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Abstract
This study was aimed to investigate the predictive value of the radiomics features extracted from pericoronaric adipose tissue 
— around the anterior interventricular artery (IVA) — to assess the condition of coronary arteries compared with the use of 
clinical characteristics alone (i.e., risk factors). Clinical and radiomic data of 118 patients were retrospectively analyzed. In 
total, 93 radiomics features were extracted for each ROI around the IVA, and 13 clinical features were used to build different 
machine learning models finalized to predict the impairment (or otherwise) of coronary arteries. Pericoronaric radiomic features 
improved prediction above the use of risk factors alone. In fact, with the best model (Random Forest + Mutual Information) 
the AUROC reached 0.820 ± 0.076 . As a matter of fact, the combined use of both types of features (i.e., radiomic and clinical) 
allows for improved performance regardless of the feature selection method used. Experimental findings demonstrated that 
the use of radiomic features alone achieves better performance than the use of clinical features alone, while the combined use 
of both clinical and radiomic biomarkers further improves the predictive ability of the models. The main contribution of this 
work concerns: (i) the implementation of multimodal predictive models, based on both clinical and radiomic features, and (ii) 
a trusted system to support clinical decision-making processes by means of explainable classifiers and interpretable features.

Keywords Pericoronaric adipose fat · Predictive models · Radiomic features · Clinical features · Coronary artery disease · 
Machine learning classifiers · Model explainability

Introduction

Epicardial adipose tissue (EAT) represents a metabolically 
active reserve of visceral fat located between the cardiac 
serosa of pericardium and the myocardium. It covers more 

than 80% of the cardiac surface, along the free wall of the 
right ventricle, the atrioventricular and interventricular 
grooves, surrounding the proximal segments of coronary 
arteries [1]. Several studies have shown that EAT per-
forms various functions, such as mechanical support of 
coronary vessels, energy reserve due to its high free fatty 
acid content, and thermoregulatory function [2]. Coro-
nary artery disease (CAD) is a leading cause of death and 
morbidity worldwide [3], and coronary CT angiography 
(CCTA) has gained clinical acceptance, playing nowadays 
a pivotal role in the CAD evaluation. As a non-invasive 
and cost-effective imaging tool, CCTA has great potential 
in reducing the global socioeconomic burden of CAD [4]. 
The detection of high-risk atherosclerotic plaque mark-
ers (i.e., low attenuation, positive remodeling, spotty 
calcification and the napkin-ring sign) in CCTA allows 
for highly specific labeling of patients at increased risk 
for major adverse cardiac events. These markers corre-
late with adverse outcomes predicting ischemia even in 
non-obstructive lesions [5]. Recent studies have focused 
on CT attenuation in epicardial and pericoronary adipose 
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tissue as an indirect marker of coronary atherosclerosis 
and plaque inflammation [6]. Inflammation is a crucial 
component of atherosclerosis and a consistent pathologic 
feature of unstable atherosclerotic plaques. Increased CT 
attenuation in adipose tissue adjacent to an atherosclerotic 
plaque is thought to be a marker of inflammation [7].

Several imaging modalities have been developed to meas-
ure epicardial and pericoronary adipose fat, such as echo-
cardiography, CT, and MRI. The use of CT, due to higher 
spatial resolution, provides a more accurate assessment of 
EAT [8]. Quantification of EAT has required, until recent 
years, complex manual measurements performed by person-
nel with high professional backgrounds and exploiting only 
a fraction of the available information. The development of 
accurate and reliable semi-automated software for the quanti-
fication of epicardial adipose tissue (i.e., quartile attenuation 
analysis) may provide more significant associations between 
fat characteristics and different clinical scenarios [9].

Quantification methods exploiting only “naked eye” 
visible characteristics reflect only a fraction of the avail-
able information, which ultimately leads to a rather crude 
variable with significant overlap between sick patients and 
healthy controls. In this scenario, radiomics greatly increases 
the quantitative information accessible from CT images. 
Hundreds of imaging features, which cannot be assessed by 
the human eye, are being extracted to create big data, from 
which imaging patterns associated with clinical features or 
outcomes can be derived [4]. Radiomics data may improve 
the diagnostic and predictive capabilities of CCTA, leading 
to better risk stratification for future events [10].

