
Improved Characters Distance Sampling

for Online and Offline Text Searching1

Simone Faroa, Francesco Pio Marinoa, Arianna Pavoneb

aDepartment of Mathematics and Computer Science, University of Catania, Viale
A.Doria n.6, Catania, 95125, Italy

bDepartment of Cognitive Science, University of Messina, Via Concezione
n.6, Messina, 98121, Italy

Abstract

Sampled string matching is a very effective technique to reduce the search
time for a pattern within a text at the cost of a small amount of additional
memory, used for storing a partial index of the text. This approach has
recently received some interest and has been applied to improve both online
and offline string matching solutions, improving standard solutions by more
than 50%. However, this improvement is currently only achievable in the
case of texts on large-sized alphabets, and remains small (or absent) in the
case of small-sized alphabets. In this article we propose an extension of the
approach to text-sampling, known as Character Distance Sampling, to the
case of small alphabets, obtaining an improvement of up to 98% compared
to standard solutions in the case of online string matching. We also extend
this approach to the case of offline string matching, introducing a sampled
version of the suffix array, obtaining performances up to 5 times higher than
the search obtained on the standard suffix array. Differently from what has
been done by previous solutions, our idea is not based on the reduction of
the number of indexed suffixes, but on the construction of the index directly
on the sampled text.

Keywords: Text processing, experimental algorithms, string matching

1This paper is based on preliminary results appeared in Proceedings of the 22nd Italian
Conference on Theoretical Computer Science (ICTCS 2021) [13] and in Proceedings of the
25nd Prague Stringology Conference (PSC 2021) [11]

This manuscript is the AAM version of the DOI 10.1016/j.tcs.2022.12.034, published in Theoretical
Computer Science Volume 946, 10 February 2023, 113684

1. Introduction1

Exact string matching is a fundamental problem in computer science and2

in the wide domain of text processing. It consists in finding all the oc-3

currences of a given pattern x in a large text y where characters of both4

sequences are drawn from an alphabet Σ.5

It is a fundamental problem in computer science with applications in6

many other fields, like natural language processing and information retrieval.7

It is also a critical problem in computational molecular biology and plays a8

very important role in biological sequences analysis, mainly due to the con-9

stantly growing amount of molecular data extracted from living organisms.10

For this reason sequence matching techniques play a very important role in11

various applications in computational biology for data analysis. In addition,12

as the size of data increases, the space required to store this data and the data13

structures useful for solving the problem is also constantly increasing, which14

is why it is necessary to adopt new efficient approaches that can drastically15

reduce the space used while preserving the effectiveness of the search.16

Applications require two kinds of solutions: online and offline string17

matching. Solutions based on the first approach assume that the text is not18

preprocessed and thus they need to scan the input sequence online, when19

searching. Differently, solutions based on the second approach try to dras-20

tically speed up searching by preprocessing the text and building a data21

structure that allows searching in time proportional to the length of the pat-22

tern. For this reason such kind of problem is known as indexed searching.23

Sampled string matching is a technique that has recently received interest24

and which is halfway between the two just described solutions, allowing both25

to be improved. Its goal is to significantly cut down the space requirements26

of indexed matching, on the one hand, and drastically reduce searching time27

for the online solutions, on the other hand. However sampled string matching28

allows so far to search efficiently only in the case of natural language texts or,29

in general, when searching on input sequences over large alphabets, while its30

performances degrade when the size of the underlying alphabets decreases.31

In this paper, we present an extension of a previous approach [12], called32

Character Distance Sampling (CDS), in two separate directions.33

• We extend CDS to small alphabets obtaining a more feasible solution34

in the case of biological data like genome or protein sequences and,35

in general, in the case of small alphabets. Our proposed approach36

2

makes use of condensed characters in order to enlarge the size of the37

underlying alphabet and, as a result, speed up the searching process38

and reduce the space consumption of the resulting sampled text.39

• We adapt the proposed sampling approach also in the case of the offline40

search by developing a sampled variant of the suffix array based on41

the CDS approach. Differently from what has been done by previous42

solutions, our idea is not based on the reduction of the number of43

indexed suffixes, but on the construction of the index directly on the44

sampled text.45

From our experimental results it turns out that the use of condensed46

alphabets leads to reduce the space consumption up to 80% and to speed47

up the online searching process up to 98%, significantly improving the re-48

sults obtained by the previous text sampling approach. We also conducted49

experimental tests for offline search, obtaining, also in this case, significant50

improvements. Specifically, the new approach presented in this paper allows51

a reduction of search times up to 5 times, compared to the times obtained52

using the standard data structure.53

The paper is organized as follows. First we briefly review previous so-54

lutions related with our work making appropriate references to the most55

relevant literature. In Section 3 we briefly review the Characters Distance56

Sampling approach introduced by Faro et al. [12] and extend it to condensed57

alphabets. Then, in Section 4, we show how to apply our sampling approach58

to the online string matching case, while its application to the case of offline59

string matching is presented in Section 5. Finally, in Section 6, we present60

experimental results and draw our conclusions in Section 7.61

2. Related Results62

Formally, the exact string matching problem consists in finding all the63

occurrences of a given pattern x, of length m, in a large text y, of length n,64

where characters of both sequences are drawn from an alphabet Σ of size σ.65

Online string matching solutions assume that the text is not preprocessed66

and thus they need to scan the input sequence online, when searching. Their67

worst case time complexity is Θ(n), and was achieved for the first time by68

the well known Knuth-Morris-Pratt (KMP) algorithm [24], while the optimal69

average time complexity of the problem is Θ(n logσ(m)/m) [38], achieved for70

example by the Backward-Dawg-Matching (BDM) algorithm [6].71

3

Many string matching solutions have been also developed in order to72

obtain sub-linear performance in practice [9]. Among them the Boyer-Moore-73

Horspool (BMH) algorithm [2, 20] deserves a special mention, since it has74

inspired much work. Memory requirements of this class of algorithms are75

very low and generally limited to a precomputed table of size O(mσ) or76

O(σ2) [9]. However their searching time is always proportional to the length77

of the text and thus their performances may stay poor in many practical78

cases, especially for huge texts and short patterns.279

Differently, solutions based on indexed searching try to drastically speed80

up searching by preprocessing the text and building a data structure that81

allows searching in time proportional to the length of the pattern. The82

literature in this research area is truly extensive and citing all the solutions83

proposed over the years would go beyond the scope of this paper. However,84

among the most efficient solutions to such problem we mention those based on85

suffix trees [9], which find all occurrences in O(m+occ)-worst case time, those86

based on suffix arrays [2], which solve the problem in O(m+ log n+ occ) [2],87

where occ is the number of occurrences of x in y, and those based on the FM-88

index [15] (Full-text index in Minute space), which is a compressed full-text89

substring index based on the Burrows-Wheeler Transform (BWT) allowing90

compression of the input text while still permitting fast substring queries.91

However, despite their optimal time performance3, space requirements of92

full-index data structures, as suffix-trees and suffix-arrays, are from 4 to 2093

times the size of the text.94

While the size of a compressed indexes, as the FM-Index [15], is typically95

less than the size of the text, it turns out that their space requirement is too96

large for many practical applications.97

An alternative solution to full indexes is to compress the input text and98

search online directly the compressed data in order to speed-up the search-99

ing process using reduced extra space. Such problem, known in literature100

as compressed string matching, has been widely investigated in the last few101

years. Although efficient solutions exist for searching on standard compres-102

sions schemes, as Ziv-Lempel [33] and Huffman [3], the best practical be-103

2Search speed of an online string matching algorithm may depend on the length of the
pattern. Typical search speed of a fast solution, on a modern laptop computer, goes from
1 GB/s (in the case of short patterns) to 5 GB/s (in the case of very long patterns) [4].

3Search speed of a fast offline solution do not depend on the length of the text and is
typically under 1 millisecond per query.

4

haviour are achieved by ad-hoc schemes designed for allowing fast searching104

[29, 7, 23, 36, 16]. These latter solutions use less than 70% of text size ex-105

tra space (achieving a compression rate over 30%) and are twice as fast in106

searching as standard online string matching algorithms. A drawback of such107

solutions is that most of them still require significant implementation efforts108

and a high time for each reported occurrence.109

One of the most interesting solutions to the problem are compact data110

structures. Such structures are equipped with native tools for handling text111

directly in its compressed form [31]. In general, however, they are not able112

to compress text by orders of magnitude, offering only complex functionality113

in the space required by raw data.114

When working on repetitive texts the BWT, featuring long runs of equal115

consecutive symbols, has enormous potential in terms of compression [32]116

and compact data structures benefit from this feature. These include, for117

example, a complete index for pan-genomics read alignment using prefix-118

free parsing [26]. A relevant compressibility measure for a repetitive text119

is indeed the number r of runs in their BWT. Based on this measure, the120

Run-Length FM-index [28] is able to efficiently count the number of occur-121

rences of a pattern using O(r) space and in log-logarithmic time per pattern122

symbol. Although it can be also extended [17, 18] in order to be able to123

locate the positions of such occurrences without using additional space, such124

data structures are designed to be efficient only in the case of very repetitive125

texts.126

2.1. Sampled String Matching127

An alternative solution to the problem is sampled string matching, in-128

troduced in 1991 by Vishkin [37], which consists in the construction of a129

succinct sampled version of the text (which must be maintained together130

with the original text) and in the application of any online string matching131

algorithm directly on the sampled sequence.132

Although any candidate occurrence of the pattern may be found more133

efficiently, the drawback of this approach is that any occurrence reported in134

the sampled-text requires to be verified in the original text. Apart from this135

point a sampled-text approach may have a lot of good features: it may be easy136

to implement if compared with other succint matching approaches, it may137

require very small extra space and may allow fast searching. Additionally it138

may also allow fast updates of the data structure.139

5

Apart the theoretical result of Vishkin, the first practical solution to140

sampled string matching has been introduced by Claude et al. [5] and is141

based on an alphabet reduction. In this paper we refer to this algorithm142

as Occurrence Text Sampling (OTS). Specifically, if we let y be the input143

text, of length n, and let x be the input pattern, of length m, both over an144

alphabet Σ of size σ, the main idea of the OTS approach is to select a subset145

of the alphabet, Σ̂ ⊂ Σ (the sampled alphabet), and then to construct a146

partial-index as the subsequence of the text (the sampled text) ŷ, of length147

n̂, containing all (and only) the characters of the sampled alphabet Σ̂. More148

formally ŷ[i] ∈ Σ̂, for all 1 ≤ i ≤ n̂. However, since ŷ contains partial149

information, a table ρ is maintained in order to map, at regular intervals,150

positions of the sampled text to their corresponding positions in y.151

It turns out that the OTS approach leads to solutions which are to be up152

to 5 times faster than standard online string matching and 2 times faster than153

standard offline string matching on English texts. Such results are obtained154

with an extra space requirement which is only 14% of text size.4155

More recently Faro et al. presented a more effective sampling approach156

based on character distance sampling (CDS) [12, 11], obtaining in practice157

a speed up by a factor of up to 9 on English texts, using limited additional158

space whose amount goes from 11% to 2.8% of the text size, with a gain in159

searching time up to 50% if compared against the OTS approach. We will160

describe in more detail the ideas on which the CDS approach is based in the161

next section, in which we will extend their application to search for texts162

on smaller alphabets using a technique based on condensed alphabets. In163

fact, it should be emphasized that both OTS and CDS approaches to exact164

string matching prove to work efficiently only in the case of natural language165

texts or, in general, when searching on input sequences over large alphabets,166

while their performances degrade when the size of the underlying alphabets167

decreases.168

4We also notice that some partial improvements have been thereafter presented by
Grabowsky and Raniszewski [19]. They proposed a more convenient indexing suffix sam-
pling approach, with only a minimum pattern length as a requirement. Their experiments
show that the resulting solution achieves competitive time-space tradeoffs on most stan-
dard benchmark data.

