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Abstract

Decision-making is frequently affected by uncertainty and/or incomplete information, which turn decision-
making into a complex task. It is often the case that some of the actors involved in decision-making are
not sufficiently familiar with all of the issues to make the appropriate decisions. In this paper, we are
concerned about missing information. Specifically, we deal with the problem of consistently completing
an AHP comparison matrix, and make use of graph theory to characterise such a completion. In the
case of uniqueness, a result already known in the literature, we provide a completely independent proof.
Our characterization also includes the degree of freedom of the set of solutions, a linear manifold; and in
particular characterizes the uniqueness of the solution. Additionally, in the case of non-uniqueness, we
reduce the problem to the solution of non-singular linear systems. In addition to obtaining the priority
vector, our investigation, also focus on building the complete pairwise comparison matrix, a crucial step
in the necessary process (between synthetic consistency and personal judgment) with the experts. The
performance of the obtained results is confirmed.
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1. Introduction and literature review.

Decision-making is intimately linked to the human condition. The need to make decisions pervades
human life at virtually any level (individual, social, entrepreneurial, political, etc.) and conditions human
behaviour. In the literature [1, 2] a decision-maker (DM) is defined as an actor who makes and influences
decisions with his/her evaluation of arguments and his/her personal and professional background. Decisions
usually derive from a combination of descriptive and experiential information [3].

Decision-making driven by a well-defined decision structure and integrated by objective elements may
be relatively easy. However, when subjectivity permeates the decision-making environment, things become
harder. If, in addition, the decision-making context is plagued with uncertainty and/or incomplete informa-
tion, then decision-making may become a complex task.

As underlined by Floricel et al. [4], complexity is an intrinsic factor in any field and environment.
The authors approach this factor both in its structural and dynamic shape, and stress the need to model
complexity with the aim of better managing project planning and strategies. In fact, complexity is usually
determined and impacted by the presence of uncertain or incomplete information regarding the process
under analysis. Significant losses, especially in terms of costs and time [5], may derive when the main
complex aspects are not faced or considered. However, frequently, it is natural that some of the DMs are
not sufficiently familiar with all the issues to make an appropriate judgment. There are several reasons for
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an actor to provide incomplete information. Three such reasons are provided in [6], namely, insufficient time
to make a judgment, unwillingness to issue an opinion, and lack of certainty about an opinion.

In this paper we are concerned about the calculation of missing information. It is necessary to formulate
decisional models with a solid scientific basis that is capable of managing the intrinsically subjective and
partially informed nature of decisions. This formulation should aim to make decisions as objective as
possible, even if the decision-making process cannot be totally objective. Flexible decision-making methods
are required that consider a wide variety of aspects, i.e. various criteria and alternatives, since a decision
on one alternative with the best objective value is affected by various and frequently conflicting criteria.
The final selection of the alternative is usually made with the help of inter and intra-attribute comparisons,
which may involve explicit or implicit trade-offs [7]. Specific techniques may be needed that can quantify
human behaviour related to perceptual and cognitive processes. Quantification is then fundamental in
this endeavour and closely related to so-called mathematical psychology. Among various multi-criteria
decision-making methods, one of the most used in decision-making is the Analytic Hierarchy Processes
(AHP), developed by Saaty [8], in which decisions are driven by eliciting judgments from the DMs about
the importance of a given set of decision elements. In AHP, local comparison matrices at the various
levels of a well-defined hierarchy are created. According to Saaty [9, 10], the eigenvector (EV) method is
used for deriving weights from local matrices. That is, the EV is the prioritisation method used, and the
computational procedure is thus called prioritisation. After calculating the local weights at all levels of the
hierarchy, a priority aggregation process is performed by multiplying the criterion-specific weights of the
alternatives with the corresponding weights for the criteria and then summing the results to obtain composite
weights of the alternatives with respect to the objective. This procedure is unique for all alternatives and
all criteria.

Given the possibility to successfully applying AHP in many fields and problems and integrating it with
other techniques [11], a plethora of applications is discussed in the literature. Vaidya and Kumar [12]
present a wide literature review related to the AHP technique and, after revising a sample of 150 papers
on AHP, provide a wide number of AHP applications. Referring to the uncertainty of data or judgments,
a state-of-the-art survey was conducted by Kubler et al. [13] on the fuzzy development of the AHP – the
FAHP method [14]. The authors reviewed 192 papers and classified them into the following categories:
selection; evaluation; development; priority; decision-making; and resource allocation. The FAHP method is
considered helpful in various applications, as shown by Hsu et al. [15]. However, as assumed by Wang and
Chen [16], this method presents some weaknesses in relation to the number of pairwise judgments expressed
with respect to a given criterion, that is, the difficulty in obtaining consistent pairwise comparison matrices.

The literature presents multiple efforts to improve consistency [17, 18], and AHP is no exception. It is
necessary to guarantee the coherence of judgments expressed by decision-makers in terms of consistency. As
underlined by Karanik et al. [19], this aspect is fundamental for reliably applying the AHP method. As
many authors affirm [20, 21, 22], the lack of consistency is generally because decision-makers express their
preferences by means of preference relations and sometimes fail to make judgments. According to Zhang
[23], these relations may not satisfy reciprocity properties, especially when expressed by a decision-group.
Moreover, Wang and Xu [24] clarify that incomplete preference relations can be rarely avoided in group
decision-making problems. For this reason, the aim is to support experts in expressing their preferences by
means of consistency-based interactive algorithms to estimate the missing matrices entries [25].

Many authors have expressed opinions regarding incomplete information characterising matrices in AHP
applications. Srdjevic et al. [26] propose a method to complete gaps in matrices. Starting from the knowledge
of two consolidated methodologies [6, 27] that are used to generate missing data in comparisons matrices,
the authors propose the first-level transitive rule (FLTR) method. This consists in, firstly, screening matrix
entries in the neighbourhood of a missing entry; and, secondly, the scaling and geometric averaging of
screened entries to fill the gap. During the revision process of this paper we discovered, as noted by one
of the reviewers, that Bozoki et al. [28], for both the eigenvector method and the logarithmic least squares
method (LLSM), had characterized the uniqueness of the completion of a pairwise comparison matrix (PCM)
in terms of the connectedness of a graph. Bozóki et al. [29] deal with the theme of incomplete PCMs by
applying the EV method [30] and the LLSM [31] to obtain the relative weights. The authors address a
ranking of professional tennis players over the last 40 years using an obviously incomplete history of match
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results between top tennis players. Ergu et al. [32] stress the need to improve the consistency ratio of
matrices related to emergency management. To this end, they propose a model that quickly estimates
missing comparisons in an incomplete matrix by extending the geometric mean induced bias matrix method
[33]. The literature also proposes estimating incomplete judgments by focusing on uncertainty management.
With this perspective, as emphasized in [34], Hua et al. [35] propose an innovative approach to solve
multi-attribute decision-making problems with incomplete information. They integrate the AHP method
with the Dempster-Shafer (DS) theory of evidence [36] using a mixed DS-AHP approach [37]. This method
enables coping with the uncertainty of experts and determining preference relations among all the decision
alternatives by comparing their belief intervals. Dong et al. [38] estimate missing preference information
using a consistent recovery method. They focus on multi-criteria group decision-making problems in which
preference alternatives are expressed using fuzzy triangular numbers.

