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Cushing syndrome (CS), caused by glucocorticoid (GCs) excess, is strictly connected
to onset of different metabolic diseases and impaired wound healing. The source
of excessively high levels of GCs allows the identification of endogenous and
exogenous (iatrogenic) CS. Iatrogenic patients usually receive also anti-metabolites
serving as the foundation to modern steroid-sparing immunosuppressive therapy.
Tissues mainly targeted by CS are bone and fat, both derived from progenitor
cells named mesenchymal stem cells (MSCs). In addition, the pathogenic role of
MSCs in other diseases sharing common properties with CS, such as an altered
inflammatory profile and increased oxidative stress, has been identified. In this light,
MSCs isolated from skin of control healthy subjects (C-MSCs), patients affected by
endogenous CS (ENDO-MSCs), patients affected by iatrogenic CS (IATRO-MSCs)
and patients affected by exogenous CS receiving steroid-sparing drugs (SS-MSCs),
respectively, have been isolated and analyzed. ENDO- and IATRO-MSCs showed a
reduced differentiative potential toward osteogenic and adipogenic lineages compared
to C-MSCs, whereas SS-MSCs re-acquired the ability to differentiate, with a trend
similar to control cells. In addition, MSCs from CS groups, compared to control MSCs,
displayed a reduction in the secretion of cytokines (immune-suppression), a decreased
expression of genes related to wound healing and a dysregulation of the enzymes/genes
related to antioxidant capacity. In conclusion, our results suggest that the hallmarks of
CS, such as wound healing impairment and immunosuppression, are already detectable
in undifferentiated cells, which could be considered a potential therapeutic early target
for control of CS.
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INTRODUCTION

Cushing syndrome (CS) is a clinical condition resulting from
chronic exposure to excessively high levels of glucocorticoids
(GCs) (endogenous or exogenous/iatrogenic). The most
common form of CS is secondary to chronic treatment with
GCs, commonly used for their anti-inflammatory action in
many chronic immune-mediated and inflammatory clinical
conditions. On the contrary, endogenous hypercortisolism
is a rare disease (incidence 1.2−2.4 cases per million/year)
dividing classically into two variants: ACTH-dependent
(70%) and ACTH-independent (30%). The ACTH-dependent
forms are characterized by the hypersecretion of ACTH by
pituitary or, more rarely, extra-pituitary tumors. In ACTH-
independent form, the cause is instead an adrenocortical
tumor (adenoma and carcinoma) and less frequently
a bilateral adrenal hyperplasia (Nieman et al., 2008;
Arnaldi et al., 2012).

Glucocorticoids excess, whatever the etiology, determines
multiple and complex consequences including obesity,
hypertension, diabetes, thromboembolism, osteoporosis
and fractures, myopathy, infections, skin alterations, and poor
wound healing (Arnaldi et al., 2003). Care and control of all
comorbidities should be one of the primary goals during the
diagnosis and long-term follow-up of these patients.

Moreover, the modern therapeutic management of patients
suffering from inflammatory and/or immune-mediated diseases,
is usually based on therapeutic combination of corticosteroids
and steroid sparing agents (methotrexate, mycophenolate
mofetil, and azathioprine), able to reduce the dose of GCs to be
administered to the patient to control the disease and therefore
hinder the emergence of exogenous Cushing.

Tissues mainly damaged in CS include fat and bone (Feldman,
2009), both derived from progenitor cells named MSCs that,
in this light, may be in turn affected by glucocorticoid excess
too. In addition, patients with CS usually show skin atrophy,
difficulty in wound healing and tendency to the formation of
bruises even for minimal/unapparent trauma. Skin fibroblasts of
patients affected by CS are characterized by early degenerative
phenomena leading to atrophy and wound healing impairment,
both in the forms of exogenous and endogenous CS. Detrimental
effects on wound healing may be due also to an excessive ROS
production, caused by prolonged levels of elevated GCs (Dunnill
et al., 2017). ROS act in the recruitment of lymphoid cells to the
wound site and effective tissue repair, when angiogenesis occurs
and in the creation of a microenvironment with bacteriostatic
effects (Dunnill et al., 2017); on the other hand, excessive
production of ROS or impaired ROS detoxification causes
oxidative damage, which is the main cause of non-healing chronic
wounds (Cano Sanchez et al., 2018).

In other skin pathologies characterized by an altered
inflammatory profile and increased oxidative stress, such as
psoriasis and atopic dermatitis, the involvement of MSCs has
been already investigated, and recognized (Campanati et al., 2012,
2017, 2018a). To date, no indications are still available about
the behavior of MSCs derived from skin of patients affected by
endogenous and iatrogenic (exogenous) CS; this works aims to

isolate MSCs from these cohorts of subjects and evaluate their
differentiative potential, wound healing and antioxidant capacity.