6

3. Character Distance Sampling and Condensed Alphabets169

In this section we briefly present the sampling approach known as Char-170

acter Distance Sampling (CDS) and extend it to the case of condensed al-171

phabets.172

Let y be the input text, of length n, and let x be the input pattern, of173

length m, both over an alphabet Σ of size σ. We assume that all strings can174

be treated as vectors starting at position 1. Thus we refer to x[i] as the i-th175

character of the string x, for 1 ≤ i ≤ m, where m is the size of x.176

We elect a set C ⊆ Σ to be the set of pivot characters. Given this177

set of pivot characters we sample the text y by taking into account the178

distances between consecutive positions of any pivot characters c ∈ C in y.179

More formally our sampling approach is based on the following definition of180

position sampling of a text.181

Definition 1 (Position Sampling). Let y be a text of length n, let C ⊆ Σ182

be the set of pivot characters and let nC be the number of occurrences of any183

c ∈ C in the input text y.184

First we define the position function, δ : {1, .., nC} → {1, .., n}, where δ(i)
is the position of the i-th occurrence of any character of C in y. Formally
we have

(i) 1 ≤ δ(i) < δ(i+ 1) ≤ n for each 1 ≤ i ≤ nC − 1
(ii) y[δ(i)] ∈ C for each 1 ≤ i ≤ nC

(iii) y[δ(i) + 1..δ(i+ 1)− 1] contains no c ∈ C for each 0 ≤ i ≤ nC

where in (iii) we assume that δ(0) = 0 and δ(nC + 1) = n+ 1.185

Then the position sampled version of y, indicated by ẏ, is a numeric186

sequence, of length nC, defined as187

ẏ = ⟨δ(1), δ(2), .., δ(nC)⟩. (1)

Example 1. Suppose y = “agaacgcagtata” is a dna sequence of length 13,188

over the alphabet Σ = {a,c,g,t}. Let C = {a} be the set of pivot characters.189

Thus the position sampled version of y is ẏ = ⟨1, 3, 4, 8, 11, 13⟩. Specifically190

the first occurrence of character a ∈ C is at position 1 (y[1] = a), its second191

occurrence is at position 3 (y[3] = a), and so on.192

Example 2. As in Example 1, assume y = “agaacgcagtata” is a dna se-193

quence of length 13, over the alphabet Σ = {a,c,g,t}. Let C = {a,c} be the194

7

set of pivot characters (now C contains two characters). Thus the position195

sampled version of y is ẏ = ⟨1, 3, 4, 5, 7, 8, 11, 13⟩. Note that in this example196

we simply added the two positions, 5 and 7, where the character c occurs.197

Definition 2 (Characters Distance Sampling). Let C ⊆ Σ be the set of pivot198

characters, let nC ≤ n be the number of occurrences of any pivot character199

in the text y and let δ be the position function of y. We define the characters200

distance function ∆(i) = δ(i+ 1)− δ(i), for 1 ≤ i ≤ nC − 1, as the distance201

between two consecutive occurrences of any pivot character in y.202

Then the characters-distance sampled version of the text y is a numeric203

sequence, indicated by ȳ, of length nC − 1 defined as204

ȳ = ⟨∆(1),∆(2), ..,∆(nC − 1)⟩
= ⟨δ(2)− δ(1), .., δ(nC)− δ(nC − 1)⟩ (2)

Plainly we have
nC−1∑
i=1

∆(i) ≤ n− 1.

Example 3. Let y = “agaacgcagtata” be a text of length 13, over the alphabet205

Σ = {a,c,g,t}. Let C = {a} be the set of pivot characters. Thus the character206

distance sampling version of y is ȳ = ⟨2, 1, 4, 3, 2⟩. Specifically ȳ[1] = ∆(1) =207

δ(2)− δ(1) = 3− 1 = 2, while ȳ[3] = ∆(3) = δ(4)− δ(3) = 8− 4 = 4, and so208

on.209

Definition 3 (Rank of a character). Let x be a pattern of length m, and210

let c ∈ Σ. We define ϕ : Σ → {0..m} as the function which associates any211

character of the text with the number of its occurrences in x. The rank of212

the character c is the position of c in the alphabet Σ, if we assume that all213

characters are sorted by their ϕ(c) values in non increasing order. If two214

characters of the alphabet have the same number of occurrences, then their215

relative order is irrelevant. To avoid confusion, we assume that they are216

arranged in lexicographic order. More formally the rank of c is given by the217

cardinality of the set {k ∈ Σ | ϕ(k) > ϕ(c) or (ϕ(k) = ϕ(c) and k > c)}+ 1218

Example 4. Let again y = “agaacgcagtata” be a text of length 13, over the219

alphabet Σ = {a,c,g,t}. The values associated by the function ϕ to the four220

characters of the alphabet are ϕ(a) = 6, ϕ(c) = 2, ϕ(g) = 3 and ϕ(t) = 2,221

respectively. Thus the character a has rank 1, while t has rank 4. The222

characters c and g have rank 2 and 3, respectively.223

8

It is important to notice that the description of the CDS approach pre-224

sented in this paper is slightly simplified compared to that introduced in [12].225

Specifically, in the original approach described in [12], use was made of the226

k-bounded position function, δk : {1, .., nc} → {0, .., k − 1}, where k is a227

given threshold constant and δk(i) is the position (modulus k), i.e.δk(i) =228

[δ(i) mod k] , for each i = 1, ..., nc. Then then k-bounded-position sampled229

version of y, indicated by ẏ, is a numeric sequence, of length nc defined as230

ẏ = ⟨δk(1), δk(2), .., δk(nc)⟩. Plainly we have 0 ≤ ẏ[i] < k, for each 1 ≤ i ≤ nc.231

Although this allows to store each element of the sampled version of the232

text using only log(k) bits, in order to be able to retrieve the original i-th233

position δ(i), of the pivot character, from the i-th element of the k-bounded234

position sampled text ẏ, we need to maintain a block-mapping table τ which235

stores the indexes of the last positions of the pivot character in each k-block236

of the original text. Then, if we assume that the text y is divided in ⌈n/k⌉237

blocks of length k, with the last block containing (n mod k) characters,238

then we have τ [i] = max ({j : δ(j) ≤ ik} ∪ {0}), for 1 ≤ i ≤ ⌈n/k⌉. Thus it239

is trivial to prove that τ [i] = j if and only if δ(j) ≤ (ik) and δ(j + 1) > (ik).240

In addition, since the values in the block mapping τ are stored in a non241

decreasing order, i.e. τ [i] ≤ τ [i + 1], ∀ 0 ≤ i ≤ ⌈n/k⌉, it follows that242

δ(j) = (τ [b]− 1)k + ẏ[j], where b = min{i : τ [i] ≥ j}.243

In practical cases, the choice of k = 256 would allow the sampled text to244

be stored using nC bytes, plus the additional space of 4n/k bytes to maintain245

the block-mapping table.246

In this paper, we simplified the representation of the CDS approach by247

dropping the τ table and keeping only the sampled text by storing each248

position with 4 bytes. On the one hand, this makes the approach more249

efficient from a practical point of view by avoiding the computation of the250

δ(i) value at each step of the algorithm. On the other hand, this increases251

the space required for storing the partial index. However, this disadvantage252

is largely mitigated by the extension of the approach to condensed alphabets,253

presented in the next section.254

3.1. Extension to Condensed Alphabets255

Let y be an input string, of length n, over an alphabet Σ of size σ. Given
a constant parameter q, with 1 ≤ q < n, we define the condensed alphabet
Σ

(q)
y , related to y, as

{c ∈ Σq | c = y[i..i+ q − 1] for some 1 ≤ i ≤ n− q + 1}

9

Roughly speaking Σ
(q)
y is the set of all different substrings of length q (or256

q-grams) appearing in y. We define the q-condensed version of y as follows.257

Definition 4 (q-Condensed Sequence). Let y be a text of length n over an

alphabet Σ of size σ and let Σ
(q)
y be the condensed alphabet, related to y,

for a given constant parameter q. We define the q-condensed version of
the sequence y as the sequence, of length n − q + 1, of all consecutive (and
overlapping) substrings of length q appearing in y. More formally

y(q) = ⟨y[1..q], y[2..q + 1], y[3..q + 2], .., y[n− q + 1..n]⟩

Example 5. Assume y = “agtagcgcagt” is a dna sequence of length 11, over
the alphabet Σ = {a,c,g,t}. Then we have

y(2) = ⟨ag, gt, ta, ag, gc, cg, gc, ca, ag, gt⟩
y(3) = ⟨agt, gta, tag, agc, gcg, cgc, gca, cag, agt⟩
y(4) = ⟨agta, gtag, tagc, agcg, gcgc, cgca, gcag, cagt⟩

Definition 5 (q-Characters Distance Sampling). Let C ⊆ Σ
(q)
y be the set of258

pivot characters, let nC ≤ n be the number of occurrences of any pivot char-259

acter in the text y(q) and let δ be the position function of y(q). We define the260

q-characters distance function ∆(q) as the distance between two consecutive261

occurrences of any pivot character in y(q), where ∆(q)(i), for 1 ≤ i ≤ nC−1, is262

the distance between the (i+1)-th and the i-th occurrence of any occurrences263

of any pivot character in y(q).264

Then the q-characters-distance sampled version of the sequence y is a265

numeric sequence of length nC − 1, indicated by ȳ(q) and defined as266

ȳ(q) = ⟨∆(q)(1),∆(q)(2), ..,∆(q)(nC − 1)⟩. (3)

Example 6. As in the previous Example 5 assume y = “agtagcgcagtagta” is
a dna sequence of length 15, over the alphabet Σ = {a,c,g,t}. If we suppose
q = 2 and C = {“ag′′} is the set of pivot characters, then we have

ẏ(2) = ⟨1, 4, 9, 12⟩
ȳ(2) = ⟨3, 5, 3⟩.

