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Abstract
Ranking and rating methods for preference data result in a different underlying 
organization of data that can lead to manifold probabilistic approaches to data mod-
elling. As an alternative to existing approaches, two new flexible probability distri-
butions are discussed as a modelling framework: the Discrete Beta and the Shifted 
Beta-Binomial. Through the presentation of three real-world examples, we demon-
strate the practical utility of these distributions. These illustrative cases show how 
these novel distributions can effectively address real-world challenges, with a par-
ticular focus on data derived from surveys concerning environmental issues. Our 
analysis highlights the new distributions’ capability to capture the inherent struc-
tures within preference data, offering valuable insights into the field.
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1  Introduction

In the literature on measurement of individual preferences and values, both rat-
ing and ranking score systems are frequently used. In most applications, observa-
tions are typically ranked; however, ratings have desirable executive and statisti-
cal properties. An ongoing debate exists between the proponents of the ranking 
method (Falahee and MacRae 1997) and those of the rating one (Villanueva et al. 
2005).

Ranking data arise when n individuals are asked to order a set of K objects, or 
items (e.g., wines, movies, means of transport, etc.), according to some criterion, 
such as preference, importance and satisfaction. Subjects are required to observe 
all items and to establish their position relative to others, so that items can be 
ordered from the most to the least preferred. In the rating method, subjects are 
asked to assess each object (item) independently of the others, by scoring it on a 
response scale with K ordered categories, such as a Likert scale. The use of rat-
ing scales in measuring attitudes or values is very popular because they are easy 
to understand and less demanding than rankings, both in collecting and analyzing 
data.

Both rankings and ratings are widely used in surveys aiming at investigating 
people’s opinions and attitudes. This is particularly important for policymakers 
can use rankings and ratings in the case of questions on sensitive topics, such as 
civil rights or environmental issues. The latter is the focus of the present paper.

A crucial aspect of the debate about ratings and rankings has been highlighted 
by Ovadia (2004) and concerns the cognitive organization of the values. A dif-
ferent set of assumptions about the nature and structure of data underlies each of 
the two approaches. When preference data are collected according to the rank-
ing method, an intrinsic assumption of strict hierarchy between values is assumed 
because of the interdependence between ranks. This is no longer true for the rat-
ing score system in which each value is independent of each other and, as each 
object receives an absolute value, has  possible occurrence of ties (an issue not 
addressed in this paper). These underlying assumptions about the organization 
of values have some methodological implications: rating score data do not ask 
for complex statistical methods, then they are advocated for their simplicity in 
execution and analysis (Agresti 2010); on the contrary, ranking methods result 
in data sets that cannot be analyzed with standard statistical methods because of 
the interdependence of the ranks (Alvo and Philip 2014). For this reason, rank-
ing data modelling has received a lot of attention and many models have been 
proposed over the years (Dwass 1957; Critchlow et al. 1991; Lee and Philip 2010; 
Yu et al. 2019).

Some approaches have focused on modelling the approval rate of a single item, 
by relying on the Shifted Binomial (D’Elia 2000) and the Inverse Hypergeometric 
(D’Elia 2003) distributions, but these distributions are not sufficiently flexible to 
fit the empirical rank distributions. For this reason, mixtures of Discrete Uniform 
and Shifted Binomial random variables (MUB models) have been proposed to 
deal with both the selection mechanism and uncertainty in the ranking process 
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(D’Elia and Piccolo 2005). However, a discrete parametric distribution able 
to assume also “J” and “U” (non-monotonic convex) shapes is not yet present 
among the existing ones, as discussed by Punzo and Zini (2012). Based on the 
assumption that a single unidimensional latent variable governs the responses, 
two new probability distributions are discussed in this paper. The proposals apply 
to rankings and ratings, being quite flexible in shape while preserving simplicity, 
and also in terms of parameter interpretation.

The paper is organized as follows: in Sect.  2, we introduce notation and discuss 
recent findings in the rating and ranking literature. In Sect. 3, we present the theoretical 
definition of the proposed Discrete Beta and Shifted Beta-Binomial distributions with 
some inferential results. In Sect. 4, through the use of three real data sets coming from 
surveys addressing environmental issues, we obtain insights into the relative merits of 
the proposed distributions in dealing with rankings and ratings, respectively. We con-
clude with a discussion and directions for future research.