Although recent years have seen a proliferation of radi-
omic work aimed at supporting and improving diagnostic 
performance by means of deep learning techniques, limited 
attention has been paid to the development of reproducible 
and explainable studies. In fact, deep learning techniques, 
due to their “black-boxed” nature, are not suitable for imple-
menting fully and explainable predictive models exploiting 
intrinsically interpretable features.

The need for explainable models and interpretable fea-
tures brings us toward non-deep machine learning (shal-
low learning) approaches. Moreover, it must be highlighted 
that current AI-based solutions have some critical problems 
concerning their application within clinical scenarios. AI’s 
needs are mainly related to (i) big data with accurate annota-
tions and complete information, (ii) continuous feed of real-
world data, and (iii) close collaboration with clinicians in 
all stages of development. This leads to the identification of 
some main concerns for AI: (i) only a small fraction of the 
medical centers (data providers) are willing to share data; (ii) 
lack of curated dataset; (iii) inter/intra-rater variability. When 
working with datasets collected by clinical environments with 

limited amounts of enrolled patients, one possible solution to 
address these issues is to shallow learning approaches, which 
require much less data than deep learning architectures.

The explainability of the predictive model has become a fun-
damental requirement in clinical contexts. In fact, some man-
datory aspects for clinicians and patients must be considered:

• Clinician’s needs: once the model is considered valid 
by the developer, the clinician is able to confirm some 
important clinical evidence, leading the clinicians to trust 
these computerized systems and encourage their use in 
the clinical practice;

• Patient’s needs: a local explanation of the model result for 
the single patient, exactly as a doctor explains the choice 
of a therapy or a diagnosis for a specific clinical case. In 
particular, the domain expert establishes whether a local 
explanation makes sense and can be considered valid.

To this purpose, after defining and setting predictive models, 
we tried to justify the presence of the features in the found 
signatures, supported by the physician team.

The aim of this work is to define some predictive models, 
based on both clinical and radiomic features, for CAD pre-
diction. An in-depth analysis by means of several machine 
learning algorithms — unlike deep learning that can imple-
ment patterns that can be explained — and features selection 
methods were applied to select the best predictive signature. 
The main contributions of this study are:

• A well-structured processing pipeline, according to the 
literature indications [11], enabling the definition of 
robust biomarkers;

• The implementation of multimodal predictive models, based 
on both clinical and radiomic features, able to predict CAD;

• To provide a trusted system supporting cognitive and 
decision-making processes [12] in the medical domain 
by means of machine learning algorithms and interpret-
able clinical and radiomic features.

To evaluate model performance, the following metrics were 
considered: accuracy, sensitivity, specificity, Positive Pre-
dictive Value (PPV), Negative Predictive Value (NPV), and 
area under the curve (AUROC).

This manuscript is structured as follows: “Materials 
and Methods’’ describes the dataset and the features used, 
focusing in detail on each step of the implemented process-
ing pipeline; “Experimental Results’’ reports the features 
preprocessing steps, the predictive model build-up, the 
signatures obtained by each model, and their classification 
performance; “Discussion’’ points out on some remarks 
concerning this study and its experimental findings; finally, 
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“Conclusions’’ focuses on the performance obtained and on 
interesting future developments.

Materials and Methods

This section describes (i) the characteristics of the data used 
(with respect to both CT sequences and clinical data), (ii) 
the features used, and (iii) the processing pipeline imple-
mented (with emphasis on the feature selection methods and 
machine learning classifiers employed to build the predic-
tive models). In addition, the semi-automated method imple-
mented for segmentation of pericoronaric adipose tissue is 
described, which, by means of interpolation, allows reducing 
the workload and the time required for Region of Interest 
(ROI) annotation. In Fig. 1 the flow diagram of the overall 
processing pipeline implemented in this study is depicted. 
Moreover, in Fig. 2 for each of the basic processing steps 
the “alternatives” (e.g., feature selection methods, machine 
learning classifiers) are shown.