Similarly, if we suppose q = 3 and C = {“agt” } is the set of pivot characters,
then we have

ẏ(3) = ⟨1, 9, 12⟩
ȳ(3) = ⟨8, 3⟩.

10

In this paper we do not go into the way for a correct selection of the set267

of pivot characters, and even we leave the details of an analysis about what268

is the best subset to be chosen. However in our experimental evaluation (see269

Section 6) we will show how it is enough to put a single character in the270

set of pivot characters. Such a character is selected on the basis of its rank271

value, where we remember that the rank of a character c corresponds to its272

position in the alphabet Σ when we assume that all characters are sorted by273

their frequencies inside the text (see Definition 3).274

As we will note later, even the choice of the most frequent character of275

the alphabet (be it a single character or a q-gram) is enough to obtain a good276

efficacy, both in terms of search time and in terms of space used for storing277

the partial index. In the following two sections we will show how to apply278

sampling techniques in the two main scenarios, that of online searching and279

that of offline searching.280

4. Online Sampled String Matching281

In this section we show how the sampled text-based approach can be282

adopted to solve the online string matching problem. Specifically, in a first283

phase, we briefly present how the OTS approach is used in this scenario.284

Next we present the solution for online string matching based on the CDS285

approach, also based on a condensed alphabet. Such algorithms make use286

of an auxiliary string matching algorithm, used for searching the sampled287

pattern on the sampled text, and they work well with most of the known288

string matching algorithms. However, since the sampled patterns tend to be289

short, we assume that the search phase is implemented using the Horspool290

algorithm, which has been found to be fast in such setting. Such assumption291

is the same as that adopted in the paper by Claude et al. [5]292

4.1. Online Searching Using the OTS Approach293

Claude et al. [5] presented a very efficient algorithm for online string294

matching based on their OTS approach. Specifically, let y be the input text,295

of length n, and let x be the input pattern, of lengthm, both over an alphabet296

Σ of size σ. In addition let Σ̂ ⊂ Σ be the sampled alphabet, and let ŷ be297

the sampled text of length n̂, containing all (and only) the characters of the298

sampled alphabet.299

The OTS algorithm constructs a sampled version of the input pattern,
x̂, of length m̂ during the searching phase. Such pattern is then searched in

11

the sampled text. Since ŷ contains partial information, for each candidate
position i returned by the search procedure on the sampled text, the algo-
rithm has to verify the corresponding occurrence of x in the original text. For
this reason it uses information maintained in the table ρ to map positions of
the sampled text to their corresponding positions in the original text. The
position mapping ρ has size ⌊n̂/h⌋, where h is the interval factor, and is such
that ρ[i] = j if character y[j] corresponds to character ŷ[h×i]. More formally
we have, for 1 ≤ i ≤ ⌊n̂/h⌋

ρ[i] = j, if y[j] is the (h× i)-th occurrence in y of any character of Σ̂

The value of ρ[0] is set to 0. In their paper, on the basis of an accurate300

experimentation, the authors suggest to use values of h in the set {8, 16, 32}.301

Then, if the candidate occurrence position j is stored in the mapping302

table, i.e if ρ[i] = j for some 1 ≤ i ≤ ⌊n̂/h⌋, the algorithm directly checks303

the corresponding position in y for the whole occurrence of x. Otherwise, if304

the sampled pattern is found in a position r of ŷ, which is not mapped in305

ρ, the algorithm has to check the substring of the original text which goes306

from position ρ[r/h] + (r mod h) − α + 1 to position ρ[r/h + 1] − (h − (r307

mod h))− α + 1, where α is the first position in x such that x[α] ∈ Σ̂.308

Notice that, if the input pattern does not contain characters of the sam-309

pled alphabet, i.e. m̄ = 0, the algorithm merely reduces to search for x in310

the original text y.311

Example 7. Suppose y = “abaacabdaacabcc” is a text of length 15 over the312

alphabet Σ = {a,b,c,d}. Let Σ̂ = {b,c,d} be the sampled alphabet, by omitting313

character “a”. Thus the sampled text is ŷ = “bcbdcbcc”. If we map every314

h = 2 positions in the sampled text, the position mapping ρ is ⟨5, 8, 12, 14⟩.315

To search for the pattern x = “acab” the algorithm constructs the sampled316

pattern x̂ = “cb” and search for it in the sampled text, finding two occurrences317

at position 2 and 5, respectively. We note that ŷ[2] is mapped and thus it318

suffices to verify for an occurrence starting at position 4, finding a match.319

However position ŷ[5] is not mapped, thus we have to search in the substring320

y[ρ(2) + 3− 1..ρ(3)], finding a match at position 10.321

The real challenge in their algorithm is how to choose the best alphabet322

subset to sample. Based on some analytical results, supported by an experi-323

mental evaluation, they showed that it suffices in practice to sample the least324

12

frequent characters up to some limit.5 are removed from the original alpha-325

bet. Under this assumption their algorithm has an extra space requirement326

which is only 14% of text size and is up to 5 times faster than standard online327

string matching on English texts.328

4.2. Online Searching Using the CDS Approach329

Let y be an input text of length n over an alphabet Σ of size σ, let q > 1330

and let Σ
(q)
y be the condensed alphabet over Σ. In addition let C ⊆ Σ(q) be331

the set of pivot characters.332

During the preprocessing phase the algorithm performs a scanning of the333

text y and builds the corresponding position sampled text ẏ(q).334

Let now x be an input pattern of length m and let mC be the number of335

occurrences of any pivot character in x(q). The searching phase can be then336

divided in three different subroutines, depending on the value of mC . All337

searching procedures work using a filtering approach. The idea behind such338

searching procedures is to take advantage of the sampled text ẏ(q) computed339

during the preprocessing phase in order to quickly locate any candidate sub-340

string s of the original text which may include an occurrence of the pattern.341

If such candidate substring s has length m then the algorithm simply342

performs a character-by-character comparison between the pattern and the343

substring. Otherwise if the candidate substring s has length greater than m,344

then a searching procedure is called, based on a standard exact online string345

matching algorithm, for searching the pattern x in s.346

In what follows we describe in details the three different searching proce-347

dures which are applied when mC = 0, mC = 1 and mC > 1, respectively.348

Case 1: mC = 0349

If the pattern contains no occurrence of any pivot characters, we have that350

mC is equal to 0. Under this assumption the algorithm searches for the351

pattern x in all substrings of the original text which do not contain the pivot352

characters. Specifically such substrings are identified in the original text by353

the intervals [δ(q)(i) + 1..δ(q)(i + 1) + q − 2], for each 0 ≤ i ≤ nC , assuming354

δ(q)(0) = 0 and δ(q)(nC + 1) = n− q + 2.355

5According to their theoretical evaluation and their experimental results it turns out
that, when searching on an English text, the best performance are obtained when the 13
most frequent characters

13

Search-0(x, ẏ(q), y, q)
1. m← len(x)
2. nC ← len(ẏ)
3. ẏ(q)[0]← 0
3. ẏ(q)[nC + 1]← n− q + 2
4. for i← 1 to nC + 1 do
5. if (ẏ(q)[i]− ẏ(q)[i− 1] + q − 2 ≥ m) then
6. l← ẏ(q)[i− 1] + 1
7. r ← ẏ(q)[i] + q − 2
8. search for x in y[l..r]

Figure 1: The pseudocode of procedure Search-0 for the sampled string matching
problem, when no pivot character occurs in the input pattern x.

Specifically, for each 1 ≤ i ≤ nC + 1, the algorithm checks if the value356

ẏ(q)(i)−ẏ(q)(i−1)+q−2 is greater or equal tom. In such a case the algorithm357

searches for x in the substring of the text y[ẏ(q)[i − 1] + 1..ẏ(q)[i] + q − 2]358

using any standard string matching algorithm. Otherwise the substring is359

skipped, since no occurrence of the pattern could be found at such position.360

The pseudocode of procedure Search-0 for the sampled string matching361

problem, when no pivot character occurs in the input pattern x, is depicted362

in Figure 1.363

Case 2: mC = 1364

If the pattern x contains a single occurrence of any character of the set365

C, then the length of the sampled version of the pattern is still equal to 0.366

However also in this case the algorithm is able to efficiently take advantage of367

the information precomputed in ẏ(q) using the positions of the pivot character368

in y(q) as an anchor to locate all candidate occurrences of x.369

Specifically, let α be the unique position in x which contains the pivot370

character, i.e. we assume that x[α..α+q−1] = c and that both x[1..α−1] and371

x[α+1..m] do not contain any pivot character. Then, for each 0 ≤ i ≤ nC−1,372

the algorithm checks if the value ẏ(q)(i− 1)− ẏ(q)(i− 2) is greater than α− 1373

and if the value ẏ(q)(i) − ẏ(q)(i − 1) is greater than m − α. In such a case374

the algorithm merely checks if the substring of the text y[ẏ(q)[i − 1] − α +375

1..ẏ(q)[i − 1] − α + m] is equal to the pattern. Otherwise the substring is376

skipped. As before we assume that ẏ(0) = 0 and ẏ(nC +1) = n+1. The last377

14

Search-1(x, ẏ(q), y, q)
1. m← len(x)
2. nC ← len(ẏ)
3. α← min{i : x(q)[i] ∈ C}
4. ẏ(q)[0]← 0
5. ẏ(q)[nC + 1]← n− q + 2
6. for i← 1 to nC + 1 do
7. if (ẏ(q)[i− 1]− ẏ(q)[i− 2] > α− 1 and