2 � Theoretical background

Both rating and ranking data are often analyzed through a probabilistic modelling 
approach. This requires data scientists to make formal assumptions about the essen-
tial nature of the unobservable process that generated the data. However, mechanisms 
generating rating and ranking data may not be exactly distinguished. Indeed, assuming 
an underlying continuous scale of measurement, both rating and ranking data can be 
derived: an ordinal rating scale arises by partitioning the real axis into adjacent inter-
vals and assigning them consecutive numerical scores, while ranks arise by determin-
ing the relative positions of two or more objects placed along the axis. For example, 
supposing that continuous numerical scores are assigned to seven objects and partition-
ing the real axis into five intervals, rating and ranking data are generated as illustrated 
in Fig. 1.

The following subsection discusses the schemes of item presentation and the most 
popular model approaches used for ranking and rating systems.

2.1 � Rating and ranking systems

A rating score system assumes that subjects independently assess each object using a 
common measurement scale with K ordered categories. However, this system has a 
major drawback as judges tend to assign scores toward the extremes of the scale with-
out discriminating between items (Tourangeau et al. 2000; de Rezende and de Medei-
ros 2022). Additionally, it can lead to reduced motivation to discriminate between 

Fig. 1   Example of rating and ranking generating mechanism
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items, potentially resulting in all items receiving the same score (Wind 2020; Ovadia 
2004). Furthermore, personal bias can affect rating ordinal scales, leading to individual 
clustering of responses influenced by temperament, cultural background, and personal 
interests of judges (Kemmelmeier 2016; Harzing et al. 2009).

The most popular rating system is the Likert scale, where subjects assign scores 
based on their experiences, feelings, or emotions within a defined interval between 
minimum and maximum anchor points. Often, mean or median values are used to 
rank objects, though this practice has questionable assumptions. Sometimes, Lik-
ert-type responses are treated as categorical, as in Paired Comparison (PC) pattern 
models (Dittrich et al. 2007; Sullivan and Artino 2013). The basic idea of transform-
ing Likert-scale data into paired comparisons is simple: for any two Likert items j 
and k, if the response to the first item is higher on the numeric scale than the second 
( j ≻ k ), then the first item is preferred and the transformed response is yjk = 1 . Con-
versely, if item k is preferred ( k ≻ j ) due to a lower score, yjk = −1 . If responses are 
equal, it results in an undecided preference ( yjk = 0 ). Modelling the joint distribu-
tion of these transformed random variables involves assumptions about the proba-
bilistic mechanism, correspondence between Likert responses and derived paired 
comparison patterns (Dittrich et al. 2002), and potential subject and item covariates. 
However, unmeasured characteristics of subjects may also influence responses, lead-
ing to the use of random effects models to account for such heterogeneity (Francis 
et al. 2010; Schauberger and Tutz 2022). Another way to evaluate and compare mul-
tiple items or objects is through ranking systems where the emphasis is on the order 
of preference or importance among the items. In the case of ranking data, subjects 
are asked to order a set of K objects based on a criterion such as preference, impor-
tance, or satisfaction. Subjects observe all items and establish their positions relative 
to each other, resulting in a hierarchy of items without ties. Four classes of probabil-
ity models for ranking data are order statistic models, paired comparison models, 
distance-based models, and multistage models.

Order statistic models extend Thurstone’s order statistic model and assume that 
judges’ preferences change based on random utilities associated with each item. The 
Plackett–Luce ranking model is a common choice, representing items with non-neg-
ative real-valued parameters on a ratio scale (Buchholz et al. 2022; Gorantla et al. 
2023).

The class of paired comparison models converts ranked data into paired compari-
son data and then works on them, often using Thurstone and Bradley–Terry mod-
els as foundations. Various extensions of these models exist (Maydeu-Olivares and 
Böckenholt 2005; Dittrich et al. 1998, 2002, 2007).

The distance-based models measure the discrepancy between two rank-
ings using distance measures. The probability of observing a ranking vector is 
inversely proportional to its distance to the mode of the ranking distribution 
(modal ranking), i.e., the permutation that has the highest probability to be gener-
ated. The Mallows �-model is a well-known example parameterized by a modal 
ranking and a dispersion parameter (Vitelli et  al. 2018; Feng and Tang 2022). 
However, distance-based models do not easily accommodate covariates as they 
generally depend on numerical feature values and are not well-suited for dealing 
with categorical or discrete covariates. To use these models with categorical data, 
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it is often necessary to apply preprocessing techniques, such as one-hot encoding 
(Cerda et al. 2018), to transform categorical variables into a format that can be 
effectively used in distance calculations. When the task involves incorporating 
covariates into clustering or classification activities, it is often more appropriate 
to explore alternative methods such as regression-based clustering, mixture mod-
els, or decision tree-based algorithms like Random Forests or Gradient Boosting 
Trees (D’Ambrosio and Heiser 2016; Dery and Shmueli 2020; Plaia et al. 2022; 
Albano et al. 2023). These alternative approaches can naturally handle covariates 
and offer greater flexibility in capturing intricate relationships between covariates 
and the target variable.

