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Abstract

In this paper we construct different classes of coherent and bicoherent states for the

graphene tight-binding model in presence of a magnetic field, and for a deformed version

where we include a PT -symmetric chemical potential V . In particular, the problems

caused by the absence of a suitable ground state for the system is taken into account in

the construction of these states, for V = 0 and for V ̸= 0. We introduce ladder operators

which work well in our context, and we show, in particular, that there exists a choice of

these operators which produce a factorization of the Hamiltonian. The role of broken and

unbroken PT -symmetry is discussed, in connection with the strength of V .



I Introduction

Graphene’s emergence as a two-dimensional material has revolutionized various scientific disci-

plines, due to its remarkable electronic, mechanical, and thermal properties. Since many years

a lot of researchers started to discuss the physical aspects of graphene, and its concrete many

applications. But the mathematical settings related to its description also started to attract

more mathematically oriented people, in view of the several interesting aspects, connected to it,

which arise when dealing with the analytic aspects of graphene. We refer to [1, 2, 3, 4, 5, 6, 7],

and to [8], for a very partial list of contributions on the topic. One of the most interesting

features emerges particularly when a magnetic field is applied to it [2, 3, 9].

In [10] a chemical potential was introduced in the system, motivated by the possibility of

simulating the effects of external fields and doping the graphene’s electronic structure. This

approach forced the authors in [10] to construct a rich (non-Hermitian) quantum mechanical

settings which includes the construction of suitable biorthogonal families of eigenstates, which

are different depending on the strength of the potential.

One of the features we will meet in the following is a PT symmetry breaking transition,

[11]. As widely known, this transition plays a pivotal role in non-Hermitian quantum mechanics,

usually linked to systems that exhibit balanced gain and loss. In graphene, PT symmetry and

its breaking lead to the emergence of exceptional points—critical junctures where the properties

of the system undergo some changes.

Central to the study we discuss here are, again, the families of biorthonormal states, whose

definition is strongly determined by the width of the broken region caused from the chemical

potential applied to graphene. By constructing specific annihilation operators in terms of these

states, we propose a detailed analysis of bicoherent states, somewhat inspired by some recent

papers, [12, 13, 14, 15, 16]. More explicitly, in our construction a special role will be played

by the biorthonormal families of eigenvectors of the deformed Hamiltonian, and of its adjoint,

describing graphene in one Dirac point in presence of chemical potential.

The paper is organized as follows. In Section II we consider the standard situation, i.e.

graphene in absence of chemical potential V , and coherent states associated to it. This is

already a non trivial task, since as it was already recently observed in [16], it is not possible

to talk of a ground state of the Hamiltonian, since the set of its eigenvalues is not bounded

from above and from below. This implies that there is no naturally chosen eigenvector of the

Hamiltonian which is annihilated by some relevant ladder operator. What we do here is to

propose a possible construction which is linked to the one proposed in [16], but not to the one
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in, e.g., [12], where the role of the negative eigenvalues (and their related eigenstates) is simply

neglected. We show how to decompose (non uniquely) the Hilbert space where the model is

defined in two orthogonal subspaces and how to construct coherent states in both these spaces.

Also, in view of our special structure, it turns out that what is a lowering operator in one

subspace (since it moves toward the vacuum), is a raising operator in the orthogonal space,

since it moves away from the vacuum, and vice-versa. This aspect will be discussed in details

and clarified all along Section II. In Section II.3 we restate essentially the same results in terms

of tensor product Hilbert spaces, since this approach will simplify quite a bit what discussed

later in Section III.

Section III is focused on the case of V ̸= 0, i.e. on the analysis of the effect of a chemical

potential in our system. We discuss first the case of small V (V ∈ [0, 1[). We introduce two

different families of bicoherent states: those which are closer to the standard coherent states

(meaning with this that they differ from a standard coherent state just because the orthonormal

basis in terms of which the coherent state is expanded is replaced by two biorthonormal sets),

and a second family in which, other than the previous difference, we also replace the standard

coefficient
√
n! in the expansion1 with something different, related to the eigenvalues of the

non self-adjoint Hamiltonian of graphene, in presence of the chemical potential. These latter

are connected to ladder operators which are particularly interesting, since they can be used to

factorize the Hamiltonian. The properties of both these families of states will be analyzed in

some details. In Section IV we discuss the case V > 1, which, as we shall see, leads to a larger

PT broken symmetry region and deserves an appropriate approach for the construction of the

coherent states.

The paper is closed by Section V, which contains our conclusions and plans for the future.

II Coherent states for graphene with V = 0

We begin our analysis considering the case in which there is no chemical potential. To make the

paper self-contained, it is useful to begin by reviewing some known results on the orthonormal

basis (ONB) for our system. After this short introduction we will propose our definition of

coherent states.

Graphene is a single layer of carbon atoms arranged in a hexagonal honeycomb lattice,

which is the basic structural element of other allotropes including graphite, charcoal, carbon

1This is the standard terms one meets when dealing with the expansion of an coherent states of, say, an

harmonic oscillator.
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nanotubes and fullerenes. Graphene is a zero–gap semiconductor, because its conduction and

valence bands meet at the Dirac points which are six locations in momentum space, on the edge

of the Brillouin zone, divided into two non-equivalent sets of three points, typically labeled as

K and K ′.

We consider a layer of graphene in an external constant magnetic field along z : B = −Bê3,
which can be deduced from B = ∇ ∧A with a vector potential in the symmetric gauge, A =

(B/2)(y,−x, 0). The Hamiltonian for the two Dirac points K and K ′, that is the wavenumbers

where the energy eigenvalues can degenerate to zero, can be written as in [4]:

HD =

(
HK 0

0 HK′

)
, (2.1)

where, in units ℏ = c = 1, we have:

HK = vF σ · (p+ eA) = vF

(
0 p̂x − ip̂y +

eB
2
(ŷ + ix̂)

p̂x + ip̂y +
eB
2
(ŷ − ix̂) 0

)
. (2.2)

Here p = −i∇ = −i (∂x, ∂y), σ = (σx, σy) are the Pauli’s matrices, andHK′ is just the transpose

of HK . In (2.2) x̂, ŷ, p̂x and p̂y are the canonical, Hermitian, two–dimensional position and

momentum operators, which satisfy [x̂, p̂x] = [ŷ, p̂y] = i11, with all the other commutators being

zero, and where 11 is the identity operator in the Hilbert space H = L2(R2). The factor vF is

the so–called Fermi velocity.

It is convenient to rescale these operators as follows

X̂ =
1

ξ
x̂, Ŷ =

1

ξ
ŷ, P̂X = ξp̂x and P̂Y = ξp̂y, (2.3)

in which ξ =
√
2/(e|B|) is the so–called magnetic length, and then to introduce aX =

X̂ + iP̂X√
2

and aY =
Ŷ + iP̂Y√

2
. These are bosonic operators, as well as their combinations

A1 =
aX − iaY√

2
and A2 =

aX + iaY√
2

. (2.4)

Indeed, the following canonical commutation rules (CCRs) are satisfied:

[aX , a
†
X ] = [aY , a

†
Y ] = [A1, A1

†] = [A2, A2
†] = 11, (2.5)

and the Hamiltonian HK can be rewritten as:
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H+
K =

2ivF
ξ

(
0 A2

†

−A2 0

)
for B > 0, (2.6)

and

H−
K =

2ivF
ξ

(
0 −A1

A1
† 0

)
for B < 0. (2.7)

Of course, H+
K′ depends only on A2 and H−

K′ on A1. In order to deal with an Hamiltonian of

the kind (2.6) or (2.7) it is convenient to work in a new Hilbert space, H2 = H⊕H, with scalar

product ⟨f, g⟩2 := ⟨f1, g1⟩ + ⟨f2, g2⟩, where f =

(
f1

f2

)
and g =

(
g1

g2

)
, with f1, f2, g1 and g2 in

H, and where ⟨., .⟩ is the scalar product in H. We can introduce the vectors

vn1,0 = v+n1,0
= v−n1,0

=

(
en1,0

0

)
(2.8)

while, for n2 ≥ 1,

v±n1,n2
=

1√
2

(
en1,n2

∓ien1,n2−1

)
(2.9)

Here en1,n2 :=
1√
n1!n2!