ẏ(q)[i]− ẏ(q)[i− 1] > m− α) then
8. l← ẏ(q)[i− 1]− α + 1
9. r ← ẏ(q)[i− 1]− α +m
10. compare x and y[l..r]

Figure 2: The pseudocode of procedure Search-1 for the sampled string matching
problem, when the pattern x contains a single occurrence of the pivot character.

alignment of the pattern in the text is verified separately at the end of the378

main cycle. The pseudocode of procedure Search-1 for the sampled string379

matching problem, when the pattern x contains a single occurrence of the380

pivot character, is depicted in Figure 2.381

Case 3: mC ≥ 2382

If the number of occurrences of any pivot character in C is greater than383

1 then the algorithm uses the sampled text ẏ(q) to compute on the fly the384

sampled version ȳ(q) of y(q) and use it to search for any occurrence of x̄(q).385

This is used as a filtering phase for locating in y any candidate occurrence.386

First the character distance sampled version x̄ of x is computed. Then387

the algorithm searches for x̄ in ȳ using any exact online string matching388

algorithm. Notice that ȳ can be efficiently retrieved online from the sampled389

text ẏ, using relation given in (2).390

For each candidate occurrence i of x̄ located in ȳ, an additional procedure391

must be run to check if such occurrence corresponds to a match of the whole392

pattern x in y. For this purpose the algorithm checks if the substring of the393

text y[ẏ(q)[i]−ẏ(q)[0]..ẏ(q)[i]+m−1] is equal to x, where ẏ(q)[0] is the position of394

the first occurrence of the pivot character into the pattern. The pseudocode395

of procedure Search-2+ for the sampled string matching problem, when the396

pattern x contains at least 2 occurrences of the pivot character, is depicted397

15

Search-2+(x, ẏ(q), y, q)
1. m← len(x)
2. (x̄(q), m̄)← Compute-Distance-Sampling(x,m,C)
3. search for x̄(q) in ȳ(q) :
4. for each i such that x̄(q) = ȳ(q)[i..i+ m̄− 1] do
5. l← ẏ(q)[i]− ẏ(q)[0]
6. r ← ẏ(q)[i] +m− 1
7. compare x and y[l..r]

Figure 3: The pseudocode of procedure Search-2+ for the sampled string matching
problem, when the pattern x contains at least 2 occurrences of the pivot character.

in Figure 3.398

4.3. Complexity Issues399

In this section we prove that, assuming an underlying auxiliary string400

matching algorithm with a linear worst case and a O(n log(m)/m)) average401

case time complexity, the resulting algorithm based on Character Distance402

Sampling over condensed alphabets achieves an optimal O(n) time complex-403

ity in the worst-case and a O(n log(m)/m)) time complexity in the average404

case. The following lemmas prove that procedures Search-0, Search-1405

and Search-2+, respectively, achieve, under suitable conditions, optimal406

time complexity in both worst and average cases.407

Lemma 1. Le x and y be two strings of size m and n, respectively, over an408

alphabet Σ of size σ > 1. Let C ⊆ Σ(q) be set of pivot characters and let ẏ(q)409

be position sampled version of the text y. Under the assumption of equiprob-410

ability and independence of characters in Σ, the worst-case and average time411

complexity of Search-0 are O(n) and O(n logσ m/m), respectively.412

Proof. In our argumentation we refer to the pseudo-code reported in Fig.1.
In order to evaluate the worst-case time complexity of Search-0, we can
notice that each substring of the text is scanned at least once in line 8, with
no overlap. Thus if we use a linear algorithm to perform the standard search
then it is trivial to prove that the whole searching procedure requires

T 0
wst(n) = O(m) +

nc−1∑
i=1

O
(
∆(q)(i)

)
= O(n).

16

where, the O(n) term is related to the pre-processing of the pattern, while413

each O(∆(q)(i)) term corresponds to the time required to process the sub-414

string yq[δ(i)..δ(i+ 1)].415

Assuming that the underlying algorithm has an O(n logm/m)) average
time complexity, on a text of length n and a pattern of length m, we can
express the expected average time complexity as

T 0
avg(n) =

nc−1∑
i=1

O

(
∆(q)(i) logσ m

m

)
= O

(
n logσ m

m

)
.

416

Lemma 2. Le x and y be two strings of size m and n, respectively, over417

an alphabet Σ of size σ > 1. Let C ⊆ Σ(q) be the set of pivot characters418

and let ẏ(q) be the position sampled version of the text y. Under the as-419

sumption of equiprobability and independence of characters in Σ, the worst-420

case and average time complexity of the Search-1 algorithm are O(n) and421

O(n logσ m/m), respectively.422

Proof. In our argumentation we refer to the pseudo-code reported in Fig.2. In423

order to evaluate the worst-case time complexity of the procedure, notice that424

each character could be involved in, at most, two consecutive checks in line425

10. Specifically any text position in the interval [δ(i−1)+1..δ(i)−1] could be426

involved in the verification of the substrings y[δ(i−1)−α+1..δ(i−1)+m−α]427

and y[δ(i)−α+1..δ(i)+m−α]. Thus the overall worst case time complexity428

of the searching phase is T 1
wst(n) = O(n).429

In order to evaluate the average-case time complexity of the procedure,
notice that the expected number of occurrences in yq of the set of pivot
characters is given by E(nc) = n/σ. Moreover, for any candidate occurrence
of x in y, the number E(insp) of expected character inspections performed
by procedure Verify, when called on a pattern of length m, is given by

E(insp) = 1 +
m−1∑
i=1

(
1

σ

)i

≤ σ

σ − 1

Thus the average time complexity of the algorithm ican be expressed by

T 1
avg(n) = E(nc) · E(insp) =

O
(
n
σ

)
·O

(
σ

σ−1

)
=

O
(

n
σ−1

)
17

obtaining the optimal average time complexity O(n logσ m/m)) for great430

enough alphabets of size σ > (m/ logσ m) + 1, and for k ≥ σ.431

Lemma 3. Le x and y be two strings of size m and n, respectively, over432

an alphabet Σ of size σ > 1. Let C ⊆ Σ(q) be the set of pivot characters433

and let ẏ(q) be the position sampled version of the text y. Under the as-434

sumption of equiprobability and independence of characters in Σ, the worst-435

case and average time complexity of the Search-2+ algorithm are O(n) and436

O(n logσ m/m), respectively.437

Proof. In our argumentation we refer to the pseudo-code reported in Fig.3.438

In order to evaluate the worst-case time complexity of the algorithm in this439

last case notice that, if we use a linear algorithm to search ȳ for x̄, the440

overall time complexity of the searching phase is O(nc + nxm), where nx441

is the number of occurrences of x̄ in ȳ. In the worst case it translates in442

O(ncm) worst case time complexity. However it is not difficult to suppose443

to implement procedure Verify based on a linear algorithm, as KMP, in444

order to remember all positions of the text which have been already verified,445

allowing the algorithm to run in overall T
2+

wst(n) = O(n) worst-case time446

complexity.447

In order to evaluate the average-case time complexity of the algorithm
notice that time required for searching x̄ in ȳ is O(nc logmc/mc). Moreover,
observe that the number of verification is bounded by the expected number
of occurrences of the pivot character in y, thus, following the same line of
Theorem 2, the overall average time complexity of the verifications phase is
O(n/(σ − 1)). Thus the average time complexity of the algorithm can be
expressed by

T
2+

avg(n) = O

(
nc logmc

mc

)
+O

(
n

σ − 1

)
obtaining the optimal average time complexityO(n logσ m/m) for great enough448

values of σ, such that σ ≥ (m/ logσ m) + 1.449

5. Offline Sampled String Matching450

In this section we describe an approach to indexed searching which makes451

use of a suffix array constructed over the sampled version of the text. In our452

evaluation we have chosen to use the suffix array [30] as a reference point since453

it can be counted among the most efficient standard solutions to the offline454

18

string matching problem and because this solution was previously adopted455

by Claude et al. [5] for comparison with their approach to text sampling.456

We report that the suffix array data structure can be improved in various457

ways. For instance it can be effectively compressed with relative Lempel-Ziv458

(RLZ) dictionary compression, in such a way that arbitrary sub-arrays can be459

rapidly decompressed, thus facilitating compressed indexing [34, 35]. Among460

other possibilities we also report that a Suffix Array can be enhanced by rep-461

resenting a sequence of integers using Fibonacci encodings, thereby reducing462

the space requirements while retaining the searching functionalities [1]. In463

addition a Suffix Array can be improved in efficiency in various ways [25].464

However, these improvements are beyond the scope of this work, which in-465

tends to verify how a sampled text-based approach can improve the search466

efficiency of offline approaches, although it is possible to imagine that differ-467

ent data structures can achieve different improvements.468

We remember that a suffix array is a sorted array of all suffixes of a469

string. Such data structure has been introduced by Manber and Myers in470

1990 [30] as a simple, space efficient alternative to suffix trees [9]. It has been471

extensively studied in the last three decades and in 2016 Li, Li and Huo [27]472

gave the first in-place O(n)-time construction algorithm that is optimal both473

in time and space, where in-place means that the algorithm only needs O(1)474

additional space beyond the input string and the output suffix array.475

Formally, given a text y of length n, the suffix array sy of y is defined476

to be an array of integers providing the starting positions of suffixes of y477

in lexicographical order. This means that sy[i] contains the starting posi-478

tions of the i-th smallest suffix in y and thus for all 1 ≤ i ≤ n, we have479

y[sy[i− 1]..n] < y[sy[i]..n].480

481

Example 8. Let y = “agaacgcagtata” be a text of length 13, over the alpha-482

bet Σ = {a,c,g,t}. The suffix array, sy, contains the starting positions of all483

suffixes of y, arranged in lexicographical order. Specifically we have:484

485

19

sy[1] = 12 → ⟨a⟩
sy[2] = 2 → ⟨aacgcagtata⟩
sy[3] = 3 → ⟨acgcagtata⟩
sy[4] = 0 → ⟨agaacgcagtata⟩
sy[5] = 7 → ⟨agtata⟩
sy[6] = 10 → ⟨ata⟩
sy[7] = 6 → ⟨cagtata⟩
sy[8] = 4 → ⟨cgcagtata⟩
sy[9] = 1 → ⟨gaacgcagtata⟩
sy[10] = 5 → ⟨gcagtata⟩
sy[11] = 8 → ⟨gtata⟩
sy[12] = 11 → ⟨ta⟩
sy[13] = 9 → ⟨tata⟩