Dataset Description

The dataset used in this study consists of 118 CCTA series 
collected from October 2019 to January 2020 at the Policlin-
ico University Hospital ‘P. Giaccone’ of Palermo. The initial 
set composed of 135 cases was preliminarily evaluated by 
two radiologists with over 10 years of experience. Consider-
ing as criteria the image quality, 17 CCTA series with poor 
quality (i.e., low opacification of coronary arteries, motion 
artifacts) were discarded. The final dataset includes 84 men 
and 34 women with a mean age of 60.33 ± 13.2 , labeled as 
“without CAD” (40) and “with CAD” (78).

Clinical Features

The following clinical features were considered in this study: 
age, sex, body mass index (BMI), family history, smoking, 
diabetes, hypertension, cholesterol, obesity, current hyper-
tension, statin treatment, peripheral vasculopathy, prior 
acute myocardial infarction (AMI).

Pericoronaric Adipose Tissue Segmentation

For the extraction of radiomic features, a Volume of Inter-
est (VOI) containing pericoronary fat around the anterior 
interventricular artery (IVA) was considered. The choice of 
a very specific area (i.e., the IVA) is also justified by the 
need to ensure the reproducibility of the study.

To this aim, a semi-automatic computer-assisted tool was 
developed and implemented using the Matlab environment, 
which semi-automatically is able to detect a cylindrical region 
around the IVA in a few simple steps. In particular, first of 
all, the Volume of Interest (VOI) containing the IVA must be 
selected by drawing a rectangle in the slice where the IVA is 
most visible along its axis. This allows us to select an area with 
dimensions (x, y), while along the z-axis, the greatest between 
x and y is chosen as dimension. Therefore, a parallelepiped 
of dimensions (x, y, max(x, y)) is located in the space, which 
constitutes our VOI around the IVA. After the VOI identifica-
tion, every stepROI slices, the operator inserts a circular ROI 
centered on the IVA. Once the reference ROIs are manually 
drawn, the system automatically interpolates the ROIs onto the 
remaining slices included in the range of interest. By so doing, 
the number of slices manually drawn by the user is reduced by 
a stepROI factor. The interpolation approach is inspired by the 
method proposed in [9].

The VOI is the volume containing the segmentation mask 
(ROI). If the VOI is large enough to contain the IVA tract to 
be attended to (so that it does not leave out any part of inter-
est), the choice of VOI does not affect IVA region segmentation. 
The only problem might be if the operator places the VOI in 
a completely different region than the one containing the IVA 
(unlikely in the case of experienced operators). Manual place-
ment of circular ROIs could be a critical issue if this one is not 
centered with respect to the IVA. However, there is a need to 
consider that after the circular ROI is placed, its position can be 
refined and then the operator makes it definite. Before adopting 
this segmentation method, two different approaches were evalu-
ated jointly with the clinicians: a fully manual approach, and the 
used one. From this analysis, it is inferred that the ROIs obtained 
by interpolation (taking as reference the manually entered ROIs) 
were essentially comparable (according to Dice index) to the 
manual ROIs. This evaluation — conducted as the stepROI 
parameter varied ( stepROI ∈ 3, 4, 5, 6, 7, 8 ) — showed that 
for stepROI = 5 (a value that was then used in the implementa-
tion) allowed us to achieve the highest Dice index values. On the 
other hand, as with any semi-automated method, the user (i.e., 
physician) interaction is required to initiate the segmentation 
process. The advantage is that, in the face of minimal input, by 
means of interpolation this approach reduces by about 80% (it is 
required to enter one ROI for every 5 CCTA slices) the workload 
compared to a fully manual delineation approach.

Algorithm 1 outlines the pseudocode of the semi-automatic 
segmentation approach. Moreover, in Fig. 3 the initial step 
concerning VOI and ROI setting is shown, while in Fig. 4 the 
three views (a, b, c) and the 3D volume-rendering model (d) 
of the segmented pericoronaric adipose tissue are depicted.
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Fig. 1  Overall flow diagram depicting the whole processing pipeline implemented in this study
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Fig. 2  Processing alternatives of 
the crucial pipeline steps

Fig. 3  In a selection of the VOI 
in the slice where the IVA is 
most visible. In b and c the ROIs 
inserted around the IVA in the ini-
tial and the final slices, respectively