(A1
†)n1(A2

†)n2e0,0, where e0,0 is the non zero vacuum of A1 and A2,

A1e0,0 = A2e0,0 = 0.

Incidentally we observe that this function can be explicitly computed, using the fact that e0,0

must also satisfy aX e0,0 = aY e0,0 = 0, so that

e0,0 −→ e0,0(X, Y ) =
1√
π
e−

1
2
(X2+Y 2).

The set V2 = {vkn1,n2
, n1 ≥ 0, n2 ≥ 1, k = ±}∪{vn1,0, n1 ≥ 0} is an ONB for H2, and its vectors

are the eigenvectors of H+
K :

H+
Kv

±
n1,n2

= E±
n1,n2

v±n1,n2
, (2.10)

with eigenvalues E±
n1,n2

= ±2vf
ξ

√
n2, and

⟨vkn1,n2
, vjm1,m2

⟩2 = δn1,m1 δn2,m2 δk,j, (2.11)
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ni,mi,≥ 0, i = 1, 2, and k, j = ±. If in the left-hand side of (2.11) n2 = m2 = 0, then we

identify vkn1,0
and vjn1,0

as in (2.8). One can adapt these results to the other Hamiltonians

H−
K , H

+
K′ or H

−
K′ .

Remark:– In [10] the set V2 was slightly different from the one considered here. Indeed it

was defined as V2 = {vkn1,n2
, n1 ≥ 0, n2 ≥ 0, k = ±} which differs from ours because the vectors

vn1,0 is counted twice. However, as a set, the two sets are clearly indistinguishable.

We see from (2.10), and from the expression of E±
n1,n2

, that H+
K (to which we will restrict,

from now on) is unbounded from above and from below, and that each energetic level has an

infinite degeneracy, since E±
n1,n2

does not depend on n1. In what follows it is convenient to use

a slightly different notation, by introducing the following vectors:

cn,p =


v+n,p, p ≥ 1,

vn,0, p = 0,

v−n,−p, p ≤ −1,

(2.12)

where n ≥ 0. Hence the set V2 can be rewritten as V2 = {cn,p, n ≥ 0, p ∈ Z}, and

H+
Kcn,p = En,pcn,p, En,p = sign(p)

2vF
ξ

√
|p|, (2.13)

where n ≥ 0 while p ∈ Z. Of course we have

⟨cn,p, cm,q⟩2 = δn,mδp,q, (2.14)

∀n,m ≥ 0 and ∀p, q ∈ Z. If we now introduce the following p-depending Hilbert spaces

H2(p) = l.s.{cn,p, n ≥ 0}
∥.∥
,

p ∈ Z, it follows that H2 = ⊕p∈ZH2(p). Each H2(p) corresponds to a different energetic level

of H+
K , and all the levels are mutually orthogonal: if f ∈ H2(p) and g ∈ H2(q), p, q ∈ Z with

p ̸= q, then ⟨f, g⟩2 = 0.

II.1 Coherent states

To construct ordinary coherent states, see [17] for instance, one usually construct series of

vectors starting from a certain vacuum, i.e. a vector which is annihilated by a lowering operator.

For instance, if we have two bosonic operators c and c†, we construct such a family of vectors
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looking first for a vector e0 ̸= 0 satisfying ce0 = 0, and then we define en = c†
n

√
n!
e0, n ≥ 0.

Hence a coherent state is the normalized vector

Φ(z) = e−|z|2/2
∞∑
n=0

zn√
n!
en,

where z ∈ C and the number n ≥ 0 in
√
n! is directly related to the eigenvalue of the Hamil-

tonian of the shifted harmonic oscillator H = ωc†c, with ω = 1. We refer to [17, 18, 19]

and references therein, for several properties of Φ(z). What is relevant for us is that, in our

case, we cannot use the same approach since the set of eigenvalues of H+
K is not bounded from

below, see (2.13). In the attempt of defining coherent states also in this situation one could

first simply think to replace the sum
∑∞

n=0 with
∑∞

n=−∞ in a possible new version of Φ(z).

Of course, this creates some difference when exploring the existence of this new vector, since

negative powers of z also appear in the expansion. Hence this new state cannot be defined

in all of C, since we have to find the convergent region of a Laurent series. Indeed, if we

consider Ψ(z) = N(z)
∑∞

n=−∞
zn√
|n|!

en, N(z) being a suitable normalization, we would have

∥Ψ(z)∥2 = |N(z)|2
∑∞

n=−∞
|z|2n
|n|! , which is a Laurent (and not a Taylor) series. But this is not

really a major problem, in our opinion: we know that nonlinear coherent states don’t need to be

defined in all of C, see [17] for instance. The most serious problem is rather the fact that Ψ(z)

cannot be the eigenstate of c with eigenvalue z, as it is easily seen. So a different definition of

our coherent state should be proposed. This is exactly what was done recently in [16], where

the idea was to double the original Hilbert space where Φ(z) is defined, and to work with vector

coherent states. In this way, however, the final result is that we have to work with a special

subset of H2. Here we follow a different strategy, working in the original space H2 as much as

possible. Incidentally we observe that, as already pointed out in (2.12), we need to deal with

two indexes, n and p, having different ranges of values.

We start introducing the operator A1 on H2 as follows:

A1 =

(
A1 0

0 A1

)
, (2.15)

which together with its adjoint A†
1 satisfies the CCR [A1,A†

1] = 112, where 112 is the identity

operator on H2. It is easy to check that

A1cn,p =
√
n cn−1,p, with A1c0,p = 0, (2.16)

for all p ∈ Z and n ≥ 1. In view of the different nature of n and p in cn,p it is not convenient to

introduce ladder operators acting on the second index, p as in (2.15). We rather observe that
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A1 can be rewritten as

A1 =
∞∑
n=0

∞∑
p=−∞

√
n+ 1 |cn,p⟩22⟨cn+1,p|,

which is densely defined on H2 since its domain, D(A1), contains the linear span of all the cn,p,

Lc, which is dense in H2 since H2 = Lc
∥.∥
.

With this in mind, we introduce a new operator A2 as follows:

A2 =
∞∑
n=0

∞∑
p=−∞

√
|p+ 1| |cn,p⟩22⟨cn,p+1|. (2.17)

As before, D(A2) ⊇ Lc. Hence A2 is also densely defined. Moreover, it satisfies the following

lowering equation:

A2cn,p =
√

|p| cn,p−1, (2.18)

for all n ≥ 0 and p ∈ Z. In particular, this means that A2cn,0 = 0, ∀n ≥ 0, but A2 can also

act on vectors cn,p with p ≤ −1, returning a non zero result. This means that cn,0 is not (are

not, actually, due to the presence of n) a ground state: each cn,0 is simply a vector which is

annihilated by A2. It is not hard to find the adjoint of A2, which satisfies the following raising

equation;

A†
2cn,p =

√
|p+ 1| cn,p+1, (2.19)

for all n ≥ 0 and p ∈ Z. We can write

A†
2 =

∞∑
n=0

∞∑
p=−∞

√
|p+ 1| |cn,p+1⟩22⟨cn,p|, (2.20)

and D(A†
2) ⊇ Lc. It is interesting to notice that A†

2 acts as a raising operator on the various

cn,p, except for cn,−1, which is annihilated by A†
2: A

†
2cn,−1 = 0, ∀n ≥ 0.

