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Abstract

Objectives: Extracellular histone levels are associated with
the severity of many human pathologies, including sepsis
and COVID-19. This study aimed to investigate the role of
extracellular histones on monocyte distribution width
(MDW), and their effect on the release of cytokines by blood
cells.
Methods: Peripheral venous blood was collected from
healthy subjects and treatedwith different doses of a histone
mixture (range 0–200 μg/mL) to analyze MDWmodifications
up-to 3 h and digital microscopy of blood smears. Plasma
obtained after 3 h of histone treatment were assayed to
evaluate a panel of 24 inflammatory cytokines.
Results: MDW values significantly increased in a time- and
dose-dependent manner. These findings are associated with
the histone-induced modifications of cell volume, cyto-
plasmic granularity, vacuolization, and nuclear structure of
monocytes, promoting their heterogeneity without affecting
their count. After 3 h of treatment almost all cytokines
significantly increased in a dose-dependent manner. The

most relevant response was shown by the significantly
increased G-CSF levels, and by the increase of IL-1β, IL-6,
MIP-1β, and IL-8 at the histone doses of 50, 100, and
200 µg/mL. VEGF, IP-10, GM-CSF, TNF-α, Eotaxin, and IL-2
were also up-regulated, and a lower but significant increase
was observed for IL-15, IL-5, IL-17, bFGF, IL-10, IFN-γ, MCP-1,
and IL-9.
Conclusions: Circulating histones critically induce func-
tional alterations of monocytes mirrored by MDW, mono-
cyte anisocytosis, and hyperinflammation/cytokine storm in
sepsis and COVID-19. MDW and circulating histones may be
useful tools to predict higher risks of worst outcomes.

Keywords: COVID-19; cytokine; histones; monocyte; mono-
cyte distribution width; sepsis.

Introduction

Histones are highly conserved, intranuclear, positively
charged proteins, which main functions are associated with
the maintaining of chromatin stability and the epigenetic
regulation of several cellular processes. Increasing evidence
shed light on the presence of further extracellular and
extranuclear functions for circulating histones. In particular,
extranuclear histones can be found in the cytosol and at the
cell surface, where they exert anti-microbial effects and pro-
mote cell-mediated apoptosis [1]. Moreover, at the extracel-
lular level, histones can be released freely or as a DNA-bound
nucleosome passively from dying cells (particularly during
necrosis), and also embedded in extracellular traps (ET)
during the ETosis process. In this respect, circulating white
blood cells extrude ETs in response to a hostile microenvi-
ronment, such as during bacterial and viral infections or in
sterile conditions due to the activation of immune cells [2].
Extracellular histones induce cellular damages through (I) a
direct cytotoxic effect on endothelial cells; (II) the promotion
of platelet activation, aggregation, and thrombin generation,
resulting in the development of pro-coagulant platelet,
endothelial, and monocyte phenotypes; (III) the activation of
white blood cellswhich release cytokines and ROS(2). It iswell
established that extracellular histones act as damage-
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associated molecular pattern proteins (DAMPs) and pro-
mote pro-inflammatory effects by activating TLR2- and
TLR4-mediated signalling [3].

Levels of circulating histones in physiological conditions
range from 0.79 to 2.30 μg/mL, but they increase in animals
or patients with cancer, inflammation, and infections, sug-
gesting an extracellular role of histones in human diseases
[4–6]. In this respect, a growing number of recent studies
underlined the involvement of circulating histones in clas-
sical bacterial and viral sepsis, emphasizing their potential
roles both as triggers and therapeutic targets of diseases. Due
to their ability to stimulate inflammatory responses, induce
endothelium injuries, and activate coagulation in clinical
settings such as bacterial sepsis and COVID-19-associated viral
sepsis, histones have raised great attention in the scientific
community. In fact, it has been demonstrated that histone
levels increase with the worsening of the disease, and thus
may be useful to stratify patients at higher risk of mortality
[7, 8].