Given the importance in the literature of the issue of incomplete judgments that could characterise AHP
pairwise comparison matrices, in this paper, we follow the line initiated by the authors in [39, 40] for building
consistent information from an incomplete body of pairwise comparisons.

The purpose of this paper is to study the system obtained in Theorem 1 of [39] in terms of a graph related
to an incomplete pairwise comparison matrix. We compute the degree of freedom of the set of solutions, a
linear manifold, in terms of the number of connected components of this graph. In particular, we will prove
that the solution to the problem is unique if, and only if, this graph is connected. This result, as said, had
been obtained first by Bozoki et al. [28]. However, our proof follows a completely independent approach.
Furthermore, when the solution is not unique, we always obtain non-singular linear systems, in contrast
with the linear systems obtained in [39]. As noted in [28], despite the really important questions may be
to estimate weights and level of inconsistency based on the known entries, nevertheless optimal values of
the unknown matrix entries may be informative as well. In our approach, in addition to get those priority
vector and level of consistency, we are also interested in building the complete PCM, something that it is
also possible from the result given in [28], due to an equivalence we explicit later. This step is crucial in
the necessary trade-off process (between synthetic consistency and personal judgment) with the experts.
Let us finally observe that even though the number of missing entries in an elicited comparison matrix is
small in practical problems (frequently reduced to one or two above the main diagonal), we calculate the
general situation and so obtain a result of wide generality. To show the performance of the results obtained
we first use a theoretical matrix with a large number of missing entries and an associated graph with two
non-connected components that exhibits the generality we claim, and various other matrices corresponding
to a real case of decision-making with one or two missing entries. If possible, we compare the results obtained
with other approaches found in the literature.

The paper is organised as follows. After this introduction and the literature review, Section 2 presents
the necessary prerequisites. Section 3 develops the main results of this research – including proofs of various
theorems and a synthetic example. Section 4 presents a case study and the solution obtained. Finally,
conclusions close the work.

2. Prerequisites.

2.1. Notation and basic definitions.

One of the necessary steps in AHP theory is performing pairwise comparisons between n elements thus
forming an n × n matrix A = (aij). The reader is encouraged to consult [8, 9] to see the fundamentals of
AHP theory. The entry aij measures the relative importance of element i over element j. To extract priority
vectors from the comparison matrices, the eigenvector method, which was first proposed by Saaty in [9], is
used in this paper.

A comparison matrix is always reciprocal. A positive n×n matrix A is reciprocal when aijaji = 1 for all
1 ≤ i, j ≤ n. In addition to the reciprocity property, another property, consistency, should theoretically be
desirable for a comparison matrix. A positive n×n matrix is consistent if aijajk = aik for all 1 ≤ i, j, k ≤ n.

Consistency expresses the coherence that may exist between judgements about the elements of a set.
Since preferences are expressed in a subjective manner, it is reasonable for some kind of incoherence to
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exist. For a consistent matrix A, the leading eigenvalue and the principal (Perron) eigenvector of A provide
information to deal with complex decisions [9]. In the general case, however, A is not consistent. For
non-consistent matrices, the problem to solve is the eigenvalue problem Aw = λmaxw, where λmax is the
unique largest eigenvalue of A that gives the Perron eigenvector as an estimate of the priority vector. As
a measurement of inconsistency, Saaty proposed the consistency index: CI = (λmax − n)/(n − 1) and the
consistency ratio: CR = CI/RI, where RI is the random index [9]. If CR < 0.1, the estimation is accepted;
otherwise, a new comparison matrix is solicited until CR < 0.1.

The set of n×m real matrices is denoted by Mn,m. We write M+
n,m = {(aij) ∈ Mn,m : aij > 0 for all i, j}.

If A is a matrix, then tr(A) and AT will denote the trace and the transpose of A, respectively. We will write
0n,m for the zero matrix in Mn,m and 0n for the zero vector in Rn. When there is no danger of confusion,
we will write simply 0 and 0 for the zero matrix and the zero vector, respectively.

2.2. Problem setting.
The following problem was solved in [39]: Given an incomplete reciprocal matrix A ∈ M+

n,n, find a
reciprocal completion of A, say X , such that

d(X,Cn) ≤ d(X ′,Cn)

for any X ′ ∈ M+
n,n reciprocal completion of A, where Cn denotes the subset of Mn,n composed of consistent

matrices. Here d(·, ·) is the following distance defined in M+
n,n:

d(X,Y ) = ‖LOG(X)− LOG(Y )‖F ,
where LOG : M+

n,n → Mn,n is such that if aij is the (i, j)-entry of A, then the (i, j)-entry of LOG(A)

is log(aij). Furthermore, ‖ · ‖F is the Frobenius norm (i.e., ‖A‖2F = tr(ATA)). Let us observe that A is
reciprocal if and only if LOG(A) is skew-symmetric. Observe that the rule 〈A,B〉 = tr(ATB) defines an
inner product in Mn,n and that the aforementioned Frobenius norm is induced by this inner product.

We shall be more precise: the stated problem can be formulated as follows.

Problem 1. Let A ∈ Mn,n be an incomplete reciprocal matrix. Let (i1, j1), . . . , (ik, jk) the unknown
entries of A above the main diagonal of A. Let X(λ1, . . . , λk) ∈ Mn,n be a completion of A and such that
Xir,jr = exp(λr), Xjr ,ir = exp(−λr) for r = 1, . . . , k. Find λ1, · · · , λk such that

d(X(λ1, . . . , λk),Cn) ≤ d(X(λ′
1, . . . , λ

′
k),Cn)

for any λ′
1, . . . , λ

′
k ∈ R.

The solution of Problem 1 was given in the next result (see [39, Theorem 4]). From now on, we will
consider any vector of Rn as a column and we will denote 1n = [1 · · · 1]T ∈ Mn,1. The standard basis of
R

n will be denoted by {e1, . . . , en}.
Theorem 1. Let A ∈ M+

n,n be an incomplete reciprocal matrix and (i1, j1), . . . , (ik, jk) its unknown entries
above its main diagonal. Any solution of Problem 1 satisfies

λ = Sm,

(
D − 1

n
STS

)
m = b, (1)

where λ = [λ1 · · · λk]
T , m = [µ1 · · · µn−1]

T , S is the k × (n− 1) matrix whose (r, s)-entry is dT
irjr

ys, D

is the diagonal (n − 1) × (n − 1) matrix whose (s, s)-entry is ‖ys‖2, and b = [wTy1 · · · wTyn−1]
T , being

w = 1
n

∑
i<j cijdij. Here

cij =

{
log aij if we know the (i, j)-entry of A,

0 if we do not know the (i, j)-entry of A,
(2)

{y1, . . . ,yn−1} is an orthogonal basis of (span{1n})⊥ and dij = ei − ej.