Remark:– We observe that

[H+
K ,A

†
2A2]f = 0, (2.21)

∀f ∈ Lc. This follows from (2.13), (2.16) and (2.19). However, while the eigenvalues of H+
K

depends on p as in
√
|p|, those of A†

2A2 depends on p as |p|. Moreover, while A†
2A2 is a positive

operator, H+
K is not. Hence it is clear that H+

K ̸= A†
2A2: H

+
k is not factorizable in terms of A2

and A†
2.

Let us now introduce the following subspaces ofH2: H+
2 = ⊕∞

n=0H2(n), andH−
2 = ⊕−1

n=−∞H2(n).

It is clear that H2 = H+
2 ⊕ H−

2 and that, taken f ∈ H+
2 and g ∈ H−

2 , ⟨f, g⟩2 = 0. These two
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spaces are interesting in view of their behavior with respect A2 and A†
2: they are disconnected:

if we act on some f ∈ H+
2 with A2 or with A†

2, and with their powers, we get some other vector

which is still in H+
2 . The same happens if we start from a vector g ∈ H−

2 . The situation is

described in Figure 1a.

Because of formulas (2.18) and (2.19), and of what we have discussed above, we could

interpret cn,0 as a quasi-vacuum for A2, and cn,−1 as a quasi-vacuum for A†
2. This suggests us

to define the following vectors:

Φ+
A(z1, z2) = e−(|z1|2+|z2|2)/2

∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2√
n1!n2!

cn1,n2 , (2.22)

and

Φ−
A(z1, z2) = e−(|z1|2+|z2|2)/2

∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2√
n1!n2!

cn1,−n2−1, (2.23)

which live respectively in H+
2 and H−

2 and, as such, are mutually orthogonal:

⟨Φ+
A(z1, z2),Φ

−
A(z1, z2)⟩2 = 0,

for all z1, z2 ∈ C. Moreover, it is also possible to check (and it is not a surprise, of course!)

that the two series in (2.22) and (2.23) converge in the entire complex plane, and that

∥Φ+
A(z1, z2)∥2 = ∥Φ−

A(z1, z2)∥2 = 1, (2.24)

∀z1, z2 ∈ C. For all these z1 and z2 it is further possible to prove the following eigenvalue

equations:

A1Φ
+
A(z1, z2) = z1Φ

+
A(z1, z2), A1Φ

−
A(z1, z2) = z1Φ

−
A(z1, z2), (2.25)

as well as

A2Φ
+
A(z1, z2) = z2Φ

+
A(z1, z2), A†

2Φ
−
A(z1, z2) = z2Φ

−
A(z1, z2). (2.26)

In particular, the equations in (2.26) are in agreement with our interpretation of A2 as a

lowering operator in H+
2 , and of A†

2 as a different lowering operator (meaning with this that A†
2

moves the state toward its own quasi vacuum, cn,−1) on H−
2 . The evident difference between

(2.25) and (2.26) is in the presence of only A1 in the first equation, and of both A2 and A†
2

in the second. This is again due to the different ranges of n and p, and on their role, in our

construction.

To conclude our analysis of these states, we can also check that they satisfy the following

resolutions of the identity:

⟨f+, g+⟩2 =
∫
C

d2z1
π

∫
C

d2z2
π

⟨f+,Φ+
A(z1, z2)⟩2⟨Φ

+
A(z1, z2), g+⟩2, (2.27)
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for all f+, g+ ∈ H+
2 , and

⟨f−, g−⟩2 =
∫
C

d2z1
π

∫
C

d2z2
π

⟨f−,Φ−
A(z1, z2)⟩2⟨Φ

−
A(z1, z2), g−⟩2, (2.28)

for all f−, g− ∈ H−
2 .

One might wonder if the normalized vector ΦA(z1, z2) =
1√
2
(Φ+

A(z1, z2)+Φ−
A(z1, z2)) produces

a resolution of the identity in all of H2. The answer is negative. Indeed, if we take two vectors

f, g ∈ H2, we can write f = f+ + f− and g = g+ + g−, where f+, g+ ∈ H+
2 and f−, g− ∈ H−

2 .

Then we have, with easy computations,∫
C

d2z1
π

∫
C

d2z2
π

⟨f,ΦA(z1, z2)⟩2⟨ΦA(z1, z2), g⟩2 =
1

2
⟨f, g⟩2+

+
1

2

∫
C

d2z1
π

∫
C

d2z2
π

(
⟨f+,Φ+

A(z1, z2)⟩2⟨Φ
−
A(z1, z2), g−⟩2 + ⟨f−,Φ−

A(z1, z2)⟩2⟨Φ
+
A(z1, z2), g+⟩2

)
,

which is in general different from ⟨f, g⟩2. Moreover, ΦA(z1, z2) is not an eigenstate of A2 or A†
2.

Hence we conclude that ours are coherent states not in H2, but in two orthogonal subspaces of

H2, where they possess all the standard properties of coherent states.

II.2 A different decomposition of H2

One might wonder why we should be satisfied with the decomposition H2 = H+
2 ⊕ H−

2 we

have considered above. Indeed this is not the only possibility, but it is the natural one if we

work with the operators A2 and A†
2. In fact, we could easily modify what discussed so far by

replacing these operators with, e.g., two different ones, B2 and B†
2, defined as follows:

B2 =
∞∑
n=0

∞∑
p=−∞

√
|p| |cn,p+1⟩22⟨cn,p|, (2.29)

so that

B2cn,p =
√

|p| cn,p+1, (2.30)

and

B†
2 =

∞∑
n=0

∞∑
p=−∞

√
|p| |cn,p⟩22⟨cn,p+1|, (2.31)

so that

B†
2cn,p =

√
|p− 1| cn,p−1, (2.32)
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∀n ≥ 0 and p ∈ Z. In particular, these equations imply that both B2 and B†
2 are densely defined

(at least on Lc), and that

B2 cn,0 = 0, B†
2cn,1 = 0, n ≥ 0. (2.33)

We find, similarly to what has been observed before, that [H+
K ,B2B†

2]f = 0, ∀f ∈ Lc. Notice

that, here, B2 behaves as a raising operator on H2, while B†
2 acts as a lowering operator on

H2. For these operators, the quasi-vacua are cn,0 and cn,1, see (2.33). The situation is shown in

Figure 1, where the two different decompositions of H2 arising from our approach are shown:

p = 1

p = 2

A†
2

A†
2

A2

A2

p = 0
A†

2
A2

p = −2

p = −1

A†
2

A†
2

A2

A2
A

A†
2

A2

A

H+
2

H−
2

{cn,p}

(a)

p = 1

p = 2

B2

B2

p = 0 B2

p = −2

p = −1

B2

A

B2

A

B†
2

B†
2B†

2

B†
2

B†
2

B2B†
2

K+
2

K−
2

{cn,p}

(b)

Figure 1: (a) Schematic representation of the action of operators A2,A†
2 on the vectors cn,p (b)

Schematic representation of the action of operators B2,B†
2 on the vectors cn,p.

In this case we consider K+
2 = ⊕∞

n=1H2(n), and K−
2 = ⊕0

n=−∞H2(n). Hence H2 = K+
2 ⊕K−

2

and it follows that, taken f ∈ K+
2 and g ∈ K−

2 , ⟨f, g⟩2 = 0. These two spaces are disconnected,

as H+
2 and H−

2 before: if we act on some f ∈ K+
2 with B2 or with B†

2, and their powers, we

get some other vector which is still in K+
2 . The same if we start from a vector g ∈ K−

2 . In
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other words, this is just a different choice with respect to the previous one, the main difference

consisting in how we decompose the space H2. Of course, other possibilities are also possible,

but we will restrict to the two described here. In this case our states in (2.22) and (2.23) should

be replaced by the following ones:

Φ+
B (z1, z2) = e−(|z1|2+|z2|2)/2

∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2√
n1!n2!

cn1,n2+1, (2.34)

and

Φ−
B (z1, z2) = e−(|z1|2+|z2|2)/2

∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2√
n1!n2!

cn1,−n2 , (2.35)

which clearly live respectively in K+
2 and K−

2 . These states are normalized, mutually orthogonal,

satisfy a resolution of the identity in K+
2 and K−

2 , respectively, and are eigenstates of the

annihilation operators in the following sense:

A1Φ
+
B (z1, z2) = z1Φ

+
B (z1, z2), A1Φ

−
B (z1, z2) = z1Φ

−
B (z1, z2), (2.36)

similar to (2.25), and

B†
2Φ

+
B (z1, z2) = z2Φ

+
B (z1, z2), B2Φ

−
B (z1, z2) = z2Φ

−
B (z1, z2), (2.37)

Our consideration for Φ±
A(z1, z2) could be repeated now, with minor changes, for Φ±

B (z1, z2).

