) to form a
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set of n+m quadrature points (where m> n). Then we determine quadrature weights
a1, . . . ,am so that integrals in (1) can be approximated by a Riemann sum

∫

W

∫

T
λ (u, t;θ)dtdu ≈

n+m

∑
k=1

akλ (uk, tk;θ)

where ak are the quadrature weights such that ∑n+m
k=1 ak = l(W ×T ) where l is the

Lebesgue measure. Then, writing yk = ek/ak, the log-likelihood (1) of the template
model can be approximated by

logL(θ)≈ ∑
j

ak(yk logλ (uk, tk;θ)−λ (uk, tk;θ))+∑
k

ak.

Apart from the constant ∑k ak, this expression is formally equivalent to the weighted
log-likelihood of a Poisson regression model with responses yk and means λ (uk, tk;θ)=
exp(θZ(uk, tk)). This means that the model can be maximised using the standard
glm function, but also that covariate values must be known in every data and dummy
point location. As this is typically unfeasible in practice, we first interpolate covari-
ate values at a very fine regular grid, and then attribute to each data or dummy points
the value of the closest point in three dimension. As the covariate location within
the analysed region is just 205 sites, the interpolation is performed on a 123 = 1728
point grid. Then, the interpolation at a (data or dummy) point location xk is per-
formed through the inverse-distance weighting smoothing procedure of the covari-
ate values Z(x j) at their sampling locations j = 1, . . . ,J. In such a case, the smoothed
value at location xk is

Z(xk) =
∑ j w jZ(x j)

∑ j w j
,

where the weight w j is the j-th element of the inverse pth powers of distance, w =

{w j}J
j=1 =

{ 1
d(xk−x j)p

}J
j=1, with d(xk −x j) = ||xk −x j|| the Euclidean distance from

xk to x j. To fit such a model, the spatio-temporal quadrature scheme is obtained
by defining a spatio-temporal partition of W ×T into cubes Ck of equal volume ν ,
assigning the weight ak = ν/nk to each quadrature point (dummy or data), where
nk is the number of points that lie in the same cube as the point uk. The number of
dummy points should be sufficient for an accurate estimate of the likelihood. We
start with a number of dummy points m ≈ 4n, increasing it until ∑k ak = l(W ×T ).

4 Results

We propose to model the flash lighting data by a Poisson model with a linear predic-
tor including a non-parametric term for spatio-temporal coordinates and parametric
expression for the spatio-temporal covariates, excluding the time phases, as

λ (u, t) = exp( f (u, t)+θ1ZTAIR(u, t)+θ2ZRELH(u, t)+θ3ZT HETA E(u, t))
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where f (·) is a nonparametric function for (u, t) ∈ W ×T , estimated here through
thin plate regression splines (Wood, 2003).

Coefficients Estimate Std. Error z value Pr(>|z|)
(Intercept) -189.342 31.497 -6.011 0.000***
TAIR -5.033 0.689 -7.302 0.000***
RELH -0.893 0.109 -8.224 0.000***
THETA E 1.039 0.161 6.469 0.000***

Table 1: Parametric Coefficients of the fitted Poisson model

The results in Table 1 indicate that even though the individual effects of dry
air temperature and relative humidity tend to have a negative correlation with the
total lightning flash rate, equivalent potential energy (which represents a combined
effect of dry air temperature and humidity) has a mild positive effect. This makes
physical sense since air parcels with higher potential energy being lifted upward by
the storm updraft are more likely to reach cold temperatures and since lightning is
a manifestation of interaction between graupel and ice crystals, both of which are
active between 0 and -40 ◦C, more surface air parcels (with higher energy), reaching
to higher altitudes can increase the lightning flash rate.

5 Conclusions

The analysed dataset represents just one supercell storm (single sample point),
with limited spatiotemporal covariate data. Thereby, the preliminary results pre-
sented here should not be generalized. We plan to expand this study by applying the
methodology developed for this case to a larger dataset representing multiple con-
vective modes in different ambient environments. We would also like to compare
the effect of environmental covariates for thunderstorms that predominantly lower
either positive or negative charges to the ground. Other future paths include explor-
ing more complex models, like the log-Gaussian Cox processes, multitype Poisson
models, and local ones (D’Angelo et al., 2023). Indeed, multitype Poisson models
could be useful to characterize the different phases of the storm by assessing the
significance of the covariates’ random effects and running a test of segregation.
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