The purpose of this paper is to study system (1) in terms of certain graph related to the incomplete
matrix A. In particular, we will prove that the solution of Problem 1 is unique if, and only if, this graph is
connected.
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A

Ln
LOG(Y )

LOG(X)

Figure 1: The matrices LOG(X) and
LOG(Y ) minimize the distance between A

and Ln.

The meaning of the values λ1, . . . , λk in the above Theorem 1
is clear: the missing entry (ir, jr) ofAmust be filled with exp(λr).
One can see µ1, . . . , µn−1 as auxiliary values useful to find λ. But,
we will give here the meaning of µ.

If A is an incomplete reciprocal matrix, then

A = {LOG(X) : X is a reciprocal completion of A}

is a linear manifold because if X is any reciprocal completion of
A, then

LOG(X) = LOG(X0) +
k∑

r=1

λr(eire
T
jr − ejre

T
ir ), (3)

where in this last equality, X0 is the reciprocal completion of A with 1s on its missing entries. Also,

Ln = {LOG(Y ) : Y ∈ Mn,n, Y is consistent }

is a linear subspace of Mn,n. In fact, it can be proved (see [41, Theorems 2.2 and 2.4]) that if we define the
linear mapping φn : Rn → Mn,n by φn(v) = v1Tn −1nvT , then imφn = Ln, kerφn = span{1n}, and a basis
of Ln is {φn(y1), . . . , φn(yn−1)}. Here, as in Theorem 1, {ys}n−1

s=1 is an orthogonal basis of (span{1n})⊥.
With these preparatives, if LOG(X) ∈ A and LOG(Y ) ∈ Ln are the matrices such that minimize

d(X ′, Y ′) = ‖LOG(X ′)− LOG(Y ′)‖F for LOG(X ′) ∈ A and LOG(Y ′) ∈ Ln, then

LOG(Y ) = µ1φn(y1) + · · ·+ µn−1φn(yn−1) = φn(µ1y1 + · · ·+ µn−1yn−1).

See [39, Theorem 4] for a deeper explanation. Therefore, Theorem 1 also gives the consistent matrix closest
to the best completion of A. Furthermore, if we define Y = [y1 · · · yn−1] ∈ Mn,n−1 and θ = Ym, then
LOG(Y ) = φn(θ). In other words, vector θ gives the consistent matrix closest to the best completion of A.

The following theorem is important because to fill matrix A, we can forget the scalars λ1, . . . , λr and fix
our attention to θ.

Theorem 2. Let A ∈ M+
n,n be an incomplete reciprocal matrix and (i1, j1), . . . , (ik, jk) its unknown entries

above its main diagonal. Let X be a reciprocal completion of A and Y be a consistent matrix of order n such
that d(X,Y ) ≤ d(X ′, Y ′) for all X ′ reciprocal consistent completion of A and Y ′ a consistent matrix. Then
for r = 1, . . . , k, the entry (ir, jr) of X equals to the entry (ir, jr) of Y .

Proof. Let us denote Bi,j = eie
T
j − eje

T
i . If M = (mij) ∈ Mn,n, then by using that tr(PQ) = tr(QP ) holds

for any pair of matrices P,Q such that PQ and QP are meaningful,

〈Bi,j ,M〉 = tr(BT
i,jM) = tr(eje

T
i M)− tr(eie

T
j M) = tr(eTi Mej)− tr(eTj Mei) = mij −mji. (4)

By (3), the support subspace of A is the subspace spanned by Bi1,j1 , . . . , Bir ,jr Since LOG(X)− LOG(Y )
is orthogonal to the support subspace of A , by using (4) for M = LOG(X) − LOG(Y ), one has that the
(ir, jr) entry of L(X) equals to the (ir, jr) entry of L(Y ) for r = 1, . . . , k. �

2.3. Some review of graph theory.

Here we shall review some basic facts of graph theory. The reader is encouraged to consult [42] for a
further insight. In the forthcoming we shall assume that any graph has no loops.

We recall the concepts of the Laplacian matrix and the incidence matrix of a graph G with vertices
{1, 2, . . . , n}, edges {e1, e2, . . . , em} and no loops. The Laplacian matrix of G is the n × n matrix, denoted
by L(G), defined as follows: if i 6= j, then the (i, j)-entry of L(G) is 0 if vertices i and j are not adjacent,
and it is −1 if i and j are adjacent. The (i, i)-entry of L(G) is the degree of vertex i (i.e., the number of
edges incident to vertex i).
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Suppose that each edge of G has assigned an orientation, which is arbitrary but fixed. The incidence
matrix of G, denoted by Q(G), is the n ×m matrix defined as follows: the rows and the columns of Q(G)
are indexed by vertices and edges, respectively. The (i, j)-entry of Q(G) is 0 if vertex i and edge ej are not
incident, and otherwise it is 1 or −1 depending if ej begins or finishes at i, respectively. For a graph G one
has the following equalities:

L(G) = Q(G)Q(G)T , 1

T
nQ(G) = 0. (5)

A basic property of the Laplacian and incidence matrices is that

rk(L(G)) = rk(Q(G)) = n− p,

where p is the number of connected components of G and n is the number of vertices of G.
If G is a graph with vertices {1, . . . , n}, then the complement of G, denoted by G, is the graph with the

same vertices and the edges are defined by the following rule: i and j are adjacent in G if and only if i and
j are not adjacent in G. It is easy to see that

L(G) + L(G) = nIn − 1n1
T
n . (6)

The proof is simple: if i 6= j, then only one of the two following possibilities can occur: “i and j are adjacent”
or “i and j are not adjacent”, hence L(G)ij + L(G)ij = −1, which equals the (i, j)-entry of nIn − 1n1

T
n .

Since vertex i can be adjacent to the n − 1 remaining vertices, then L(G)ii + L(G)ii = n − 1, which again
equals the (i, i)-entry of nIn − 1n1

T
n .

3. Main results.

Next, we shall study system (1) appearing in Theorem 1. To this end, we associate an incomplete
reciprocal matrix A = (aij) ∈ M+

n,n to a directed graph in the following way. We have i → j when i < j
and the entries aij and aji are known. This graph will be denoted GA. Recall that the Laplacians of GA

and GA are independent on the orientation of the edges. However, the incidence matrices of GA and GA

depend on the chosen orientation and thus, we need to order the edges. To order the edges, we will use the
lexicographical order, (i1 → j1) ≺ (i2 → j2) when i1 < i2 or (i1 = j1)&(j1 < j2). We can see an example in
Figure 2.