In the end, multistage models decompose the ranking process into independent 
stages. For example, the Plackett–Luce model belongs to this class, and it decom-
poses ranking into stages (Fligner and Verducci 1988; Critchlow and Fligner 
1991, 1993).

Like rating data, ranking data can also include information about objects and 
judges, such as prices, brands, demographics, etc. Various developments exist for 
incorporating covariates into ranking models, including rank-ordered logit mod-
els and models with subject-specific covariates (Schauberger and Tutz 2017; Fok 
et al. 2012; Shen et al. 2021; Lee and Philip 2010; Yu 2000).

3 � Methods

In this section, we reconsider the two distributions introduced by Fasola 
and Sciandra (2013, 2015), by focusing on their theoretical foundations  (see 
also Ursino and Gasparini 2018; Iannario 2014). Discrete Beta and Shifted Bino-
mial distributions are two different probability distributions that can be useful for 
modelling different types of data, including rating data and ranking data, under 
certain conditions. However, it is important to note that these distributions are 
not universally applicable to all scenarios, and their usefulness depends on the 
specific characteristics of the data you are dealing with. The Discrete Beta dis-
tribution (DBT) is often used to model discrete data that represent proportions 
or ratings, typically with a limited number of categories or levels. It is gener-
ally used when data fall within a fixed range or when one wants to model the 
distribution of ratings or proportions. The Shifted Binomial distribution (SBB) 
can be useful for modelling ranking data, especially when one aims to understand 
the probability distribution of ranks or positions within a set of items or alterna-
tives. It is typically used when one has a fixed number of items and the goal is 
to estimate the probability of an item being ranked at a certain position. In sum-
mary, the choice between the Discrete Beta distribution and the Shifted Binomial 
distribution depends on the nature of data and on  the specific research question 
or analysis one is conducting. Discrete Beta is useful for modelling ratings or 
proportions within a fixed range, while Shifted Binomial is useful for modelling 
ranking data where one is interested in the distribution of ranks or positions. It is 
important to carefully consider the characteristics of the data under investigation 
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and the goals of the analysis when selecting the appropriate distribution for one’s 
modelling needs.

3.1 � The Discrete Beta model for rating data

Let us define a rate as a response variable R assuming values on finite integer scale 
R = {1,… , j,… ,K} . To introduce our first distribution proposal we make the typi-
cal assumption that the rate represents an indicator of the extent to which a cer-
tain attribute is present on a given object, expressed on an ordinal scale (Salzberger 
2010; Linacre 2002). For example, raters can be asked to express degree of agree-
ment (disagreement) with some statement or their level of satisfaction (dissatisfac-
tion) with a given service. Clearly, different rates indicate that different raters assign 
different levels of the attribute to the items, but nothing can be said in terms of the 
magnitude of such differences. However, the inability to evaluate differences among 
rates can be traced back to the measurement scale: the continuous attribute is latent, 
while its discretized counterpart is observed.

Let R∗ be the latent attribute and assume it is a random variable with p.d.f. 
fR∗ (r∗,�) where � is a vector of unknown parameters. The rate R, namely the discre-
tized counterpart of R∗ , is therefore ruled by

where the � values are K + 1 threshold values. Clearly, the p.d.f. for the rate can be 
defined as

where FR∗ (⋅) is the distribution function of R∗ . Making inference on such models 
translates into estimation of both the � ’s and the parameter vector �.

The traditional approach used to estimate such models consists of choos-
ing an underlying probability distribution ruling R, fixing the parameter vector 
� , assuming �0 = −∞ and �K = +∞ , and estimating the unknown thresholds �j , 
j = 1, 2,… ,K − 1 . A typical choice is the standard logistic distribution underlying 
proportional odds models (Agresti 2011). However such models turn out to be little 
parsimonious, especially when the rating scale is wide (K is large).