MATERIALS AND METHODS

Ethics Statement
All patients provided their written informed consent to
participate to the study, which was approved by the institutional
ethics committees and was conducted in accordance with the
Declaration of Helsinki.

Human Tissue Collection
For MSCs isolation, 12 patients were included into the study and
divided in four groups: 3 controls (C-MSCs, healthy subjects),
3 endogenous (ENDO-MSCs, patients affected by pituitary CS),
3 iatrogenic (IATRO-MSCs, patients affected by exogenous CS),
3 steroid-sparing (SS-MSCs, patients affected by exogenous CS
receiving steroid-sparing drugs). Diagnosis of exogenous CS was
clinically made according to the presence of traditional stigmata
as follows: weight gain, usually presenting as central obesity with
redistribution of body fat to truncal areas and the appearance of
dorsocervical and supraclavicular fat pads and the classic moon
face; plethora, easy bruising, thin skin, striae, myopathy, and
muscle weakness (particularly proximal muscles), susceptibility
to poor wound healing and increased incidence of infection.
Patients with exogenous CS were receiving systemic steroids
for therapeutic control of bullous skin diseases (pemphigus and
pemphygoid) in monotherapy or in association with steroid
sparing agents, and they were all in complete remission for skin
bullous diseases signs and symptoms.

Diagnosis of endogenous CS due to ACTH-secreting pituitary
tumor was made by a trained endocrinologist, according to the
consensus statement and clinical practice guidelines (Nieman
et al., 2008; Arnaldi et al., 2012).

Demographic and clinical data of enrolled patients are
reported in Table 1.

All subjects underwent a skin punch biopsy, which was
taken from the extensor surface of left arm with a 6 mm
sterile cutaneous skin punch biopsy device (Gima, medical
devices, s.r.l. Rome, Italy), after administrating local anesthesia
with 2% lidocain.

Cell Culture
As previously described (Orciani et al., 2011, 2017; Campanati
et al., 2018b), tissue fragments (2–3 mm3) were subjected
to mechanical digestion, placed into 6-well plates containing
MSCGM (Euroclone, Milan, Italy) medium – to enhance the
growth of undifferentiated cells – and then maintained in culture
by using the same medium at 37◦C in 95% air −5% CO2. The
growth medium was changed after 24 h to remove unattached
cells and then replaced with fresh medium twice a week. Cell
morphology was evaluated by phase-contrast microscopy (Leica
DM IL; Leica Microsystems GmbH, Wetzlar, Germany) and
viability was analyzed by an automated cell counter (Invitrogen,
Milano, Italy). All further analyses involved separate assays of the
specimens from each participant up to the first five passages.
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TABLE 1 | Demographic and treatment profile of enrolled patients.

Patients Age Sex Group 24 h Urinary cortisol times × ULN Disease duration (months)

1 59 F C-MSCs

2 63 F C-MSCs

3 67 M C-MSCs

4 51 F ENDO-MSCs 4.5 36

5 49 F ENDO-MSCs 4 30

6 33 F ENDO-MSCs 4 12

Type, dose and duration of steroid treatment

7 65 F IATRO-MSCs Oral Prednisone 25 mg/daily – 24 weeks

8 58 F IATRO-MSCs Oral Prednisone 25 mg/daily – 24 weeks

9 64 M IATRO-MSCs Oral Methylprednisolone 16 mg/daily – 36 weeks

Type, dose and duration of steroid sparing treatment

10 65 F SS-MSCs Oral Prednisone 12,5 mg/daily – 24 weeks Oral Azathioprine 100 mg/daily − 24 weeks

11 69 F SS-MSCs Oral Prednisone 10 mg/daily – 24 weeks Oral Azathioprine 150 mg/daily − 24 weeks

12 59 M SS-MSCs Oral Methylprednisolone 8 mg/daily – 36 weeks Oral Mycophenolate sodium1440 mg/daily – 36 weeks

ULN, upper limit of the normal range.

Characterization of MSCs
According to the criteria identified by Dominici et al. (2006),
cells were characterized by testing their plastic adherence, the
immunophenotype and the multipotency.

For immunophenotyping, 2.5×105 cells were stained for
45 min with fluorescein isothiocyanate (FITC)-conjugated
antibodies (Becton-Dickinson) against: HLA-DR, CD14, CD19,
CD34, CD45, CD73, CD90, and CD105.

