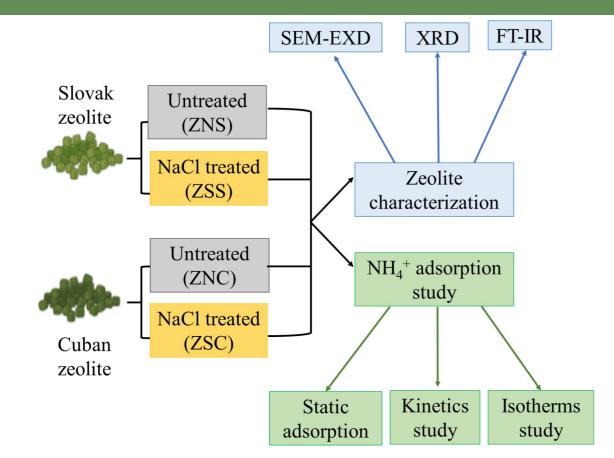


Zeolite-Ammonium interactions: the physical-chemistry of the adsorption process

S.M. Muscarella¹, V.A. Laudicina¹, Beatriz Cano², L. Badalucco¹, P. Conte¹, G. Mannina³

¹Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy ²ZEOCEL ITALIA by DND Biotech srl, Via S. Cannizzaro 5, 56121 Pisa, Italia ³Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy


INTRODUCTION

Wastewaters have plenty of organic and inorganic compounds. Most of them are nitrogen-, and phosphorus- In this study, the ability of Slovak and Cuban zeolites enclosing materials that can be considered plant nutrients [1]. Porous materials, such as zeolites, are with different mineralogy in adsorbing ammonium considered very suitable for wastewater treatment and nutrient adsorption [2]. One potential application is (NH_4^+) from a mono-component solution was the use of natural zeolites to remove nutrients, such as NH₄⁺ from wastewater, thus reducing the risk of assessed. Zeolites were treated or not treated with eutrophication of the aquatic environment and reusing enriched NH_4^+ zeolite as slow release fertiliser [3]. NaCl. The physical-chemistry of NH_4^+ adsorption Due to the formation process, natural zeolites [2] have different operational capacity mainly related to the process was studied by static adsorption tests, mineralogical composition.

AIM OF THE WORK

adsorption kinetics and adsorption isotherms.

METHODS

RESULTS

Regardless of the mineralogical composition, zeolites treated with NaCl adsorbed more and faster NH₄⁺ than the not treated one (Fig. 1). Such differences were explained by the low/high density water model (Fig. 2). The Cuban zeolite adsorbed more NH_{4^+} than the Slovak one (32.9 vs. 29.3 mg NH_4^+ g⁻¹) in static adsorption experiment (Fig. 1).

MINERALOGICAL COMPOSITION

From a mineralogical point of view, the two zeolites differed in the content of Mordenite: the Cuban zeolite was richer (47%) than the Slovak one (20%) (Table 1).

	ZEOLITE	HEULANDITE	MORDENITE	CLINOPTILOLITE	STELLERITE
Table 1. Mineralogical	SAMPLE				
composition of zeolites (%)	ZNS	47%	20%	17%	16%
	ZNC	53%	47%	-	-

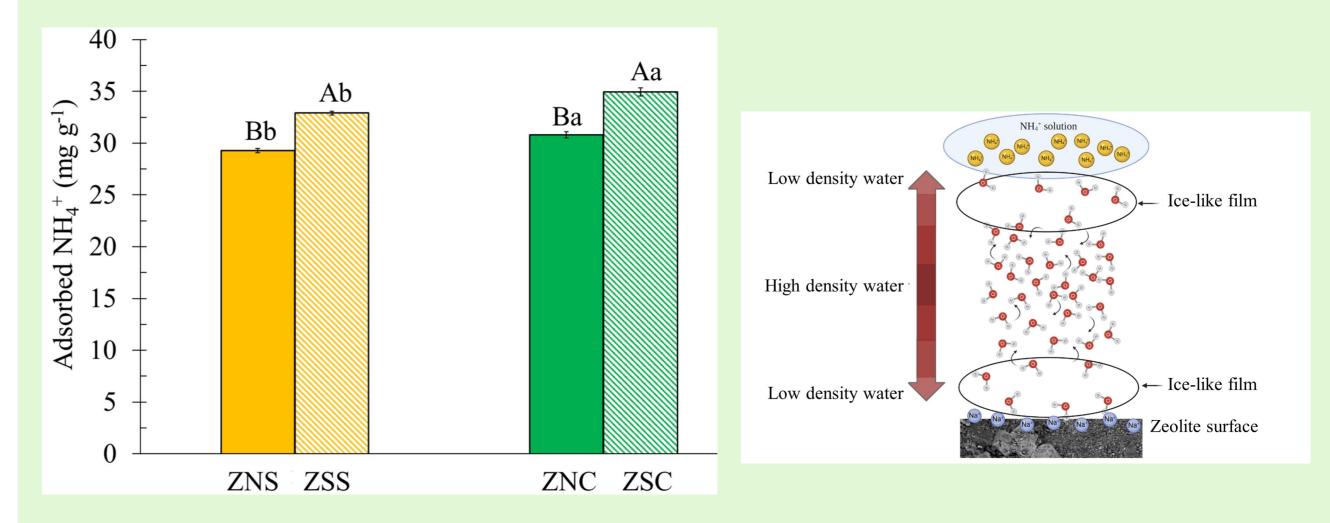
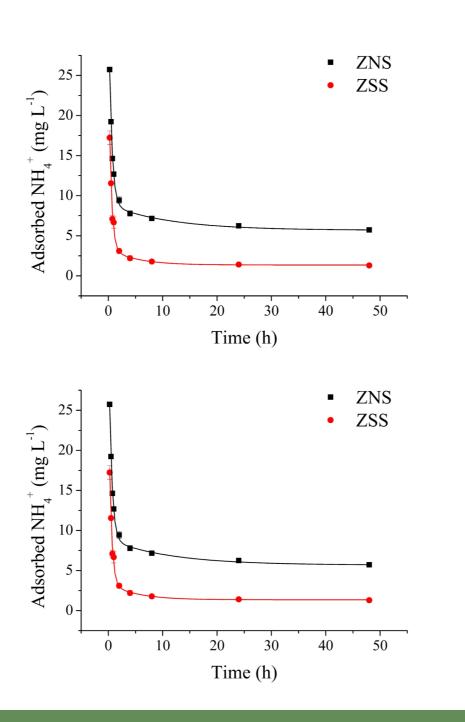