The main idea developed in this paper consists of reversing this approach with the 
goal of reducing the number of parameters preserving, at the same time, the flexibil-
ity of the resulting distribution. Indeed, we propose to fix the threshold values �j and 
estimate the parameter vector � . In particular, we believe that the Beta distribution 
X ∼ B(�, �) , 𝛼 > 0 , 𝛽 > 0 is very appropriate for this scope, in terms of parsimony, 
flexibility and ease of interpretation. Indeed, its bounded range of variation allows 
one to fix the K − 1 unknown thresholds at evenly spaced values spanning between 
�0 = 0 and �K = 1 namely �j = j∕K , j = 1, 2,… ,K − 1 . This will induce specular, 
flexible shapes as the continuous Beta distribution and, more importantly, since

P(R = j) = P(𝛾j−1 < R∗ ≤ 𝛾j), j = 1, 2,… ,K,

(1)P(R = j) = FR∗ (�j,�) − FR∗ (�j−1,�)
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it requires the estimation of only two parameters as in the most natural competitor 
MUB model (D’Elia and Piccolo 2005; Piccolo and D’Elia 2008), assuming a mix-
ture of a uniform and a Shifted Binomial distribution. Supposing n individuals have 
rated an object, we denote by ri the rate assigned by the i-th individual to the object, 
being Ri the random variable of interest. Estimates of � and � can be obtained via 
numerical maximization of the likelihood function:

Alternatively, estimates can be obtained via the method of moments; in particu-
lar, denoting the expected value and the variance of R by E[R|�, �] and V[R|�, �] , 
respectively, estimates can be obtained solving for � and � the system of equations:

where r̄ and v are the empirical mean and variance of the observed vector of rates, 
respectively.

The expected value of the Discrete Beta distribution is derived as follows:

Similarly, for the second moment,

(2)P(R = j) = FB
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so that the variance is

This expression turns out to be difficult to handle mathematically, so that estimation 
via the method of moments requires the application of numerical algorithms like 
Newton–Raphson. Because of the mathematical complexity of the expected value 
and the variance of the discrete distribution, it turns out to be more convenient to 
base inference on the summary measures E[B|�, �] and V[B|�, �] of the underlying 
Beta; in particular, a commonly used reparametrization when dealing with the Beta 
distribution is

Such reparametrization allows for unconstrained estimation since both � and � 
belong to (−∞,+∞) . Parameter � is directly linked to the expected value of the 
underlying Beta distribution, and can therefore be considered a liking indicator, 
since we expect higher rates as E[B|�, �] = �

�+�
 increases. Similarly, since 

� = log(� + �) and

the parameter � is inversely linked to the variance of the underlying Beta random 
variable, and can be considered as an agreement indicator (the degree of agreement 
between individuals in rating the item). Finally, a covariate vector xi can also be 
introduced in the model:

leading to the same structure and interpretation as in usual logit or log-linear mod-
els. For example, with a unique explanatory variable x in the linear predictor, we 
have

which resembles a log-odds ratio and

(5)
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which resembles a log-rate ratio. Of course, alternative reparameterizations are 
possible.

These two quantities, expressed as the logarithm of the odds ratio and log-rate 
ratio, respectively, are often used to represent data with a wide range of values or 
to make comparisons more meaningful. In particular, attention should focus on 
the sign of the logarithm: if the logarithm is positive, it indicates a surplus or an 
increase compared to the reference odds; if the logarithm is negative, it signifies a 
deficit compared to the reference odds. To achieve a more meaningful interpreta-
tion, always compare the odds to a reference value. In some cases, one might be 
interested in the absolute value of the logarithm of the odds ratio, especially if the 
aim is to measure the intensity of the change regardless of its direction (increase or 
decrease).

3.2 � The Shifted Beta‑Binomial model for ranking data

Let’s now define a rank as a response variable R still assuming values on the finite 
integer scale R = {1,… , j,… ,K} . Differently from rates, ranking data arise when n 
individuals are asked to order a set of K objects from the most to the least preferred. 
When focusing on a single object, the response variable R is still given by a random 
integer between 1 and K, assuming that ties cannot occur.

To introduce our second distribution proposal, we assume a paired comparison 
perspective (Bradley 1916): the unconscious mechanism underlying ranking of item 
k consists of the execution of K − 1 comparisons between item k and the others 
(Marden 1996). Such a frame involves a vector of random variables

where

By construction, probability � can be considered as a disliking indicator for item 
k. Note that, if Wj and Wj′ are mutually independent (Dittrich et al. 1998) for each 
j′ ≠ j , it follows

and ranks assigned to the item follow the Shifted Binomial distribution (Li and Chen 
2023; Oh 2014; D’Elia 2000). However, as for the rate distribution, there is a simple 
way to obtain a more flexible distribution using a continuous Beta. Indeed, from 
the basics of Bayesian statistics, if we assume the Shifted-Binomial to be just the 

� = log

[
�(xi + 1) + �(xi + 1)

�(xi) + �(xi)

]

Wj =

{
1 if item j is preferred over item k

0 otherwise ,

Prob {Wj = 1} = � ∀j ≠ k.