For differentiation assay, cells were induced toward
osteocytes and adipocytes using STEMPRO R© Osteogenesis
and Adipogenesis Kits (GIBCO, Invitrogen), respectively
(Orciani et al., 2013). Osteogenic differentiation was assessed
by Alizarin Red staining after 10 days of induction; adipogenic
differentiation was tested by Oil Red staining after 15 days of
induction. Cells cultured in MSCGM alone were used as negative
controls. For the quantification, Alizarin Red was detached by
incubating with 10% cetylpyridinium chloride for 30 min at
RT, then optical density was measured and quantified through
a plate reader (Multiskan GO microplate reader, Thermo
Fisher Scientific).

ELISA of Inflammation-Related
Cytokines
Selected cytokines related to inflammation, IL1-α, IL1-β, IL2, IL4,
IL6, IL8, IL10, IL12, IL17A, IFN-γ, and G-CSF were investigated
by ELISA (Multi-Analyte ELISArray kit, Qiagen, Milan, Italy) as
previously described (Campanati et al., 2017). Briefly, medium
conditioned for 72 h by each sample of MSCs (1 × 105 cells
at passage 5th) was used for the test. Samples were dispensed
into a 96-well microtiter plate and incubated for 2 h at room
temperature. After washing, avidin-HRP-conjugated antibody
was added to the plate and incubated for 30 min. Finally, captured
cytokines were detected by addition of substrate solution. The
OD at 450 nm was determined using a microtiter plate reader.

The level of each cytokine detected in CS groups was
calculated as % of its level detected in C-MSCs; subsequently,
mean± SD from three independent experiments was calculated.

RT-PCR Analysis of the Expression of
Selected Genes
The expression of genes related to wound healing (EGF,
FGF, PDGF, and VEGF), to antioxidant capacity (GCLC,
GSTA1, GSTA2, GSTM1, GPX1, CAT, and GR) and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
κB) was analyzed by Real Time PCR (RT-PCR); total RNA
was isolated from 1 × 106 cells at passage 4 by using 5
PRIME PerfectPure RNA Purification (5 PRIME, Hamburg,
Germany) and retrotranscribed to cDNA (GoScriptTM Reverse
Transcription System, Promega, Italy). All samples were tested
in triplicate with the housekeeping genes RPLP0 and GAPDH
for data normalization. Of these two, GAPDH was the most
stable one and was used for subsequent normalization. After
amplification, melting curves were acquired. Direct detection
of PCR products was monitored by measuring the fluorescence
produced by SYBR Green I dye (EVA Green PCR Master Mix,
Bio-rad) binding to double strand DNA after every cycle. These
measurements were then plotted against cycle numbers. The
parameter threshold cycle (Ct) was defined as the cycle number
at which the first detectable increase above the threshold in
fluorescence was observed.

The amount of mRNA detected in SC patients was calculated
as X-fold respect to C-MSCs (expressed as 1) by the 2−11Ct

method (Lazzarini et al., 2014), where 1Ct = Ct (gene of
interest) – Ct (control gene) and 1 (1Ct) = 1Ct (ENDO-, or
IATRO-, or SS-MSCs) – 1Ct (C- MSCs). X-fold was calculated
for the selected genes in all the twelve samples of MSCs.
Subsequently, mean ± SD from three independent experiments
in triplicates was calculated and displayed. All the primer
sequences are reported in Table 2.

Preparation of Cellular Extracts
Cultured cells were resuspended in phosphate buffered saline
(PBS) containing aprotinin (1 µg/ml), centrifuged at 500 × g for
5 min, at 4◦C, and finally lysed with 10 mM sodium phosphate,
pH 6.0, containing 0.5% v/v Non-idet P40, at 4◦C. After 30 min
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TABLE 2 | Sequence of the primers used in Real Time PCR.

