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Introduction: 

 

The Paris Climate Agreement represents a significant advancement in the global initiative to 

address climate change and facilitate the transition towards a low-carbon economy. However, 

it is also acknowledged that achieving the commitments set forth in the agreement will require 

considerable efforts (Den Elzen et al., 2016; Dovie and Lwasa, 2017; Tobin et al., 2018). The 

agreement foresees increasing investment in green technologies for mitigation and adaptation 

(Robbins, 2016; Green, 2017; Karlsson et al., 2018). Specifically, the second commitment 

outlines that countries pledge to adopt tangible actions against global warming, tailored to 

their individual local conditions, and using the 2030 objectives of the European Union and 

UNSE4ALL as a reference (a 40% cut in GHG emissions, a 40% enhancement in energy 

efficiency, and a 40% rise in renewable energy production, compared to 1990 levels). This 

perspective amplifies the relevance of environmental innovation and its ramifications on 

fulfilling emission reduction commitments at the regional, national, and international level 

(Ahmad, 2020). The widespread reliance on fossil fuels has led to the release of a substantial 

amount of emissions and pollutants, exerting immense pressure on the environment. Thus, 

innovation in green energy technology (GETI) has emerged as a pivotal strategy to address 

climate change and mitigate air pollution. Innovations in renewable energy technologies are a 

fundamental element in tackling environmental issues.   

The global transition towards a sustainable future is riddled with complexities and challenges. 

At the heart of this transition lies the intricate dance between innovation, policy, and socio-

economic outcomes. As nations grapple with the imperative of green innovation, the role of 

external factors, particularly uncertainty and policy interventions, becomes increasingly 

salient. This thesis delves into the nuanced relationships between uncertainty, environmental 

policies, green innovation, and income inequality, proposing a comprehensive exploration of 

such relationships. 

An expanding body of literature highlights the inhibitive effects of uncertainty on green 

innovation. Uncertainty, in its many forms, casts a long shadow over the landscape of green 

innovation. Whether it emanates from shifting political landscapes, volatile economic 

conditions, or evolving regulatory frameworks, uncertainty introduces an element of risk that 

can deter both public and private actors from investing in green research and development. 

For example, uncertainty can discourage investments in research and development, 
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particularly in sectors where the returns on innovation are expected to materializes in the  long-

term and are unpredictable, like in the renewable energy sector (Slawinski et al., 2017; 

Bernanke, 1983; Dixit et al., 1994; Bloom, 2009; Caggiano et al., 2017; Ahir et al., 2022). 

Furthermore, episodes of economic uncertainty, such as recessions or market crashes, can 

divert attention and resources away from long-term sustainable investments toward more 

immediate economic recovery measures (Bloom, 2009; Caggiano et al., 2017). Such 

uncertainties can stymie the momentum of green technological advancements, thereby 

impeding the global shift towards sustainable energy solutions. 

Conversely, environmental policies, have been identified as stimulants for green innovation. 

By setting clear regulatory frameworks and incentivizing the adoption of green technologies, 

strict environmental policies can catalyze research, development, and deployment in the green 

sector (Nesta et al., 2014; Hille et al., 2020; Johnstone et al., 2010; Wang et al., 2022; Zhang 

et al., 2022). For instance, carbon pricing mechanisms, by internalizing the environmental 

costs of carbon emissions, can make renewable energy sources more competitive, thereby 

spurring innovation in green technologies (Johnstone et al., 2010; Wang et al., 2022). 

Similarly, direct subsidies or tax breaks for green research and development can lower the 

financial barriers to entry, encouraging more players to contribute to the green innovation 

ecosystem (Zhang et al., 2022). Such policies, by creating a favorable ecosystem for green 

innovation, can accelerate the shift toward an economy with lower levels of carbon emissions. 

However, the narrative becomes more nuanced when one considers the socio-economic 

ramifications of these environmental policies. While they foster green innovation, strict 

environmental policies may also affect income inequality (Markannen and Anger-Kraavi, 

2019; Kanzig, 2023; Yu et al., 2021; Zhao et al., 2022; Soergel et al., 2021). The 

implementation of such policies can lead to short-term economic disruptions, including job 

losses and increased energy costs, which disproportionately affect lower-income groups. The 

challenge for policymakers, therefore, is to design and implement environmental policies that 

strike a balance between promoting green innovation and ensuring socio-economic equity. 

The journey towards a sustainable future is fraught with complexities. While the imperatives 

of environmental stewardship and green innovation are clear, they are also intertwined with 

broader socio-economic and political dynamics. This thesis aims to unravel these 

complexities, drawing from a rich corpus of research, case studies, and empirical data and 

analysis. By examining the intricate relationships between uncertainty, environmental policies, 
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green innovation, and income inequality, this research seeks to offer insights and 

recommendations that can guide policymakers, innovators, and stakeholders in their quest for 

a sustainable and equitable future. 

 

Summary of the Chapters: 

 

The first paper (Chapter 1) investigates the impact of economic and policy uncertainty on 

green innovation in renewable energy. The paper highlights the adverse effects of uncertainty 

on innovation. It intends to investigate how uncertainty affects green innovation and explore 

potential mediating factors that work as a transmission channel between uncertainty and green 

innovation. In this context, the paper provides evidence that uncertainty is a major obstacle to 

green innovation, as it reduces investment and makes it difficult for firms to plan the future. 

In addition, uncertainty is inversely related to investment, since rational investors choose to 

delay investment decisions when there is a lot of unpredictability. This line of reasoning is 

compatible with the real options hypothesis, which states that companies would put off making 

decisions that are difficult or expensive to reverse when facing uncertain situations. 

The study uses a unique dataset from the International Renewable Energy Agency (IRENA) 

that includes information on renewable energy patents filed in various sectors and technologies 

across a sample of 64 economies from 2000-2021. The World Uncertainty Index (WUI) is 

employed to gauge economic and political uncertainty in a diverse array of both developed 

and developing countries. 

Empirically, we investigate the impact of economic and policy uncertainty on green 

innovation. We employ two distinct, but complementary, econometric approaches for our 

analysis. Initially, we adopt the linear version of the local projection method introduced by 

Jorda (2005) a technique similarly utilized by Auerbach and Gorodnichenko, (2013); Ramey 

and Zubairy, (2018); Alesina et al., (2020) among others. This method allows the direct 

estimation of Impulse Response Functions (IRFs) based on local projections of renewable 

energy patents to uncertainty shocks. In the next step, we consider the significance of the role 

of economic conditions and policy support influencing the trajectory of innovation in the field 

of renewable energy patents in the aftermath of uncertainty shocks. We adopt the methodology 

suggested by Auerbach and Gorodnichenko (2013), because it allows a direct test of whether 

the effect of economic uncertainty varies across different regimes, such as recessions vs. 



4 
 

expansions. In order to address the potential influence of unobserved factors on the 

relationship between new renewable energy patents and economic or policy uncertainty, an 

Instrumental Variable (IV) approach is employed. The IV approach uses an instrument called 

the World Uncertainty Spillover Index (WUSI) developed by Ahir et al., (2022) to enhance the 

robustness of the analysis. This index measures uncertainty spillovers from major economies, 

including the G7 countries and China. Uncertainty in systemic economies is an important 

driver of uncertainty around the world, and it is assumed to be exogenous since such 

uncertainty spillovers are hardly related to green patents except through affecting countries’ 

own uncertainty.  

The research uncovers that uncertainty shocks have a significant negative effect on green 

innovation, as measured by the number of renewable energy patents. A one-standard-deviation 

increase in the world uncertainty index leads to a reduction in green patents by about 40 

percent five years after the shock. The negative impact of uncertainty on green innovation is 

observed across different sectors and technologies. The power and building sectors, as well as 

wind and solar energy technologies, experience larger and more persistent declines in 

innovation in response to uncertainty shocks. We also conduct robustness checks to validate 

the results, including controlling for GDP growth, inflation, oil price growth, and financial 

stress. These checks confirm the robustness of the baseline findings. The results for the 

instrumental variable (IV) reveal that the instrument is "strong", statistically significant, and 

shows the expected sign. The results indicate that a one standard deviation increase in 

uncertainty generates a contemporaneous decrease of about 12 percent in the number of new 

renewable energy patents that increases over the medium term to about 80 percent. The results 

from state-dependent effects of uncertainty shocks on economic conditions reveal that the 

impact of uncertainty shocks is notably more negative and significant on the number of green 

patents during periods of weak demand and higher financial stress. However, the negative 

effect of uncertainty on the number of green patents can be reduced if a country adopts strict 

environmental policies. 

In the subsequent section (Chapter 2), we broaden the scope of our analysis. and investigate 

the impact of Climate Change Policies (CCPs) on green innovation, for a sample of 40 OECD 

economies and 5 economic sectors, during the period 2000-2021. 