A =




1 a ∗
a−1 1 b
∗ b−1 1




1

2

3

Q(GA) =




1 0
−1 1
0 −1


 L(GA) =




1 −1 0
−1 2 −1
0 −1 1




Figure 2: Example of an incomplete reciprocal matrix, its associated directed graph, the incidence matrix, and the Laplacian

To understand the third item of the next theorem, let us observe that by (3) and Theorem 1, the values
λ1, . . . , λk provide the set of solutions of Problem 1.

Theorem 3. Let A ∈ M+
n,n be an incomplete reciprocal matrix and GA its associate graph. Let p be the

number of connected components of GA. Under the notation of Theorem 1, one has

(i) The rank of nD − STS is n− p.

(ii) The solutions [λT mT ]T of system (1) is a linear manifold whose dimension is p− 1.

(iii) The set

S =

{
Sm :

(
D − 1

n
STS

)
m = b

}

is a linear manifold whose dimension is p− 1.
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Proof. We express matrices D and S in another way. Define Y = [y1 · · · yn−1] ∈ Mn,n−1, where the
meaning of the vectors yi is written in Theorem 1: they form an orthogonal basis of (span{1n})⊥. Since
{y1, . . . ,yn−1} is an orthogonal system, we have

D =




‖y1‖2 0 · · · 0

0 ‖y2‖2 · · · 0
...

...
. . .

...

0 0 · · · ‖yn−1‖2



=




yT
1

yT
2

...

yT
n−1




[
y1 y2 · · · yn−1

]
= Y TY. (7)

Observe that the matrix [di1j1 · · · dikjk ] ∈ Mn,k is the incidence matrix of the graph GA. Therefore,

S =




dT
iij1

y1 · · · dT
i1j1

yn−1

...
. . .

...

dT
ikjk

y1 · · · dT
ikjk

yn−1


 =




dT
iij1
...

dT
ikjk



[
y1 · · · yn−1

]
= Q(GA)

TY. (8)

Hence,

D − 1

n
STS =

1

n

[
nY TY − Y TQ(GA)Q(GA)

TY
]
=

1

n
Y T

[
nIn − L(GA)

]
Y. (9)

Another useful equality is
1

T
nY = 0, (10)

because the columns of Y are orthogonal to 1n. Therefore, we obtain by (6), (9), and (10)

D − 1

n
STS =

1

n
Y T

(
L(GA) + 1n1

T
n

)
Y =

1

n
Y TL(GA)Y. (11)

Let us define Z = [Y 1n] ∈ Mn,n. Obviously, Z is a nonsingular matrix because the n− 1 first columns
of Z form an orthogonal basis of (span{1n})⊥. Observe that from (5) we obtain

ZTL(GA)Z =

[
Y T

1

T
n

]
L(GA)

[
Y 1n

]

=

[
Y TL(GA)Y Y TL(GA)1n

1

T
nL(GA)Y 1

T
nL(GA)1n

]
=

[
Y TL(GA)Y 0

0 0

]
.

Since Z is nonsingular, by (11) and the previous computation,

rk(nD − STS) = rk(Y TL(GA)Y ) = rk(ZTL(GA)Z) = rk(L(GA)) = n− p, (12)

where p is the number of connected components of GA. This proves (i).
If d is the dimension of the manifold {[λTmT ]T : λ,m satisfy (1)}, then d is the dimension of the null

space of the matrix [
Ik −S

0 D − 1
nS

TS

]
∈ Mk+n−1,k+n−1.

Thus, by the previous item (i)

d = k + n− 1− rk

[
Ik −S

0 D − 1
nS

TS

]
= k + n− 1− (k + rk(nD − STS)) = p− 1.

This proves (ii).
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Let us prove (iii). The dimension of S equals dimS1, where S1 = {Sm : (nD− STS)m = 0}. But S1

is the image of the linear mapping Φ : N → R

k, where N is the null space of nD − STS and Φ(v) = Sv.
Thus,

dimS1 = dim imΦ = dimN − dimkerΦ.

Since nD − STS is a square (n− 1)× (n− 1) matrix, by using item (i), one obtains

dimN = n− 1− rk(nD − STS) = n− 1− (n− p) = p− 1.

Thus, to finish the proof, we must prove kerΦ = {0}. Let x ∈ R

n−1 such that Φ(x) = 0, i.e., Sx = 0

and (nD − STS)x = 0. Hence Dx = 0. The nonsingularity of D (as one can easily see from (7)), leads to
x = 0. �

We get the following two corollaries:

Corollary 1. There exists at least one solution to Problem 1.

Corollary 2. Under the notation of Theorem 3, the following three conditions are equivalent:

(i) GA is connected.

(ii) The matrix nD − STS is nonsingular.

(iii) The solution of Problem 1 is unique.

In [28] it was found a vector w = [w1 · · ·wn]
T ∈ R

n that solves the LLSM problem for incomplete
matrices, i.e., find w ∈ R

n that minimizes
∑

(i,j)∈R log aij − (log(wi/wj)), where R = {(i, j) : 1 ≤ i < j ≤
n,we do not know ai,j}. By5 the proof of [28, Theorem 4], it is easily seen that Problem 1 is essentially the
same as the LLSM problem for incomplete matrices. Notice that



















n− 1 −1 −1 · · · −1

−1 n− 1 −1 · · · −1

−1 −1 n− 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · n− 1





































logw1

logw2

logw3

...

logwn



















=

























∑

k,a1k is known

log a1k +
∑

k,a1l is missing

(logw1 − logwl)

∑

k,a2k is known

log a2k +
∑

k,a2l is missing

(logw2 − logwl)

...
∑

k,ank is known

log ank +
∑

k,anl is missing

(logwn − logwl)

























holds because the vector [logw1 · · · logwn]
T satisfies its own Lagrangian equation. What is more, the

solution w of the LLSM problem for incomplete matrices satisfies wir/wjr = exp(λr). Therefore, Problem 1
was solved in [28] by a different approach as ours. The equivalence of statements (i) and (iii) of Corollary 2
was also proven in [28]. Observe that Theorem 3 also characterizes the degree of freedom of the set of
solutions.

Next, we shall express system (1) in a simpler way making more explicit the role of the graph GA. We
shall use the following lemma.

Lemma 1. Let G be a graph with n vertices and m edges. Let {y1, . . . ,yn−1} be any basis of (span{1n})⊥
and Y = [y1 · · · yn−1]. If v ∈ Rm, then Y TQ(G)v = 0 ⇔ Q(G)v = 0.