Fig. 4  In a, b and c the three 
views of the segmented adipose 
tissue around the IVA. In d the 
corresponding 3D volume-
rendering reconstruction of the 
pericoronaric adipose tissue 
around the IVA
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Radiomic Features Extraction

The extraction of the radiomic features was done by means of 
PyRadiomics [13]: a total of 93 features were extracted. The 
extraction was performed without any resampling to avoid 
interpolation artifacts. Radiomic features were extracted from 
the 3D ROIs delineated in the previous step. The following 
five feature categories were extracted and considered:

• First Order (FO): describe the distribution of voxel 
intensities within the image region defined by the mask 
through commonly used and basic metrics;

• Gray Level Co-occurrence Matrix (GLCM) [14, 15]: 
spatial relationship between pixels in a specific direc-
tion, highlighting property of uniformity, homogeneity, 
randomness and linear dependencies;

• Gray Level Run Length Matrix (GLRLM) [16]: texture 
in specific direction, where fine texture has shorter runs 
while coarse texture presents more long runs with differ-
ent intensity values;

• Gray Level Size Zone Matrix (GLSZM) [17]: regional inten-
sity variations or the distribution of homogeneity regions;

• Gray Level Dependence Matrix (GLDM) [18]: quantifies 
gray level dependencies;

• Neighboring Gray Tone Difference Matrix (NGTDM) 
[19]: spatial relationship among three or more pixels, 
closely approaching the human perception of image.

Considering that the ROI extracted around the IVA has the 
shape of a cylinder, shape-based features were not con-
sidered because they are not representative of the clinical 
problem we are trying to model.

Unbalanced Data Management

Classification of unbalanced data involves developing pre-
dictive models on datasets that have a wide class imbal-
ance. In fact, working with imbalanced datasets can lead to 
have poor performance on the minority class. One approach 
to addressing imbalanced datasets is to oversample the 
minority class: new examples can be synthesized from the 
existing examples. This is a type of data augmentation for 
the minority class and is referred to as the Synthetic Minor-
ity Oversampling Technique (SMOTE) [20].

Radiomic Features Preprocessing and Statistical 
Analysis

Feature preprocessing is mandatory in order to define robust 
imaging biomarkers [11]. In particular, to obtain a subset of 
features with relevant information content and non-redun-
dant, calibration and preprocessing were performed by the 
following steps:
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• Near-zero variance analysis: aimed at removing the 
features that do not convey information content. This 
operation considered a variance cutoff of 0.01. Features 
with a variance less than or equal to this threshold have 
been discarded;

• Correlation analysis: aimed at removing highly cor-
related features for reducing the redundancy among the 
features. We used the Spearman correlation coefficient 
for pairwise feature comparison. In the case of a corre-
lation value higher than 0.9, the feature with the highest 
predictive power was selected;

The Mann-Whitney U test and Fisher’s exact test were used 
to test the difference between the variable distributions. In 
particular, continue variables (i.e., radiomic features) were 
compared by the Mann-Whitney U test, while categorical 
variables (clinical data) by the Fisher’s exact test. A 2-sided 
p-value lower than 0.05 was considered as the threshold for 
statistical significance.

Features Selection Methods

The inclusion of many features makes the model more com-
plex, and an increased chance of overfitting occurs during 
the classification. In fact, some features can be noisy and 
potentially damage the model. In the selection, both clinical 
and radiomic features were considered. The Feature Selection 
(FS) phase enables selecting the most discriminating features. 
Mainly, FS was used to define multimodal signatures — sets 
composed of radiomic and clinical features — to be used in 
the subsequent modeling phase. In addition, evaluations were 
made considering only clinical and only radiomic features 
(thus unimodal signatures), in order to quantify the improve-
ment achieved by multimodal signatures. In our study the 
following three FS methods were considered:

• L1-based: a linear model with L1 penalty eliminates 
some of the features, acting as a feature selection method 
before using another model to fit the data. In particular, 
it is assumed that a linear model penalized with L1 norm 
has sparse solutions. For this reason, a Linear Support 
vector classifier algorithm is trained, and only features 
with non-zero coefficients are selected;

• Tree-based: is based on the training of a decision tree-
based algorithm. In particular, tree-based estimators are 
used to compute impurity-based feature importances [21], 
which in turn can be used to discard irrelevant features (an 
importance threshold of 1e-5 was used to discard features);

• Mutual information: use an entropy measure, called “mutual 
information,” to assess which features should be included in 
the reduced data [22]. With more details, mutual informa-
tion is a measure that evaluates the dependence between two 

random variables, by quantifying the amount of information 
obtained about one variable by means of the other one.