The paper emphasizes the global importance of addressing Climate Change Policies and 

transitioning to green energy sources. However, the transition to green energy is hindered by 
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the high costs associated with renewable energy production compared to conventional fossil-

based energy. In this regard, technological advancements are crucial to reducing these costs 

and facilitating the adoption of green energy worldwide. We use the Environmental Policy 

Stringency Index (EPS), provided by the OECD, to determine the extent to which countries 

implement CCPs in terms of green innovation, that in turn, is measured by the number of new 

patents for green technologies. 

The approach that is used in the paper to estimate the dynamic response of green innovation 

to a change in the degree of stringency of the environmental policy is the local projection 

approach proposed by Jorda (2005) and it is equivalent to the one adopted in the first paper 

(Chapter 1). To address potential endogeneity issues, we then used an instrumental variable 

(IV) approach following Furceri et al., (2022) in which we identify as instrument, the 

interaction between a time-varying global term and a constant country-specific term 

(following Nunn and Qian, 2014). The time-varying global term used as a proxy of the policy 

pressure due to weather-related shocks is the number of flood events. Because preferences 

toward CCPs change after major natural disasters, the country-specific term used to proxy with 

“vulnerability of a country towards climate change”, is the length of the coastline. Therefore, 

our instrument is the interaction between the number of global flood events in a year and the 

length of the coastline of a country. These two factors are likely to influence the adoption of 

climate change policies but are not directly responsible for driving or influencing the level of 

green innovation. During the third stage of our analysis, we employ a local projection smooth 

transition methodology (Auerbach and Gorodnichenko, 2013) to investigate if the response of 

green innovation to CCPs depends on the states of the economy, varies among countries, and 

is affected by the prevailing economic conditions and policies. In the last part, we employed 

the difference-in-differences approach to examine sectoral heterogeneity. This approach was 

chosen based on the theoretical assumption that the impact of CCPs on promoting green 

innovation is less pronounced in sectors that encounter more stringent financial constraints 

(Bloom, 2009). In order to assess the extent of financial constraints, we adopt the methodology 

proposed by Rajan and Zingales, (1998) and create a measure of external financial dependence 

(EFD). This measure is defined as the proportion of total capital expenditure deducted by 

current cash flow, relative to the total capital expenditures. A higher EFD indicates that the 

sector heavily relies on external financing, while a lower EFD means that the cash flow 

generated by (firms belonging to) the sector is sufficient to cover its capital expenditures. 
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The findings we obtain indicate that CCPs enhanced the frequency of green patents, with the 

effect having a ripple effect that gradually becomes more pronounced over time. We found 

that an increase of one standard deviation in the EPS index increased the number of new green 

patents by around 4 percent one year after the policy was introduced and by 18 percent in the 

medium term, which is defined as five years after. This effect, on the other hand, differs 

depending on the type of CCP being considered, and it is positive and statistically significant 

only in the case of non-market-based policies, such as emission limitations and R&D subsidy 

programs. The results are robust to several tests, such as the inclusion of additional controls 

(GDP growth, an index of financial stress, and oil prices), changing the lag structure, and 

control for the lagged stock of patents at the country level.  In addition, the effect of CCPs on 

green innovation is found to be higher, when employing the IV approach, thus corroborating 

the idea that the OLS baseline estimates are biased towards zero. Furthermore, environmental 

policy helps to foster green innovation at a time when financial stress is lower, uncertainty is 

lower, and GDP growth is higher. In the final section, the results for sectoral heterogeneity 

demonstrate that the effects of CCPs on the number of green patents are greater for industries 

that are subject to lower financial constraints. This indicates that an increase in EPS has a 

greater impact on the growth of green patents in industries with low financial dependence 

relative to those with high financial dependence. 

While CCPs can increase innovation and spur economic growth in the medium term, they may 

also lead to distributional costs. Indeed, as will be discussed in the third chapter (Chapter 3), 

CCPs may have some negative effects —e.g., job losses, and higher costs of energy— that are 

unevenly distributed among different income groups and may increase income inequality. For 

example, when a carbon tax is imposed on dirty energy production, it can lead to an increase 

in energy prices and reduce employment specially for low-skilled workers, thus increasing 

poverty and inequality. Our aim is to look at the medium-term effect of CCPs on several 

measures of income inequality—Gini, Palma ratio, P90/P10, S80/S20, and P50/P10, retrieved 

from the OECD database. The use of alternative measures of income inequality allows us to 

provide a more comprehensive characterization of how CCPs affect income distribution, given 

the different information provided by each indicator. For instance, the Gini index offers a 

comprehensive overview of the income distribution as a whole, with a particular emphasis on 

changes occurring in the middle of the distribution. On the other hand, the P90/P10 ratio 

primarily focuses on the extremes of the distribution. 
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From a methodological point of view, to examine the impact of Climate Change Policies 

(CCPs) on income inequality, we have employed the same methodology adopted in the 

preceding chapters, that is the local projection approach proposed by Jorda (2005). In addition 

to the analysis based on the aggregate measure of Climate Change Policies (CCPs), we also 

investigate how different types of policies (i.e., market-based, non-market-based, and 

technology-based policies) can affect income inequality. Next, to address endogeneity issues, 

we use an instrumental variable (IV) strategy using the instrument described in the previous 

chapter, which is the interaction between the number of global flood events in a given year 

and the length of the coastline of a country. The rationale behind this instrument is that global 

weather-related shocks and coastline length are exogenous to income inequality, but they may 

influence the likelihood of countries adopting climate change policies. Finally, we use the 

smooth transition local projection approach (Auerbach and Gorodnichenko, 2013) to analyze 

the nonlinear response of income inequality to CCPs, depending on country-specific factors 

and economic conditions, related to the share of workers with low education and countries 

characterized by higher initial inequality, the state of the economy and the economic policies 

adopted. 

The results show that CCPs cause distributional costs because income inequality keeps going 

up after the policy shock, that is 1 point increase in EPS increases income inequality by up to 

5 percent. This effect is most noticeable in the medium term. Also, the effect is similar across 

all measures of income inequality, as each of them goes up after a strict climate policy is put 

in place. Moreover, CCPs have an effect especially in the case of market-based policies, such 

as pollution taxes. The implementation of such policies leads to rises in income inequality that 

are 50% higher across indicators than in the baseline scenario, while the effect is not 

statistically different from zero for non-market-based and technology support policies. We also 

check the validity of our baseline results through several robustness checks such as, adding 

additional controls, changing the lag structure, and including country-specific time trends. The 

results for the instrumental variable (IV) indicate that our instrument is strong and statistically 

significant, and coefficients are larger in the medium term, thus suggesting that failing to 

account for endogeneity may result in a downward bias in evaluating the impact of CCPs on 

income inequality. The results from the smooth transition local projection approach indicate 

that the impact of CCPs on income inequality is larger in countries with a high share of low-

skilled workers and those characterized by higher initial levels of inequality. On the other hand, 
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the consequences are less severe in countries that have comprehensive redistribution policies, 

as well as during periods of budgetary expansions and faster economic growth. 
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Chapter 1 

 

Uncertainty and Innovation in Renewable Energy 
 

 

1.1. Introduction 

 

The fight against climate change is a key global priority to ensure a healthy planet and to 

guarantee a sustainable future. By way of example, an increase of 1.1 degrees Celsius in global 

temperatures makes half of the global population face water insecurity at least one month per 

year. It is also crucial for economic reasons: extreme weather events cut annual economic 

growth by 1-2 percentage points per capita, as reported by IMF.1  

Countries must commit to drastically reduce emissions in order to stabilize global 

temperatures and convert their economy to green energy, as put forward by the Paris 

Agreement. However, the transition to green energy is challenging due to high costs compared 

to production and consumption of conventional fossil-based energy (United Nations, 2021). 

This calls for rapid technological advancements aimed at reducing production costs of 

renewable energy and facilitating the adoption of green energy worldwide (World Bank, 

2021).  

          But innovation is both money- and time-expensive. It requires investing in the future, 

with unpredictable returns, particularly in sectors where benefits tend to materialize over time, 

such as the renewable energy sector (Slawinski et al., 2017). Uncertainty can have profound 

effects on investment decisions and economic outcomes. However, Global uncertainty can 

significantly impact investment in green innovation, shaping the landscape of environmental 

progress and sustainable development. When uncertainty prevails on a global scale, investors 

 
1 https://www.imf.org/en/News/Articles/2022/03/28/sp033022-MD-remarks-MCD-adaptation-WGS. 
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and companies tend to become risk-averse, often hesitating to commit substantial capital to 

green projects that typically require long-term investment and offer returns that may be 

uncertain or delayed. Uncertainty and innovation are closely intertwined, with uncertainty 

serving as both a driver and a constraint on innovation. However, it's also noteworthy that 

global uncertainty can sometimes act as a catalyst for green innovation investment. In times 

of volatility, there can be a concerted push towards sustainability as a strategy to mitigate risks 

associated with climate change, resource scarcity, and geopolitical dependence on fossil fuels. 