486

The time complexity needed to build suffix array is O(n2 log(n)) if an487

O(n log(n)) algorithm is used for sorting the array of all suffixes. However,488

there are many efficient algorithms to build suffix array [22]. Once the suffix489

array is built, it is possible to search a pattern using the suffix array by a490

binary search in O(n log(n)) time. However it has been proved that we can491

report all occ occurrences of a pattern in a text in O(m + log(n) + occ) [2].492

In the following two subsections we show how the suffix array based solution493

can be adapted to the OTS and CDS approaches presented in this paper.494

5.1. Offline Searching Using the OTS Approach495

To turn the sampling approach into an index, Claude et al. use a suffix496

array to index the sampled positions of the text. When constructing the suffix497

array, only suffixes starting with a sampled character will be considered, but498

the sorting will still be done considering the full suffixes. The resulting499

sampled suffix array is like the suffix array of the original text where suffixes500

starting with unsampled characters have been omitted.501

Example 9. Let again y = “agaacgcagtata” be a text of length 13, over the502

alphabet Σ = {a,c,g,t}. The sampled suffix array, sŷ, contains the starting503

positions of all suffixes of y beginning with a character with the sampled alpha-504

bet, arranged in lexicographical order. Specifically, assuming that Σ̂ = {a, g},505

we have:506

507

20

sŷ[1] = 12 → ⟨a⟩
sŷ[2] = 2 → ⟨aacgcagtata⟩
sŷ[3] = 3 → ⟨acgcagtata⟩
sŷ[4] = 0 → ⟨agaacgcagtata⟩
sŷ[5] = 7 → ⟨agtata⟩
sŷ[6] = 10 → ⟨ata⟩
sŷ[7] = 1 → ⟨gaacgcagtata⟩
sŷ[8] = 5 → ⟨gcagtata⟩
sŷ[9] = 8 → ⟨gtata⟩

508

Search on the sampled suffix array is carried out as follows. Given a509

pattern x the algorithm finds the first sampled character of the pattern.510

Assume such character is at index j of x. The pattern is then partitioned into511

the prefix x[1..j − 1] and the suffix starting with the first sampled character512

x[j..m]. The algorithm then searches the sampled suffix array for the suffix513

of the pattern like in an ordinary suffix array. Each candidate occurrence514

located by this search will then be verified by comparing the prefix x[1..j−1]515

against the text. Observe that the OTS suffix array can be used for searching516

a text only for patterns that contain at least one sampled character.517

5.2. Offline Searching Using the CDS Approach518

The algorithm we propose is divided into two phases: a first preprocessing519

phase which consists in the construction of a sampled version, sȳ, of the suffix520

array and a searching phase which is used to search any pattern x of length521

m in y making use of the suffix array sȳ and the sampled text ẏ. We notice522

that, as it happens in any offline string matching solution, the preprocessing523

phase is performed only once for the construction of the partial index, while524

the searching phase can be run for an indeterminate number of queries. We525

notice also that the algorithm must maintain the original text y, the sampled526

version of the text ẏ and the corresponding suffix array sȳ.527

We are now ready to describe the preprocessing and the searching phase528

of our new proposed algorithm.529

530

As before, let y be an input text of length n over an alphabet Σ of size531

σ and let C ⊆ Σ be the set of pivot characters. During the preprocessing532

phase the algorithm builds and stores the position sampled text ẏ of y. This533

requires O(n)-time and O(nc)-space, where nc is the number of occurrences534

21

of any pivot character in y. Subsequently a suffix array of ȳ is constructed535

on the fly using information maintained in ẏ.536

As a consequence, when constructing the suffix array of ȳ, the algorithm537

takes into account only suffixes beginning with a pivot character in the origi-538

nal text, drastically reducing the space requirement for maintaining the whole539

index.540

Definition 6 (CDS Suffix Array). Let y be a text of length n, let C ⊆ Σ541

be the set of pivot characters and let nC be the number of occurrences of542

any c ∈ C in the input text y. Le δ : {1, .., nC} → {1, .., n} be the position543

function and let ẏ be the position sampled version of y.544

The CDS suffix array sȳ of y is defined to be an array of all index posi-545

tions i, with 1 ≤ i ≤ nC − 1 such that ȳ[sȳ[i− 1]..nC − 1] < ȳ[sȳ[i]..nC − 1].546

547

Example 10. Let y = “agaacgcagtata” be a text of length 13, over the al-548

phabet Σ = {a,c,g,t}. Let C = {a} be the set of pivot characters. Thus the549

position sampled version of y is ẏ = ⟨1, 3, 4, 8, 11, 13⟩, while the character550

distance sampled version of y is ȳ = ⟨2, 1, 4, 3, 2⟩.551

The sampled suffix array, sȳ, contains all positions in y, starting with a552

pivot character c ∈ C, arranged in lexicographical order with respect to the553

suffixes of ȳ. Specifically we have:554

555

sȳ[1] = 1 → ⟨1, 4, 3, 2⟩
sȳ[2] = 4 → ⟨2⟩
sȳ[3] = 0 → ⟨2, 1, 4, 3, 2⟩
sȳ[4] = 3 → ⟨3, 2⟩
sȳ[5] = 2 → ⟨4, 3, 2⟩

556

557

Thus, sȳ[0] = 1 indicates that the smallest suffix, in lexicographical order558

relative to ȳ, begins at position ẏ[1] in y (it is ȳ[1..4] = ⟨1, 4, 3, 2⟩). Similarly559

sȳ[1] = 4 indicates that the second suffix begins at position ẏ[4] in y.560

During the searching phase the algorithm uses the suffix array of the561

sampled text sȳ as an index to quickly locate every occurrences of a sampled562

pattern x̄ in ȳ. Each of these occurrences is treated as a candidate occurrence563

of x in y, and as such it will be verified by a comparison procedure.564

The searching algorithm works as a standard search on a suffix array. It is565

based of the fact that finding every occurrence of the pattern x̄ is equivalent566

22

to find every suffix in ȳ that begins with the x̄. Thanks to the lexicographical567

ordering of the suffix array, all such suffixes are grouped together and can568

be found efficiently with a single binary search, which locates the starting569

position of the interval.570

For the sake of completeness we observe that both the OTS and the571

CDS suffix arrays resemble a sparse suffix array [21], which indexes regularly572

sampled text positions. However, such data structure only need to make one573

search of the sampled pattern, while using a sparse suffix array h searches574

are needed if the suffix array indexes every h-th position. The drawback of575

such data structures is that they can only be used for patterns that contain576

at least one sampled character, whereas the sparse suffix array can be used if577

the pattern length is at least q. The variance of the search time when using578

the sampled suffix array is also larger than when using a sparse suffix array579

because in the sampled suffix array we have much less control over the length580

of the string that is used in the suffix array search.581

5.3. Complexity Issues582

In order to to compute the time complexity needed for searching a pattern583

x, of length m, in a text y, of length n, we assume that nC is the number584

pivot characters appearing in y. Then finding the first position of a sampled585

pattern x̄ of length mC in a suffix array sȳ of length nC takes O(mC log nC)-586

time [2] while finding the set of all ρ occurrences of x̄ in ȳ takes O(ρ)-time.587

Since each occurrence must be verified in the original text we need O(mρ)588

additional time for the verification phase. The overall time complexity of the589

searching algorithm is then O(mC log(nC) +mρ).590

It is important to notice that such complexity leads to a worst-case sce-591

nario that cannot be compared with the O(m log(n))-time complexity ob-592

tained by suffix arrays. Indeed, the verification phase component O(mρ),593

which is not required in standard suffix arrays, may in many cases be domi-594

nant over the search phase compontent O(mC log(nC)).595

If we assume, for instance that y = (abc)n and x = (abc)m−1(acb)m and596

the set of pivot characters is C = {a}, the sampled suffix array reports all597

text positions as candidate occurrences and the verification needs to be run598

n time. This scenario leads to an overall worst-case time complexity equal599

to O(nm) overall.600

23

6. Experimental Results601

In this section we present experimental results obtained by comparing602

the new proposed sampling approaches (using values of q ranging between 2603

and 4) against the standard Character Distance Sampling (CDS) approach604

(obtained with q set to 1). Experimental evaluations were conducted in both605

the online and offline scenarios.606

We compare our approaches against the Occurrence Text Sampling (OTS)607

approach and against the standard solution for which no text sampling is608

included.6 In order to conduct a comparison as fair as possible we also im-609

plemented the OTS approach using q-grams, for values of q ranging between610

2 and 4611

All algorithms have been implemented using the C programming lan-612

guage, and have been tested using a variant of the Smart7 tool [10] prop-613

erly tuned for testing string matching algorithms based on a text-sampling.614

Tests have been executed on a MacBook Pro with 4 Cores, a 2.7 GHz In-615

tel Core i7 processor, 16 GB RAM 2133 MHz LPDDR3, 256 KB of L2616

Cache and 8 MB of Cache L3. The code of the algorithms used to per-617

form the experiments presented in this section is available online at https:618

//www.dmi.unict.it/faro/SAMPLING/.619

All algorithms, for both the online and offline scenarios, have been tested620

on two 100MB text buffers containing a real biological sequence and a natural621

language text in the English language. Specifically the biological sequence622

is a collection of newline-separated gene DNA sequences (without descrip-623

tions, just the bare DNA code) obtained from files 01hgp10 to 21hgp10,624

plus 0xhgp10 and 0yhgp10, from Gutenberg Project. Each of the 4 bases is625

coded as an uppercase letter A, G, C, T, with few occurrences of other special626

characters. The natural language text buffer is the concatenation of English627

text files selected from etext02 to etext05 collections of Gutenberg Project,628

where the headers related to the project have been deleted so as to leave just629

the real text. Both sequences are available for download in the Pizza&Chili630

Corpus (http://pizzachili.dcc.uchile.cl).631

In the experimental evaluation (for both online and offline searching),632

6The standard solutions taken as a reference point are the Boyer-Moore-Horspool al-
gorithm for the online scenario and the search on suffix arrays for the offline scenario.

7The Smart tool is available online for download at http://www.dmi.unict.it/

~faro/smart/ or at https://github.com/smart-tool/smart.