Noteworthy, sepsis infections share common labora-
tory biomarkers, as well [9, 10]. Currently, great attention is
paid to the use of monocyte distribution width (MDW), a
measure of monocyte heterogeneity, automatically calcu-
lated from the dispersion around themean of the monocyte
population volume in whole blood by last-generation
hematology analyzers. MDW is an innovative parameter
mathematically based on the measure of specific cell vol-
ume index and standard deviation of volume distribution
within themonocyte population. MDWmeasures positional
parameters with VCS technology (i.e., volume, conductivity,
and scatter), using three independent energy sources
simultaneously: direct current impedance to measure cell
volume of all cell types; radio frequency opacity, to char-
acterize conductivity for the internal composition of each
cell; a laser beam to measure light scatter for cytoplasmic
granularity and nuclear structure [11].

MDWhas been recently FDA-approved andEC-marked as
early sepsis indicator, due to its very early availability during
the clinical evaluation when sepsis diagnosis could not be
suspected [12] (additional references in Supplementary
Material), and recent studies underline its possible prognostic
role to stratify COVID-19 patients according to the severity and
clinical outcomes [11, 13–19].

Monocytes are pivotal players in the innate immune
responses against invading pathogens and their activation
is characterized by morphological changes (clinically
mirrored by MDW alterations) and the release in biolog-
ical fluids of inflammatory mediators. When the immune
system overreacts to an infection or injury, as during
critical conditions of sepsis and COVID-19, it activates a

hyperinflammatory reaction, named “cytokine storm”. The
dysregulated immune response is sustained by a massive
release of proinflammatory cytokines, chemokines, and
signaling molecules that furtherly attract immune cells,
which secrete more cytokines, recruiting even more acti-
vated immune cells, thus fueling a dangerous vicious cycle.
Despite recruited to block the initial infective stimulus,
immune cells and mediators end up attacking the tissues
and organs, leading to multiorgan failure and death.

We recently demonstrated that histones trigger MDW
changes, mirroring those observed in COVID-19 and sepsis
[20], thus emerging as critical contributors of monocyte
activation during these conditions. A limited number of
data is available instead on the ability of histones to pro-
mote hyperinflammatory responses associated with
monocyte anisocytosis. The purpose of this study was to
investigate the ability of histones to alter MDW index and
promote hyperinflammatory responses in peripheral
blood cells.

Materials and methods

Sample collection and blood analyses

Healthy subjects (n=8, age range 31–63) were recruited as volunteers
among staff at the Department BiND of the University of Palermo and
Department DISB of the University of Urbino. Peripheral venous blood
was collected in EDTA-K3 tubes and processedwithin 4 h from collection.
Routine complete blood cell count and MDW were analyzed on an
UniCell DxH900 Hematology Analyzer (Beckman Coulter), according to
the routine methods and the manufacturer’s instructions. Automated
slide preparation (unit SP-100, DI-60 system workflow, Sysmex) was
used to obtain May-Grunwald-Giemsa-stained blood smears. This
observational non-interventional in vitro study was approved by the
local Ethical Committee and all investigations have been conducted
according to the Declaration of Helsinki principles.

Peripheral blood samples and in vitro treatments

Aliquots of 1 mL of EDTA-K3 whole-blood from each volunteer were
treated with a mixture of commercially available histones, including
H1, H2A, H2B, H3, and H4 (histone from calf thymus, Sigma, cod.
10223565001) to evaluate the impact of histones at different times and
concentrations (0, 50, 100, and 200 μg/mL) on theMDWcharacteristics
and on the release of cytokines from blood cells. Whole blood samples
weremaintained for 30 min at 37 °C for inducing a “priming” effect on
circulating blood cells and then maintained at RT to follow and
analyze the MDWmodifications at 0, 30, 60, and 180 min after careful
inversion avoiding blood cell sedimentation. After 3 h all blood
samples were centrifuged (2,000×g, 15 min) to obtain plasma for
further analyses.
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Cytokine release

All plasma samples obtained after 3 h of histone treatments were
assayed to evaluate a panel of 24 inflammatory biomarkers through the
Pro™ Human Cytokine 27-plex assay (including: IL-1β, IL-1ra, IL-2, IL-4,
IL-5, IL-6, IL-7, IL-8/CXCL8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17,
Eotaxin/CCL11, bFGF, G-CSF, GM-CSF, IFN-γ, IP-10/CXCL10, MCP-1/CCL2,
MIP-1β/CCL4, TNF-α, VEGF), a multiplex suspension immunomagnetic
assays, based on the use offluorescently dyedmagnetic beads covalently
conjugated with monoclonal antibodies specific for the target proteins,
according to the manufacturer’s instructions (BioPlex, Bio-Rad Labs,
Hercules, CA, USA).