R =
∑
j≠k

Wj + 1
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conditional distribution of R given Ψ = � , and Ψ ∼ B(�, �) , the marginal distribu-
tion of R will be given by

namely R will follow a Shifted Beta-Binomial distribution ( B(⋅) is the Beta func-
tion). Note that, for � = 1 , this reduces to the Inverse Hypergeometric distribution 
discussed by D’Elia (2003) and Ouimet (2023).

Supposing n individuals have ranked K objects, we denote by ri the rank assigned 
by the i-th individual to a given object of interest, Ri being the relevant random vari-
able. Once again, estimates of � and � can be obtained via numerical maximization 
of the likelihood function:

Alternatively, the system of equations to solve when applying the method of 
moments is now linear in � and � , leading to explicit solutions. Indeed, the expected 
value and the variance of R are, respectively,

and

leading to (see Appendix)

and

Once again, inference can be based on the summary measures of an underlying 
Beta, using the same reparameterization as for the Discrete Beta distribution, and 
also covariates can be included in the model. However, differently from the rate 
distribution, � should now be considered as a disliking indicator, since we expect 
higher (worse) ranks as E[B|�, �] increases.

(9)Prob (R = j) =

(
K − 1

j − 1

)
B(� + j − 1, � + K − j)

B(�, �)
,
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K − 1

j − 1
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]I(ri=j)
.
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,

(10)𝛽 =
v − (K − r̄)(r̄ − 1)

(r̄ − 1) − v(K − 1)∕(K − r̄)

(11)𝛼̂ =
r̄ − 1

K − r̄
𝛽.
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3.3 � Shape comparisons

In order to compare the two proposed distributions in terms of shapes, we simulated 
data from six different scenarios obtained by varying � and � . Figure 2 represents 
six double bar plots corresponding to the two proposed distributions in the different 
scenarios considered.

When � = � = 1 the two distributions coincide  and follow a discrete uniform 
distribution U(K), where the finite number of values are equally likely to happen. 
When � = � , the two distributions are symmetric. When � ≠ � , several shapes can 
be obtained by properly changing the parameters. Specifically, when 𝛼 < 𝛽 , both 
distributions display positive skewness, intensifying as the gap between the two 
parameters widens. Conversely, when 𝛼 > 𝛽 , negative skewness characterizes both 
distributions.

The distributions take on a “U” or “J” shape when � and � are lower than 1, with 
the probability mass becoming more concentrated in the tails as these parameters 
decrease. In contrast, a concave shape is observed when � and � exceed 1, concen-
trating the probability mass around the central category as both parameters increase.

Regardless of the specific shape attained under varying parameter values, the 
SBB distribution maintains, compared to the DBT, a higher probability mass in rare 
or extreme events. The resulting flexibility is an important strength of the proposed 
distributions because it allows one to deal with differently shaped distributions.

The space of admissible expected values, E(R), and variances, V(R), for the Dis-
crete Beta, the Shifted Beta-Binomial and the competitor MUB model are graphi-
cally displayed in Fig. 3. Parametric spaces are obtained by solving the method of 
moment equations for particular pairs of true values of E(R) and V(R). If the pair 

Fig. 2   Shapes of the Discrete Beta (DBT) and the Shifted Beta-Binomial (SBB) distributions for differ-
ent values of � and �
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of E(R) and V(R)  is outside the coloured regions, the equations deriving from 
the method of moments return not admissible � and � values (negative or infinite); 
on the contrary, the inner areas lead to admissible pairs of parameters. The compari-
son is carried out for two different numbers of total objects ( K = 5 and K = 10).

The parametric space of the MUB distribution (light grey area) is a subset of 
the parametric space of the SBB distribution (darker grey), and, in turn, the par-
ametric space of the SBB distribution is a subset of the parametric space of the 
DBT distribution (black area). More interestingly, the parametric spaces confirm 
the main advantages of the two proposed distributions: they overcome the prob-
lem of dealing with non-monotonic convex shapes. For example, when E(R) 
takes the mid-span value and V(R) takes a value lower than the variance of the 
Uniform distribution 

(
K2−1

12

)
 , then a corresponding  MUB  distribution does not 

exist, while this is not true for the two proposed distributions.

4 � Case studies

In this section, the performance of the two proposed distributions is shown 
through three real examples concerning the attitude of different people towards 
climate change and pollution.