This dual-edged impact of global uncertainty necessitates strategic foresight and supportive 

policy frameworks to ensure that the trajectory of green innovation investment contributes 

positively to sustainable and resilient economic growth.  

         The literature has long acknowledged that political and economic uncertainty reduce 

investment and innovation in general (Bernanke, 1983; Dixit et al., 1994; Bloom, 2009; 

Caggiano et al., 2017; Ahir et al., 2022) but little is known about the impact of uncertainty on 

green innovation, as well as the channels mediating such a relationship. Green innovation 

encompasses a broader set of goals and considerations compared to innovation in general, with 

a particular emphasis on environmental sustainability, resource efficiency, regulatory 

compliance, market demand, and collaborative approaches to addressing environmental 

challenges. Given the pressing need for sustainable development and environmental 

stewardship, exploring and investing in green innovation is essential for addressing global 

environmental issues and achieving a more sustainable future. 

With this article, we aim to fill this gap and analyze the impact of uncertainty on 

innovation on green energy for a large set of advanced and developing economies. To this end, 

we measure innovation by the number of patents related to green energy. Though not perfect, 

patents are usually considered as the best proxy for innovation output (Jaffe et al., 1993; 

Aghion et al., 2015; Ascani et al., 2020; Acs et al., 2002; Jaffe, 2000). Of course, not all 
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inventions are patented, many patents have no commercial value, and not all innovation 

requires intellectual property protection. Despite these shortcomings, patent data have the 

advantage of being immediately available, measurable and comparable, both over time and 

across countries. Lastly, patented inventions present by definition minimal standards of 

novelty and originality to be considered as a good proxy for innovation. Our data for green 

patents data are taken from the International Renewable Energy Agency (IRENA) dataset, 

which provides figures for about 140 thousand patents filed for renewable energy worldwide, 

classified by economic sector and type of technology, for a sample of 64 economies since 

2000. The focus on renewable energy is deliberate due to the sector's pivotal role in combating 

climate change. The renewable energy sector faces unique challenges and opportunities, and 

understanding how uncertainty affects this sector specifically provides valuable insights for 

policymakers and stakeholders. 

        To measure uncertainty, we use the World Uncertainty Index (WUI), developed by Ahir 

et al., (2022). It captures country-level uncertainty related to both economic and political 

events, for a large, unbalanced sample of 142 developed and developing countries from 1952. 

Compared to other measures of uncertainty developed in literature, the main advantage of the 

WUI is that it covers a larger of set of developed and developing economies, and the level of 

uncertainty is comparable across countries (see Ahir et al., 2022, for a detailed discussion). 

The concept of uncertainty in our work is multifaceted, encompassing economic and political 

dimensions. It's measured using the World Uncertainty Index (WUI), which aggregates the 

frequency of uncertainty-related terms in the Economist Intelligence Unit country reports. This 

index captures a broad spectrum of uncertainty, including near-term events like elections and 

long-term geopolitical tensions. The WUI is a comprehensive measure that allows for cross-

country comparisons and has been validated in various studies. 
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        We use the local projection approach proposed by Jordà (2005) to estimate the dynamic 

response of renewable energy patents to uncertainty shocks, and how it varies with economic 

conditions (such as the business cycle and the degree of financial stress) and policy support 

towards renewable (captured by the stringency of environment protection regulation). While 

uncertainty is indeed a perception influenced by various factors, focusing on sudden changes 

in the WUI, that we label as “uncertainty shocks”, allows us to understand the immediate and 

short- and medium-term impacts on green innovation. This focus provides valuable insights 

into how firms and economies react to rapid changes in the uncertainty landscape. 

        Our analysis highlights three important results. First, we show that uncertainty shocks 

have a negative and statistically significant effect on renewable energy patents. The effect is 

also economically significant: one standard deviation increase in the world uncertainty index 

leads to reduction in patents by about the 40 percent—that is, about 0.2 standard deviation of 

changes in patents—five years after the shock. To give a sense of the magnitude of the results, 

the estimates imply that the increase in uncertainty associated with COVID-19 could result in 

a medium-term decrease in energy renewable patents by about 70 percent. This negative effect 

holds across sectors and technologies, even though it is larger and more persistent for the 

power and building sectors and for enabling technologies, wind and solar energy.  

Second, consistent with previous findings on the state-dependent effects of uncertainty 

shocks on economic activity (Bloom, 2014; Nodari, 2014; Caggiano et al., 2017; Alessandri 

and Mumtaz, 2019), we find that uncertainty shocks tend to have more negative effects on 

patents during periods of weak demand and higher financial stress—that is, those periods when 

firms have lower profits and are more financially constrained. 

Finally, we provide evidence that policy support to shift to a greener economy (such as 

more stringent regulation on carbon emissions, or more investment in renewable including 
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through public R&D expenditure) tends to reduce the negative effect of uncertainty on green 

innovation. 

These results are robust to a wide range of robustness checks, alternative set of countries 

(advanced vs. developing economies), additional set of controls potentially correlated with 

uncertainty and affecting renewable energy patents (such as GDP growth, inflation, oil price 

growth and financial stress), and an Instrumental Variable (IV) approach, where we instrument 

uncertainty in each country with the uncertainty stemming from key economies, such as Group 

of 7(G7) and China. 

The rest of the paper is organized as follows. The next section (1.2) provides a review of 

the literature on the link between uncertainty, investment and (green) innovation. In Section 

1.3, we describe our data and the empirical approach. Section 1.4 discusses our results. Section 

1.6 concludes summarizing the results and discussing policy implications. 

1.2. Literature Review 

 

Our analysis relates to the literature investigating the macroeconomic effect of uncertainty. As 

it is well-established in the literature, uncertainty reduces investment, since rational agents 

hold back their investments decisions when uncertainty is high (Bloom, 2009). This argument 

is consistent with the real options theory (Myers, 1977), according to which firms postpone 

decisions that are costly to reverse under uncertain conditions (Dixit et al., 1994; Bernanke, 

1983; Bloom, 2009; Bloom et al., 2012). Under uncertainty managers will tend to focus on 

short-term benefits, due to the unpredictability of the future, and avoid long-term value 

creating activities. 

The literature about the effects of uncertainty has experienced a recent come-back, due 

to availability of data and new measures of uncertainty, as well as increasing uncertainty at 

global level (Great Recession, terrorism, Brexit, Covid-19 pandemic are few examples) (see 
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Bloom, 2014 for a review). Authors have looked at the effect of uncertainty on economic 

performance, measuring uncertainty by volatility of economy’s structural shocks or stock 

market returns (VIX), or using broader indices, as the one proposed by Ludvogson et al., 

(2016) or the composite Economic Policy Uncertainty indexes of Baker et al., (2016) and Ahir 

et al., (2022). These studies have found a negative effect of uncertainty on economic growth 

(Bloom, 2009), investment (Pastor and Veronesi, 2013; Barrero et al., 2017) and employment 

(Gilchrist et al., 2014; Caggiano et al., 2017). As for the effect of uncertainty on innovation 

and R&D, Bhattacharya et al., (2017) examine whether policy uncertainty affects 

technological innovation in a sample of 43 countries. They find that innovation is significantly 

reduced during higher policy uncertainty, measured by national elections. Lin et al., (2021) 

confirm that uncertainty reduces both R&D expenditure and patent, for a sample 109 countries. 

We complement this literature by looking at green innovation, also taking into account 

different types of technologies, as well as economic sectors where these innovations are used. 

Another, much smaller, stream of the literature has looked at the effect of policy volatility and 

shocks to renewable innovation. Kalamova et al., (2012) show that the volatility of public 

expenditures on environmental R&D significantly reduces green innovation in a sample of 23 

OECD countries, during 1986-2007. Zheng et al., (2021) find that terroristic attacks negatively 

affect green innovation. We differentiate from these studies by using a broader measure of 

economic and policy uncertainty such as the WUI, which allows us to extend previous analyses 

to both developed and developing countries, and to consider a broader set of events causing 

uncertainty.  

Our analysis also relates to another strand of literature that analyzes the effect of 

uncertainty on CO2 emissions and consumption. Romano and Fumagalli, (2018) finds that 

uncertainty negatively affects the environment, by increasing CO2 emissions. The same 

findings are present in studies by Lee and Klassen, (2016) and Jiang et al., (2019). In a recent 
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article, Atsu and Adams, (2021) analyze BRICS countries over the period 1984-2017 and find 

that CO2 emissions are positively correlated to fossil fuel consumption and policy uncertainty, 

while negatively associated with renewable energy consumption and financial development. 