Fig.1. Amount of NH₄⁺ adsorbed by the Slovak and Cuban zeolites during 24 h from a mono-component solution with an initial concentration of 20,000 mg NH4+ L-1. Treatments are: Slovak untreated zeolite (ZNS), Cuban untreated zeolite (ZNC), Slovak treated zeolite with NaCl (ZSS) and Cuban treated zeolite with NaCl (ZSC). Values are mean ± standard deviation of three replicates.

Fig.2. A model of the exchange between NH_{4^+} solution and cations on zeolite surface. The exchange is driven by the water density gradient occurring between the two different surface (Modified by Conte & Schmidt, 2017).

The adsorption kinetics were best the bimodal approximated by pseudo-first order model, thus different suggesting two mechanisms of NH₄⁺ adsorption onto zeolites. Furthermore, adsorption kinetics revealed that following the treatment with NaCl, the Slovak zeolite improved the adsorption rate of $NH_{4^{+}}$ (Fig. 3).

Langmuir-Sips model, compared to Langmuir and Freundlich models, provided the better fit equilibrium the of data. calculated Parameters by applying the Langmuir-Sips model suggested that the NaCl treatment increased the number of active sites only for the Slovak zeolite (Fig. 4).

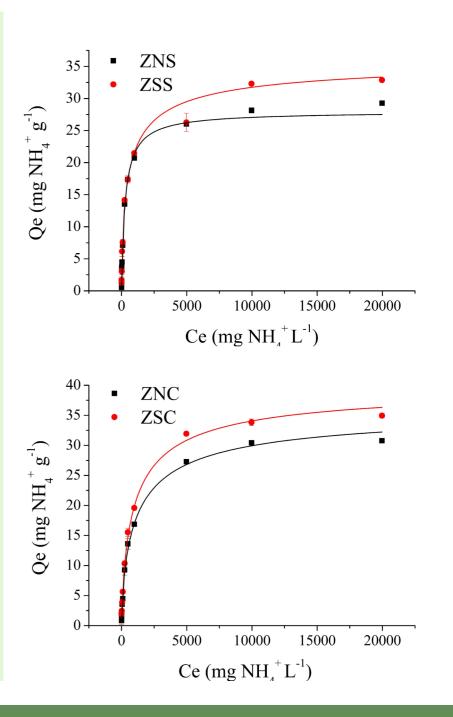


Fig.3. Bimodal pseudo-first order model to study the NH₄⁺ adsorption kinetics of zeolites during 48 hours from a mono-component solution with an initial concentration of 50 mg NH₄⁺ L⁻¹. Values are mean ± standard deviation of three replicates.

Fig.4. The Langmuir Sips isotherms. Values are mean ± standard deviation of three replicates.

CONCLUSIONS

The mineralogical composition of zeolites greatly affected NH₄⁺ adsorption as well as the number of active sites on zeolite following the NaCl treatment.

The higher the presence of Mordenite, the greater the amount of NH₄⁺ adsorbed.

ACKNOWLEDGEMENT

This work was funded by the project "Achieving wider uptake of water-smart solutions-WIDER UPTAKE" (grant agreement number: 869283) financed by the European Union's Horizon 2020 Research and Innovation Programme. Website https://wideruptake.unipa.it/, https://www.sintef.no/projectweb/wider-uptake/

REFERENCES

[1] Guaya, D., Mendoza, A., Valderrama, C., Farran, A., Sauras-Yera, T., and Cortina, J.L. (2020) Use of nutrientenriched zeolite (NEZ) from urban wastewaters in amended soils: Evaluation of plant availability of mineral elements. Science of The Total Environment. 727 138646. [2] Chowdhury, S., Khan, N., Kim, G.H., Harris, J., Longhurst, P., and Bolan, N.S. (2016) Zeolite for Nutrient Stripping From Farm Effluents. Elsevier Inc., . [3] Oladoja, T.D.S.N.A., Saliu, T.D., and Oladoja, N.A. (2021) Nutrient recovery from wastewater and reuse in agriculture: a review. Environmental Chemistry Letters. (0123456789),.