Gene Symbol Forward Reverse

GAPDH 5′-AGCCACATCGCTCAG
ACAC-3′

5′-GCCCAATACGACC
AAATCC-3′

RPLPO 5′-CCATTCTATC
ATCAACGGGTACAA-3′

5′-TCAGCAAGTGGGA
AGGTGTAATC-3′

VEGF 5′-CCTCCGAAACCATGA
ACTTT-3′

5′-ATGATTCTGC
CCTCCTCC TTCT-3′

FGF 5′-AGTCTTCGCCAGGTC
ATTGA-3′

5′-CCTGAGTATTCGGCA
ACAGC-3′

PDGF 5′-TGGAAGTGCAGAG
GTCTCAG-3′

5′-GCGAGGAGGTGTG
GTTTCTA-3′

GCLC 5′-GGAAGTGGATGTGGA
CACCAGA-3′

5′-GCTTGTAGTCAGGAT
GGTTTGCG-3′

GSTA1 5′-GCAGACCAGAGCCATT
CTCAAC-3′

5′-ACATACGGGCAGAAG
GAGGATC-3′

GSTA2 5′-CTGCCCTTTAGTCAAC
CTGAGG-3′

5′-ACAAGGTAGTCTTGTC
CGTGGC-3′

GSTM1 5′-TGATGTCCTTGACCTC
CACCGT-3′

5′-GCTGGACTTCATGTA
GGCAGAG-3′

GPx1 5′-GTGCTCGGCTTCCC
GTGCAAC-3′

5′-CTCGAAGAGCATGAA
GTTGGGC-3′

CAT 5′-GTGCGGAGATTCAAC
ACTGCCA-3′

5′-CGGCAATGTTCTCACA
CAGACG-3′

GR 5′-CCTACCCTGGTGTC
ACTGTT-3′

5′-CCTTTGCCCATTTC
ACTGCT-3′

NF-κB 5′-AATGGTGGAGTCTG
GGAAGG-3′

5′-TCTGACGTTTCC
TCTGCACT-3′

incubation on ice, cell lysates were centrifuged at 13000 × g for
15 min, at 4◦C. Supernatants were then collected and the activities
of the antioxidant enzymes (CAT, GST, GR, Se-dependent and Se-
independent GPX) were analyzed. Total protein concentration
was determined by the Bradford protein assay.

Quantitative Determination of Total
Glutathione
The levels of total glutathione (GSH + GSSG) were measured in
MSCs suspended in 100 µl PBS, deproteinized in 5% sulfosalicylic
acid and 4 mM EDTA. The samples were incubated for 30 min
at 4◦C and centrifuged at 2300 × g, for 2 min. Supernatants
were recovered and assayed spectrophotometrically (at 412 nm)
by using the glutathione reductase (GR) recycling assay in the
presence of 5,5’-dithiobis (2-nitrobenzoic acid) (DTNB), with
a calibration line based upon known concentrations of GSH
(Brigelius et al., 1983). To prevent GSH artificial oxidation during
sample processing, cells were washed twice (1 min each) at
room temperature with PBS containing 5 mM N-ethylmaleimide
(NEM) (Sigma-Aldrich, Milan, Italy), according to an optimized
protocol for the reliable measurement of GSH, GSSG, and
PSSG in cell cultures (Giustarini et al., 2015). The pellet was
resuspended with 1 M NaOH for the quantification of proteins.
The level of total glutathione was expressed as nmol/mg protein.

Enzymatic Activity Assays
Glutathione reductase (GR) activity was measured using the
method described by Carlberg and Mannervik (1975). The

assay evaluates the decrease in absorbance at 340 nm due
to NADPH oxidation during the reduction of GSSG (ε =
−6.22 mM−1

× cm−1). The assay was carried out in 100 mM
sodium phosphate, pH 7.0, 0.1 mM NADPH and 1 mM GSSG.
The activity of GR was calculated by using an extinction
coefficient for NADPH of 6.22 mM−1

× cm−1 and the results
were expressed as nmol of NADP+ per min per mg of proteins.

Glutathione-S-transferase GST) activity was measured
according to the method described by Habig et al. (1974), i.e.,
1-chloro-2,4-dinitrobenzene (CDNB) was used as substrate
and absorbance of resulting products was measured at 340 nm.
Specifically, this colorimetric assay is based upon the GST-
catalyzed reaction between GSH and the GST substrate,
CDNB, which has the broadest range of isozyme detectability
(e.g., alpha-, mu-, pi-, and other GST isoforms). The assay
was carried out in 100 mM sodium phosphate, pH 6.5, 1 mM
CDNB and 1 mM GSH. GST activity (defined as the amount
of enzyme producing 1 µmol of CDNB-GSH conjugate/min
under the conditions of the assay) was calculated using an
extinction coefficient for CDNB of 9.6 mM−1

× cm−1. Results
were expressed as µmol of CDNB-GSH conjugates per min
per mg of proteins.

Glutathione peroxidases (GPx’s) activity was assayed in
a coupled enzyme system, where NADPH is consumed by
glutathione reductase to convert the formed GSSG into its
reduced form (GSH) (Brigelius-Flohe and Maiorino, 2013).
The decrease of absorbance was monitored at 340 nm
(ε = 6.22 mM−1

× cm−1) by using 0.8 mM cumene
hydroperoxide as substrate for the Se-dependent GPx and for
the sum of Se-dependent and Se-independent enzyme forms.
A final volume of 1 ml contained 100 mM potassium phosphate
buffer, pH 7.5, 1 mM EDTA, 1 mM sodium azide (NaN3
for the hydrogen peroxide assay), 2 mM GSH, 0.24 mM
NADPH, 1 unit of GR and 0.5 mM H2O2 or 0.8 mM cumene
hydroperoxide, as substrate.