Levels of all analytes were determined using a Bio-Plex 200 array
reader, based on Luminex X-Map Technology (Bio-Rad Labs, Hercules,
CA, USA) that detects and quantifies multiple targets in a 96-well plate
with a single small fluid volume. Data were collected and analyzed
using a Bio-Plex 200 instrument equipped with Bio-Plex Manager
analysis software (Bio-Plex Manager Software v. 6.1). The protein
concentrations (expressed as pg/mL) were calculated through a stan-
dard curve. According to the manufacturer’s data, the lower detection
limit was 0.6 pg/mL, while the mean inter-assay variability was 7.6%.

Statistical analysis

All statistical tests were performed using GraphPad Prism 9.0. Values
are expressed as mean ± standard error mean (SEM), unless otherwise
specified, and p values <0.05 were considered significant. Differences
among groups were determined using one-way or two-way ANOVA
followed by a posthoc test (i.e., Tukey’s multiple comparison test).
Regression analyses were performed through simple linear regression.
Correlations among various biomarkers were tested for significance
using the Pearson correlation test.

Results

The treatment of whole blood with increasing doses of his-
tones revealed significantly different profiles of monocyte
heterogeneity, ranging from round-shaped and reniform
nucleus of normal untreated monocytes (Figure 1A) to a pro-
gressively enhanced volume, intracellular vacuolization and

granularity, membrane alterations and nuclear structure
changes, as observed through blood smears (Figure 1B–D).

The treatment of whole bloodwith histones results in an
MDW increase in a time and dose-dependent fashion. In
particular, we observed that MDW values in controls ranged
from a minimum of 14.31 and a maximum of 20.70 up-to 3 h,
and there were not significant differences among all times
considered. The treatment with 50 µg/mL of histones
induced a significant time-dependent increase ofMDWat 30,
60, and 180 min (mean ± SD) vs. respective controls
(20.3 ± 1.2, p<0.0027; 21.3 ± 1.4, p<0.0001; 22.3 ± 1.6, p<0.0001,
respectively) (Figure 2A and Supplemental Table 1). This
result is also confirmed by the significant regression analysis
(Y=0.02039 × X + 19.06; R2 = 0.4545; p<0.0001).

The intermediate dose of 100 µg/mL of histones pro-
moted a significant MDW increase of 21.1 ± 1.7 (p<0.0001)
after 30 min, 22.1 ± 1.4 (p<0.0001) after 60 min, and 23.7 ± 2.4
(p<0.0001) at 180 min, as also confirmed by the significant
regression line (Y=0.02745 × X + 19.25; R2=0.5035, p<0.0001)
(Figure 2A and Supplemental Table 1).

The highest dose of 200 µg/mL of histones promoted an
MDW increase of 21.9 ± 1.4 (p<0.0001) after 30 min, 22.8 ± 1.4
(p<0.0001) after 60 min, and 24.2 ± 2.6 (p<0.0001) at 180 min,
as also confirmed by the significant regression line
(Y=0.02983 × X + 19.62; R2=0.479, p<0.0001) (Figure 2A and
Supplemental Table 1).

Interestingly, focusing attention on the effects of
increasing doses of histones at each time, we observed that
besides the time-dependent increase of MDW for each
dose, there was also a significant dose-dependent increase
of MDW at each time, as demonstrated by the regression
lines reported in Table 1.

These histone-induced MDW modifications were not
sustained by a change in the monocyte population count,
neither in its total count (Figure 1B), nor in the percentage
values (Figure 1C), whose minimal variations were
distributed within the physiological ranges (2–12 × 1,000/
µL and 0.2–1.2% respectively).