Shafiullah et al., (2021) finds uncertainty contributes to environmental deterioration by 

decreasing the consumption of renewable energy in the US. Adedoyin and Zakari, (2020) 

highlight a non-linear effect. The authors focus on the UK after Brexit and show that 

uncertainty is likely to yield positive effects on climate change in the short run, due to 

decreasing industrial activity, but detrimental effects in the long run, due to lack of investment. 

Our article differentiates from the above studies for its specific focus on green innovation, 

which is an input for both the production of renewable energy and the reduction of emissions. 

Finally, we contribute to the literature that has looked at the role of mediating factors—

such as business and financial conditions, the level of economic and financial development, 

and policy support—in affecting the relation between uncertainty and economic activity as 

well as between uncertainty and green growth. For example, Caggiano et al., (2017) and 

Fernandez-Villaverde et al., (2015) show that the negative effect of uncertainty is magnified 

in periods when monetary policy is at the Zero-Lower-Bound. Alessandri and Mumtaz, (2019) 

analyze how the impact of uncertainty on economic performance is higher during periods of 

financial stress. Caggiano et al., (2014) and Caggiano et al., (2017) examine the effects of 

uncertainty shocks conditional on the business cycle, showing that recessions amplify the 

negative effects on uncertainty. Brem et al., (2020) emphasize the role of financial 

development in the reduction of emissions, since financial institutions support firms in the 

adoption of green innovations. Shaikh et al., (2018), studying the case of China, find that 

economic growth and financial development promote the environmental quality. Popp (2006, 

2010) claims that innovative activity responds to government policies, such as tax and 

subsidiaries. In the same vein, Kalamova et al., (2012) recognize that government support for 
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R&D increases innovation. Romano and Fumagalli, (2018) confirm the importance of policy 

interventions to promote the green transition. We differentiate form these by focusing on green 

innovation and by considering these aspects using the same empirical framework. 

1.3. Data and methodology 

 

This section describes the main data and the empirical framework used in the paper to estimate  

the effect of economic and policy uncertainty on renewable energy patents. 

1.3.1. Renewable Energy Patents 

 

Previous studies on innovation traditionally rely on sources such as the United States Patent 

and Trademark Office (USPTO), the European Patent Office (EPO), PATSTAT , and the World 

Intellectual Property Organization (WIPO) to analyze patent activity and technological 

innovation. These databases provide comprehensive patent data to track trends, assess 

technological developments, and measure innovation outputs. In this study we used data from 

the International Renewable Energy Agency (IRENA). This dataset contains information on 

the number of renewable energy patents, and offers a distinct perspective on innovations in 

renewable energy which might not be fully represented in conventional patent databases. 

Additionally, this dataset provides data on patents by sectors (Building, Carbon Capture, 

Usage and Storage (CCUS), Industry, Power, Transport and Waste) and technology 

(Bioenergy, Enabling Technologies, Hydropower, Geothermal, Ocean, Solar and Wind 

Energy , allowing for more precise analysis of trends and patterns in this critical area. 

The sectors included in the analysis are critical in the context of green innovation due to their 

significant energy consumption and potential for emission reductions. Each sector has unique 

characteristics and challenges in adopting renewable energy technologies, making them 

pertinent for  analysis. Innovation in these sectors often involves the development and 
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implementation of new technologies or processes that can significantly reduce emissions and 

improve energy efficiency. For example,  innovation in the power sector helps in reducing the 

carbon footprint of electricity generation and in making renewable energy more reliable and 

cost-effective. The building sector includes residential, commercial, and industrial buildings, 

and innovations in this sector also involve designing buildings with optimal thermal properties 

and the ability to generate their own renewable energy. Innovations in transportation sector 

also involve improving the efficiency of vehicles, developing advanced public transportation 

systems, and creating infrastructure for EV charging. Innovation in the industry sector involves 

improving energy efficiency and reducing emissions through cleaner production processes. 

The waste sector focuses on waste reduction, recycling, and energy recovery, with aim to 

minimize landfill use and turn waste into a resource. Innovation in CCUS is also crucial for 

mitigating climate change, it involves improving the efficiency and reducing the costs of 

capture technologies, developing secure and long-term storage solutions, and finding new uses 

for captured carbon.  

Our database covers an unbalanced panel of 64 countries over the period 2000–2021. Table 

1.A1 provides the list of countries included in the analysis as well as key descriptive statistics 

regarding the number of renewable energy patents. Figure 1.1 presents the evolution of the 

number of patents by sectors and technologies. The figure shows that the overall number of 

new patents has grown by five times in the period 2000-2019 (from about 50 to 250 thousand) 

experiencing a sudden stop due to the COVID-19 crisis. Prior to such crisis, the most dynamic 

sector in term of new patents was the power sector, accounting for about a half of total new 

patents, followed by the transport sector. Marginal and with similar evolution are the number 

of new patents in the other sectors such as Building, CCUS, Industry, and Waste. The sectors 

in the analysis are important for green innovation due to their high energy consumption and 

emission reduction potential. Each industry has unique characteristics and problems in 
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implementing renewable energy technology, making them worth analyzing. The rising trends 

in the number of patents in technologies that enable further growth of renewable energy is the 

most evident, together with that of new patents in solar energy technologies. Instead, the 

growth of new patents in the ocean, geothermal energy and hydropower technologies has been 

negligible. Innovation in these sectors often involves the development and implementation of 

new technologies or processes that can significantly reduce emissions and improve energy 

efficiency. 

Figure 1.2 shows the dynamic evolution of new renewable energy patents’ shares 

(computed using total patents for the countries included in our sample) for the top 10 countries 

with higher average shares over 2000-2021. Several key facts emerge. First, top 10 country 

innovators account for more than 90 percent of the total number of the new patents, with the 

share of “all other countries” shrinking year-by year. Second, the relative importance of China 

skyrocketed in the latest years prior to COVID-19. China’s share moved from about 6 percent 

in 2000 to about 65 percent in 2019, while that of Japan steadily dropped to about 7 percent in 

2019 (declining 30 percentage points with respect to 2000). Third, the relative importance of 

the US and Korea has remained quite constant, with values in the range of 15-20 percent and 

6-10 percent, respectively. 

1.3.2. World Uncertainty Index (WUI) 

 

To measure uncertainty, we rely on the new index proposed by Ahir et al., (2022). They build  

a new country uncertainty index for 143 countries using the Economist Intelligence Unit (EIU) 

country reports. This uncertainty index is the first effort to construct a panel index of 

uncertainty for a large set of developed and developing countries.2 The index captures 

uncertainty related to economic and political developments, regarding both near-term (e.g., 

 
2 See the website https://worlduncertaintyindex.com/ for further details. 

https://worlduncertaintyindex.com/
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uncertainty associated with elections) and long-term concerns (e.g., uncertainty engendered 

by the impending withdrawal of international forces in Afghanistan, or tensions between North 

and South Korea). The World Uncertainty Index (WUI) typically aggregates data from various 

sources to provide a composite measure of uncertainty at the global level. While it offers a 

broad indicator of overall uncertainty, it does not currently provide explicit information on the 

individual components or sources of uncertainty, such as political, economic, social, financial, 

or military factors, although the authors are developing some specific sub-indices (see for 

example the World Uncertainty Spillover Index – WUSI, or the World Pandemic Uncertainty 

Index – WPUI. 

The approach to construct the WUI is to count the number of times uncertainty is 

mentioned in the EIU country reports. Specifically, for each country and quarter, the authors 

search through the EIU country reports for the words “uncertain”, “uncertainty”, and 

“uncertainties”. To make the WUI comparable across countries, the raw counts of uncertainty 

(and its variants) are scaled by the total number of words in each report (specifically, thousands 

of words). As shown in Figure 1.3, the global GDP-weighted WUI spikes near the 9/11 attacks, 

the SARS outbreak, the Gulf War II, the failure of Lehman Brothers, the Euro debt crisis, El 

Niño, Europe border-control crisis, the UK’s referendum vote in favor of Brexit, the 2016 US 

presidential elections, the US-China trade tensions and the COVID-19 pandemic. Table 1.A2 

in the Appendix presents some key descriptive statistics on the WUI for the countries included 

in our sample. 

The authors also construct an index that measures the extent of “uncertainty spillovers” 

from key systemic economies—the Group of 7 (G7) countries plus China—to the rest of the 

world. Specifically, uncertainty spillovers from each of the systemic economies are measured 

by the frequency that the word “uncertainty” is mentioned in the reports in proximity to a word 

related to the respective systemic-economy country such as the country’s name, name of 
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presidents, name of the central bank, name of central bank governors, and selected country’s 

major events (such as Brexit). We use this measure of uncertainty spillovers as an instrument 

for domestic uncertainty. 