Modeling Phase

The predictive modeling was performed by exploiting differ-
ent machine learning algorithms (namely, SVM [23], Random 
Forest [24, 25], AdaBoost [25, 26] and XGBoost [27]) trained 
and tested using a nested 5-fold cross-validation (CV) scheme 
[28]. The above listed machine learning classifiers uses as 
input the features selected in previous step to yield binary (i.e., 
“with CAD” vs. “without CAD” cases) classification results. 
The use of the nested CV allowed to train a classification 
model where the hyperparameters also need to be optimized. 
In fact, nested CV estimates the generalization error of the 
underlying model and its hyperparameter search.

Within each fold, the inner loop allows us to find the best 
setting of hyperparameters to be tested in the retained test 
set. The nested CV finds the best (5) models, and the one 
with the best performance was chosen as the final predic-
tive model. The evaluation metrics reported in the follow-
ing “Experimental Results’’ are averaged values among all 
those obtained by the best model. Figure 5 depicts the nested 
5-fold cross-validation approach adopted in our study.

Experimental Results

The conducted experiments were aimed at quantifying the capa-
bilities of the built predictive models in coronary artery disease 
characterization. In particular, this section reports details about 
(i) the features preprocessing, (ii) the predictive models (i.e., FS 
method + machine learning classifier) discovered and tested, 
(iii) the signatures obtained by each model (considering only 
clinical, only radiomic, and clinical + radiomic features), and 
finally (iv) the classification performance. To evaluate the mod-
els performance, accuracy, sensitivity, specificity, PPV, NPV, 
and AUROC were computed.

Features Preprocessing

To define robust imaging biomarkers [11], once features are com-
puted, the steps described in “Radiomic Features Preprocessing 
and Statistical Analysis’’ were realized. The number of remain-
ing features after each preprocessing step is reported in Table 1.

Features Selection and Modeling

The FS phase allowed to select unimodal signatures — com-
posed of only one type of feature (i.e., clinical, radiomic) — 
as well as multimodal signatures — composed of radiomic 
and clinical features — to be used as inputs to the machine 
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learning algorithms (Table 2). First of all, a “discovery” phase 
— aimed at finding the best machine learning algorithm — 
was performed. In this discovery phase, only 10 repetitions 
of the nested 5-fold CV training were performed evaluating 
only the accuracy of the predictive models (Table 3). Succes-
sively, similarly to the discovery phase, 100 repetitions were 
performed in order to calculate all other statistically relevant 
metrics from the best predictive model founded in the discov-
ery (Table 4). Figure 6 shows the ROC curves obtained by 
considering unimodal and multimodal signatures.

Model Explainability

The concept of explainability goes beyond finding a signature 
(i.e., a set of biomarkers) able to predict the clinical outcome 

(e.g., diagnosis, prognosis, treatment response). In the follow-
ing, we attempt to explain the link between feature trends (i.e., 
high/low values) — in the case of radiomic features directly 
correlated with image morphology — and prediction. In par-
ticular, we (i) quantified the contribution of the features to the 
final model decision, and (ii) justified clinically why the found 
features are discriminant for the problem under investigation.

This analysis was focused on the best machine learning 
classifier (i.e., Random Forest). A Random Forest classi-
fier is a Tree Ensemble algorithm, and it was possible to 
calculate the importance of features. In particular, it was 
computed the accumulation of the impurity decrease (MDI) 
within each Decision Tree composing the Forest. The mean 
and standard deviation of the accumulation were calcu-
lated by considering the best model (in terms of accuracy) 
obtained in each of the 100 repetitions of the nested CV.