Figure 1: Light microscopy images of peripheral bloodmonocytes representative of untreated controls (A), HIS 50 μg/mL (B), HIS 100 μg/mL (C), and HIS
200 μg/mL (D) histone-treated whole blood. (May-Grunwald-Giemsa, × 100).
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After 3 h of treatment with 50, 100 and 200 µg/mL of
histones we observed a dose-dependent increase of all cy-
tokines (except for IL-13), as shown in Figure 3 and detailed
in Supplemental Table 2.

In particular, we highlighted that G-CSF showed the
strongest response to histone treatment; in fact, the levels of
G-CSF were significantly increased by 9-fold (p<0.05) after

Figure 2: Time- and dose-dependent MDW and monocyte count variations in histone-treated whole blood samples. (A) Time- and dose-dependent
MDW index modifications in whole blood samples collected from healthy subjects treated in vitro with 0, 50, 100, and 200 μg/mL of histone mixture.
Values are expressed as mean ± SEM. (Two-way ANOVA: ** = p: 0.001–0.01; **** = p<0.0001; the comparisons were calculated among treatments
and respective controls at each time). (B) Time- and dose-dependent monocyte count (×1.000/µL) and (C) monocyte percentage modifications in
whole blood samples collected from healthy subjects treated in vitrowith 0, 50, 100, and 200 μg/mL of histone mixture. (Two-way ANOVA). The dotted
line indicates the cut-off levels.

Table : Simple linear regressions exploring dose-dependent MDW
changes (time: dependent variable).

Equation R p-Value

 min Y=. × X + . . <.
 min Y=. × X + . . .
 min Y=. × X + . . .
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Figure 3: Cytokine values (mean ± SEM) after 3 h of treatment in vitro with 0, 50, 100, and 200 μg/mL of histone mixture (one-way ANOVA: *= p: <0.05;
**= p: 0.001–0.01; *** =p: 0.001–0.0001; ****= p: <0.0001; comparisons were calculated among treatments and respective controls and among each
treatment). Values are expressed as pg/mL.
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Figure 3: Continued.
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treatment with 50 µg/mL of histones, and this trend was
almost doubled (about 15-fold, p<0.05) with the doubling of
the treatment. By using the highest dose of histones, we
detected a 27-fold of increase vs. CTR (p<0.05). This dose-
dependent behaviour is furthermore confirmed by the sig-
nificant linear regression (Supplemental Table 3).

IL-1β, IL-6, MIP-1β/CCL4, and IL-8/CXCL8 showed a
considerable increase of about 3-fold, 6-fold, and 8-fold at
50, 100 and 200 µg/mL, respectively. A significant increase
was observed for VEGF, IP-10/CXCL10, GM-CSF, TNF-α,
EOTAXIN/CCL11, IL-1Ra, IL-2, and IL-4, after histone
treatment with all doses (excepted for IL-1Ra and IL-4 at
50 μg/mL), showing an up-regulation of 1.7-fold, 2.1-fold,
2.4-fold, at 50, 100 and 200 µg/2mL, respectively. A lower
but significant increase, ranging from 1.4-fold to 1.6-fold,
was observed for IL-15, IL-5, IL-17, bFGF, IL-10, IFN-γ,
MCP-1/CCL2, and IL-9. These results are furtherly proven
by linear regression analyses, showing significant trends
(Figure 3 and Supplemental Table 3).

We furtherly correlated values of each inflammatory
cytokine, chemokine, and growth factormeasured in plasma

samples obtained after 3 h of treatments by Pearson corre-
lation analysis. A plot of all parameters is shown in Figure 4.
We found that IL-4, IL-5, IL-6, bFGF, G-CSF, IFN-γ, MIP-1β/
CCL4, VEGF, IL-1β, IL-1ra, IL-2, IL-8/CXCL8, and GM-CSF were
the biomarkers showing the higher number of significantly
positive correlationswith other cytokines at the histone dose
of 100 μg/mL (Table 2), confirming the presence of an intri-
cate picture of interconnections among proinflammatory
and anti-inflammatory cytokines, chemokine and growth
factor response induced by histones (further details on the
correlations among cytokines in controls, and histone-
treated samples are provided in Supplemental Table 4).