Proof. The ‘⇐’ part is trivial. We will prove the ‘⇒’ part: the vector Q(G)v is orthogonal to y1, . . . ,yn−1.
By the second equality of (5), also Q(G)v is orthogonal to 1n. Hence Q(G)v ∈ Rn is orthogonal to a basis
of Rn, and thus, Q(G)v = 0. �

From now on, we will denote by m the number of edges of the graph GA. Therefore, the incidence matrix
of the graph GA, namely Q(GA), is an n×m matrix.

5The authors are very grateful to a reviewer for detailing this reasoning.
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Theorem 4. Let A ∈ M+
n,n be an incomplete reciprocal matrix and (i1, j1), . . . , (ik, jk) its unknown entries.

Any solution λ = [λ1 · · · λk]
T of Problem 1 satisfies

λ = Q(GA)
Tθ, L(GA)θ = Q(GA)ρ, (13)

where ρ = [log(ai1,j1) · · · log(aim,jm)]T .

Proof. We will use the notation of Theorem 1. Also, we denote Y = [y1 · · · yn−1] ∈ Mn,n−1, and θ = Ym.
By (8), the first equality of (1) reduces to λ = Q(GA)

Tθ. Let us prove the second equality of (13). We have

b =




yT
1 w
...

yT
n−1w


 =




yT
1

...

yT
n−1


w = Y Tw =

1

n
Y T

∑

i<j

cijdij . (14)

Observe that by the definition of the numbers cij (see (2)), in the summation appearing in (14), the indices
can be restricted with no problem to the edges of the graph GA. Thus, we have

∑

i<j

cijdij = Q(GA)ρ.

Therefore, b = 1
nY

TQ(GA)ρ, and the second equality of (1) becomes (nD − STS)m = Y TQ(GA)ρ. Now,
it is enough to recall expression (11) to get Y TL(GA)θ = Y TQ(GA)ρ. From here and the first equality of
(5), we get Y TQ(GA)(Q(GA)

Tθ − ρ) = 0. From Lemma 1, we get Q(GA)(Q(GA)
Tθ − ρ) = 0. Therefore,

the second equality of (13) has been proven. �
A drawback associated to the second equality of system (13) is that matrix L(GA) is always nonsingular

since L(GA) is an n× n matrix and rk(L(GA)) = n− p, where p is the number of connected components of
GA.

In [40] it was characterised when an incomplete, positive, and reciprocal matrix can be completed to
become a consistent matrix. Concretely, it was stated in Theorems 7 and 10 of [40] that, under the notation
of Theorem 1 of this paper, A can be completed to be consistent if and only if there exists x ∈ Rn such that
Q(GA)

Tx = ρ, and in this case, we have λ = Q(GA)
Tx. We can observe that, precisely, the second system

in (13) corresponds to the least squares system related to Q(GA)
Tx = ρ.

Next, we study system (13) by decomposing it in simpler systems.

3.1. The structure of the system (13).

For the sake of readability, we provide Table 1 indicating the notation for some parameters of the graph
GA.

Table 1: Used notation for the parameters of a graph

n No. of points

p No. of connected components

m No. of edges

s No. of isolated points

G1, . . . , Gq Connected components of GA with more than 2 points

ni No. of points of the connected component Gi

mi No. of edges of the connected component Gi

Rearranging the points of GA, the matrix Q(GA) has the following structure

Q(GA) =

[
0s,m

Q1

]
∈ Mn,m,
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where
Q1 = Q(G1)⊕ · · · ⊕Q(Gq) ∈ Mn−s,m, Q(Gi) ∈ Mni,mi

,

G1, . . . , Gq being the connected components of G composed of more than two points. The ideas to study
system (13) are: a) “Forget” the isolated points and b) Study each connected component separatedly.

Observe that the number of isolated points plus q equals the number of connected components of GA,
i.e., s+ q = p. Since ni is the number of points of Gi for i = 1, . . . , q, evidently, we have

s+ n1 + · · ·+ nq = n.

Also, observe that rk(Q(Gi)) = ni − 1 because Gi is connected. This is in full agreement with the fact that
n− p = rk(Q(GA)) = rk(Q1) = rk(Q(G1)) + · · ·+ rk(Q(Gq)).

Also, the Laplacian of GA has a block structure:

L(GA) = Q(GA)Q(GA)
T =

[
0s,m

Q1

] [
0m,s QT

1

]
=

[
0s,s 0

0 Q1Q
T
1

]
(15)

and
Q1Q

T
1 = L(G1)⊕ · · · ⊕ L(Gq). (16)

Let us study system (13). First, with the notation of Theorem 4, we shall simplify Q(GA)ρ.

Q(GA)ρ =

[
0s,m

Q1

]
ρ =

[
0s

Q1ρ

]
.

Recall that we have denoted by m the number of edges of GA and by mi the number of edges of Gi for
i = 1, · · · , q. Let us note m1 + · · ·+mq = m. We partition ρ ∈ Mm,1 as follows:

ρT =
[
ρT
1 · · · ρT

q

]
, ρi ∈ Mmi,1.

Therefore

Q1ρ =




Q(G1)ρ1

...

Q(Qq)ρq


 .

Now, let us recall that θ ∈ Mn,1. We decompose

θT =
[
θT
0 θT

1 · · · θT
q

]
,

where θ0 ∈ Ms,1 and θi ∈ Mni,1 for i = 1, · · · , q. Now, (13), (15), and (16) lead to

L(Gi)θi = Q(Gi)ρi, i = 1, · · · , q. (17)

To solve system (13), we must think on the connected components of GA. However, let us note that the
systems (17) are always singular since the Laplacian of any graph is always a singular matrix.

So, what is the general solution of (17)? First, the systems (17) are solvable because these systems are

the least square systems of Q(Gi)
Tθi = ρi. Let θ̂i be a solution of (17). We know that the general solution

of (17) is θ̂i + N (L(Gi)), where N (·) stands for the null space of a matrix. Since rk(L(Gi)) = ni − 1 and
L(Gi) ∈ Mni,ni

(recall that Gi is a connected component of the graph GA), then

dimN (L(Gi)) = ni − rk(L(Gi)) = 1.

Thus, to find N (L(Gi)), it is enough to find a nonzero vector in N (L(Gi)). But from (5) one gets
L(Gi)1ni

= 0. Hence
N (L(Gi)) = {α1ni

: α ∈ R}.
10



Therefore, the general solution of (17) is

θ̂i + α1ni
, α ∈ R,

where θ̂i is a particular solution of (17).
Now, we will show how to find a particular solution of (17). Let Yi be a matrix in Mni,ni−1 whose ni− 1

columns form a basis of (span{1ni
})⊥ and let m̂i be the unique solution of the linear system

Y T
i L(Gi)Yim̂i = Y T

i Q(Gi)ρi. (18)

This system has a unique solution because Y T
i L(Gi)Yi ∈ Mni−1,ni−1, (11) and (12) imply that Y T

i L(Gi)Yi

is nonsingular. Lemma 1 leads to Yim̂i is a solution of (17). Hence the general solution of (17) is

Yim̂i + α1ni
, αi ∈ R.