24

https://www.dmi.unict.it/faro/SAMPLING/
https://www.dmi.unict.it/faro/SAMPLING/
https://www.dmi.unict.it/faro/SAMPLING/
http://pizzachili.dcc.uchile.cl
http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/
https://github.com/smart-tool/smart

patterns of length m were randomly extracted from the sequences, with m633

ranging over the set of values {2i|3 ≤ i ≤ 8}. For each value of m, the mean634

over the running times (expressed in hundredths of seconds) of 1000 runs has635

been reported.636

In our implementations we selected the pivot character on the basis of its637

rank value, where we remember that the rank of a character c is the position638

of c in the alphabet Σ, if we assume that all characters are sorted by their639

frequencies inside the text (see Definition 3).640

Then we evaluated the behaviour of our algorithms for different values641

of the rank r of the selected pivot character and specifically for r ranging642

between 1 (the most frequent character) and 16. Observe that if σ is the size643

of the original alphabet Σ, then σq is the size of the condensed alphabet Σ(q).644

As a consequence, in the case of experimental tests on genome sequences and645

q = 1, the value of the rank r is limited in the range between 1 and 4, since646

4 is the size of the alphabet. We underline also that, in the case of the OTS647

approach, the value of the rank r refers to variations of the size of the set of648

sampled characters. Also in this case r ranges from 2 to 16.649

6.1. Space Requirements650

In the context of text-sampling string-matching space requirement is one651

of the most significant parameter to take into account. It indicates how much652

additional space, with regard to the size of the original input sequences, is653

required by a given solution to solve the problem.654

Text-sampling algorithms require to store the whole text together with655

the additional sampled-text which is used to speed-up the searching phase.656

Although sampled texts have the good property to allow a direct access to657

the input text (when they are scanned sequentially), to be of any practical658

interest they should require as little extra space as possible.659

Fig. 4 and Fig. 5 show the space consumption of the newly proposed text-660

sampling approaches, in the case of a genome sequence and an English text,661

respectively. Data are reported for different values of q in terms of percentage662

of memory used, in comparison with the original text size. We recall that,663

in the case of CDS, memory space consumption is plotted on variations of664

the rank of the pivot character. As expected, the function which describes665

memory requirements shows a decreasing trend while the rank of the pivot666

character increases. Similarly space consumption drastically decreases when667

the size of q increases.668

25

Space Consumption for a Genome Sequence

2 4 6 8 10 12 14 16

50%

100%
CDS1

CDS2

2 4 6 8 10 12 14 16

2%

4%

6%

8% CDS3

CDS4

Figure 4: Space consumption of CDS approaches on a genome sequence, for different
pivot characters with rank ranging from 2 to 16 and for different values of the parameter
q, ranging from 1 to 4. Data are reported in terms of percentage of memory used relative
to the original text size.

Data reported in Fig. 4, related to the sampling of a genome sequence,669

show that, when compared against the standard sampling approach (obtained670

with q = 1), the benefit in space consumption obtained by the approaches671

based on condensed alphabets is impressive. Specifically the gain for CDS672

ranges from 72% (for r = 1 and q = 2) to 95% (for r = 16 and q = 4).673

In addition we can observe a sensible gain in the space consumption also in674

comparison with the OTS algorithms implemented using condensed alpha-675

bets.676

Data reported in Fig. 5, related to the English text, show that, when677

compared against the standard sampling approach (obtained with q = 1), the678

benefit in space consumption obtained by the approaches based on condensed679

alphabets is even more advantageous. Specifically the gain for CDS ranges680

from 90% (for r = 1 and q = 2) to 98.8% (for r = 16 and q = 4). Also681

in this case, the CDS approach shows a significant reduction in the space682

consumption when compared with the OTS approach implemented using683

condensed alphabets.684

For the sake of completeness we would like to point out that standard al-685

gorithms for the online string matching problem require an amount of space686

which is, in general, proportional to the length of the pattern and/or to the687

size of the alphabet. In this particular case (a 5MB text buffer) the Boyer-688

Moore-Horspool algorithm requires only 1.24 KB of memory for implement-689

ing the occurrence heuristic (equivalent to a O(σ)-space complexity), while690

26

Space Consumption for an English Text

2 4 6 8 10 12 14 16

0%

10%

20%

30%

40%

C
D

S
a
m
p
l
in
g q = 1

q = 2

2 4 6 8 10 12 14 16

0.2%

0.4%

0.6%

0.8%

1% q = 3
q = 4

Figure 5: Space consumption of CDS approaches on an English text, for different pivot
characters with rank ranging from 2 to 16 and for different values of the parameter q,
ranging from 1 to 4. Data are reported in terms of percentage of memory used relative to
the original text size.

some among the most effective algorithms (for instance Wfrq [4], Skipq691

[8]) are implemented by means of a hash table of size 65536, requiring 0.2692

MB of additional space. Thus it turns out that, under particular condi-693

tions (texts of moderate lengths), the practical space requirements of our694

proposed sampling algorithms are comparable with those of standard online695

string matching solutions.696

6.2. Online Searching697

In this section we compare the different text-sampling approaches in terms698

of online searching times. In this context we refer to the searching time as699

the time needed to perform the searching of the pattern on both sampled700

and original texts, including any preprocessing of the underlying algorithm.701

However, in our analysis the searching time doesn’t include the preprocessing702

time needed to construct the partial index.703

Following the same lines of previous papers on sampled string matching704

[5, 12] we tested all sampling solutions in combination with the Boyer-Moore-705

Horspool (HOR) algorithm [20] for the implementation of the underlying706

standard searching procedure. As a consequence, in our comparison we also707

included the Boyer-Moore-Horspool string matching algorithm (in its stan-708

dard implementation) in order to understand how much the proposed sam-709

pling approach contributes to speed-up a standard online string matching710

27

solution.8711

In our experimental results we also included the best running time ob-
tained by OTS solutions implemented with condensed alphabets. Specifically
if OTS(q,r) is the searching speed of the OTS algorithm implemented using
q-grams and rank r, we compute OTS(q,r) as

OTS(q,r) = max
1≤q≤4
1≤r≤16

(
OTS(q,r)

)
Observe that the original OTS approach is obtained by setting q = 1. Our712

experiments showed that the values that yield the best results are q = 3 and713

r = 12 for searching genomic sequences, and q = 4 and r = 12 for searching714

English texts. Thus we have reported only these values in the graphs.715

In addition, for the sake of completeness, we also included in our ex-716

perimental results three among the most efficient algorithm recently intro-717

duced for the exact online string matching problem. Specifically we included718

the Weak-Factor-Recognition algorithm [4] (WRF), the Brackward-Range-719

Automaton-Matcher [14] (BRAM) and the Skip-Search algorithm [8]. All720

algorithms have been implemented in several variants using q-grams, for val-721

ues of q ranging from 1 to 8. Here again, we have only reported the results722

obtained with the best variant for each algorithm.723

Fig. 6 and Fig. 7 show the resulting searching times of all tested algo-724

rithms when they were used for searching on a genome sequence and on an725

English text, respectively. Results are expressed in terms of searching speed,726

reported in Gigabytes per second (GB/s).727

In general, the search speeds achieved by the new variants are extremely728

high and their advantage over the performance of standard algorithms is729

impressive. This is due to the fact that the main loop of the search phase730

iterates over the sampled text, the length of which, as we have seen above,731

is much shorter than that of the original text. Added to this is the fact that732

the number of candidate occurrences is very low, especially for long patterns.733

From experimental results on a genome sequence (Fig. 6) it turns out that734

in all cases the best results are obtained by the variants based on condensed735

8Although there exists many other searching algorithms able to show better practical
performances on biological data (see for instance [4, 8]) this kind of comparison goes
beyond the objectives of this paper. We expect that the proposed approach is able to
enhance the performances of different string matching algorithms with different, though
similar, rates.

28

Online Searching on Genome Sequence

1 2 4 6 8 10 12 14 16

0 GB/s

50 GB/s

100 GB/s

150 GB/s

200 GB/s

m = 8 CDS1

CDS2

CDS3

CDS4

OTS

BRAM

HOR

SKIP

WFR

1 2 4 6 8 10 12 14 16

m = 16

1 2 4 6 8 10 12 14 16

0 GB/s

200 GB/s

400 GB/s

600 GB/s

m = 32

1 2 4 6 8 10 12 14 16

m = 64

1 2 4 6 8 10 12 14 16

0 GB/s

1,000 GB/s

2,000 GB/s

m = 128

1 2 4 6 8 10 12 14 16

m = 256

Figure 6: Searching speed on a genome sequence. Red lines represent the CDSq algorithm
implemented with 1 ≤ q ≤ 4, the solid gray-tones lines represent the standard algorithms
while the blue solid line represents the best searching time of the OTS solution imple-
mented with q-grams. The x axis represents the rank r of the pivot character in the case
of the sampling algorithms, with 1 ≤ r ≤ 16.

29

Online Searching on English Text

1 2 4 6 8 10 12 14 16

0 GB/s

500 GB/s

1,000 GB/s

m = 8 CDS1

CDS2

CDS3

CDS4

OTS

BRAM

HOR

SKIP

WFR

1 2 4 6 8 10 12 14 16

m = 16

1 2 4 6 8 10 12 14 16

0 GB/s

500 GB/s

1,000 GB/s

1,500 GB/s

m = 32

1 2 4 6 8 10 12 14 16

m = 64

1 2 4 6 8 10 12 14 16

0 GB/s

1,000 GB/s

2,000 GB/s

3,000 GB/s

m = 128

1 2 4 6 8 10 12 14 16

m = 256

Figure 7: Searching speed on a natural language text. Red lines represent the CDSq
algorithm implemented with 1 ≤ q ≤ 4, the solid gray-tones lines represent the standard
algorithms while the blue solid line represents the best searching time of the OTS solution
implemented with q-grams. The x axis represents the rank r of the pivot character in the
case of the sampling algorithms, with 1 ≤ r ≤ 16.