II.3 Working with tensor products

What we have done in the first part of this section, up to Section II.1 included, can be restated

in terms of tensor product Hilbert spaces. This approach will be particularly useful in presence

of a chemical potential, as we will see in Section III. In view of this relevance, we briefly sketch

here this alternative settings since it is easier, due to the fact that, as we will see later on, we

are dealing with ONB, rather than with biorthogonal sets.

The fact that n1 in (2.8)-(2.10) plays essentially no role suggests to rewrite the o.n. vectors

en1,n2 introduced after (2.9) as en1,n2 = e
(1)
n1 ⊗ e

(2)
n2 , where e

(j)
nj = 1√

nj !
(A†

j)
nje

(j)
0 , and Aje

(j)
0 = 0,

j = 1, 2. Hence we put

vn1,0 = e(1)n1
⊗

(
e
(2)
n2

0

)
= e(1)n1

⊗ v0

and, for n2 ≥ 1,

v±n1,n2
= e(1)n1

⊗ 1√
2

(
e
(2)
n2

∓ie(2)n2−1

)
= e(1)n1

⊗ v±n2
.

12



Here we call H(j) the Hilbert space spanned by Fj = {e(j)n , n ≥ 0}, with scalar product ⟨., .⟩(j),
j = 1, 2, and K the Hilbert space spanned by Fv = {v±n , n ≥ 1} ∪ {v0}, with scalar product

⟨f, g⟩K = ⟨f1, g1⟩2 + ⟨f2, g2⟩2, for all f =

(
f1

f2

)
and g =

(
g1

g2

)
, fj, gj ∈ H(2), so that f, g ∈ K.

Fv is an ONB for K, and F̃v = {v±n1,n2
, n1 ≥ 0, n2 ≥ 1} ∪ {vn1,0, n1 ≥ 0} is an ONB in

H̃ = H(1) ⊗K, which is an Hilbert space with respect to the scalar product

⟨f̃ , g̃⟩H̃ = ⟨f (1), g(1)⟩(1)⟨fK, gK⟩K,

where f̃ = f (1) ⊗ fK and g̃ = g(1) ⊗ gK, with f
(1), g(1) ∈ H(1) and fK, gK ∈ K.

As in (2.12) it is convenient to rewrite the vectors in F̃v as follows: F̃v = {wn,p, n ≥ 0, p ∈
Z}, where

wn,p = e(1)n ⊗ v(2)p = e(1)n ⊗


v+p , p ≥ 1,

v0, p = 0,

v−−p, p ≤ −1,

(2.38)

and where n ≥ 0. Hence we have ⟨wn,p, wm,q⟩H̃ = δn,mδp,q, ∀n,m ≥ 0 and ∀ p, q ∈ Z. Moreover,

if we put H0 = 11(1) ⊗H+
K , where 11(1) is the identity operator on H(1), we have

H0wn,p = En,pcn,p, (2.39)

where n ≥ 0 while p ∈ Z, and En,p is given in (2.13). Now it is an easy task to identify the ladder

operators acting on H(1) and, with some difference, on K. We first consider A(1) = A(1) ⊗ 11K

and its adjoint A†
(1) = A†

(1) ⊗ 11K. Here A(1) is exactly A1 in (2.4). We adopt this new notation,

since it is more useful here and in the following. Also, we notice that we are using the same

symbol for the adjoint in H(1) and in H̃. In fact, we will use the same symbol for all the adjoints

we will introduce, here and in the following, since no confusion can arise. It is simple to check

that

A(1)wn,p =

{
0, n = 0,
√
nwn−1,p n ≥ 1,

A†
(1)wn,p =

√
n+ 1wn+1,p, ∀n ≥ 0, (2.40)

p ∈ Z. We can use the following formula for A(1) and A(1):

A(1) =
∞∑
n=0

√
n+ 1 |e(1)n ⟩⟨e(1)n+1|, A(1) =

(
∞∑
n=0

√
n+ 1 |e(1)n ⟩⟨e(1)n+1|

)
⊗ 11K. (2.41)

These two formulas, and our previous discussion, suggest us to introduce further the operator

AK as follows:

AK =
∞∑

p=−∞

√
|p+ 1| |v(2)p ⟩⟨v(2)p+1|, AK = 11(1) ⊗

(
∞∑

p=−∞

√
|p+ 1| |v(2)p ⟩⟨v(2)p+1|

)
, (2.42)
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i.e., AK = 11(1) ⊗ AK. It is easy to check that

AK wn,p =
√

|p|wn,p−1, A†
K wn,p =

√
|p+ 1|wn,p+1, (2.43)

for all n ≥ 0 and p ∈ Z. A†
K can be written as

A†
K = 11(1) ⊗

(
∞∑

p=−∞

√
|p+ 1| |v(2)p+1⟩⟨v(2)p |

)
. (2.44)

We could, of course, adopt different definitions of these operators. In particular, we could

repeat here what we have considered in Section II.2, but since this second decomposition will

not be used in the following (in fact, it was only meant to give a flavor of the freedom we have,

in our construction!), we will not do that here. As for the coherent states in Section II.1, they

could be restated again in terms of tensor products. But we postpone this possibility to the

more interesting case discussed in the next section, i.e., to the case where a non zero chemical

potential is introduced, as in [10].

III Chemical potential: 0 < V < 1

In [10] the authors considered a slightly extended version of H+
K in (2.6):

H(V ) =
2ivF
ξ

(
V A2

†

−A2 −V

)
, (3.1)

where V is a fixed positive quantity. Its physical meaning as a chemical potential is discussed

in some details in [10]. One of the crucial difference between H+
K and H(V ) is that this latter

is not self-adjoint, if V ̸= 0. Infact H†(V ) = H(−V ). In what follows we will analyze some

aspects of H(V ), restricting first to the case V ∈ [0, 1[, and considering the case V > 1 later

on.

It is now a long, but simple, exercise to extend what we have done here in Section II.3 to

rewrite some of the results in [10] in the following, more convenient, form.

φ±
n1,n2

= e(1)n1
⊗ φ(±)

n2
, φn1,0 = e(1)n1

⊗ φ0, (3.2)

with n1, n2 ≥ 0 and where

φ0 =

(
e
(2)
0

0

)
, φ±

n2
= K±

n2
(φ)

(
e
(2)
n2

α±
n2
e
(2)
n2−1

)
, if n2 ≥ 1. (3.3)
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Here

α±
n2

=
−V ∓ i

√
n2 − V 2

√
n2

, (3.4)

whileK±
n2
(φ) is a normalization constant which will be fixed later. Notice that, since 0 ≤ V < 1,√

n2 − V 2 is always real for each n2 ≥ 1. Hence α±
n2

is never real.

We now further introduce the vectors

ψ±
n1,n2

= e(1)n1
⊗ ψ(±)

n2
, ψn1,0 = e(1)n1

⊗ ψ0, (3.5)

with n1, n2 ≥ 0 and where

ψ0 =

(
e
(2)
0

0

)
= φ0, ψ±

n2
= K±

n2
(ψ)

(
e
(2)
n2

−α∓
n2
e
(2)
n2−1

)
, if n2 ≥ 1. (3.6)

As we did in (2.12) it is more convenient to rename these vectors as follows:

xn,p = e(1)n ⊗ φp, yn,p = e(1)n ⊗ ψp, (3.7)

where n ≥ 0, p ∈ Z, and where we have introduced, in analogy with (2.38),

φp =


φ+
p , p ≥ 1,

φ0, p = 0,

φ−
−p, p ≤ −1,

and ψp =


ψ+
p , p ≥ 1,

ψ0, p = 0,

ψ−
−p, p ≤ −1.