Catalase (CAT) activity was measured by the decrease in
absorbance at 240 nm (ε = 0.04 mM−1cm−1) due to the
consumption of hydrogen peroxide, H2O2 (12 mM H2O2 in
100 mM potassium phosphate, pH 7.0).

Statistical Analysis
Statistical analysis of data obtained from at least 3 independent
experiments was performed by means of SPSS 19.0 software
(SPSS, Inc., Chicago, IL, United States). All data are reported
as mean± SD.

Statistical analyses included the ordinary one-way ANOVA
test for multiple comparison, and a p-value less than 0.05 was
considered statistically significant.

RESULTS

Mesenchymal stem cells were successfully isolated from
all the 12 patients, sub-grouped into “controls” (C-MSCs),
“endogenous” CS (ENDO-MSCs), “iatrogenic” CS (IATRO-
MSCs) and “steroid-sparing” CS (SS-MSCs). No statistically
relevant difference was found in each cellular group among
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FIGURE 1 | Cell morphology and immunophenotype of MSCs. (A) Phase-contrast images of MSCs derived from skin of control subjects (C-MSCs) and from skin of
patients affected by endogenous cushing syndrome (CS) (ENDO-MSCs), iatrogenic CS (IATRO-MSCs), and iatrogenic CS under treatment with steroid sparing
(SS-MSCs) Scale bar = 100 µm. (B) Representative FACScan analyses of cell-surface antigen expression, as indicated. Solid gray histograms refer to the negative
control (IgG1 isotype control-FITC labeled). No differences were observed between MSCs isolated from the different subgroups.
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FIGURE 2 | Multilineage differentiation of MSCs. Representative images of
differentiation experiments. (A) Osteogenic differentiation after staining with
Alizarin Red. (B) Adipogenic differentiation by Oil Red staining. Scale
bar = 100 µm.

the donors. Therefore, results are reported as mean ± SD
for C-, ENDO-, IATRO- and SS-MSCs in each analysis. For
all the subsequent experiments, MSCs were used at the same
culture passage.

Cell Isolation and Characterization
Cell cultures from the 12 patients showed a fibroblast-like
morphology (Figure 1A).

Isolated cells were plastic adherent in culture, strongly positive
for CD73, CD90, and CD105 and negative for HLA-DR,
CD14, CD19, CD34, and CD45 (Figure 1B) without significant
differences among the subgroups.

When cultured with specific supplements, C-MSCs were
highly able to differentiate in osteoblasts and adipocytes, whereas
MSCs belonging to ENDO- and IATRO- subgroups showed
a very limited differentiative potential. The administration
of steroid sparing agents contributed to preserve the
differentiating ability of MSCs toward adipocyte and osteocyte
lineages (Figure 2).

The quantification of the Alizarin Red staining by
cetylpyridinium chloride confirmed that C- and SS-MSCs
were more able to differentiate toward osteoblasts than ENDO-
and IATRO-MSCs (Figure 3A).

Expression Profile of Inflammatory
Cytokines
The secretion of several cytokines related to inflammation was
evaluated by ELISA.

In general, the level of secreted cytokines was lower in MSCs
derived from CS patients [both affected by endogenous and
exogenous CS] and SS-MSCs than in C-MSCs (Figure 3B). In
detail, the decrease respect to C-MSCs was always statistically
significant except for IL4 and IL10 detected in IATRO-MSCs
and IL8 in ENDO-MSCs. Notably, the expression of IL6
was higher in ENDO- and IATRO-MSCs than in C- and
SS-MSCs.

The clinical use of steroid sparing agents does not produce any
effect on the levels of secreted cytokines from MSCs.

Gene Expression
The expression of selected genes referred to wound healing (FGF,
PDGF, and VEGF) was analyzed by RT-PCR in MSCs derived
from control subjects and from patients affected by endogenous
and exogenous CS (both treated and untreated with SS).

FGF and PDGF genes were lower in CS MSC group compared
to C-MSCs. The expression of VEGF was increased in IATRO-
and even more in ENDO-MSCs compared to C-MSCs; steroid
sparing allowed to maintain conditions resembling those of the
control cells (Figure 4A).

As far as genes related to antioxidant capacity are concerned,
the expression of all selected genes was higher in MSCs derived
from skin of patients affected by endogenous CS than in the other
cellular groups. A significant increase, even if weaker than in
ENDO-MSCs, was observed also in the expression of CAT and
GCLC of ESO- and SS-MSCs, when compared to the C-MSCs. On
the contrary, SS-MSCs showed a reduced expression of GSTA2
and GR (Figure 4B).