1.3.3. Methodology 

 

To investigate the effect of uncertainty on green innovation in renewable energy, we use two 

empirical specifications. The first consists of tracing-out the average response of the number 

of renewable energy patents to the effect of economic uncertainty. The second allows this 

response to vary across countries according to their economic conditions (such as the busyness 

and financial cycle) and policy factors (such as the stringency of the environmental policy). 

We follow Jordà (2005) to estimate impulse-response functions of renewable energy 

patents to uncertainty shocks, a methodology used also by Auerbach and Gorodnichenko, 

(2013); Ramey and Zubairy, (2018); and Alesina et al., (2021) among others. This procedure 

does not impose the dynamic restrictions embedded in vector autoregression specifications 

and is particularly suited—as in our case—to estimating nonlinearities in the dynamic 

response. The first regression we estimate is:  

 

𝑦𝑖,𝑡+𝑘 – 𝑦𝑖,𝑡−1 = 𝑡𝑖𝑚𝑒𝑖𝑡
𝑘 + 𝛽𝑘𝑊𝑈𝐼𝑖,𝑡 + 𝜃𝑘𝑋𝑖,𝑡 + 휀𝑖,𝑡+𝑘                        (1.1) 

 

where, 𝑦𝑖,𝑡 is the number of renewable energy patents (log of) for country i in time t; 𝑡𝑖𝑚𝑒𝑖𝑡
𝑘  

represents country-specific time trends; 𝑊𝑈𝐼𝑖,𝑡 is the World Uncertainty Index for country i 

in year t; 𝑋𝑖,𝑡 is a vector that includes two lags of the dependent variable and of the WUI. To 

keep the baseline parsimonious, we do not include other controls. But as we show in the section 

of robustness checks the results are unchanged when we expand the set of controls to include 



23 
 

macroeconomic factors correlated with uncertainty and potentially affecting renewable energy 

patents (such as GDP growth, inflation, oil price growth, financial stress). 

Equation (1.1) is estimated for an unbalanced panel of 64 countries over the period 

2000-2021, for each horizon (year) k=0,..,5. Impulse response functions are computed using 

the estimated coefficients 𝛽𝑘, and the confidence bands associated with the estimated 

impulse-response functions are obtained using the estimated standard errors of the 

coefficients 𝛽𝑘, based on robust standard errors clustered at the country level. 

The second specification examines the role of mediating factors in shaping the response 

of innovation in renewable energy to economic uncertainty. In particular, following the 

approach proposed by Auerbach and Gorodnichenko, (2013) we extend the baseline 

specification as follows: 

 

𝑦𝑖,𝑡+𝑘 − 𝑦𝑖,𝑡−1 = 𝑡𝑖𝑚𝑒𝑖𝑡
𝑘 + 𝐹(𝑧𝑖𝑡)[𝛽𝐿

𝑘𝐷𝑖,𝑡] + (1 − 𝐹(𝑧𝑖𝑡))[𝛽𝐻
𝑘𝐷𝑖,𝑡] + 𝜃𝑘𝑋𝑖,𝑡 + 휀𝑖,𝑡+𝑘        (1.2) 

 

with  𝐹(𝑧𝑖𝑡) =
𝑒𝑥𝑝−𝛾𝑧𝑖𝑡

(1+𝑒𝑥𝑝−𝛾𝑧𝑖𝑡)
,     𝛾 = 1.5  

in which z is alternatively an indicator of the position in the business cycle (GDP growth), 

financial stress (as measured by Romer and Romer, 2017) or change in the stringency of the 

environmental policy (the OECD’s Environmental Policy Stringency Index – EPS), 

normalized to have zero mean and unit variance. 𝐹(𝑧𝑖𝑡) is the corresponding smooth transition 

function. Since the indexes of financial stress and EPS have the same scale across countries, 

we exploit both within and cross-country variation in the normalization, that is we use 𝑧𝑖𝑡 =

𝑠𝑖𝑡−�̅�

𝑠𝑑(𝑠𝑖𝑡)
.  Instead, since average GDP growth varies widely across countries we exploit only 

within-country variation and we construct:  

 𝑧𝑖𝑡 =
𝑠𝑖𝑡−𝑠�̅�

𝑠𝑑(𝑠𝑖)
. 
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The weights assigned to each regime vary between 0 and 1 according to the weighting 

function 𝐹(. ), so that 𝐹(𝑧𝑖𝑡) can be interpreted as the probability of being in a given state of the 

economy. The coefficient 𝛽𝐿
𝑘 is the coefficient in the case of very low output growth (or 

alternatively, lower financial stress or smaller changes in the environmental policy stringency) 

that is when 𝐹(𝑧𝑖𝑡) ≈ 1 and z goes to minus infinity. 𝛽𝐻
𝑘  is the coefficient in the case of very 

output growth (or alternatively, higher financial stress or larger changes in the environmental 

policy stringency) that is when (1 – 𝐹(𝑧𝑖𝑡)) ≈ 1 and z goes to plus infinity. This approach to 

model interaction is equivalent to the smooth transition model developed by Granger and 

Teravistra, (1993). Its advantages are threefold. First, compared with a model in which each 

dependent variable is interacted with each factor, it permits a direct test of whether the effect 

of economic uncertainty varies across different regimes, such as recessions vs. expansions. 

Second, compared to a linear interaction model, it allows the magnitude of the effect of 

economic uncertainty to vary non-linearly as a function of the different factors. Third, 

compared with estimating structural vector autoregressions for each regime it allows the effect 

of economic uncertainty to change smoothly between regimes by considering a continuum of 

states to compute the impulse response functions, thus making the response more stable and 

precise.  

1.4. Results 

1.4.1. Baseline 

 

         Figure 1.4 shows the estimated dynamic response of the number of new renewable energy 

patents to uncertainty over the five-year period following the shock, together with the 90 

percent confidence interval around the point estimate. Table 1.1 reports the associated 

estimation results. One-standard deviation increase in uncertainty lead to a contemporaneous 

decrease in the number of green patents of about 10 percent. The impact is long-lasting with a 
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peak effect of about -40 percent—about 0.2 standard deviation of changes in patents—five 

years after the shock. As noted above, these estimates imply that the increase in uncertainty 

associated with COVID-19 could result in a medium-term decrease in energy renewable patents 

by about 70 percent. 

The fall is larger and more persistent for the power and building sectors, while it tends 

to stabilize and eventually recover for the waste, transport and carbon capture, usage and 

storage sectors (Figure 1.5). The impact is also heterogeneous across types of renewable 

energy. In line with previous literature (Zheng et al., 2021), the geothermal energy is less 

affected by increasing uncertainty, while green innovation in wind and solar energy as well as 

in enabling technologies tend to experience larger and longer-lasting negative effects (Figure 

1.6). These findings may be related to the difference in cost structure and maturity of the 

different energy types. Indeed, geothermal energy is considered in a mature stage while wind 

and solar energy as well as enabling technologies have experienced an intensive patenting 

activity over the past years (see also Figure 1.2), and therefore are mostly exposed to 

increasing uncertainty. 

1.4.2. Robustness check 

 

We have carried out several robustness checks to test the validity of the baseline findings.  

First, in order to mitigate omitted variable bias, we included several controls that could be 

related uncertainty and affect new renewable energy patents—such as GDP growth and 

inflation (from WDI’s World Bank database), oil price growth (from BP Statistical Review of 

World Energy) and a proxy of financial stress (from Romer and Romer, 2017). Previous 

literature has shown that there is a strong relationship between oil price growth and volatility, 

and production/consumption of renewable energy (Davis and Owens, 2003). Moreover, oil 

price movements have been connected to episodes of uncertainty, such as recessions and 
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inflation (Bloom, 2009; Colombo, 2013); GDP growth is generally positively associated with 

the production of renewable energy (Chen et al., 2021), regardless of the type of technology; 

and financial stress significantly reduces investment and the transition to green economy (Atsu 

and Adams, 2021). We estimated equation (1.1) separately for each control variable, also 

including all the controls at the same time. The results in Figure 1.7 are very close to those in 

Figure 1.4, thus confirming our baseline findings.  

Second, since it is possible that the results may be sensitive to the presence of countries 

with extremely high and low levels of new green patents and outliers, we repeated our 

estimates by dropping, in turn, those observations in the upper and lower 1 percentile of the 

distribution and those in the upper and lower 5 percentile of the distribution. Again, the results 

presented in Figure 1.8 are broadly consistent with the baseline results.  