(3.8)

If we now assume that

K±
p (φ)K

±
p (ψ) =

p

2(p− V 2 ± iV
√
p− V 2)

, (3.9)

p ≥ 1, we conclude that

⟨xn,p, ym,q⟩H̃ = ⟨e(1)n , e(1)m ⟩(1)⟨φp, ψq⟩K = δn,mδp,q, (3.10)

n,m ≥ 0 and p, q ∈ Z. This means that the two sets Fx = {xn,p} and Fy = {yn,q} are

biorthonormal in H̃. It is also possible to check that any vector f̃ ∈ H̃, f̃ = f (1) ⊗ fK with

f (1) ∈ H(1) and fK ∈ K, which is orthogonal to all the xn,p, or to all the yn,p, is necessarily zero.

This is because the sets {φp} and {ψp} are both total in K, as it is easy to check.

Now, if we put H̃(V ) = 11(1) ⊗H(V ), we also have H̃†(V ) = 11(1) ⊗H(−V ) and{
H̃(V )xn,p = Ep xn,p,
H̃†(V ) yn,p = Ep yn,p,

(3.11)
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with

Ep =


2vF
ξ

√
p− V 2 p ≥ 1,

2ivF
ξ
V, p = 0,

−2vF
ξ

√
−p− V 2, p ≤ −1.

(3.12)

With our choice of V , all the eigenvalues of H̃(V ) and its adjoint are real, except one, E0.
This is important, since it implies that H̃(V ) and H̃†(V ) are not isospectral, at least if V ̸= 0.

Hence it is not possible, in principle, to find an operator which intertwines between the two,

[20]. Also, see [21], it is not possible to define on H̃ any scalar product which makes of H̃(V ) a

self-adjoint operator (with respect to the adjoint map defined by this new scalar product). This

is never possible whenever the Hamiltonian operator has, at least, one complex eigenvalue.

As in (2.41) we introduce the operators A(1) and A†
(1), since they act as ladder operators

also on the families Fx and Fy:

A(1) xn,p =

{
0, n = 0,
√
nxn−1,p n ≥ 1,

A†
(1)xn,p =

√
n+ 1xn+1,p, ∀n ≥ 0, (3.13)

as well as

A(1) yn,p =

{
0, n = 0,
√
nyn−1,p n ≥ 1,

A†
(1)yn,p =

√
n+ 1 yn+1,p, ∀n ≥ 0, (3.14)

∀ p ∈ Z. The operator AK in (2.42) must be replaced by the following

AK(V ) =
∞∑

p=−∞

√
|p+ 1| |φp⟩⟨ψp+1|, AK(V ) = 11(1) ⊗

(
∞∑

p=−∞

√
|p+ 1| |φp⟩⟨ψp+1|

)
, (3.15)

so that AK(V ) = 11(1) ⊗ AK(V ). Then we have

AK(V )xn,p =
√

|p|xn,p−1, A†
K(V ) yn,p =

√
|p+ 1| yn,p+1, (3.16)

for all n ≥ 0 and p ∈ Z. In particular we see that AK(V )xn,0 = A†
K(V ) yn,−1 = 0, for all n ≥ 0.

The proof of all these equations are standard, and will not be given here. We only observe that

all these operators are defined on sets which are total in H̃. For instance, D(AK(V )) ⊇ Lx, the
linear span of the xn,p’s. The fact that Fx is total can be deduced as in [10].

It is interesting to notice that, as (3.16) shows, AK(V ) is a lowering operator for Fx, while

A†
K(V ) is a raising operator for Fy. This is a normal situation in presence of ladder operators
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and biorthonormal families, [19]. What is still missing, and it is useful to have, is a raising

operator for Fx and a lowering operator for Fy. These operators can be easily defined:

BK(V ) = 11(1)⊗

(
∞∑

p=−∞

√
|p+ 1| |φp+1⟩⟨ψp|

)
, B†

K(V ) = 11(1)⊗

(
∞∑

p=−∞

√
|p+ 1| |ψp⟩⟨φp+1|

)
.

(3.17)

Indeed we have that

BK(V )xn,p =
√

|p+ 1|xn,p+1, B†
K(V ) yn,p =

√
|p| yn,p−1, (3.18)

for all n ≥ 0 and p ∈ Z. This is exactly what we were looking for. Again, these operators are

defined on rather large sets: for instance D(BK(V )) ⊇ Lx and D(B†
K(V )) ⊇ Ly. Here Ly is the

linear span of the yn,p’s. Figure 1 is now replaced by the Figure 2, where we put together the

energetic levels of H̃(V ) and H̃†(V ). We recall (and this is clear from Figure 2), that all the

energy levels (except the one with p = 0) for H̃(V ) and H̃†(V ) coincides. We put in the figure

also the energetic levels for p = 0 which, however, are purely imaginary. For this reason we use

a bold line in the figure. The fact that we put this zero level between p = 1 and p = −1 does

not mean at all, of course, that the energy of the zero level is also between these two energy

levels. It is only because 0 (and not E0) is between −1 and +1.

If we now proceed as in Section II.1, we introduce the vectors

φ+(z1, z2) = e−(|z1|2+|z2|2)/2
∞∑

n1=0

∞∑
n2=0

zn1
1 zn2

2√
n1!n2!

xn1,n2 = Φ(z1)⊗ φ+(z2), (3.19)

and

φ−(z1, z2) = e−(|z1|2+|z2|2)/2
∞∑

n1=0

∞∑
n2=0

zn1
1 zn2

2√
n1!n2!

xn1,−n2−1 = Φ(z1)⊗ φ−(z2), (3.20)

together with

ψ+(z1, z2) = e−(|z1|2+|z2|2)/2
∞∑

n1=0

∞∑
n2=0

zn1
1 zn2

2√
n1!n2!

yn1,n2 = Φ(z1)⊗ ψ+(z2), (3.21)

and

ψ−(z1, z2) = e−(|z1|2+|z2|2)/2
∞∑

n1=0

∞∑
n2=0

zn1
1 zn2

2√
n1!n2!

yn1,−n2−1 = Φ(z1)⊗ ψ−(z2). (3.22)

Here we have introduced Φ(z1) = e−|z1|2/2
∑∞

n=0
zn1√
n!
e
(1)
n ∈ H(1) and the other vectors, whose

definition is easily derived from formulas (3.19)-(3.22) and (3.7), which belong to K. The
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p = 1

p = 2
BK(V )

p = −2

A

A

AK(V )

{xn,p}

H̃(V )

AK(V ) BK(V )

p = 0
BK(V )AK(V )

AK(V )

AK(V )

BK(V )

BK(V )

p = −1

(a)

p = 1

p = 2
A†

K(V )

p = −2

A

A

B†
K(V )

{yn,p}

H̃†(V )

B†
K(V ) A†

K(V )

p = 0 A†
K(V )B†

K(V )

B†
K(V )

B†
K(V )

A†
K(V )

A†
K(V )

p = −1

(b)

Figure 2: (a) Schematic representation of the action of the operators AK(V ),BK(V ) on the

vectors xn,p (b) Schematic representation of the action of the operators A†
K(V ),B†

K(V ) on the

vectors yn,p.

convergence of all these series can be checked, but we will postpone this particular aspect to

the most relevant case described in Section III.1. It is clear that, due to (3.10),

⟨φ+
A(z1, z2), ψ

−
A(z1, z2)⟩H̃ = ⟨φ−

A(z1, z2), ψ
+
A(z1, z2)⟩H̃ = 0,

while the other scalar products are, in general, non zero. In particular we have,