30

alphabets. Specifically, in the case of short patterns (m = 8) the best running736

times are obtained by the variant with q = 2, but as the length of the pattern737

increases, the variants with higher q values prove to be faster and faster until738

the variant with q = 4 proves to be the fastest from m ≥ 128.739

As might be expected, search speeds also increase as the pattern length740

increases, from speeds of just under 100 GB/s for m = 8 to speeds of just741

over 2.000 GB/s for m = 256.742

When using a value of q greater than 1, the speed up obtained by CDS743

is always greater than 50% and reaches the value of 90% under suitable744

conditions, i.e. for q = 4 and long patterns.745

Observe that the behaviour of algorithms based in CDS follow a decreas-746

ing trend for increasing rank values. Thus in most cases the better choice is747

to use the most frequent element as the pivot character. Observe indeed that,748

when the rank of the pivot character is greater than a given threshold, the749

performances of the CDS algorithms based on q-grams sensibly degrades.750

Specifically this threshold is approximately equal to 6 for short patterns751

(q ≤ 3 and m = 8), while it increases as the pattern gets longer or for greater752

values of q.753

Similarly, from experimental results on an English text (Fig. 7) it turns754

out that the variants based on condensed alphabets obtain the best results755

in all cases. Again, the best choice for short patterns is q = 2, but as the756

length of the pattern increases, the variants with higher q values prove to be757

faster and faster until the variant with q = 4 proves to be the fastest from758

m >= 64. The maximum speed reached by such solution is very close to759

3.000 GB/s. When using a value of q greater than 1, the speed up obtained760

by CDS is always greater than 50% and reaches the value of 98% under761

suitable conditions, i.e. for q = 4 and long patterns.762

We observe that on natural language texts and long patterns the be-763

haviour of algorithms based in CDS follow a slightly increasing trend for764

increasing rank values, but, in general, the search speed obtained from the765

different values of the rank is comparable. As in the case of genome sequence,766

in the case of short patterns, when the rank of the pivot character is greater767

than a given threshold, the performances of the CDS algorithms based on768

q-grams sensibly degrades.769

Going into details of the improvement in terms of running times we ob-770

serve that the original CDS approach (q = 1) leads to improvements which771

are in percentage between 74% (in the case of short patterns) and 77% (in772

31

the case of long patterns) if compared with the underlying standard string773

matching algorithm. The new CDS algorithms based on condensed alpha-774

bets give instead much more evident improvements which range from 96%775

(for short patterns) and 99.6% (in the case of long patterns) compared with776

the same algorithm. This improvements translate into a gain up to 70% for777

short patterns and up to 96% in the case of long patterns, if compared with778

OTS approach.779

6.3. Offline Searching780

In this section we compare the different text-sampling approaches in the781

offline scenario. In this context we refer to the searching time as the time782

needed to perform the searching of the pattern on the text-index. In our783

analysis the searching time doesn’t include the preprocessing time needed to784

construct the index.785

Following the same lines of [5] we tested all sampling solutions using a786

modified Suffix Array, as described in Section 5. Thus, in our comparison787

we also included the original Suffix Array algorithm (STD), in its standard788

implementation, in order to understand how much the proposed sampling789

approaches contribute to speed-up a standard offline searching solution.790

We mention that Ferragina and Manzini [15] showed that it is possible791

to search a pattern x of length m backwards in the suffix array of y without792

storing it. A backward search means that we first search for the substring793

x[m..m], then for the substring x[m−1..m], and so on, until the whole pattern794

x is found. In the computer science literature, any data structure that allows795

to search a pattern x backwards in the (conceptual) suffix array of a text y is796

called an FM-index of y. In our experimental results, however, we have not797

used the backward-search technique, limiting ourselves to a simple binary798

search within the suffix array constructed on the text y.799

Table. 1 and Table. 2 show the resulting performance of all tested algo-800

rithms when they were used for searching on a genome sequence and on an801

English text, respectively. Results are reported in terms of searching speed,802

expressed in number of queries per second (QR/s).803

For an easier reading of the results, we have listed in the tables, for804

each algorithm, only the results of the variants with the best performance.805

Specifically for OTS we reported the results with q = 4 and r = 12, in the806

case of genomic sequences, and q = 3 and r = 12, in the case of natural807

language texts. In the case of CDS we reported the results for pairs of values808

(q, r) ∈ {(1, 2), (2, 8), (3, 10), (4, 8)}.809

32

m STD OTS(4,12) CDS(1,2) CDS(2,8) CDS(3,10) CDS(4,8)

8 152 161 188 191 201 198
16 154 172 183 197 213 227
32 161 183 201 217 216 234
64 163 199 218 234 241 268
128 168 202 233 247 246 299
256 181 216 257 281 293 322

Table 1: Offline searching on a genome sequence. Values are reported in thousands of
queries per second. We used values q ranging from 1 to 4, values of r ranging from 1 to
16 and pattern lengths m ranging from 8 to 256. Best results have been bold-faced.

m STD OTS(3,12) CDS(1,8) CDS(2,8) CDS(3,10) CDS(4,8)

8 198 212 244 244 247 261
16 212 224 257 254 271 267
32 219 222 271 278 284 299
64 218 238 321 338 337 355
128 219 243 322 343 356 385
256 224 278 366 368 382 401

Table 2: Offline searching on a natural language text. Values are reported in thousands
of queries per second. We used values q ranging from 1 to 4, values of r ranging from 1 to
16 and pattern lengths m ranging from 8 to 256. Best results have been bold-faced.

33

From the experimental results it turns out that the standard solution810

based on a suffix array offers performances of about 200K queries per second,811

while the solutions based on the OTS approach oscillate between 200K and812

300K queries per second, proposing a search speed mildly faster than the813

previous one. The solutions based on the CDS approach, on the other hand,814

offer significantly better performance, oscillating between 250K queries per815

second (q = 1 and short patterns) and 400K queries per second (q = 4 and816

for almost all values of m). These last solutions offer performances that are817

therefore between 1.5 and 1.8 times faster than the standard solution.818

Finally, we note that, as might be expected, there is no significant vari-819

ation in the results for different values of m. In fact, although there is a820

difference between the results, going from patterns of length 8 to patterns821

of length 256, the gain obtained is at most just over 50%. This is due to822

the fact that the search is only partially dependent, in its O(m log(n)) time823

complexity, on the length m of the pattern while the dominant factor consists824

of the logarithm of the size n of the data structure.825

7. Conclusions826

In this paper we have presented an extensions of a text sampling approach,827

called Character Distance Sampling, to the case of texts over small alphabets828

and in the case of offline searching. The first extension was carried out829

using condensed alphabets in which consecutive groups of q characters are830

assimilated to a single element of the alphabet, significantly extending its831

size. The result obtained by this extension was to significantly lower the832

execution time in the search phase while keeping the space used by the index833

below the space used by the previous approaches. In our second extension834

we have proposed a suffix array model built directly on the sampled text in835

order to decrease the number of candidate occurrences and, consequently, the836

time required for the response to each single query. This approach contrasts837

with those currently proposed in the literature which are limited to reducing838

the number of suffixes taken into account in the original data structure. The839

experimental results proposed in our extensive experimentation, conducted840

both on the online and offline scenarios, show how this new proposal offers841

significantly better performances both in terms of space and in terms of842

search time. Our future studies will focus in this direction in order to apply843

sampled string matching to other problems related to text processing.844

34

8. Acknowledgement845

We gratefully acknowledge support from project STORAGE—Università846

degli Studi di Catania, Piano della Ricerca 2020/2022847

References848

[1] Ekaterina Benza, Shmuel T. Klein, and Dana Shapira. Smaller com-849

pressed suffix arrays†. Comput. J., 64(5):721–730, 2021. doi:10.1093/850

comjnl/bxaa016.851

[2] Robert S. Boyer and J. Strother Moore. A fast string searching algo-852

rithm. Commun. ACM, 20(10):762–772, 1977. doi:10.1145/359842.853

359859.854

[3] Domenico Cantone, Simone Faro, and Emanuele Giaquinta. Adapt-855

ing boyer-moore-like algorithms for searching huffman encoded texts.856

Int. J. Found. Comput. Sci., 23(2):343–356, 2012. doi:10.1142/857

S0129054112400163.858

[4] Domenico Cantone, Simone Faro, and Arianna Pavone. Linear and effi-859

cient string matching algorithms based on weak factor recognition. ACM860

J. Exp. Algorithmics, 24(1):1.8:1–1.8:20, 2019. doi:10.1145/3301295.861

[5] Francisco Claude, Gonzalo Navarro, Hannu Peltola, Leena Salmela, and862

Jorma Tarhio. String matching with alphabet sampling. J. Discrete863

Algorithms, 11:37–50, 2012. doi:10.1016/j.jda.2010.09.004.864

[6] Maxime Crochemore, Artur Czumaj, Leszek Gasieniec, Stefan865

Jarominek, Thierry Lecroq, Wojciech Plandowski, and Wojciech Rytter.866

Speeding up two string-matching algorithms. Algorithmica, 12(4/5):247–867

267, 1994. doi:10.1007/BF01185427.868

[7] Edleno Silva de Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo A.869

Baeza-Yates. Fast and flexible word searching on compressed text. ACM870

Trans. Inf. Syst., 18(2):113–139, 2000. doi:10.1145/348751.348754.871

[8] Simone Faro. A very fast string matching algorithm based on condensed872

alphabets. In Riccardo Dondi, Guillaume Fertin, and Giancarlo Mauri,873

editors, Algorithmic Aspects in Information and Management - 11th In-874

ternational Conference, AAIM 2016, Bergamo, Italy, July 18-20, 2016,875

35

https://doi.org/10.1093/comjnl/bxaa016
https://doi.org/10.1093/comjnl/bxaa016
https://doi.org/10.1093/comjnl/bxaa016
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://doi.org/10.1142/S0129054112400163
https://doi.org/10.1142/S0129054112400163
https://doi.org/10.1142/S0129054112400163
https://doi.org/10.1145/3301295
https://doi.org/10.1016/j.jda.2010.09.004
https://doi.org/10.1007/BF01185427
https://doi.org/10.1145/348751.348754