Hence, we can solve the right system in (13). Since θ0 ∈ Rs is arbitrary, then if θ is any solution of the
right linear system in (13), then

θ =




θ0

Y1m̂1 + α11n1

...

Yqm̂q + αq1nq



, θ0 ∈ Rs, α1, · · · , αq ∈ R are arbitrary. (19)

We have arrived to the following theorem. Recall that the mapping φn : Rn → Mn,n is defined by
φn(v) = v1Tn − 1vT . Also, it is useful to recall Theorem 2.

Theorem 5. Let A ∈ M+
n,n be an incomplete reciprocal matrix whose unspecified entries above its main

diagonal are (i1, j1), . . . , (ik, jk). Let GA be its associate graph whose parameters are specified in Table 1.
Let Yi ∈ Mni,ni−1 a matrix whose ni − 1 columns form a basis of (span{1ni

})⊥, let m̂i be the unique vector
satisfying (18), and let θ be any vector of Rn given by (19). If X is a reciprocal completion of A such that
d(X,Cn) ≤ d(X ′,Cn) for any reciprocal completion X ′ of A, then the (ir, jr) entry of X is the (ir, jr) entry
of Y , where LOG(Y ) = φn(θ).

3.2. Synthetic example.

Let A be the following incomplete reciprocal matrix:

A =




1 2 4 ∗ ∗ ∗
1/2 1 5 ∗ ∗ ∗
1/4 1/5 1 2 ∗ ∗
∗ ∗ 1/2 1 ∗ ∗
∗ ∗ ∗ ∗ 1 3
∗ ∗ ∗ ∗ 1/3 1



.

Let us observe that if we delete the 4th, 5th, and 6th rows and columns of matrix A, we get a nonsingular
matrix. Hence, rk(A) ≥ 3 and, in view of Theorem 3 of [43], A cannot be completed to be consistent. It is
easy to check that the associated graph GA has two connected components, G1 = {1, 2, 3, 4} and G2 = {5, 6}.
Since GA is not connected, by Corollary 2, the solution of problem 1 is not unique (in fact, the solutions of
system (1) constitute a one-dimensional linear manifold, in view of Theorem 3).

Let us find m̂1: since the number of points of G1 is n1 = 4 and Y1 is a matrix whose n1 − 1 columns are
a basis of (span{1n1

})⊥, then we can pick

Y1 =




1 1 1

−1 1 1

0 −2 1

0 0 −3


 .
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Furthermore, one can easily see that the Laplacian of G1 is the following matrix:

L(G1) =




2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

0 0 −1 1


 .

To construct Q(GA) and ρ1 we employ the lexicographical order.

Q(G1) =




1 1 0 0

−1 0 1 0

0 −1 −1 1

0 0 0 −1


 ρ1 =




log a12

log a13

log a23

log a34


 =




log 2

log 4

log 5

log 2


 .

The solution of the system Y T
1 L(G1)Y1m̂1 = Y T

1 Q(G1)ρ1 is m̂1 ≃ [0.194, 0.499, 0.423]
T
. Now, Y1m̂1 ≃

[1.116, 0.728,−0.576,−1.269]
T
. Let us now find m̂2 and Y2m̂2. Since n2 = 2 is the number of points of G2,

Y2 =

[
1

−1

]
, L(G2) =

[
1 −1

−1 1

]
, Q(G2) =

[
1

−1

]
, ρ2 =

[
log a35

]
=

[
log 3

]
.

The system Y T
2 L(G2)Y2m̂2 = Y T

2 Q(G2)ρ2 is 4m̂2 = 2 log 3. Hence m̂2 = (log 3)/2 and

Y2m̂2 =

[
(log 3)/2

−(log 3)/2

]
≃

[
0.549

−0.549

]
.

Therefore, by (19),

θ ≃ [1.116 + α1, 0.727 + α1,−0.5756 + α1,−1.2669 + α1, 0.5493 + α2,−0.5493+ α2]
T .

Since LOG(Y ) = φn(θ) and Theorem 5, the (ir, jr) entry of the optimal competion of A is the (ir, jr)
entry of Y , which is exp(θir )/ exp(θjr ) = exp(θir − θij ). Thus, if Xir ,jr is the (ir, jr) entry of the optimal
completion of A, then a14 = exp(θ1 − θ4) ≃ 10.858, a15 = exp(θ1 − θ5) ≃ 1.763 exp(α1 − α2), and so on.
Finally, we get (we denote K = exp(α1 − α2)) that the optimal completion of A is




1 2 4 10.858 K1.763 K5.288

1/2 1 5 7.368 K1.196 K3.588

1/4 1/5 1 2 K0.325 K0.974

0.092 0.136 1/2 1 K0.162 K0.487

K−10.567 K−10.836 K−13.080 K−16.160 1 3

K−10.189 K−10.279 K−11.027 K−12.053 1/3 1




.

3.3. Van Uden’s Rule.

Let A be an incomplete reciprocal n × n matrix (n > 2). If only one entry aik above the diagonal is
missing, van Uden [27] proposes the following equality for calculating the missing element

aik = n−2

√
X/Y , X =

∏

j 6=k

aij , Y =
∏

j 6=i

akj . (20)

The intuitive idea for this proposal is the following: if we consider only the fixed indices i, k, and a third
index j (varying in {1, . . . , n} \ {i, k}), we get an incomplete 3× 3 submatrix and to achieve the consistency
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of this submatrix, we should set aik = aijajk = aij/akj . Since index j can take n− 2 possible values, then
we have n− 2 possible values of aik. It is natural to consider the geometric mean of these values. We shall
see that our Theorem 5 includes van Uden’s rule. It is worthy to notice that this proof is inspired by [44].
We introduce the notation R(·) for indicating the range space of a matrix.

Rearranging the indices, we can assume that the missing entries are a12 and a21. Observe that the
associate graph GA is connected, and thus, the solution of Problem 1 is unique (Corollary 2). To find this
solution, in view of Theorem 5 and (18), we must study the system Y TL(GA)θ = Y TQ(GA)ρ, where Y is
an n× (n− 1) matrix whose columns form an orthogonal basis of span{1n}⊥, θ ∈ Rn,

ρ = [log a13 · · · log a1n log a23 · · · log a2n l1 · · · lr]
T ,

and any lm is of the form log aimjm with 3 ≤ im < jm. In view of Lemma 1, the equation Y TL(GA)θ =
Y TQ(GA)ρ is equivalent to L(GA)θ = Q(GA)ρ. It is evident, by the definition of the Laplacian matrix of
the graph GA, that

L(GA) =

[
(n− 2)In−2 −U2,n−2

−Un−2,2 nIn−2 − Un−2

]
.