Third, the presence of two large uncertainty and recessionary shocks (such as the Great 

Financial Crisis and COVID-19) in the period under scrutiny may bias the results. To check 

the robustness of our findings to such events, we re-estimated equation (1.1) dropping from 

the sample period the related years (i.e., 2008 and 2020). Reassuringly, the impulse response 

functions obtained in such restricted sample do not point to different results with respect to the 

baseline.  

Fourth, we examined whether our baseline results were driven by the lag structure 

choice. Figure 1.10 shows that this is not the case: regardless of the number of the lags for the 

WUI and for the dependent variable, the results are very similar and broadly unchanged with 

respect to the baseline.  

Finally, we checked the sensitivity of our results to different levels of development. 

Specifically, we re-estimated equation (1.1) by subsamples of high-income versus low- and 

middle-income economies (see Table 1.A1 for country classification). The results shown in 

Figure 1.11 suggest that the effects of uncertainty are quite similar across the two groups.  
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1.4.3. Instrumental variable estimations 

 

While potential reverse causality is likely to not be an issue, since number of new renewable 

energy patents is not a direct driver of economic and policy uncertainty, it could still be the 

case that unobserved factors influencing the dynamics of new patents over time could affect 

uncertainty. While the inclusion in the regression of several factors affecting new patents 

mitigates this concern, to fully address this issue we also adopt an Instrumental Variable (IV) 

approach, in which we instrument the World Uncertainty Index with the World Uncertainty 

Spillover Index (WUSI) by Ahir et al., (2022). It measures uncertainty spillovers related to the 

G7 economies plus China on quarterly basis. The index is computed by counting the percent 

of word “uncertain” (or its variant) mentioned within a proximity to a word related to a specific 

country (i.e., the US) in the EIU country reports. We take the sum of all the eight country-

specific WUSI rescaled on yearly basis, providing also robustness checks based on the WUSI 

computed for the US and US+UK (see tables 1.A3 and 1.A4 in the appendix). As shown in 

Ahir et al., (2022) uncertainty in systemic economies is an important driver of uncertainty 

around the world (see for example the uncertainty spillovers from the United States related to 

US 2016 elections and trade policies as well as those related to the United Kingdom in the 

case of Brexit). The changes in global uncertainty caused by these systemic economies are 

generally independent of renewable energy innovation, including green patents. This 

independence is essential for our instrumental variable approach's validity. Global uncertainty 

shocks may affect green patent activity via affecting countries' economies, not by directly 

affecting green patent innovation.  

 The first-stage estimates shown in the upper panel of Table 1.2 suggest that the 

instrument is “strong”, statistically significant and exhibit the expected sign. The first-stage 

estimates suggest The Kleibergen‒Paap rk Wald F-statistic—which is equivalent to the F-

effective statistic for non-homoscedastic error in case of one endogenous variable and one 
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instrument (Andrews et al., 2019)—is higher than the associated Stock-Yogo critical value 

(Table 1.2). The results that we obtain following this approach are shown in the bottom panel 

of Table 1.2 (and in Figure 1.12) and are very similar to and not statistically different from the 

baseline estimates of Figure 1.4—even though the point estimates are larger: one standard 

deviation increase in uncertainty generates a contemporaneous decrease of 12 percent (vs. 10 

percent with OLS) in the number of new renewable energy patents that increases over the 

medium term to about 80 percent (vs. 40 percent with OLS). The larger point estimates suggest 

that the true effect of economic and policy uncertainty on green innovation may be more 

substantial than initially indicated by the baseline OLS estimates. 

1.5. Role of economic conditions and policy support 

 

As discussed in the previous sections, the average response of green patents to uncertainty  

may mask significant heterogeneity across states of the economy and policy support. To test 

for these hypotheses, we estimate equation (1.2) using alternatively, GDP growth, the Romer 

and Romer, (2017) measure of financial stress and changes in the stringency of environmental 

policies.  

 First, business cycle fluctuations may affect our average estimates since investments 

in innovation are likely procyclical, with expenditures in R&D (and then patents) increasing 

during macroeconomic booms and decreasing during recessions. Indeed, despite Schumpeter, 

(1939) claims that recessions are periods of “creative destruction” concentrating innovation 

that is useful for the long-term growth of the economy, previous empirical literature has shown 

that when typically measured by R&D expenditures and raw patent counts, innovative 

activities tend to be procyclical (Griliches, 1990; Geroski and Walters, 1995; Fatas, 2000; 

Comin and Gertler, 2006; Kopytov et al., 2018). 3 In addition, the previous literature has shown 

 
3 Manso et al., (2021) argue that such traditional measures do not capture shifts in firms’ innovative search 

strategies and contemplating innovative search as a tension within firms between exploration (the pursuit of novel 
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that the effect of uncertainty shocks on economic activity tends to be larger during recessions 

(Caggiano et al., 2014; and Caggiano et al., 2017). 

 In line with this empirical literature, our results suggest that the short-term negative 

effects of uncertainty on new green patents are larger during period of slack. In particular, the 

effects are statistically significant and larger than the average effect shown in Figure 1.2  

during periods of recessions (the contemporaneous effect is about -40 percent compared to -

10 percent in the baseline), while they are mostly not significantly different from zero for 

episodes associated with higher growth (Figure 1.13 – upper panels).4 Since uncertainty 

adversely affects also economic growth in the short term (Bloom, 2009) and investment 

decisions in green innovation activities may be costly to revert, firms may prefer to postpone 

such decisions until further information has become available or uncertainty about the future 

economic outlook has diminished. 

Similarly, previous studies have shown the importance of financial constraints in the 

development of green innovations (Mina et al., 2013; Kerr and Nanda, 2015). Indeed, access 

to finance represents one of the most serious barriers to firms’ innovative activity and growth. 

A rise in the cost of intermediation (i.e., episodes of financial distress as defined by Romer 

and Romer, 2017) makes it more costly for financial institutions to extend loans to firms and 

households, reduces the supply of credit and may negatively affect investments in green 

innovations that as known are characterized by extremely uncertain and skewed returns 

(Cecere et al., 2020). Moreover, the effect of uncertainty shocks on investment has been found 

to be amplified in periods of financial stress and in sectors/countries with higher financial 

constraints (Choi et al., 2018). 

 
to the firm approaches) vs. exploitation (the refinement of existing technology that is known to the firm) they 

find that exploitation strategies are procyclical while exploration strategies are countercyclical. 
4 The difference is statistically significant in the short term but not in the medium term, given the very large 

confidence bands associated with the effect of uncertainty during periods of booms (Table 1.3). 
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 To probe further, we re-estimate equation (1.2) using the financial distress index by 

Romer and Romer, (2017) as state variable to proxy the health of the financial system. We 

find that worsening in credit sector’s conditions further dampen green innovation when 

uncertainty increase (Figure 1.13–middle panels). One-standard deviation increase in 

uncertainty lead to a contemporaneous decrease of about 50 percent in the number of new 

green patents when countries experience higher degree of financial stress. The effects are 

persistent, reaching a peak of -80 percent two years after the shock. Conversely, the effects 

are smaller and mostly not statistically significantly different from zero for uncertainty shocks 

associated with improvements in the financial markets.5  

Moving to the role of policy, we first re-estimate equation (1.1) using the OECD 

Environmental Policy Stringency index as shock variable (instead of WUI) to understand the 

direct effect of such policies on green patenting. In a second stage, we investigate the presence 

of a non-linear relationship between uncertainty and green innovation according to the 

strictness of environmental policy regulations. In line with previous studies claiming that strict 

environmental regulation induces more innovation output (Porter and Van der Linde, 1995; 

Johnstone et al., 2010; Hille et al., 2020), we find that increases in the OECD EPS index 

generate substantial increases in patents. Specifically, an increase of one point in the OECD 

EPS index (i.e., more stringent policy) leads to a persistent increase in the number of new 

patents with a peak effect of 50 percent five years after the shock. (Figure 1.14). Next, we re-

estimate equation (1.2) using the Environmental Policy Stringency index as state variable. 

Consistently with the effect of policy to spur green innovation, we find that more stringent 

environmental policies tend to cushion the negative effects of uncertainty on green patenting. 

 
5 As for growth, the difference is statistically significant in the short term but not in the medium term, given the 

very large confidence bands associated with the effect of uncertainty during periods of no financial stress  

(Table 1.3). 
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In particular, the negative effects of uncertainty on innovation are smaller and statistically not 

significant when the change in the OECD EPS index is larger (Figure 1.13 – bottom panels)6. 

1.6. Conclusions  

 

Today, climate change represents (one of) the greatest human problem. The use of 

conventional energy is the principal cause of global warming and climate change, leading to a 

series of issues for the society, such as natural disasters and weather extreme events. In this 

scenario, the transition to green energy is becoming key to ensure the sustainability of the 

planet. In order to facilitate the spread of renewable energy, green innovations must help 

reducing its production and distribution costs by introducing new technology (Zheng et al., 

2021).  