According to the MDI analysis, both clinical and radi-
omic features contribute to the prediction but with different 
weights. As depicted in Fig. 7, age was found to be — along 
with Total Energy, Gray Level Variance (GLV), and Gray 
Level Non-Uniformity Normalized (GLNN) — one of the 
most discriminative features. It should be noted that age 
could be considered a confounding factor for classifiers, 
and that is why it is sometimes decoupled from the rest of 
the features. In our study, we wanted to consider age in the 
same way as the other features, because it is an important 
factor from a clinical point of view, although it is not suf-
ficient — by itself — to have accurate diagnoses. In fact, as 
stated in the literature, epicardial fat characteristics are able 
to support CAD prediction [29]. In addition, as evidenced 
by the weights obtained from the MDI analysis, the other 

Fig. 5  Diagram depicting the 
nested 5-fold cross-validation 
approach used in this study

Table 1  Details concerning steps implemented in this study for cali-
bration and preprocessing of radiomic and clinical features

Step Analysis Remaining
Method Features

initial radiomic features n.a. 93
near-zero variance analysis variance ≤ 0.01 80
redundant features analysis Spearman ( cutoff = 0.9) 42
statistical analysis Mann-Whitney U rank 

test ( p < 0.05)
30

(radiomic features)
initial clinical features n.a. 12
statistical analysis Fisher’s test ( p < 0.05) 11
(clinical features)
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clinical features are not highly relevant and there is a need 
for radiomic features. For each of the most discriminative 
radiomic features, additional details regarding the weights 
obtained and their mathematical definitions are provided in 
what follows:

• Total Energy (weight=0.176) is derived from the Energy 
(weight=0.096), which is a measure of the magnitude of 
voxel values in an image. In particular, TotalEnergy is the 

value of Energy feature scaled by the voxel volume. Larger 
values imply a greater sum of the squares of these values. 

 where:

– Vvoxel is the volume of the voxel;

(1)Total Energy = Vvoxel

Np
∑

i=1

(X(i) + c)2

Table 2  Multimodal signatures 
obtained by the features 
selection methods considering 
clinical and radiomic features. 
Cells containing clinical 
and radiomic features are 
highlighted with orange and 
blue colors, respectively

Table 3  Accuracy values 
obtained in the modeling 
phase considering the machine 
learning algorithms and the 
feature selection methods used

Feature Selection Accuracy

Method SVM AdaBoost RF XGBoost

L1-based 0.687 ± 0.069  0.683 ± 0.072 0.730 ± 0.070 0.690 ± 0.073

Tree-based 0.693 ± 0.072 0.692 ± 0.082 0.744 ± 0.075 0.710 ± 0.072

Mutual Information 0.717 ± 0.067 0.678 ± 0.086 0.724 ± 0.084 0.700 ± 0.074
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– X is a set of Np voxels included in the ROI;
– c is an optional value, which shifts the intensities to 

prevent negative values in X. This ensures that vox-
els with the lowest gray values contribute the least 
to Energy, instead of voxels with gray level intensity 
closest to 0.

• Gray Level Variance (GLV) (weight=0.102) measures 
the variance in gray level intensities for the zones. 

• Gray Level Non-Uniformity Normalized (GLNN) 
(weight=0.098) measures the variability of gray-level 
intensity values in the image, with a lower value indi-
cating a greater similarity in intensity values. This is the 
normalized version of the Gray Level Non-Uniformity 
(GLN), which measures the variability of gray-level inten-
sity values in the image, with a lower value indicating 
more homogeneity in intensity values. 

 where:

– p(i, j) =
P(i,j)

Nz

 is the normalized size zone matrix;
– P(i,j) is the size zone matrix;

(2)GLV =

Ng
∑

i=1

Ns
∑

j=1

p(i, j)(i − �)
2

(3)GLNN =

∑Ng

i=1

�

∑Ns

j=1
P(i, j)

�2

N2
z

– � =

Ng
∑

i=1

Ns
∑

j=1

p(i, j)i

– Ng is the number of discrete intensity values in the image;
– Ns is the number of discrete zone sizes in the image;
– Nz is the number of zones in the ROI, which is equal 

to 
∑Ng

i=1

∑Ns

j=1
P(i, j) and 1 ≤ Nz ≤ Np;

– Np is the number of voxels in the image;

Discussion

This work demonstrated that combinations of radiomic 
features represent valid biomarkers to assess the diagnosis 
in patients using a CAD system. We set up a comprehen-
sive study, from the point of view of the feature selection 
methods (i.e., L1-based, tree-based, mutual information), 
as well as considering several machine learning classifiers 
(namely, SVM, Random Forest, AdaBoost, XGBoost) suit-
able for small-size datasets.