Since GA is the complete graph of order n without the edge connecting vertices 1 and 2, if we denote by
{e1, . . . , en} the standard basis of Rn, then we can write

Q(GA) = [ e1 − e3 | · · · | e1 − en | e2 − e3 | · · · | e2 − en | f1 | · · · | fr ] ,

where the vectors f1, . . . , fr have the form ei−ej , where 3 ≤ i < j, since in the graph GA, if i, j ∈ {3, . . . , n},
then i and j are connected. If we define s1 =

∑n
j=3 log a1j and s2 =

∑n
j=3 log a2j , then

Q(GA)ρ =
n∑

j=3

log a1j(e1 − ej) +
n∑

j=3

log a2j(e2 − ej) +
r∑

j=1

ljfj

= s1e1 + s2e2 −
n∑

j=3

(log a1j + log a2j) ej +

r∑

j=1

ljfj .

Observe that f1, . . . , fr ∈ span{e3, . . . , en}. Thus, exists v ∈ Rn−2 such that

Q(GA)ρ =




s1

s2

v


 .

Since Q(GA)ρ ∈ R[Q(GA)] = R[Q(GA)Q(GA)
T ] = R[L(GA)], there exists θ ∈ R

n such that L(GA)θ =
Q(GA)ρ. Hence, denoting s = [s1 s2]

T and decomposing θT = [θT
1 θT

2 ]
T , θ1 ∈ R2 and θ2 ∈ Rn−2, we have

[
(n− 2)I2 −U2,n−2

−Un−2,2 nIn−2 − Un−2

][
θ1

θ2

]
=

[
s

v

]
.

Therefore, (n− 2)θ1 − U2,n−2θ2 = s. If θ1 = [ξ1, ξ2]
T and θ2 = [ξ3, . . . , ξn]

T , then

(n− 2)ξ1 − (ξ3 + · · ·+ ξn) = s1 and (n− 2)ξ2 − (ξ3 + · · ·+ ξn) = s2.

By subtracting these two equalities, (n−2)(ξ1−ξ2) = s1−s2. Now, since s1−s2 =
∑n

j=3(log a1j− log a2j) =

log(
∏n

j=3 a1j/a2j), we get

a12 = eξ1−ξ2 = e(s1−s2)/(n−2) =
n−2
√
es1−s2 = n−2

√√√√
n∏

j=3

a1j/a2j ,
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which is van Uden’s rule (20) for i = 1 and k = 2.
There are other methods to deal with an incomplete reciprocal matrix when only one entry above the

main diagonal is missing. We can cite the one proposed in [45] and the heuristic approach given in [6]. The
foundation of the method proposed in [45] is based on the following theorem: let A be a reciprocal n × n
matrix (n > 2), if pA(λ) = det(λIn −A) = λn + c1λ

n−1 + c2λ
n−2 + c3λ

n−3 + · · ·+ cn, then c1 = −n, c2 = 0,
and c3 ≤ 0. Furthermore, c3 = 0 if and only if A is consistent. So, it is natural to maximize c3 in this kind
of problems. As one can see in section 3 in [45], the van Uden’s rule follows a different approach.

4. Case Study.

The present case study refers to an industrial layout reorganisation problem involving materials handling
– specifically the reorganisation of storage space in a factory. This reorganisation concerns the best arrange-
ment (using various criteria) for shelving to store pallets of finished products and cardboards. Moreover, a
path for the transit of people and forklifts (i.e., lines to transport the goods) must be defined by considering
the available space inside the storage facility. The AHP technique is applied to select the best option from
a set of three layout proposals (LP1,LP2,LP3), evaluated on the basis of five criteria (C1,C2,C3,C4,C5).
The considered and mutually independent criteria are: safety & security; cost; innovation; transport; and
placement.

The first criterion considers the aspect of safety and security at the workplace for the stakeholders of
the storage facility. The second criterion refers to the cost of implementing a specific layout. The third
criterion regards the innovative character of each alternative in terms of broad flexibility for enhancing the
storage conditions (for example, by creating spaces for the employees to communicate and so better integrate
operations). The fourth criterion is related to the movement of goods in the storage area on forklifts and
managing the pedestrian areas crossed by employees and visitors inside the facility. The fifth criterion
considers how a specific layout alternative may facilitate the placement of materials on shelves with the aim
of distributing pallets of finished products and cardboard in different sectors of the shelves on the basis of
their uses (and thus avoiding mixing materials).

The hierarchical structure of the problem is shown in Figure 3.

Figure 3: Hierarchical structure

Figure 4 shows the (feasible) schemes of the three layout proposals. The shelves to be arranged are
highlighted as grey blocks numbered from one to five. Others blocks represent fixed elements in the facility.
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The topmost parts of the plants are the production areas of the firm that communicate with the storage
and so more than two shelves cannot be allocated in this area (e.g. shelves 1 and 5 in LP2 in Figure 4).
Observe that shelf 2 may be divided into two halves.

Figure 4: Layout proposals LP1, LP2, LP3

Table 2 shows the relative evaluations of the alternatives with respect to the criteria. In each table,
the last two columns give, respectively, the normalised local priorities (the Perron vectors of the matrices
calculated via the power method), and the consistency indices (CR).

Note that all the relative judgments are consistent because none of the CR indices exceed the value of
0.05 (the threshold for matrices of size 3× 3 [30]).

In addition to the calculation of the local priorities of alternatives, it is necessary to evaluate the vector
of criteria weights. A decision group composed of three experts (D1, D2, D3) was involved to this purpose.
We will assume that the experts have the same weight in the decision process. Their roles are the following:
consultant; chief of health and safety, and an employee representative. These decision-makers are involved
in the management of the storage area from different – but complementary – perspectives. However, in
formulating the judgements, the experts prefer not to express some evaluations. Since the presence of missing
information often affects these kind of practical problems, the main difficulty of consistent completion regards
the achievement of reliable values reflecting experts’ opinions and preferences. Specifically, the experts were
unwilling to give their judgements about the following pairwise comparison: C2/C5. In other terms, they
preferred not to express any opinion comparing cost and placement. Moreover, experts D2 and D3 did not
give their judgements about another pairwise comparison, C2/C3. In fact, they did not wish to express a
judgement comparing cost and the pursuance of innovation. With relation to this last missing comparison,
although the decision maker D1 expressed his opinion by assigning a numerical value, he could not be totally
exhaustive for evaluating the mentioned comparison. Indeed opinions of each single decision maker need to
be balanced with the others and, to such an aim, the relative missing judgments must be calculated. Table 3
shows the incomplete pairwise comparisons judgments.

It is simple to check that the graphs corresponding to these matrices have only one connected component.
According to Corollary 2, the completions of these matrices are unique in the sense of Theorem 1.