Finally, the expression of NF-B was lower in MSCs from
all patients affected by CS than in MSCs derived from control
subjects (Figure 4C).

Total Glutathione Levels Detection
In order to investigate the cellular redox homeostasis in
patients affected by CS, the putative involvement of glutathione
(GSH), the most abundant cellular antioxidant and major
modulator of the intracellular redox status, was evaluated
(Figure 5A). GSH levels were 10-fold higher in patients affected
by exogenous CS in comparison to C-MSCs and ENDO-
MSCs, whereas steroid sparing treatment lead the GSH level
near to the control.

Glutathione Dependent Enzymes
Analysis
In order to assess whether GSH-dependent antioxidant enzymes
were affected by CS condition, the activity of glutathione
S-transferases (GSTs), glutathione peroxidases (GPXs) and
glutathione reductase (GR), as well as of CAT were evaluated in
MSCs derived from the four groups.

In general, all the enzymes showed the same trend: MSCs
isolated from patients affected by endogenous CS reached the
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FIGURE 3 | Alizarin Red staining quantification and secretion of cytokines. (A) Quantification of the Alizarin Red staining by cetylpyridinium chloride. (B) Secretion of
cytokines related to inflammation by ELISA test. The levels measured in C-MSCs were considered as 100% and those detected in MSCs derived from SC patients
accordingly calculated; ∗p < 0.05 MSCs from SC patients vs. C-MSCs.
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FIGURE 4 | Analysis of the expression of selected genes by RT-PCR. The expression levels measured in MSCs from SC groups are considered as X-fold with
respect to C-MSCs (referred as 1). Data are mean ± SD of analyses performed in three different cultures of each group, upon three independent experiments in
triplicates. ∗p < 0.05 MSCs from CS groups vs. C-MSCs. (A) PCR analysis of genes referred to wound healing (FGF: Fibroblast Growth Factor; PDGF: Platelet
Derived Growth Factor; VEGF: Vascular Endothelial Growth Factor). (B) PCR analysis of genes referred to antioxidant capacity (GCLC: Glutamate-Cysteine Ligase
Catalytic Subunit; GSTA1: Glutathione S-transferase A1; GSTA2: Glutathione S-transferase A2; GSTM1: Glutatione S-transferase mu; GPX1: Glutathione peroxidase
1; CAT: catalase; GR: Glutathione Reductase). (C) PCR analysis of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB).
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FIGURE 5 | (A) Amounts of total glutathione (GSH and GSSG in GSH
equivalent) expressed as nmol/mg protein. (B) Glutathione Peroxidase activity
was measured for both Se-dependent enzyme (H2O2) and total GPX (CHP)
activity. (C) Results are reported as mean values ± SD of three independent
experiments. ∗p < 0.05 MSCs from CS patients vs. C-MSCs.

highest values whereas the treatments with the SS restored
conditions more similar to those observed in control cells.
ENDO-MSCs displayed no significant difference in enzymatic
activity when compared to C-MSCs.

In detail, GPXs activity was evaluated in cells through an assay
able to detect both Se-dependent and Se-independent isoenzymes
(CHP) and an assay able to selectively detect only Se-dependent
form. Compared to C-MSC, a significant increase in both
GPXs activities was observed in ENDO-MSCs, whereas steroid
sparing treatment caused a strong reduction (Figures 5B,C).
No significant variations were detected in ENDO-MSCs. These
results indicate that a clear correlation between GPXs activity and
GSH synthesis exists, since both analyses revealed the same trend.

FIGURE 6 | (A) Glutathione-S-transferase (GST), (B) glutathione reductase
(GR), and (C) catalase (CAT) activity was measured by specific enzymatic
assays. Values are reported as mean ± SD of three independent experiments.
∗p ≤ 0.05 MSCs from CS patients vs. C-MSCs.

Glutathione S-transferases analysis showed a
significant increased activity in IATRO-MSCs
compared to C-MSCs and ENDO-MSCs; this
change was completely reset by SS treatment
(Figure 6A).

GR activity and CAT shared the same trend:
IATRO-MSCs reached the highest values, followed
by ENDO- and C-MSCs. The use of SS, in these
cases, did not convey to more physiological conditions
(Figures 6B,C).
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DISCUSSION

Cushing syndrome, caused by glucocorticoid excess, is strictly
connected to the onset of different metabolic complications and
impaired wound healing (Gordon et al., 1994).

The main tissue targets in course of CS are fat and bones
(Feldman, 2009): in these tissues, GCs promote adipogenesis
and inhibit osteogenesis by reducing c-Jun expression and bone
marrow stromal cells proliferation. As these tissues share a
common progenitor that is the MSC it may be postulated that
CS could early affects the properties of MSCs.