However, innovation requires massive investment, which in turn resent of uncertainty 

and irreversibility, as put forward by the real options literature (Dixit and Pindyck, 1994). With 

this article, we offer a novel analysis of the extent to which economic and policy uncertainty 

affects the production of green innovation. We make use of the World Uncertainty Index (Ahir 

et al., 2022) as a thermometer of the degree of uncertainty surrounding the globe, and data on 

patent filed for renewable energy to proxy green innovation. Our results indicate that the 

production of green innovation drastically drops when uncertainty increases. In detail, a one 

standard deviation increase in uncertainty reduces patent activity of about the 40 percent five 

years after the shock. We test the robustness of our findings using various techniques, 

including an IV approach to address potential endogeneity concerns.  

Moreover, we show that the negative impact that uncertainty exerts on the production 

of green innovation may be nullified if a country adopts stringent environmental policy, as the 

 
6 The difference, however, is not statistically significant given the very large confidence bands associated with 

the effect of uncertainty during periods of reduction in the stringency of environmental protection legislation 

(Table 1.3). 
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latter may reduce uncertainty about future returns of innovation. The same result is achieved 

in case of countries experiencing positive economic growth or suffering less from financial 

stress.  

             Overall, our results provide novel insights into the debate about tools to stimulate the 

production of renewable energy, to fight climate change and to facilitate the transition to a 

greener economy. Moreover, we disclose useful recommendations for policy-makers in terms 

of drivers to stimulate green innovation. In this view, future research may be dedicated to 

further analyzing different policy instruments, e.g., subsidiaries to green R&D vs. tax to 

emissions, that may efficiently stimulate green innovation and contrast negative effects of 

uncertainty. 
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Figures 

 

Figure 1.1. Evolution of patents by sectors and technologies 
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Figure 1.2 Evolution of patents by country 

 

 

Notes: The chart show the share of new renewable energy patents by country for top 10 countries with 

higher average share over the 2000-2021. All the other 54 countries in our sample are grouped together. 
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Figure 1.3. Global World Uncertainty Index (WUI) over time 

 

 

Source: Ahir et a., (2022). Note. Left scale: number of times uncertain (or the variant) is mentioned in EIU country 

reports per thousand words. Right scale: number of times uncertain (or the variant) is mentioned in EIU country 

reports per thousand words multiplied by 100,000. A higher number means higher uncertainty and vice versa. see 
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Figure 1.4. The impact of uncertainty on renewable energy patents – baseline 

 

Notes: The graph shows the response of the number of new renewable energy patents (in %) 

to one-standard deviation increase in uncertainty and 90 percent confidence bands. Impulse 

response functions are estimated using a sample of 64 countries over the period 2000-2021. 

The x-axis shows years (k) after the shock; t = 0 is the year of the shock. Estimates based on 

equation (1.1). 
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Figure 1.5. The impact of uncertainty on renewable energy patents – by sectors 

 

 

Notes: The graph shows the response of the number of new renewable energy patents (in %) to one-standard 

deviation increase in uncertainty and 90 percent confidence bands. Impulse response functions are estimated 

using a sample of 64 countries over the period 2000-2021. The x-axis shows years (k) after the shock; t = 0 is 

the year of the shock. Estimates based on equation (1.1) for each sector. 
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Figure 1.6. The impact of uncertainty on renewable energy patents – by technologies 

 

 

Notes: The graph shows the response of the number of new renewable energy patents (in %) to one-standard deviation increase in uncertainty 

and 90 percent confidence bands. Impulse response functions are estimated using a sample of 64 countries over the period 2000-2021. The 

x-axis shows years (k) after the shock; t = 0 is the year of the shock. Estimates based on equation (1.1) for each technology. 
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Figure 1.7. Robustness checks – additional controls 

                     Baseline + Financial stress  Baseline + GDP growth  

 

                             Baseline + Inflation                      Baseline + oil price growth  

 

                               Baseline + all previous controls  

 

 

Notes: The graph shows the response of the number of new renewable energy patents (in %) to one-standard 

deviation increase in uncertainty and 90 percent confidence bands. Impulse response functions are estimated 

using a sample of 64 countries over the period 2000-2021. The x-axis shows years (k) after the shock; t = 0 is 

the year of the shock. Estimates based on equation (1.1) adding each control variable once at a time and all 

together.  
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Figure 1.8. Robustness checks – controlling for outliers 

 

Excluding observations above the 99th and below the 1st percentile of renewable energy patents 

(log) 

 

Excluding observations above the 95th and below the 5th percentile of renewable energy patents 

(log) 

 

 

Notes: The graph shows the response of the number of new renewable energy patents (in %) to one-standard 

deviation increase in uncertainty and 90 percent confidence bands. Impulse response functions are estimated 

using a sample of 64 countries over the period 2000-2021. The x-axis shows years (k) after the shock; t = 0 is 

the year of the shock. Estimates based on equation (1.1) excluding, alternatively, observations above the 99th 

(95th) and below the 1st (5th) percentile of renewable energy patents (log).  
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Figure 1.9. Robustness checks – excluding GFC and COVID-19 

 

Notes: The graph shows the response of the number of new renewable energy patents (in %) to one-standard 

deviation increase in uncertainty and 90 percent confidence bands. Impulse response functions are estimated 

using a sample of 64 countries over the period 2000-2021. The x-axis shows years (k) after the shock; t = 0 is 

the year of the shock. Estimates based on equation (1.1) excluding 2008 and 2020 from the estimation period. 
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Figure 1.10. Robustness checks – different lag structure 

 

 
 

Notes: The graph shows the response of the number of new renewable energy patents (in %) to one-standard 

deviation increase in uncertainty and 90 percent confidence bands. Impulse response functions are estimated 

using a sample of 64 countries over the period 2000-2021. The x-axis shows years (k) after the shock; t = 0 is 

the year of the shock. Estimates based on equation (1.1) using three lags of the dependent variable and the WUI 

as controls. 
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Figure 1.11. The impact of uncertainty on renewable energy patents by levels of development 

 

High-Income economies (HI) 

 

Low- and Middle-income economies (LMI) 

 

Notes: The graph shows the response of the number of new renewable energy patents (in %) to one-standard 

deviation increase in uncertainty and 90 percent confidence bands. Impulse response functions are estimated 

using a sample of 64 countries over the period 2000-2021. The x-axis shows years (k) after the shock; t = 0 is 

the year of the shock. Estimates based on equation (1.1) for subsamples of High-Income vs Low- and Middle-

income economies. See Table 1.A1 in the Appendix for country group classification. 
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Figure 1.12. The impact of uncertainty on renewable energy patents – Instrumental variable 

results 
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Figure 1.13. The impact of uncertainty on renewable energy patents – non-linear effects 

 

GDP Growth 

 
Financial Stress 

 

Environmental Policy stringency 

 

Notes: The graph shows the response of the number of new renewable energy patents (in %) to one-standard 

deviation increase in uncertainty and 90 percent confidence bands. Impulse response functions are estimated 

using a sample of 64 countries over the period 2000-2021. The x-axis shows years (k) after the shock; t = 0 is 

the year of the shock. Estimates based on equation (1.2) using Environmental Policy stringency index, GDP 

growth and financial stress as state variable. 
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Figure 1.14. The impact of the OECD environmental stringency index on renewable energy 

patents 

 

 

Notes: Impulse response functions are estimated using a sample of 64 countries over the period 2000-2021. The 

graph shows the response and 90 percent confidence bands. The x-axis shows years (k) after the shock; t = 0 is 

the year of the shock. Estimates based on equation (1.1) using the change in the OECD environmental 

stringency index as shock variable 3nstead of WUI. 
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Tables 

 

Table 1.1. The impact of uncertainty on renewable energy patents – baseline 

 

      k=0   k=1   k=2   k=3   k=4   k=5 

       

 WUIit -10.37*** -19.538*** -29.968*** -19.475*** -29.105*** -45.005*** 

   (2.249) (5.208) (6.096) (5.443) (5.933) (9.096) 

 WUIit-1 -8.11*** -15.78*** -2.046 -16.267*** -27.258*** -12.472* 

   (2.882) (5.591) (4.922) (4.289) (6.855) (7.349) 

 WUIit-2 -1.764 -5.001 -18.999*** -23.386*** -10.619 -10.559 

   (3.395) (4.093) (6.563) (7.871) (7.944) (8.798) 

Patents (log)it-1 -.248*** -.248*** -.257*** -.211* -.449** -.349*** 

 (.07) (.08) (.091) (.114) (.171) (.105) 

Patents (log)it-2 -.065 -.013 .066 -.125 -.122 -.122 

   (.053) (.068) (.087) (.138) (.114) (.105) 

       

 Observations 1008 964 901 842 780 717 

 R-squared 0.106 0.142 0.15 0.159 0.200 0.214 

Note: k=0 is the year of the shock. k=1,2,3,4,5 are the years after the shock. Estimates based on equation (1.1). Robust standard 

errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Country-specific time trends included but not reported. 