Human activities are damaging the environment in different ways, from cli-
mate change to endangered animal species. Although data indicate an increase 
of the average global temperature in the last decades and despite the growing 
number of extreme events like floods, violent storms or heat waves, not every-
body believes that climate change is taking place. Analysing data about people’s 
perception of climate change is then important to understand how information 

Fig. 3   Space of admissible expected values, E(R), and variances, V(R), for the Discrete Beta (DBT), the 
Shifted Beta-Binomial (SBB), and the Mixture of Uniform and Binomial (MUB)
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on this theme is conveyed and how much of a priority action is perceived by 
governments to tackle the phenomenon.

The data used in the first example are ratings and come from a survey carried 
out by Eurobarometer in 2009, which provides information about Europeans’ 
opinions on climate change. In the other applications, we focused on rankings, 
showing a model without covariates applied on a data set containing answers to 
an online survey about climate change and marine ecosystems conducted at the 
end of 2021, and a model including covariates for ranking data about air pollu-
tion collected in Utah between 2018 and 2020.

4.1 � Eurobarometer rating data

The Eurobarometer rating data contain the results of a survey on the attitudes of 
Europeans’ towards climate change which was carried out in late August and Sep-
tember 2009. This survey investigated the opinion of Europeans on several climate 
change-related topics, and subjects were asked to answer different questions about 
their perception of climate change using an ordinal scale. Among them, we focused 
on the following question:

How serious a problem do you think climate change is at this moment? Please 
use a scale from 1 to 10, with “1” meaning it is “not at all a serious problem” 
and “10” meaning it is “an extremely serious problem”.

Fig. 4   Observed and fitted distributions of the rates assigned to the seriousness of climate change by par-
ticipants in the 2009 Eurobarometer survey
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The Discrete-Beta model is here applied to the rates assigned by n = 25, 862 indi-
viduals. The observed rate frequencies are: 1 = 408, 2 = 357, 3 = 826, 4 = 1216, 
5 = 3095, 6 = 3219, 7 = 4691, 8 = 4998, 9 = 2295, 10 = 4757. Figure 4 shows 
the empirical distribution of the rates. Due to the non-monotonic convex shape, we 
believed appropriate to hypothesize a random distribution based on an underlying 
Beta. We also estimated a MUB model, and the fitted values provided by the two 
models are superimposed in Fig. 4.

The DBT yields 𝛼̂ = 2.33 and 𝛽 = 1.18 through maximum likelihood estimation 
(MLE). The estimated ratio 𝛼̂

𝛼̂+𝛽
 is 0.66, which compared with the intermediate sce-

nario corresponding to a Uniform distribution (0.5), indicates a general interest 
towards the climate change issue. Additionally, the estimated variance, which is 
equal to 4.96, reflects the degree of disagreement among the respondents in their rat-
ings, where the maximum variance is obtained in the case of complete polarization 
of the votes. In comparison, if we were to assume uniformly distributed frequencies, 
yielding 𝛼̂ = 𝛽 = 1 , the variance would be K

2−1

12
= 8.25 . The observed variance of 

4.96 in this case suggests that, while there is a moderate level of agreement among 
the raters, opinions on the seriousness of climate change vary to a certain extent 
among the surveyed individuals. Furthermore, it is crucial to emphasize the 
observed shape of the ratings distribution, which exhibits a convex pattern, and this 
explains why the MUB model has therefore lower fitting performance in this case 
( AICDBT = 108537.6,AICMUB = 111533.8).

4.2 � Online survey about climate change and coastal ecosystems

The online survey was carried out within the European Commission H2020-funded 
research project on “Marine Coastal Ecosystems Biodiversity and Services in a 
Changing World” (MaCoBioS, Fonseca et al. 2023). The questionnaire consists of 
20 questions about perceptions of climate change and the health of coastal ecosys-
tems. It was administered from November 2021 to February 2022 on the Qualtrics 
platform and response was voluntary, with a total of 709 valid responses. The volun-
teers were asked

Which three of the following key goals should be of greatest priority for gov-
ernments to address? 

	 (i)	 Protecting natural resources and ecosystems
	 (ii)	 Improving human health and healthcare systems
	 (iii)	 Improving management of agriculture and forestry
	 (iv)	 Improving education opportunities
	 (v)	 Managing the environment to improve human health
	 (vi)	 Addressing climate change
	(vii)	 Reducing economic insecurity and inequality
	(viii)	 Improving management of marine fisheries.
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To accommodate respondents’ preferences, the survey allowed for the expression 
of incomplete rankings. In such cases, options that were not selected were treated 
as ties and placed at the bottom of the ranking. In this way, the unranked items are 
considered equally preferred or, equivalently, it is assumed that respondents have no 
preference among them (Li et al. 2019).