⟨φ±
A(z1, z2), ψ

±
A(z1, z2)⟩H̃ = 1,

which means that these states are bi-normalized. Similarly to (2.25) and (2.26) we can check

the following eigenvalue equations:

A(1)φ
±(z1, z2) = z1φ

±(z1, z2), A(1)ψ
±(z1, z2) = z1ψ

±(z1, z2), (3.23)

AK(V )φ+(z1, z2) = z2φ
+(z1, z2), BK(V )φ−(z1, z2) = z2φ

−(z1, z2), (3.24)
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and

A†
K(V )ψ−(z1, z2) = z2ψ

−(z1, z2), B†
K(V )ψ+(z1, z2) = z2ψ

+(z1, z2), (3.25)

which are in agreement with Figure 2 and with the fact that, say, AK(V ) is a lowering operator

for H̃+
x = H(1) ⊗ K+

x , while BK(V ) is a lowering operator for H̃−
x = H(1) ⊗ K−

x . Similar

conclusions hold for their adjoint. Here we have introduced the sets K+
x = ⊕∞

n=0Kx(n), and

K−
x = ⊕−1

n=−∞Kx(n), where Kx(n) = l.s.{xm,nm ≥ 0}
∥.∥
.

If we now call L = Lx ∩ Ly, it is easy to check that, ∀f, g ∈ L,

⟨f, g⟩H̃ =
1

π2

∫
C
d2z1

∫
C
d2z2⟨f, φ±(z1, z2)⟩H̃⟨ψ

±(z1, z2), g⟩H̃ =

=
1

π2

∫
C
d2z1

∫
C
d2z2⟨f, ψ±(z1, z2)⟩H̃⟨φ

±(z1, z2), g⟩H̃ (3.26)

In particular, if L is dense in H̃ then Fx and Fy are L-quasi bases, in the sense of [19].

Summarizing, these states work (sufficiently) well: they are eigenstates of our various ladder

operators and they resolve the identity under suitable conditions. However, in our opinion they

are not really the most convenient vectors to work with in the context of graphene with V ̸= 0.

In particular, it is obvious that H̃(V ) in (3.11) cannot be factorized in terms of the operators

AK, BK and their adjoint. For this reason, in the following section, we propose a different

definition of bicoherent states which consider this particular aspect of the system.

III.1 A different class of bicoherent states

The first thing to do is to shift the Hamiltonian H̃(V ) in such a way zero becomes one of the

eigenvalues of this shifted operator. This is important to ensure that the ladder operators we

will introduce later behaves as those we have considered all along this paper, which all have

some vector which is annihilated by one of them. This would be not so easy, if not impossible,

if we try to factorize H̃(V ) directly, as one can easily check. Going back to (3.11) and (3.12),

recalling that H̃(V ) = 11(1) ⊗H(V ) and using formula (3.7), we have{
H(V )φp = Ep φp,
H†(V )ψp = Ep ψp,

(3.27)

with p ∈ Z. We now introduce the following quantities:

θp = Ep − E0 =


2vF
ξ

(
√
p− V 2 − iV ) p ≥ 1,

0, p = 0,

−2vF
ξ

(
√
−p− V 2 + iV ), p ≤ −1.

(3.28)

19



and the shifted Hamiltonian h(V ) = H(V )− E011K, it follows that h†(V ) = H†(V ) + E011K and{
h(V )φp = θp φp,

h†(V )ψp = θp ψp,
(3.29)

with p ∈ Z. As we can see, there is a price to pay: all the eigenvalues of h(V ), except one, are

complex. However, this is not a major problem for us, since we are working with manifestly non

self-adjoint operators from the very beginning, so that reality of eigenvalues is not a constraint.

Let us introduce the following operators:

c2 =
∞∑

p=−∞

√
θp+1 |φp⟩⟨ψp+1|, d2 =

∞∑
p=−∞

√
θp+1 |φp+1⟩⟨ψp|. (3.30)

Here
√
θp is fixed to be the principal square root2 of the complex number θp. These operators,

and C2 = 11(1) ⊗ c2 and D2 = 11(1) ⊗ d2 as a consequence, are well defined on large sets. In fact,

in particular, D(C2), D(D2) ⊇ Lx. It is easy to check now that

h(V )φp = θpφp = d2 c2 φp, (3.31)

∀ p ∈ Z, which means that h(V ) can be factorized on φp in terms of the operators introduced

in (3.30). This is because, for all such p,

c2φp =
√
θpφp−1, d2φp =

√
θp+1φp+1. (3.32)

The action of c†2 and d
†
2 can be computed using the biorthogonality of Fφ = {φp} and Fψ = {ψp}

in K, and their completeness in this Hilbert space. We find that

c†2ψp =
√
θp+1ψp+1, d†2ψp =

√
θpψp−1. (3.33)

As always, given a general sequence of complex numbers {ρp, p ≥ 0} such that ρ0 = 0, we

define the following quantities: ρ0! = 1 and ρn! = ρ1ρ2 · · · ρn, n ≥ 1. Hence we can introduce

the following vectors:

η+(z) = N(z)
∞∑
n=0

zn√
θn!

φn, ξ+(z) = N(z)
∞∑
n=0

zn
√
θn!

ψn, (3.34)

as well as

η−(z) = N(z)
∞∑
n=0

zn√
θn!

φ−n−1, ξ−(z) = N(z)
∞∑
n=0

zn
√
θn!

ψ−n−1. (3.35)

2In other words, given z = ρ eiθ, we will always take
√
z =

√
ρ eiθ/2.
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Here N(z) ia a suitable normalization, still to be fixed, which as we will see can be taken equal

for all these states. What we need to do first is to check the convergence of all these series,

which is not granted, a priori. This will be done directly, mimicking the same general strategy

proposed in [19], Theorem 5.1.1. For instance, focusing on η+(z) and assuming that N(z) is a

well defined function (which will be deduced soon), we have

∥η+(z)∥K ≤ |N(z)|
∞∑
n=0

|z|n

|
√
θn!|

∥φn∥K.

First we observe that |
√
θn!| =

√
|θn|!. Then, to compute ∥φn∥K, we first remember that,

see (3.3) and (3.8), φ0 =

(
e
(2)
0

0

)
, while φn = φ+

n = K+
n (φ)

(
e
(2)
n

α+
n e

(2)
n−1

)
, when n ≥ 1. Then,

∥φ0∥K = 1, while, for n ≥ 1,

∥φn∥2K = |K+
n (φ)|2(1 + |α+

n |2) = 2|K+
n (φ)|2,

since from (3.4) one can check that |α+
n |2 = 1 for all n ≥ 1. To compute now |K+

n (φ)|2 we use

(3.9). Then we have |K±
p (φ)| |K±

p (ψ)| =
√

p
4(p−V 2)

, which is independent of the choice ±. If we

assume, for simplicity and just to fix the ideas, that |K±
p (φ)| = |K±

p (ψ)|, we deduce that

|K±
p (φ)| = |K±

p (ψ)| =
(

p

4(p− V 2)

)1/4

. (3.36)

Then we conclude that, for all n ≥ 1,

∥φn∥2K ≤ n

(n− V 2)
≤ 1

1− V 2
,

as it is easy to check. Now, since
√
1− V 2 ≤ 1, we end up with the following estimate,

∥φn∥2K ≤ 1

(1− V 2)
, (3.37)

for all n ≥ 0. This is a good estimate, since the bound on the right hand side does not depend

on n. Putting all together we deduce that

∥η+(z)∥K ≤ |N(z)|
(1− V 2)1/2

∞∑
n=0

|z|n

|
√
θn!|

,

which looks essentially like a power series in |z|. The radius of convergence of this series can

now be found: ρ = limn,∞
√

|θn+1| = ∞. This is because, using the expression for θp for p ≥ 1
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in (3.28), we find that |θp| = 2vF
ξ

√
p. Similar estimates can be repeated for the other vectors

in (3.34) and (3.35), as well as for the states introduced in (3.19)-(3.22), which therefore are

also well defined for all z1, z2 ∈ C. Then we conclude that, if N(z) is a well defined function,

η±(z) and ξ±(z) are all well defined vectors in K, for all z ∈ C. This implies that their tensor

products

η±(z1, z2) = Φ(z1)⊗ η±(z2), ξ±(z1, z2) = Φ(z1)⊗ ξ±(z2), (3.38)

which are clearly the counterparts of (3.19)-(3.22), are well defined elements of H̃ for all z1, z2 ∈
C. In particular we have that η±(z1, z2) ∈ H̃±

x , while ξ
±(z1, z2) ∈ H̃±

y .