Discussion

We demonstrated that extracellular histones can early and
increasingly promote morphological changes in the circu-
lating monocyte population similar to those found in vivo in
classic [21, 22] and viral sepsis [23–25] patients. These alter-
ations are accurately quantified and mirrored by MDW

Figure 4: Correlation plot of all parameters determined in this study in controls (A), HIS 50 μg/mL (B), 100 μg/mL (C), and HIS 200 μg/mL (D) of histone-
treated samples at 3 h. The plot is based on the Pearson correlation between each pair of biomolecules. On the right, the Pearson correlation coefficient is
indicated by the colour gradient.
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index changes, whose values are equally increased in
COVID-19 (recently overviewed in [26]) and sepsis patients
[12, 27].

In particular, we observed a significant time- and dose-
dependent enhancement of MDW, that was already signifi-
cantly increased by the lowest histone dose of 50 μg/mL at
the shortest time-point of 30 min. These results suggest that
histones exert a potent and early effect on circulating
monocyte population, affecting mainly their morphology,
including cell volume, cytoplasmic granularity and vacuoli-
zation, and nuclear structure, features mirrored by the
MDW parameter changes [20], without affecting monocyte
count.

According to literature data [28], MDW values in healthy
subjects could reach 23.5 when blood was obtained in EDTA
tubes. In this respect, our experiments carried out in K3-EDTA
tubes showed that healthy controls had MDW values ranging
from 14.3 to 20.7 during time, highlighting the stability of
MDW measurements on this model over time.

Up to date, there are no single laboratory tests or spe-
cific stand-alone biomarkers with sufficient sensitivity and
specificity to timely and accurately diagnose sepsis. In this
respect, the measurement of MDW and histone plasma
levels may provide useful biomarkers, with possible diag-
nostic and prognostic value to rule out infection and
monocyte activation as critical players in classic and viral
sepsis-related inflammation.

Our findings are consistent with the well-known ability
of histones to modify cellular and biomolecular pathways of
monocytes through direct translocation across cell plasma
membrane, endocytosis-independent mechanisms, destabi-
lization of plasma membrane, generation of extracellular
vesicles and activation of TLR2/4/9, thus promoting inflam-
matory reactions and coagulative cascade [2, 29].

Acting as DAMPs, histones activate monocytes promot-
ing not only morphological but also functional changes.
In this scenario, we demonstrated that histones promoted
a significant release of a wide panel of cytokines from
peripheral blood cells. Of note, the cytokine-mediated inflam-
matory responses resulting from a whole-blood assay model,
despite including all circulating blood cell types (WBC, RBC,
PLT), has been reported to be representative of the monocyte
population, providing better results compared to peripheral
blood mononuclear cell and monocyte cultures [30].

In this respect, we observed that histones triggered a
significant dose-dependent release of almost all cytokines.
Interestingly, G-CSF showed the strongest response to
histone treatments. This finding is crucial since G-CSF has
been reported to be essential for the onset and amplifica-
tion of the cytokine storm [31]. CSFs are growth factors
implicated in the stimulation of myeloid cell differentiation

and proliferation, that once activated synthesize and release
further cytokines, thus inducing the cytokine storm [31].

Furthermore, our results highlighted that IL-1β, IL-6,
MIP-1β/CCL4, and IL-8/CXCL8 exhibited a relevant dose-
dependent increase after histone treatment and it is well-
known that these parameters are increased in COVID-19
[32–34], and sepsis [35], suggesting them as crucial soluble
mediators during disease progression. A significant increase
of VEGF, IP-10/CXCL10, GM-CSF, TNF-α, EOTAXIN/CCL11,
IL-1Ra, IL-2, and IL-4, and a lower but significant increase of
IL-15, IL-5, IL-17, bFGF, IL-10, INF-γ, MCP-1/CCL2, and IL-9 was
observed after histone treatment with almost all doses.