Our specific focus in this analysis centered on the preferences expressed towards 
“i) Protecting natural resources and ecosystems.” We examined the observed ranks 
and fitted values obtained from two models: the SBB model and the MUB model 
without the inclusion of covariates. The results of this comparison are displayed in 
Fig. 5.

Evidently, the SBB model demonstrated a superior fit compared to the MUB 
model, as confirmed by the respective AIC values: AICDBT = 825.5642 and 
AICMUB = 1240.8397 . This outcome arises from the specific nature of this scenario. 
The data displayed a distinct U-shaped pattern, which signifies polarized preferences 
among the survey respondents. The pronounced U-shaped pattern in the data sug-
gests that respondents had clear and divergent views on the importance of protecting 
natural resources and ecosystems, with a significant portion expressing strong sup-
port while others held opposite opinions. Such polarized preferences often pose a 
challenge for models like the MUB, which are designed to handle monotonic, grad-
ual shifts in preferences, making it less suitable for handling scenarios with sharp 
and non-monotonic changes in rankings. In cases where preferences exhibit com-
plexity, with a substantial concentration of rankings at both extremes as seen in this 
dataset, the SBB model provides a notably superior fit to the data.

Furthermore, both 𝛼̂ and 𝛽  are close to 0, obtained through MLE, while the esti-
mated ratio 𝛼̂

𝛼̂+𝛽
 , is computed to be 0.27. This ratio is lower than the intermediate 

scenario (0.5), indicating an attitude in recognizing the importance of protecting 
natural resources, reflecting that a wider proportion of respondents held a preference 
for this goal in comparison to other options presented in the survey.

Fig. 5   Observed and fitted distributions of the ranks assumed by protecting natural resources in the rank-
ing vectors observed on 709 respondents
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4.3 � Utah air quality risk and behavioral action survey

The survey was administered to Utahns between November 2018 and January 2020. 
It includes more than 60 questions about demographics, daily habits, opinions about 
air pollution and attitudes towards government interventions to reduce it (Benney 
et al. 2020). The sample is made up of 1160 subjects and we analysed the answers to 
the question:

Please rank the following by which causes the most air pollution in Utah: 

	 (i)	 Wood burning
	 (ii)	 Automobile exhaust
	 (iii)	 Buildings (e.g. businesses and homes)
	 (iv)	 Major industries (e.g. mining, airport, energy)
	 (v)	 Home chemicals (e.g. aerosols, paints)
	 (vi)	 Environment (e.g. wind blowing dust)
	(vii)	 Agriculture (e.g. farm equipment, animal byproducts, etc.)
	(viii)	 Government (e.g. offices, agencies, industries)

We focused on the rankings assigned to the fourth item, “Major industries (e.g. min-
ing, airport, energy)” and investigated if they depend on some explanatory vari-
ables, specifically income and political ideology. Both are categorical variables, 
the former with eight categories (< 25,000$, 25,000–35,000$, 35,000–50,000$, 
50,000–75,000$, 75,000–100,000$, 100,000–150,000$, ≥150,000$, and Not 
Declared) and the latter with five categories (Democrat, Independent, Libertarian, 
Republican and Not Declared).

Figure  6 illustrates the observed ranks and fitted values derived from both the 
SBB model and the MUB model without covariates. Notably, the SBB model dem-
onstrates a superior fit compared to the MUB model, as supported by the AIC val-
ues: AICDBT = 3789.732 and AICMUB = 3922.127.

Fig. 6   Observed and fitted distributions of the ranks assumed by protecting natural resources in the rank-
ing vectors observed on 1160 respondents
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We included the variables “Income” and “Political Orientation (PO)” into 
the linear predictor additively. Table  1 summarizes the output for � (the dislik-
ing indicator), while Table 2 summarizes the output for � (the agreement indica-
tor) for the selected model; standard error estimates are derived from a numerical 
(observed) information matrix. When considering the question of air pollution 
responsibility, the alternatives in first positions are typically seen as the most 
accountable. In this context, the disliking indicator can be interpreted similarly 
to the rating framework, as it reveals aversion patterns towards these alternatives. 
Essentially, the alternatives receiving greater disliking are positioned at the bot-
tom of the rankings, indicating that they are perceived as less accountable. Subse-
quently, the accuracy indicator quantifies the extent of consensus or divergence in 
these perceptions among various demographic groups. 