In order to fix the function N(z) we next require that ⟨η±(z1, z2), ξ±(z1, z2)⟩H̃ = 1. Since

⟨Φ(z1),Φ(z1)⟩(1) = 1, this implies that

|N(z2)|2
∞∑
n=0

|z2|2n

|θn|!
= 1 ⇒ N(z2) =

(
∞∑
n=0

|z2|2n

|θn|!

)−1/2

, (3.39)

with a proper choice of the phase for N(z2). The series converge for all z2 ∈ C. This is because
its radius of convergence is infinite. This can be checked as we did above. Of course, formula

(3.39) implies that N(z2) only depends on |z2|. For this reason, we write N(|z2|) from now on.

Needless to say
∑∞

n=0
|z2|2n
|θn|! ̸= 0 for all z2 ∈ C, since the series is always strictly larger than 1.

As we have already noticed for the states in (3.19)-(3.22), the plus states are orthogonal to

the minus ones. In other words, we have that ⟨η±(z1, z2), ξ∓(z1, z2)⟩H̃ = 0.

Going on with our analysis on the states in (3.38) we observe that the following ladder

equations hold:{
C2 η

+ (z1, z2) = z2 η
+ (z1, z2), C†

2 ξ
− (z1, z2) = z2 ξ

− (z1, z2),

D2 η
− (z1, z2) = z2 η

− (z1, z2), D†
2 ξ

+ (z1, z2) = z2 ξ
+ (z1, z2),

(3.40)

which are in agreement with our decomposition of H̃, and with our interpretation of the various

ladder operators. We have further that

A(1)η
± (z1, z2) = z1 η

± (z1, z2), A(1)ξ
± (z1, z2) = z1 ξ

± (z1, z2). (3.41)

which are the counterpart, here, of the analogous equations in (3.23).

To conclude our analysis of the states in (3.38) we write zj = rj e
iθj , j = 1, 2, and we

introduce the (standard) measure dν(z1, z1) =
1
π
r1 dr1 dθ1 and a second measure dν(z2, z2) =

dλ2(r2) dθ2, where rj > 0 and θj ∈ [0, 2π[, j = 1, 2, and dλ2(r2) is assumed to satisfy the

following moment problem ∫ ∞

0

dλ2(r2)r
2n
2 N

2(r2) =
|θn|!
2π

, (3.42)
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∀n ≥ 0. We should stress that this is really an assumption here, since we have no explicit

form for dλ2(r2) so far. Constructing a similar measure is work in progress. However, if such a

measure exists, then we can write∫
C
dν(z1, z1)

∫
C
dν(z2, z2)⟨f̃ , η+(z1, z2)⟩H̃⟨ξ

+(z1, z2), g̃⟩H̃ =
∞∑
n=0

∞∑
p=0

⟨f̃ , xn,p⟩H̃⟨yn,p, g̃⟩H̃ (3.43)

and∫
C
dν(z1, z1)

∫
C
dν(z2, z2)⟨f̃ , ξ+(z1, z2)⟩H̃⟨η

+(z1, z2), g̃⟩H̃ =
∞∑
n=0

∞∑
p=0

⟨f̃ , yn,p⟩H̃⟨xn,p, g̃⟩H̃. (3.44)

Of course the right hand sides of these formulas both return ⟨f̃ , g̃⟩H̃ if Fx and Fy are D̃-

quasi bases, for some D̃ ⊆ H̃, and f̃ , g̃ ∈ D̃. Similar formulas can be found for the pair

(η−(z1, z2), ξ
−(z1, z2)).

IV Chemical potential: V > 1

In what follows we extend our analysis to the case V > 1, by considering first the case in which

the second index in xn,p and yn,p is such that |p| ̸= V 2 for all p ∈ Z. We will comment on the

case when |p| = V 2 for some p at the end of the section.

The main difference now relies in the fact that the eigenvalues of H̃(V ) and H̃†(V ) defined in

(3.12) are complex when |p| < V 2 extending, as shown in [10], the width of the region where the

PT symmetry is broken. This has an important consequence on the biorthonormality conditions

for the eigenvectors of our Hamiltonians, when compared to the case V < 1. In particular, for

any q ≥ 0, we have the following biorthonormal conditions that depends whether we are in the

PT -broken or unbroken region.

For 1 ≤ p < V 2 (broken region), we obtain:

⟨φ±
p , ψ

±
p ⟩ = 0, ⟨φ±

p , ψ
∓
q ⟩ = δp,q, (4.1)

while, for p > V 2 (unbroken region)

⟨φ±
p , ψ

∓
q ⟩ = 0 ⟨φ±

p , ψ
±
q ⟩ = δp,q. (4.2)

with normalization factors given by

K±
p (φ)K

±
p (ψ) =

p

2
(
p− V 2 ± iV

√
p− V 2

) . (4.3)
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This implies that extending the construction of the ladder operators proposed for the case

V < 1, requires a careful balance between the + and − vectors, depending on whether we are

in the broken or unbroken phase. Considering this, it might be more advantageous to rearrange

the sets in a suitable manner. One such a possibility is the following:

ψ̃±
p =

ψ∓
p for p < V 2,

ψ±
p for p > V 2.

(4.4)

and, consequently,

xn,p = e(1)n ⊗ φp, ỹn,p = e(1)n ⊗ ψ̃p, (4.5)

where φp and ψ̃p are specified as in (3.8), just replacing ψ±
p with ψ̃±

p . Now the two sets

Fx = {xn,p} and Fỹ = {ỹn,q} are biorthonormal in H̃, as they satisfy

⟨xn,p, ỹm,q⟩H̃ = ⟨e(1)n , e(1)m ⟩1⟨φp, ψ̃q⟩K = δn,mδp,q. (4.6)

We now discuss which are the differences with what we have found before, focusing only on

the more interesting case, i.e. on the bicoherent states introduced in Section III.1.

The bicoherent states extend those defined in (3.34)-(3.35) and in (3.38):

ξ+(z1, z2) = Φ(z1)⊗

(
N+(z2)

∞∑
n=0

zn2√
θn!

ψ̃n

)
, ξ−(z1, z2) = Φ(z1)⊗

(
N−(z2)

∞∑
n=0

zn2√
θn!

ψ̃−n−1

)
,

(4.7)

where N±(z2) are as usual chosen to satisfy ⟨η±(z1, z2), ξ±(z1, z2)⟩H̃ = 1. As in the case V < 1

one need to check first the convergence of the series
∑∞

n=0
zn2√
θn!
ψ̃n and

∑∞
n=0

zn2√
θn!
ψ̃−n−1. We

will show that these series indeed converge in all the complex plane. For that, we now rewrite

the first series as follows (a similar strategy can be adopted for the second series):

N+(z2)

 [V 2]∑
n=0

zn2√
θn!

ψ̃n

+

 ∞∑
n=[V 2]+1

zn2√
θn!