In sepsis conditions, nonsurvivors patients have been
demonstrated to present increased levels of IL-2 (7.6-fold),
IL-10 (3.1-fold), and MCP-1, IL-15, and GM-CSF (>2-fold)
compared to survivors [35]. Moreover, levels of histones in
non survivors have been found 28-fold higher compared to
survivors’ sepsis patients (p=0.025) [35].

During sepsis, levels of IL-1β and IL-6 have been reported
higher in nonsurvivor vs. survivor patients, suggesting their
potential involvement in predicting disease outcome [36–39].
IL-12 has also been reported elevated in sepsis [31].

In COVID-19 viral sepsis, IL-6, IL-2, IL-7, IL-10, G-CSF,
IP-10, TNF-α, MCP-1, and MIP-1α have been reported upre-
gulated and suggested to play a crucial role in the patho-
genesis of the disease [40]. Similarly, Liu et al. by evaluating a
panel of 48 cytokines in the plasma of COVID-19 patients
concluded that 38 out of 48 cytokines were remarkably
elevated in patients with COVID-19 and there was a strong
linear association between severe lung injury and the level
of 15 cytokines including: IFN-γ, IFN-α2, IL-1ra, IL-2, IL-4, IL-7,
IL-10, IL-12, and IL-17, as well as IP-10, macrophage colony-
stimulating factor (M-CSF) and G-CSF [41].

Data from a limited number of COVID-19 patients have
shown a cytokine storm in critically ill patients. Here, levels
of IL-2, IL-6, IL-10, and IFN- γwere found increased in severe
cases of COVID-19 than in mild cases, and a strong inflam-
matory response during its clinical course was reported to
be associatedwith highmorbidity andmortality [42]. In this
respect, recent findings indicated that G-CSF levels are also
increased in plasma samples from COVID-19 and sepsis
patients [40, 43], furtherly corroborating the notion on its
fundamental involvement in cytokine storms associated
with these conditions.

Interestingly, histones have been demonstrated able
to modulate several cytokines including TNF-α, IL-6, IL-10,
IL-1β, IL-8, CXCL9, IP-10, MIP-1α, MIP3A, and MCP3 in
different experimental models [2, 35, 44–49].

However, no literature data reported such a wide panel
of mediators as targets of histone treatment in whole blood
model. Most of these mediators are deeply involved in the
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regulation of immune cell proliferation, differentiation, and
production of new cytokines, leading to a vicious cyclewhich
in turn causes cell and organ damage.

Although the size of the sample is limited, our whole
blood assay model and findings demonstrate that histones,
acting as DAMPs are potent inducers of a wide array of
cytokines and chemokines, simulating in vitro the cytokine
storm observed in vivo in both COVID-19 and sepsis patients,
and highlighting that histones are major triggers and con-
tributors during the clinical progression of these patholog-
ical conditions.

Being that whole blood assay model is an experimental
model that closely and significantly mimes the monocyte
responses, and that monocytes are largely implicated in high-
inflammatory impact diseases, as classical and viral sepsis,
with our findings on MDW changes and associated cytokine
release we furthermore provide clear and increasing evi-
dence on the critical roles of monocytes in these conditions.

On these bases, the identification of potential strategies
to neutralize histones, and thus histone-mediated damages
are warmly encouraged. Several studies suggest that both
endogenous molecules (e.g., albumin, C Reactive Protein,
Activated Protein C, polysialic acid) and pharmacological
treatments (heparins and heparinoids) could directly bind
histones, thus limiting their harmful effects on cells and
tissues of several organs [6, 46, 50].

Further studies are ongoing to elucidate the involve-
ment of histones in hypercoagulability events in classical
and viral COVID-19 sepsis, as well as the possible modulation
by heparin compounds.

In conclusion, in the light of the herein emerged new
roles and functions of histones as inducers of hyper-
inflammatory responses and MDW modifiers, we suggest
that monitoring MDW index and histone concentrations
in patients with classic and COVID-19 sepsis both upon
admission and throughout hospitalization may be a useful
parameter to early predict higher risk of worst outcome.
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