The experimental findings showed a clear performance 
improvement when multimodal signatures — composed 
of clinical and radiomic features — are used. In fact, the 
best predictive model (i.e., mutual information and Ran-
dom Forest) obtained AUROC=0.820 ± 0.076 , while the 
worst unimodal model (exploiting only clinical risk fac-
tors) gets only AUROC=0.666 ± 0.081 . As a matter of fact, 
the multimodal model obtained an evident improvement of 
about 23% ( ΔAUROC = 0.154 ). As can be seen, just using 

Table 4  Performance obtained 
by the Random Forest model 
considering the 3 features 
selection methods

Feature Type Metric 
( mean ± stdDev)

L1-based Tree-based Mutual Information

clinical Accuracy 0.628 ± 0.084 0.628 ± 0.084 0.626 ± 0.076

Sensitivity 0.642 ± 0.133 0.642 ± 0.133 0.646 ± 0.121

Specificity 0.621 ± 0.128 0.621 ± 0.128 0.613 ± 0.118

PPV 0.630 ± 0.115 0.630 ± 0.115 0.626 ± 0.109

NPV 0.637 ± 0.124 0.637 ± 0.124 0.636 ± 0.116

AUROC 0.684 ± 0.088 0.684 ± 0.088 0.666 ± 0.081

radiomic Accuracy 0.659 ± 0.077 0.720 ± 0.078 0.713 ± 0.078

Sensitivity 0.691 ± 0.112 0.767 ± 0.112 0.762 ± 0.112

Specificity 0.635 ± 0.126 0.681 ± 0.130 0.672 ± 0.124

PPV 0.656 ± 0.115 0.709 ± 0.112 0.700 ± 0.112

NPV 0.673 ± 0.113 0.747 ± 0.118 0.740 ± 0.118

AUROC 0.741 ± 0.081 0.819 ± 0.074 0.803 ± 0.076

clinical + radiomic Accuracy 0.719 ± 0.080 0.735 ± 0.072 0.739 ± 0.079

Sensitivity 0.740 ± 0.125 0.766 ± 0.113 0.770 ± 0.120

Specificity 0.708 ± 0.128 0.713 ± 0.122 0.716 ± 0.124

PPV 0.719 ± 0.117 0.730 ± 0.110 0.733 ± 0.111

NPV 0.734 ± 0.121 0.755 ± 0.115 0.759 ± 0.121

AUROC 0.793 ± 0.077 0.819 ± 0.070 0.820 ± 0.076
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radiomic features alone results in improved performance 
(AUROC=0.803±0.076) compared to clinical features alone.

To clinically justify the results, we used the MDI analy-
sis to evaluate features importance in the prediction. This 
allowed us to explain our experimental findings. According 
to the MDI weights, the most important features are:

• Age (weight=0.131). High values of age lead toward 
“with CAD” class, while low values of age lead toward 
“without CAD” class. Considering that older patients 
have a higher chance of evolving to CAD, this result is 
quite intuitive.

• Total Energy (weight=0.176) is derived from the Energy 
(weight=0.096), which is a measure of the magnitude of 
voxel values in an image. In particular, Total Energy is 

the value of Energy feature scaled by the voxel volume. A 
larger value implies a greater sum of the squares of these 
values. High values of TotalEnergy lead toward “without 
CAD” class, while low TotalEnergy values lead toward 
“with CAD” class. Considering that extracted pericoro-
nary fat has ranges [-175, -15], this means that more nega-
tive values contribute more to TotalEnergy. As a matter of 
fact, more negative fat (in terms of HU) is indicative of a 
more stable clinical condition of coronary arteries [30].