ψ̃n

 (4.8)

where [V 2] denotes the integer part of V 2. In this decomposition, we see that the finite sum

comes from the broken phase, while the infinite series comes from the unbroken phase. Conver-

gence of the first (finite) sum is obvious. The convergence of the infinite series can be deduced

slightly modifying what we have done for V < 1. In fact, for all n ≥ [V 2] + 1, we can check

that

∥ψ̃n∥2K ≤ n

n− V 2
≤ [V 2] + 1

[V 2] + 1− V 2
,
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which, as before, allows to prove the convergence of the series for any z2 ∈ C.
We conclude this section discussing what happens in the case n = V 2 for some n. As

shown in [10] the completeness properties of the sets Fx = {xn,p},Fy = {ỹn,p} fails. This is a

consequence of the fact that, for n = V 2, we have α+
n = α−

n = −1 which implies, in turns, that

φ+
n = φ−

n and ψ̃+
n = ψ̃−

n , which also have coincident eigenvalue 0. Hence n = V 2 defines an

exceptional point. Moveover

⟨φn, ψ̃n⟩K = 0, (4.9)

so that the ladder operators C2 and D2, and their adjoints, can no longer be constructed as

we have done before, see (3.30) and what follows. Of course, we have the same difficulties for

the operators in (3.15) and (3.17). This implies that our definitions of bicoherent states do

not work anymore. This is the typical critical situation that appears in presence of exceptional

points, so that it is not a big surprise we meet these problems also here.

IV.1 Gain and loss phenomena for large V

In this section we show some plots which highlights a critical behaviour when the region of PT
broken symmetry increases. Indeed, when V is very large, virtually V → ∞, the region where

the PT -symmetry is broken enlarges, and we observe a critical behaviours for the coefficients

α±
n , that is

|α+
n | → 0, |α−

n | → +∞, (4.10)

and more in general, when V 2 ≫ p we have the approximations

φ+
n,p, ψ

−
n,p ∝

(
en,p

0

)
, φ−

n,p, ψ
+
n,p ∝

(
0

en,p−1

)
. (4.11)

Hence the presence of a large PT -broken region is characterized by the concentration of prob-

ability densities predominantly in either the first or second component, depending on the spe-

cific sets under consideration. As extensively documented in the scientific literature, [11], this

phenomenon is attributed to the typical gain and loss dynamics inherent to the PT -broken

symmetry. In the context of the two-dimensional vector representing the graphene layer state,

this can be explained by a mechanisms that produces a gain (amplification) of the electron den-

sity in one sublattice of the layer, and the loss (attenuation) in the other sublattice. Such an

instability is intrinsically linked to the transition towards non-real eigenvalues. Conversely, in

the PT -unbroken region, the system exhibits a balanced behaviour characterized by a constant
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flow of electron and an equilibrium between the two sublattices. This balanced state is linked

to the reality of the eigenvalues.

To highlight this critical behavior, we show several plots that support this explanation for

the case V = 9.5. In Figure 3, we illustrate the probability densities for the standard coherent

state |Φ+
A(z1, z2)|2 at V = 0 with z1 = 0 and z2 = 1− i. We also depict the probability densities

|Φ+
A(z1, z2){1}|2 and |Φ+

A(z1, z2){2}|2 for its first and second components3, respectively. Figures

4 and 5 contain analogous plots for the bicoherent states φ+(z1, z2) and ψ
−(z1, z2). It is more

appropriate to compare the coherent states φ+(z1, z2) and ψ−(z1, z2) because of the order of

the vectors ψ̃±
n : in fact, the coherent state ψ−(z1, z2), due to the terms

√
n! in the denominator,

has a higher contribution coming from the vectors ψ̃−
n = ψ+

n when n < V 2, so that the ”+”

vectors contribute predominantly in the construction of both the coherent states φ+(z1, z2) and

ψ−(z1, z2) when V is quite large. They exhibit a gain in the first/second component compared to

the second/first, respectively, and overall, a shifted concentration peak compared to the V = 0

scenario. Similar patterns, though not depicted here, are observed for the other coherent states

φ−(z1, z2) and ψ
+(z1, z2). Comparable results are seen for the second class of coherent states

η+(z1, z2) and ξ−(z1, z2), as shown in Figures 6-7. Here, the first component of η+(z1, z2)

experiences a gain compared to its second component, and similarly, the second component of

ξ−(z1, z2) shows a gain compared to its first. This illustrates how the extensive broken phase

tends to accentuate this gain and loss effect. We notice that this behavior is highlighted only for

a sufficiently large value of V , whereas for a low value of V this phenomenon is not particularly

evident.

V Conclusions

In this paper we have considered a self-adjoint Hamiltonian for graphene, and its non self-

adjoint version where a chemical potential is also included. In the first case we have shown how

the lack of a ground state of the Hamiltonian suggests the introduction of ladder operators of a

special kind, and we have proposed a related class of coherent states. These are better defined

on two separated subspaces of the Hilbert space of the full system.

A similar functional structure is recovered also in presence of a chemical potential, but

with a serious difference: complex eigenvalues appear, which are connected with the fact that

the Hamiltonian is no longer self-adjoint, and coherent states must be replaced by bicoherent

states. In particular, after proposing a first almost standard class of these vectors, we introduce

3Given a vector v = (v1, v2) we simply put v{1} = v1, v{2} = v2.
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(a) |Φ+
A(z1, z2)|2 (b) |Φ+

A(z1, z2){1}|2 (c) |Φ+
A(z1, z2){2}|2

Figure 3: Probability density for |Φ+
A(z1, z2)|2 (a) for its first component |Φ+

A(z1, z2){1}|2 (b)

and its second component |Φ+
A(z1, z2){2}|2 (c) . Parameters are V = 0 and z1 = 0, z2 = 1− i.

(a) |φ+(z1, z2)|2 (b) |φ+(z1, z2){1}|2 (c) |φ+(z1, z2){2}|2

Figure 4: Probability density for |φ+(z1, z2)|2 (a) for its first component |φ+(z1, z2){1}|2 (b)

and its second component |φ+(z1, z2){2}|2 (c) . Parameters are V = 9.5 and z1 = 0, z2 = 1− i.
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(a) |ψ−(z1, z2)|2 (b) |ψ−(z1, z2){1}|2 (c) |ψ−(z1, z2){2}|2

Figure 5: Probability density for |ψ−(z1, z2)|2 (a) for its first component |ψ−(z1, z2){1}|2 (b)

and its second component |ψ−(z1, z2){2}|2 (c) . Parameters are V = 9.5 and z1 = 0, z2 = 1− i.

(a) |η+(z1, z2)|2 (b) |η+(z1, z2){1}|2 (c) |η+(z1, z2){2}|2

Figure 6: Probability density for |η+(z1, z2)|2 (a) for its first component |η+(z1, z2){1}|2 (b) and
its second component |η+(z1, z2){2}|2 (c) . Parameters are V = 9.5 and z1 = 0, z2 = 1− i.
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(a) |ξ−(z1, z2)|2 (b) |ξ−(z1, z2){1}|2 (c) |ξ−(z1, z2){2}|2

Figure 7: Probability density for |ξ−(z1, z2)|2 (a) for its first component |ξ−(z1, z2){1}|2 (b) and
its second component |ξ−(z1, z2){2}|2 (c) . Parameters are V = 9.5 and z1 = 0, z2 = 1− i.

a different class, which is more closely related to the Hamiltonian of the system, since these

other bicoherent states are eigenvectors of some special lowering operators which can be used to

factorize the Hamiltonian of the system, in presence of the chemical potential. In this context

we have examined the role of V and its impact as its magnitude increases, demonstrating

that a higher strength leads to a larger broken PT phase characterized by the emergence

of gain and loss phenomena. Specifically, when V increases significantly, the non-Hermitian

elements (associated with gain and loss) within the Hamiltonian begin to predominate over the

kinetic components. Consequently, the system’s behavior is primarily influenced by processes of

amplification and attenuation, rather than by the conventional dynamics driven by the kinetic

energy in presence of a magnetic field. The role of squeezed states in the context discussed here

has still to be understood. This is part of our future plans.
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