In this scenario, the potential early involvement of MSCs in
endogenous and exogenous CS has been investigated. MSC have
been isolated from skin of control healthy subjects (C-MSCs),
patients affected by endogenous (ENDO-MSCs) or iatrogenic CS
(IATRO-MSCs) and patients affected by iatrogenic CS, treated
with steroid combined with steroid sparing agents (SS-MSCs).
MSCs were characterized according to the criteria defined by
Dominici et al. (2006); isolated cells satisfied the three main
criteria: they were plastic adherent, strongly positive for CD73,
CD90, CD105 (negative for HLA-DR, CD14, CD19, CD34,
and CD45) and able to differentiate toward osteogenic and
adipogenic lineages.

One of the most important clinical consequence in course of
all forms of CS is the wound healing impairment, a complex
mechanism that involves different cell types, growth factors and
several cytokines. It is well accepted that GCs are involved
in the impairment of wound healing since GCs act by trans-
repressing the pro-inflammatory cytokines and growth factors
(Schacke et al., 2002; Slominski and Zmijewski, 2017) and by
increasing the production of ROS (Bjelaković et al., 2007) which
lead to oxidative stress and may have detrimental effects on
wound healing (Rodriguez et al., 2008; Schafer and Werner, 2008;
Ponugoti et al., 2013; Dunnill et al., 2017).

In this light, growth factors and secretion of soluble factors
related to inflammation and wound healing, as well as antioxidant
capacity, were evaluated and compared between MSCs derived
from skin of controls and CS patients, respectively.

Firstly, the expression of PDGF and FGF was lower in
MSCs derived from CS patients than in MSCs obtained from
controls, whereas VEGF displayed an opposite trend. These
results are in line with those obtained from others: Beer et al.
(2000) reported a decrease in the expression of PDGF in wound
healing of glucocorticoid-treated mice. Moreover, it has been
observed a FGF reduction in skin wounds of glucocorticoid-
treated animals, which showed a delay in tissue repair that was
reversible after exogenous application of FGF (Brauchle et al.,
1995). The decreased levels of FGF and PDGF detected in
MSCs from CS patients compared to controls correlateed with
the typical impairment of wound healing. Notably, VEGF was
more expressed by MSCs obtained from CS patients, enforcing
previous data reporting higher VEGF circulating levels in patients
with Cushing’s syndrome than those detected not only in healthy
subjects, but also in patients with primary aldosteronism and
essential hypertension (Zacharieva et al., 2004, 2005).

The expression of these genes by SS-MSCs was not
significantly different from that detected in C-MSCs. IL1α, IL1β,

and TNF-α are strongly up-regulated during the inflammatory
phase of healing (Grellner et al., 2000) and their expression
is essential for normal tissue repair: previous works reported
that the expression of these molecules was strongly reduced
after wounding of healing-impaired glucocorticoid-treated mice
(Hübner et al., 1996; Beer et al., 2000). Our results enforce these
previous observations: the level of IL1α, IL1β, and TNF-α were
lower in MSCs from CS groups than in C-MSCs, thus indicating
a potential failure in the inflammatory phase of healing. More
in general, it is well known that GCs suppress cell-mediated
immunity by inhibiting genes that code for IL1, IL2, IL3, IL4, IL5,
IL10, IL12, GM-CSF, and IFN-γ (Brattsand and Linden, 1996;
Leung and Bloom, 2003). MSCs isolated from skin of CS patients
showed a similar profile: the expression of IL2, IL4, IL10, IL12,
GM-CSF, and IFN-γ was lower when compared to MSCs from
control subjects. Treatment with steroid sparing agents did not
produce effects on the secretion of the analyzed cytokines.

Particularly noteworthy, the expression of IL6 was increased
in MSCs from patients with CS, especially in patients with
endogenous CS, where the highest levels were found. Our
findings are in agreement with previous studies reporting
that circulating levels of IL6 are high in patients with overt
hypercortisolism (Paoletta et al., 2011). This inflammation
marker is associated with endothelial dysfunction and increased
cardiovascular risk. Moreover, a direct relationship has been
observed between IL6 in fatty tissue and insulin resistance
in human obesity. Our results confirm that inappropriately
high levels of IL6 in MSCs of CS patients during cutaneous
repair may represent an important pathogenic component of
the inflammatory-related vascular and metabolic complications
associated with glucocorticoid excess (Barahona et al., 2009).