Van Uden’s rule can be used for the first matrix, since only one upper-diagonal entry is unknown. The
completion obtained is

a25 = 3

√
a21a23a24
a51a53a54

.
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Table 2: Evaluation of alternatives with respect to criteria, local priorities and CR value

C1 LP1 LP2 LP3 Local Priorities CR

LP1 1 4 4 0.667

LP2 1/4 1 1 0.167 0

LP3 1/4 1 1 0.167

C2 LP1 LP2 LP3 Local Priorities CR

LP1 1 1/2 1/5 0.122

LP2 2 1 3 0.23 0.0035

LP3 5 3 1 0.648

C3 LP1 LP2 LP3 Local Priorities CR

LP1 1 6 6 0.75

LP2 1/6 1 3 0.125 0

LP3 1/6 1 1 0.125

C4 LP1 LP2 LP3 Local Priorities CR

LP1 1 1/2 1/4 0.136

LP2 2 1 1/3 0.238 0.0176

LP3 4 3 1 0.625

C5 LP1 LP2 LP3 Local Priorities CR

LP1 1 2 5 0.582

LP2 1/2 1 3 0.309 0.0036

LP3 1/5 1/3 1 0.109

The value of θ for the second matrix is θ = [0.900,−0.297,−0.099,−0.578, 0.074]T . This vector gives the
best completion of the second matrix: a23 = exp(θ2 − θ3) = 0.82019 and a25 = exp(θ2 − θ5) = 0.68980.
For the third matrix we get θ = [0.461,−1.014,−0.194, 0.220, 0.528]T, a23 = exp(θ2 − θ3) = 0.44068 and
a25 = exp(θ2 − θ5) = 0.21394.

By using these values, we can build the respective completions with the calculated entries in bold (shown
in Table 4). The completed matrices were then shared with the team of decision makers, who did not show
reasons to disagree with the assigned values, confirming the coherence of the found results.

To build a blend of these matrices we use the aggregation of individual judgments (AIJ) technique in
which the individual comparison matrices are merged into one, so that the group normally becomes a ‘new
individual’, in contrast to the aggregation of individual priorities (AIP) technique (in which individuals act
with different value systems – producing alternative individual priorities [46] that are eventually merged
into one priority vector). This approach agrees with [47], since the experts in our case study act together in
a complementary manner and so combining individual judgments into a group judgment is recommended.
To aggregate the individual priorities into group priorities, the geometric mean method (GMM) is used.
Following these observations, the blended comparison matrix of criteria is shown in Table 5, in which the
last column shows the priority vector, calculated via the power method.

Once the priority vectors for criteria and alternatives have been built, we aggregate the results through
the distributive method and the final ranking of layout proposals is obtained (see Table 6).

The layout proposal LP1 was recognised to be the best trade-off among all considered criteria, and the
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Table 3: Criteria evaluation matrices provided by the experts

D1 C1 C2 C3 C4 C5

C1 1 7 1 4 5

C2 1/7 1 1/3 1/3 ∗
C3 1 3 1 4 3

C4 1/4 3 1/4 1 2

C5 1/5 ∗ 1/3 1/2 1

D2 C1 C2 C3 C4 C5

C1 1 5 3 3 2

C2 1/5 1 ∗ 2 ∗
C3 1/3 ∗ 1 3 1/2

C4 1/3 1/2 1/3 1 1

C5 1/2 ∗ 2 1 1

D3 C1 C2 C3 C4 C5

C1 1 5 1 2 1

C2 1/5 1 ∗ 1/3 ∗
C3 1 ∗ 1 1/2 1/3

C4 1/2 3 2 1 1

C5 1 ∗ 3 1 1

involved decision group, having previously agreed concerning completed matrices, eventually backed the
selection as well. In particular, the application of the graph theory supports the goodness of the solution,
this method being particularly advantageous in the manufacturing field [48]. By adopting this solution, four
of the five shelves (1 to 4) are arranged into the storage area, and the fifth shelf is placed in the production
area. This solution permits a safe management of the available spaces and is well-balanced between the
two departments. In fact, this arrangement enables an optimisation of the placement of pallets of finished
products and cardboards according to the logistic strategies adopted by the organisation. At the same time,
transport can be improved by establishing dedicated paths for people (employees and visitors) and forklifts
(materials transport) inside the storage department. Lastly, the selected layout proposal creates a special
area (box) between the two doors in the upper right side of the storage area. This box can be used for
employee meetings aimed at integrating the workforce and enhancing the level of communication inside the
organisation.

5. Conclusions

Decision-making processes are connected with multiple aspects of human life and involve many levels
and kinds of business activities. The multi-criteria decision-making method AHP is considered to be a
particularly helpful tool in supporting decision-making, as well as in situations characterised by uncertainty
in formulating opinions. When experts are asked to formulate pairwise comparison judgments, they may not
be totally sure about one or more factors and may prefer not to express a preference. In this situation, the
AHP is characterised by incomplete matrices of pairwise comparison judgments. With the aim of consistently
building a complete PCM, which could enter the trade-off process between synthetic consistency and the
judgments from the experts involved, this paper highlights that graph theory may be used to deal with
the treatment of incomplete comparison matrices – and thanks to the described approach all the cases can
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Table 4: Completed matrices

D1 C1 C2 C3 C4 C5

C1 1 7 1 4 5

C2 1/7 1 1/3 1/3 0.78090

C3 1 3 1 4 3

C4 1/4 3 1/4 1 2

C5 1/5 1.28058 1/3 1/2 1

D2 C1 C2 C3 C4 C5

C1 1 5 3 3 2

C2 1/5 1 0.82019 2 0.68980

C3 1/3 1.21922 1 3 1/2

C4 1/3 1/2 1/3 1 1

C5 1/2 1.44991 2 1 1

D3 C1 C2 C3 C4 C5

C1 1 5 1 2 1

C2 1/5 1 0.44068 1/3 0.21394

C3 1 2.26923 1 1/2 1/3

C4 1/2 3 2 1 1

C5 1 4.67609 3 1 1

be characterised and classified in terms of matrix graph connectedness. Moreover, completion solutions
are developed for all those cases and the solution for a quite synthetic general case with a two-component
associated graph is produced. The case of the unique solution is of special interest (since most applications
fall within this case) and, as previously shown in [28], is characterised by the matrix having a connected
associated graph.

The proposed approach is applied to a case study that refers to the storage layout reorganisation in a
factory. In this case, three experts are involved and they decide not to express judgments about several
pairs of criteria. Three incomplete matrices capture their opinions. One matrix presents just one unknown
upper-diagonal entry, and the other two matrices have two gaps. In the first case, van Uden’s rule may be
used and provides the same result; whereas in the second case, the approach provided in this paper enables
a consistent completion of the matrices and the production of a final ranking of alternatives.
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