Proceedings, volume 9778 of Lecture Notes in Computer Science, pages876

65–76. Springer, 2016. doi:10.1007/978-3-319-41168-2_6.877

[9] Simone Faro and Thierry Lecroq. The exact online string matching878

problem: A review of the most recent results. ACM Comput. Surv.,879

45(2):13:1–13:42, 2013. doi:10.1145/2431211.2431212.880

[10] Simone Faro, Thierry Lecroq, Stefano Borzi, Simone Di Mauro, and881

Alessandro Maggio. The string matching algorithms research tool. In882

Jan Holub and Jan Zdárek, editors, Proceedings of the Prague Stringol-883

ogy Conference 2016, Prague, Czech Republic, August 29-31, 2016,884

pages 99–111. Department of Theoretical Computer Science, Faculty885

of Information Technology, Czech Technical University in Prague, 2016.886

URL: http://www.stringology.org/event/2016/p09.html.887

[11] Simone Faro and Francesco Pio Marino. Reducing time and space888

in indexed string matching by characters distance text sampling. In889

Jan Holub and Jan Zdárek, editors, Prague Stringology Conference890

2020, Prague, Czech Republic, August 31 - September 2, 2020, pages891

148–159. Czech Technical University in Prague, Faculty of Information892

Technology, Department of Theoretical Computer Science, 2020. URL:893

http://www.stringology.org/event/2020/p13.html.894

[12] Simone Faro, Francesco Pio Marino, and Arianna Pavone. Efficient on-895

line string matching based on characters distance text sampling. Algo-896

rithmica, 82(11):3390–3412, 2020. doi:10.1007/s00453-020-00732-4.897

[13] Simone Faro, Francesco Pio Marino, and Arianna Pavone. Enhanc-898

ing characters distance text sampling by condensed alphabets. In899

Claudio Sacerdoti Coen and Ivano Salvo, editors, Proceedings of the900

22nd Italian Conference on Theoretical Computer Science, Bologna,901

Italy, September 13-15, 2021, volume 3072 of CEUR Workshop Pro-902

ceedings, pages 1–15. CEUR-WS.org, 2021. URL: http://ceur-ws.903

org/Vol-3072/paper1.pdf.904

[14] Simone Faro and Stefano Scafiti. The range automaton: An efficient ap-905

proach to text-searching. In Thierry Lecroq and Svetlana Puzynina, edi-906

tors, Combinatorics on Words - 13th International Conference, WORDS907

2021, Rouen, France, September 13-17, 2021, Proceedings, volume 12847908

36

https://doi.org/10.1007/978-3-319-41168-2_6
https://doi.org/10.1145/2431211.2431212
http://www.stringology.org/event/2016/p09.html
http://www.stringology.org/event/2020/p13.html
https://doi.org/10.1007/s00453-020-00732-4
http://ceur-ws.org/Vol-3072/paper1.pdf
http://ceur-ws.org/Vol-3072/paper1.pdf
http://ceur-ws.org/Vol-3072/paper1.pdf

of Lecture Notes in Computer Science, pages 91–103. Springer, 2021.909

doi:10.1007/978-3-030-85088-3_8.910

[15] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J.911

ACM, 52(4):552–581, 2005. doi:10.1145/1082036.1082039.912

[16] Kimmo Fredriksson and Szymon Grabowski. A general compression913

algorithm that supports fast searching. Inf. Process. Lett., 100(6):226–914

232, 2006. doi:10.1016/j.ipl.2006.04.020.915

[17] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text916

indexing in bwt-runs bounded space. In Artur Czumaj, editor, Proceed-917

ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete918

Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,919

pages 1459–1477. SIAM, 2018. doi:10.1137/1.9781611975031.96.920

[18] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional921

suffix trees and optimal text searching in bwt-runs bounded space. J.922

ACM, 67(1):2:1–2:54, 2020. doi:10.1145/3375890.923

[19] Szymon Grabowski and Marcin Raniszewski. Sampled suffix array with924

minimizers. Softw. Pract. Exp., 47(11):1755–1771, 2017. doi:10.1002/925

spe.2481.926

[20] R. Nigel Horspool. Practical fast searching in strings. Softw. Pract.927

Exp., 10(6):501–506, 1980. doi:10.1002/spe.4380100608.928

[21] Tomohiro I, Juha Kärkkäinen, and Dominik Kempa. Faster sparse suffix929

sorting. In Ernst W. Mayr and Natacha Portier, editors, 31st Interna-930

tional Symposium on Theoretical Aspects of Computer Science (STACS931

2014), STACS 2014, March 5-8, 2014, Lyon, France, volume 25 of932

LIPIcs, pages 386–396. Schloss Dagstuhl - Leibniz-Zentrum für Infor-933

matik, 2014. doi:10.4230/LIPIcs.STACS.2014.386.934

[22] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix ar-935

ray construction. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim936

Parrow, and Gerhard J. Woeginger, editors, Automata, Languages and937

Programming, 30th International Colloquium, ICALP 2003, Eindhoven,938

The Netherlands, June 30 - July 4, 2003. Proceedings, volume 2719939

of Lecture Notes in Computer Science, pages 943–955. Springer, 2003.940

doi:10.1007/3-540-45061-0_73.941

37

https://doi.org/10.1007/978-3-030-85088-3_8
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1016/j.ipl.2006.04.020
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1145/3375890
https://doi.org/10.1002/spe.2481
https://doi.org/10.1002/spe.2481
https://doi.org/10.1002/spe.2481
https://doi.org/10.1002/spe.4380100608
https://doi.org/10.4230/LIPIcs.STACS.2014.386
https://doi.org/10.1007/3-540-45061-0_73

[23] Shmuel T. Klein and Dana Shapira. A new compression method for942

compressed matching. In Data Compression Conference, DCC 2000,943

Snowbird, Utah, USA, March 28-30, 2000, pages 400–409. IEEE Com-944

puter Society, 2000. doi:10.1109/DCC.2000.838180.945

[24] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast946

pattern matching in strings. SIAM J. Comput., 6(2):323–350, 1977.947

doi:10.1137/0206024.948

[25] Tomasz Marek Kowalski, Szymon Grabowski, and Kimmo Fredriksson.949

Suffix arrays with a twist. Comput. Informatics, 38(3):555–574, 2019.950

URL: http://www.cai.sk/ojs/index.php/cai/article/view/2019_951

3_555.952

[26] Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Lang-953

mead, and Giovanni Manzini. Efficient construction of a complete index954

for pan-genomics read alignment. J. Comput. Biol., 27(4):500–513, 2020.955

doi:10.1089/cmb.2019.0309.956

[27] Zhize Li, Jian Li, and Hongwei Huo. Optimal in-place suffix sorting. In957

Travis Gagie, Alistair Moffat, Gonzalo Navarro, and Ernesto Cuadros-958

Vargas, editors, String Processing and Information Retrieval - 25th In-959

ternational Symposium, SPIRE 2018, Lima, Peru, October 9-11, 2018,960

Proceedings, volume 11147 of Lecture Notes in Computer Science, pages961

268–284. Springer, 2018. doi:10.1007/978-3-030-00479-8_22.962

[28] Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on963

run-length encoding. In Alberto Apostolico, Maxime Crochemore, and964

Kunsoo Park, editors, Combinatorial Pattern Matching, pages 45–56,965

Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.966

[29] Udi Manber. A text compression scheme that allows fast searching967

directly in the compressed file. ACM Trans. Inf. Syst., 15(2):124–136,968

1997. doi:10.1145/248625.248639.969

[30] Udi Manber and Gene Myers. Suffix arrays: A new method for on-970

line string searches. SIAM J. Comput., 22(5):935–948, oct 1993. doi:971

10.1137/0222058.972

[31] Gonzalo Navarro. Compact Data Structures - A practical approach. 2016.973

38

https://doi.org/10.1109/DCC.2000.838180
https://doi.org/10.1137/0206024
http://www.cai.sk/ojs/index.php/cai/article/view/2019_3_555
http://www.cai.sk/ojs/index.php/cai/article/view/2019_3_555
http://www.cai.sk/ojs/index.php/cai/article/view/2019_3_555
https://doi.org/10.1089/cmb.2019.0309
https://doi.org/10.1007/978-3-030-00479-8_22
https://doi.org/10.1145/248625.248639
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058

[32] Gonzalo Navarro. The compression power of the BWT: technical per-974

spective. Commun. ACM, 65(6):90, 2022. doi:10.1145/3531443.975

[33] Gonzalo Navarro and Jorma Tarhio. Lzgrep: a boyer-moore string976

matching tool for ziv-lempel compressed text. Softw. Pract. Exp.,977

35(12):1107–1130, 2005. doi:10.1002/spe.663.978

[34] Simon J. Puglisi and Bella Zhukova. Relative lempel-ziv compression of979

suffix arrays. In Christina Boucher and Sharma V. Thankachan, editors,980

String Processing and Information Retrieval - 27th International Sym-981

posium, SPIRE 2020, Orlando, FL, USA, October 13-15, 2020, Proceed-982

ings, volume 12303 of Lecture Notes in Computer Science, pages 89–96.983

Springer, 2020. doi:10.1007/978-3-030-59212-7_7.984

[35] Simon J. Puglisi and Bella Zhukova. Smaller rlz-compressed suffix ar-985

rays. In Ali Bilgin, Michael W. Marcellin, Joan Serra-Sagristà, and986

James A. Storer, editors, 31st Data Compression Conference, DCC987

2021, Snowbird, UT, USA, March 23-26, 2021, pages 213–222. IEEE,988

2021. doi:10.1109/DCC50243.2021.00029.989

[36] Yusuke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda,990

Ayumi Shinohara, Takeshi Shinohara, and Setsuo Arikawa. Speeding991

up pattern matching by text compression. In Gian Carlo Bongiovanni,992

Giorgio Gambosi, and Rossella Petreschi, editors, Algorithms and Com-993

plexity, 4th Italian Conference, CIAC 2000, Rome, Italy, March 2000,994

Proceedings, volume 1767 of Lecture Notes in Computer Science, pages995

306–315. Springer, 2000. doi:10.1007/3-540-46521-9_25.996

[37] Uzi Vishkin. Deterministic sampling - A new technique for fast pattern997

matching. SIAM J. Comput., 20(1):22–40, 1991. doi:10.1137/0220002.998

[38] Andrew Chi-Chih Yao. The complexity of pattern matching for a ran-999

dom string. SIAM J. Comput., 8(3):368–387, 1979. doi:10.1137/1000

0208029.1001

39

https://doi.org/10.1145/3531443
https://doi.org/10.1002/spe.663
https://doi.org/10.1007/978-3-030-59212-7_7
https://doi.org/10.1109/DCC50243.2021.00029
https://doi.org/10.1007/3-540-46521-9_25
https://doi.org/10.1137/0220002
https://doi.org/10.1137/0208029
https://doi.org/10.1137/0208029
https://doi.org/10.1137/0208029

	Introduction
	Related Results
	Sampled String Matching

	Character Distance Sampling and Condensed Alphabets
	Extension to Condensed Alphabets

	Online Sampled String Matching
	Online Searching Using the OTS Approach
	Online Searching Using the CDS Approach
	Complexity Issues

	Offline Sampled String Matching
	Offline Searching Using the OTS Approach
	Offline Searching Using the CDS Approach
	Complexity Issues

	Experimental Results
	Space Requirements
	Online Searching
	Offline Searching

	Conclusions
	Acknowledgement