Table 1   Estimates, standard 
errors (S.E.) and p-values of 
the model coefficients for the 
disliking indicator using Utah 
survey data

*p = 0.01–0.05; **p = 0.001–0.01; ***p < 0.001

Estimate S.E. Pr(z > |z|)
Intercept − 1.511 0.109 < 2e

−16***
[25,000, 35,000) 0.269 0.138 0.051
[35,000, 50,000) 0.168 0.137 0.219
[50,000, 75,000) − 0.147 0.119 0.217
[75,000, 100,000) 0.241 0.136 0.077
[100,000, 150,000) 0.228 0.146 0.119
≥ 150,000 0.351 0.167 0.035*
Income not declared 0.177 0.190 0.351
Independent 0.019 0.113 0.865
Libertarian − 0.360 0.319 0.259
Republican 0.194 0.090 0.030*
PO not declared 0.203 0.119 0.089

Table 2   Estimates, standard 
errors (S.E.) and p-values of 
the model coefficients for the 
accuracy indicator using Utah 
survey data

*p = 0.01–0.05; **p = 0.001–0.01; ***p < 0.001

Estimate S.E. Pr(z > |z|)
Intercept 1.767 0.260 < 2e

−16***
[25,000, 35,000) 0.037 0.295 0.900
[35,000, 50,000) 0.479 0.347 0.167
[50,000, 75,000) 1.409 0.433 0.001**
[75,000, 100\,000) 0.066 0.298 0.825
[100,000, 150,000) 0.084 0.312 0.788
≥ 150,000 0.817 0.584 0.162
Income not declared 0.515 0.514 0.317
Independent 0.377 0.291 0.195
Libertarian 0.617 0.629 0.327
Republican 0.051 0.264 0.847
PO not declared 0.693 0.283 0.014*
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The intercept value of −1.511 pertains to individuals identifying as Democrats 
with an annual income below $25,000, and it is statistically significant. Notably, 
the estimated ratio 𝛼̂

𝛼̂+𝛽
 , is 0.18, markedly lower than 0.5. This finding suggests a 

pronounced inclination for this demographic group to attribute a higher level of 
responsibility to major industries for air pollution compared to other options.

Regarding the influence of other political orientations, individuals who iden-
tify as Republicans exhibit less aversion to major industries compared to Demo-
crats. This difference is reflected in the ratio 𝛼̂

𝛼̂+𝛽
 , which increases by 0.194 on a 

logit scale among Republicans. This implies that Republicans tend to place major 
industries closer to the end of the rankings compared to Democrats, indicating 
that they perceive it as less responsible for air pollution.

Similarly, a pattern emerges among individuals declaring an annual income 
exceeding $150,000, where the ratio 𝛼̂

𝛼̂+𝛽
 increases by 0.351 on a logit scale. Conse-

quently, those with incomes above $150,000 per year are less likely to perceive 
major industries as the primary culprits responsible for air pollution.

As regards the accuracy indicator, it measures the level of agreement among 
respondents in ranking major industries as a cause of air pollution. The accuracy 
coefficient for a person who identifies as a Democrat with an annual income of less 
than $25,000, is 1.767. This indicates a high level of agreement within this demo-
graphic group regarding major industries’ responsibility for air pollution in Utah. 
Moreover, the agreement between respondents significantly increases moving from 
the group earning less than $25, 000 to the group of those earning between $50, 000 
and $75, 000 . In this transition, the accuracy indicator experiences a notable increase 
on the logit scale of 1.409.

5 � Conclusions

In this paper, we introduce two novel and flexible probability distributions designed 
for modeling rating and ranking data. These models offer a straightforward interpre-
tation in terms of individuals’ “liking” or “disliking” feelings toward specific items, 
as well as the “agreement” rate for the corresponding distribution of rates or ranks.

One of the notable advantages of the proposed distributions lies in their simplicity 
and adaptability. Their simplicity relies on the fact that these distributions have only two 
parameters, while their applicability makes them particularly useful when the distribu-
tions assume “U” and “J” (not-monotonic convex) shapes, but we have shown that they 
also represent a good alternative to the MUB model (the most natural competitor) for 
concave, monotonic, and uniform distributions. Moreover, they readily accommodate the 
inclusion of covariates in the models, allowing for a more nuanced understanding of 
how various factors influence individuals’ preferences and rankings. As our analy-
sis has shown, both proposed distributions yield very similar inferential results and 
interpretations. Consequently, researchers can readily switch between these models 
to suit various types of data, whether they pertain to rankings or ratings.



1 3

Environmental and Ecological Statistics	

Looking ahead, future research endeavors could focus on conducting extensive 
simulation studies to delve deeper into the fitting potential of the proposed models 
and their competitors. Moreover, a specific focus will be directed toward studying 
how to extend the proposed distributions to account for tied rankings. Such studies 
would further enhance their applicability in real-world scenarios.

Appendix

Let v denote var (r).

Focusing on the first equation:

Focusing on the second equation:
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