Glucocorticoid-induced osteoporosis is the leading form of
secondary osteoporosis; GCs affect bone through immediate
and sustained decrease of bone formation together with early
and transient increase of bone resorption (Trementino et al.,
2014; Minetto et al., 2019). MSCs from CS patients showed a
reduced ability to differentiate into osteoblasts and this might
reflect the observed decrease of bone formation. Notably, MSCs
from patients treated with steroid sparing agents maintained
a strong ability toward osteogenic differentiation. In addition,
the mechanisms driving bone resorption induced by GCs
are still unclear and contradictory (La Noce et al., 2019);
among the others, IL6 has been suggested to be involved
since it is renowned as a potent osteoclastogenic cytokine,
involved indeed in the pathological bone resorption occurring
in several bone diseases. Previous studies demonstrated that
patients treated with high-dose of GCs had an enhancement
of IL6 and IL6-dependent osteoclastogenesis (Dovio et al.,
2006). Our data are in line with these observations: the
level of secreted IL6 is very notably higher in MSCs from
endogenous CS than in other cell subgroups. Surprisingly,
even if excess of GCs has been often linked to increased
adipogenesis (Lee et al., 2014), MSCs from CS patients show
detrimental ability to differentiate into adipocytes. Previous
studies report that GCs are required for full differentiation
of adipocytes (Chapman et al., 1985), but they focus on
preadipocytes that are already committed cells, unlike MSCs.
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The major mechanism for this immunosuppression is
through inhibition of NF-κB. NF-κB is a critical transcription
factor involved in synthesis of many mediators (i.e., cytokines)
and proteins (i.e., adhesion proteins) that promotes the
immune response, thus it was not surprising that its
expression was significantly inhibited in MSCs derived
from CS patients.

Subsequently, the total glutathione amount as well as
the main glutathione dependent enzymes’ activities were
analyzed. In summary, the amount of total glutathione
as well as the enzymatic activities were up-regulated in
IATRO-MSCs when compared to the others, whereas
C-MSCs and ENDO-MSCs displayed almost the similar
amounts, and the administration of steroid sparing agents
contributed to preserve the global antioxidant capacity.
Glutathione (GSH) is a ubiquitous intracellular peptide
involved in detoxification, antioxidant defense, maintenance
of thiol status, and others (Armeni et al., 2012, 2014;
Scirè et al., 2019).

Our data showed an increase of glutathione levels and
an up-regulation of GCS in IATRO-MSCs compared to
the C-MSCs. These results are in line with others: Lu
(2013) reported an increase in the expression of GLC
by 45–65% (earliest significant change at 4 h) but not
in GSH synthetase, with an increase of GSH up to 50–
70% in cultured hepatocytes treated with hydrocortisone
(HC, 50 nM).

Glutathione homeostasis in the cell is not only
regulated by its de novo synthesis, but also by other
factors such as utilization, recycling, and cellular export.
This redox cycle is known as the GSH cycle and
incorporates other important antioxidant, redox-related enzymes
(Armeni et al., 1997).

The observations that all these molecule/enzymes reached
the highest level in MSCs isolated from skin of patients
with iatrogenic CS reflect different abilities across the cells
types to counteract the oxidative stress. IATRO-MSCs are
still able to counteract the excess of exogenous GCs whereas
MSCs from endogenous CS, normally experienced to elevated
exposure to GCs, have developed mechanisms of adaptation.
When steroid sparing agents were administered, the level of
glutathione decreased and, in turn, the main related enzymes
reduced their activity. These results suggest that the defense
mechanisms against oxidative stress were still responsive and
well-functioning in iatrogenic CS patients treated with steroid
sparing agents.

The analysis of the expression of the related genes gave
different results: ENDO-MSCs expressed higher amounts
of genes than the other cell groups. This discrepancy is
only apparent; it has been previously reported in different
models, ranging from vegetables up to marine organisms,
and mammals (Regoli and Giuliani, 2014; Yang et al., 2014),
that the relationships occurring between transcriptional
and catalytic antioxidant responses are too complex to

hypothesize a direct effect between mRNA and enzyme
activity. Discrepancies in the responses of different antioxidants
are linked to asynchronous activation, displaying different
time-courses of activation both at the transcriptional and
catalytic levels. Great attention should also be focused on
chronic exposures to GCs in endogenous CS patients. During
chronic exposure, antioxidant defense mechanisms develop
adaptive and compensatory mechanisms: at the beginning,
the excess of GCs is counteracted by the induction of the
enzymes that progressively decrease, up to the depletion of
their activity.

In conclusion, the excess of GCs observed in
endogenous and exogenous CS affects the behavior of
MSCs that show the hallmarks of CS, such as the
same cytokines altered expression observed in course
of wound healing impairment, detrimental differentiative
potential, and dysregulated anti-oxidant systems, allowing
in fact backdate the onset of this pathology at the
level of MSC.
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