• Gray Level Variance (GLV) (weight=0.102) and  Gray 
Level Non-Uniformity Normalized (GLNN) (weight=0.098) 
are both correlated with the variability of gray-level inten-
sity values in the image, with a lower value indicating more 
homogeneity in intensity values. High GLV and GLNN values 
lead toward “with CAD” class, while low values lead toward 

Fig. 6  ROC curves obtained 
by the best predictive model 
(Random Forest + Mutual 
Information) considering 
unimodal (subfigures a and 
b) and multimodal signatures 
(subfigure c). With more details, 
a only clinical features; b only 
radiomic features, and c clini-
cal and radiomic features. The 
thicker curve in blue represents 
the ROC curve averaged over 
the 100 repetitions of the CV. 
The thinner curves in light blue 
represent the ROCs of each 
single CV repetition. The gray 
transparent band around the 
ROC curve represents the stand-
ard deviation. Considering that 
the purpose of these figures is 
to show the average trend, and 
that reporting 100 ROC curves 
would have made the graph dif-
ficult to understand, we decided 
to plot only half (50/100) ROCs 
obtained in the repetitions
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Fig. 7  Feature weights (impor-
tance) of the signatures com-
posed of a only clinical features, 
b only radiomic features, and 
c clinical and radiomic features
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“without CAD” class. This behavior seems to be aligned with 
literature [31, 32], as greater inhomogeneity can be associated 
with greater loco-regional pericoronary inflammation.

In order to provide the reader with a general overview of the 
results obtained by literature works that tackled a similar 
problem, a comparison has been made and the following 
Table 5 has been added.

In all the works considered [33–36] an extended set of radi-
omic features has been used considering both basic features 
(often called “originals”) and those obtained by convolution 
with “LoG” and “Wavelets” kernels). This makes it easy to 
reach a thousand features. A well-established, practical rule of 
thumb states that at least 5–10 samples (i.e., patients) would be 
needed for each feature in a model based on binary classifiers 
[37, 38]. Thus, increasing the number of features — especially, 
when an insufficient number of samples is available — might 
introduce further redundancy among the features and lead to 
the curse of dimensionality problem.

In machine learning, the curse of dimensionality is used 
interchangeably with the peaking phenomenon, which is 
also known as Hughes phenomenon [39]. This phenom-
enon states that with a fixed number of training samples, 
the average (expected) predictive power of a classifier first 
increases as the number of dimensions or features used is 
increased. This is due to the model’s overfitting on high-
dimensionality and redundant data, which, on the one hand, 
leads to improved performance on test data but, on the other 
hand, reduces the generalization capabilities on new data.

Conclusions

This study was aimed at developing multimodal models able 
to predict CAD disease. The joint use of clinical and radi-
omic features allowed us to improve prediction over clinical 
data alone. A processing pipeline structured according to the 
literature indications [11] was implemented to extract robust 
biomarkers and obtain effective predictive models.

The explainability of the model, which is crucial in a clin-
ical scenario, was one of our goals, and the methodological 
choices made during the development took into account this 
aspect: the use of machine learning algorithms and intrinsi-
cally interpretable clinical and radiomic features, enabled 
the introspection of the models, allowing the physician team 
to clinically justify the findings. These choices made it pos-
sible to implement a trusted system supporting cognitive and 
decision-making processes in the medical domain.

The performance of the predictive models is promising, 
especially considering that — unlike traditional approaches 
that use only clinical features — radiomic features allowed 
us to achieve a consistent improvement in classification rates. 
The main limitation of our work concerns the amount of data 

available. Our dataset of 118 samples is not large (although 
many papers in the literature present a much smaller sample 
size). For this reason, we will collect further data from our 
hospital partners in order to prospectively validate our find-
ings. The proposed models, properly expanded and applied 
to different coronary segments, may enable the detection of 
new radiomic biomarkers, reflecting anti-inflammatory or 
pro-inflammatory processes. With these new tools, it would 
be even easier to identify timely patients at increased cardio-
vascular risk and thus enable personalized pharmacological 
intervention or lifestyle correction.

To conclude, the relevance of this work to the cognitive 
computation community is twofold: (i) developing a trusted 
predictive system to support cognitive and decision-making 
and control processes in the clinical practice [12]; (ii) lever-
aging explainable machine learning models and interpretable 
(clinical and radiomic) features [40, 41] for improved decision-
process satisfaction and decision-advice transparency [42].
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