 

Table 1.2.  The impact of uncertainty on renewable energy patents – Instrumental Variable 

 

First stage k=0 k=1 k=2 k=3 k=4 k=5 

              

Instrument 0.366*** 0.357*** 0.377*** 0.437*** 0.445*** 0.627*** 

 (0.026) (0.027) (0.035) (0.042) (0.048) (0.067) 

       

 IV results k=0 k=1 k=2 k=3 k=4 k=5 

              

WUIit 

-

12.951*** 

-

28.198*** 

-

58.128*** 

-

44.661*** 

-

92.376*** 

-

80.137*** 

 (3.802) (5.684) (9.321) (9.832) (14.151) (13.345) 

WUIit-1 -0.682 3.564 18.655*** 5.608 19.728** 13.242* 

 (2.390) (3.574) (5.516) (5.834) (8.237) (7.300) 

WUIit-2 -1.060 -4.272 

-

11.845*** 

-

14.047*** -6.985 -9.573* 

 (1.833) (2.755) (3.643) (3.990) (5.405) (5.396) 

Patents (log)it-1 -0.250*** -0.269*** -0.317*** -0.227** -0.560*** -0.518*** 

 (0.041) (0.061) (0.084) (0.094) (0.124) (0.131) 

Patents (log)it-2 -0.061 -0.001 0.103 -0.099 -0.106 -0.162 

 (0.040) (0.060) (0.083) (0.089) (0.121) (0.124) 

       

Observations 865 823 768 717 663 608 

KleibergenPaap_rk_Wald_F_statis

tic 191.9 180 114.7 108.5 85.48 86.96 
Note: k=0 is the year of the shock. k=1,2,3,4,5 are the years after the shock. IV first stage estimates based on equation (1.1) 

in the main text. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Country-specific time trends 

included but not reported. The Kleibergen–Paap rk Wald F-statistic tests for weak identification. 
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Table 1.3.  F-tests difference 

 

 F-test difference 

 k=0 k=1 k=2 k=3 k=4 k=5 

GDP Growth 10.61*** 7.41*** 0.13 2.49 0.07 0.02 

Financial Stress 4.53** 4.95** 1.78 2.13 0.07 0.06 

       

Change in EPS 0.18 0.03 0.002 0.01 0.60 0.65 

       

*** p<0.01, ** p<0.05, * p<0.1. The F-test of the difference between the estimations in the case of low and high 

regime of the interaction variable with the WUI—(See Figure 1.14). 
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Appendix 1 

 

Table 1. A1. List of the countries included in the analysis and descriptive statistics - renewable 

energy patents (in log) 

 

Country CG N mean sd min max 

Argentina HI 17 4.91 0.40 4.30 5.49 

Australia HI 18 7.43 0.41 6.58 8.12 

Austria HI 18 5.69 1.16 2.48 7.00 

Belgium HI 18 3.46 0.72 1.61 4.47 

Brazil LMI 18 6.96 0.80 4.36 7.76 

Bulgaria LMI 18 2.77 0.43 1.95 3.50 

Canada HI 18 7.73 0.52 5.90 8.15 

Chile HI 12 5.30 0.52 4.14 5.81 

China LMI 18 10.47 1.10 8.41 11.86 

Colombia LMI 14 3.73 0.93 1.61 4.70 

Costa Rica LMI 14 2.33 0.80 0.69 3.40 

Croatia HI 18 3.73 1.01 2.40 5.06 

Czech Republic HI 18 4.15 0.41 3.47 4.89 

Denmark HI 18 6.15 0.88 3.61 7.08 

Dominican Republic LMI 8 1.92 0.40 1.39 2.30 

Ecuador LMI 15 2.41 0.89 0.00 3.91 

Egypt LMI 10 3.02 1.06 1.10 4.08 

Finland HI 18 4.29 0.49 3.33 4.95 

France HI 18 7.00 0.75 4.60 7.68 

Georgia LMI 14 1.78 0.52 0.69 2.64 

Germany HI 18 8.77 0.40 7.81 9.21 

Greece HI 18 3.78 0.60 2.64 4.68 

Guatemala LMI 8 1.61 0.77 0.00 2.48 

Honduras LMI 2 0.80 1.14 0.00 1.61 

Hong Kong SAR HI 17 5.26 0.78 3.18 6.45 

Hungary HI 18 4.47 1.04 1.61 5.48 

India LMI 13 3.03 2.25 1.10 7.14 

Ireland HI 14 2.22 0.97 0.69 4.06 

Israel HI 18 5.47 0.65 4.11 6.26 

Italy HI 17 5.50 1.03 2.30 6.58 

Japan HI 18 9.80 0.54 7.81 10.28 

Jordan LMI 12 1.26 0.83 0.00 2.64 

Korea HI 18 9.21 0.60 8.07 9.71 

Latvia HI 17 1.94 0.45 0.69 2.56 

Lithuania HI 18 2.88 1.29 0.00 4.34 

Malaysia LMI 13 4.77 0.72 3.53 5.72 

Mexico LMI 17 6.22 0.86 3.58 6.90 

Moldova LMI 18 2.54 0.87 0.00 3.58 

Morocco LMI 17 4.15 0.82 3.00 5.27 

Netherlands HI 18 4.76 0.66 2.56 5.41 

New Zealand HI 17 4.69 1.39 1.10 5.98 

Nicaragua LMI 4 1.27 1.11 0.00 2.30 

Norway HI 18 4.90 0.49 3.61 5.55 

Panama HI 7 0.61 0.46 0.00 1.10 

Peru LMI 18 3.43 0.87 1.39 4.38 

Philippines LMI 7 5.48 0.34 4.97 5.84 

Poland HI 18 5.98 0.91 3.04 6.77 

Portugal HI 17 5.29 0.71 3.14 5.99 

Romania LMI 18 3.90 0.75 2.20 4.98 

Russia LMI 18 7.01 0.47 5.79 7.52 

Saudi Arabia HI 6 1.69 0.74 0.69 2.56 
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Singapore HI 18 5.39 1.02 3.18 6.55 

Slovak Republic HI 18 3.01 0.71 1.39 3.81 

Slovenia HI 17 4.20 0.71 2.48 5.09 

South Africa LMI 18 5.61 0.69 3.76 6.51 

Spain HI 18 6.93 0.76 4.98 7.71 

Sweden HI 18 4.52 0.47 3.37 5.02 

Switzerland HI 18 4.19 0.80 2.56 5.02 

Tunisia LMI 17 2.98 1.37 0.00 4.37 

Turkey LMI 18 4.08 0.61 2.71 4.88 

Ukraine LMI 17 5.05 0.63 3.04 5.74 

United Kingdom HI 18 6.91 0.44 5.84 7.30 

United States HI 18 9.94 0.46 9.00 10.34 

Uruguay HI 18 2.35 0.91 0.00 3.74 

Whole sample - 1008 4.88 2.32 0.00 11.86 

Note: CG indicates the country group. HI indicates High income economies; LMI indicates low- and middle-

income economies 
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Table 1. A2. Descriptive statistics – World Uncertainty Index (WUI) 

 

Country CG N mean sd min max 

Argentina HI 17 0.33 0.19 0.15 0.85 

Australia HI 18 0.16 0.10 0.02 0.31 

Austria HI 18 0.18 0.13 0.03 0.40 

Belgium HI 18 0.14 0.09 0.03 0.36 

Brazil LMI 18 0.33 0.26 0.05 1.09 

Bulgaria LMI 18 0.20 0.15 0.05 0.62 

Canada HI 18 0.17 0.10 0.03 0.47 

Chile HI 12 0.20 0.14 0.00 0.44 

China LMI 18 0.11 0.11 0.00 0.35 

Colombia LMI 14 0.22 0.09 0.09 0.38 

Costa Rica LMI 14 0.16 0.11 0.00 0.36 

Croatia HI 18 0.14 0.09 0.03 0.40 

Czech Republic HI 18 0.18 0.08 0.04 0.30 

Denmark HI 18 0.21 0.12 0.05 0.47 

Dominican Republ LMI 8 0.18 0.13 0.09 0.48 

Ecuador LMI 15 0.31 0.19 0.12 0.76 

Egypt LMI 10 0.14 0.21 0.00 0.70 

Finland HI 18 0.14 0.14 0.00 0.46 

France HI 18 0.21 0.09 0.07 0.38 

Georgia LMI 14 0.24 0.23 0.00 0.76 

Germany HI 18 0.23 0.15 0.04 0.62 

Greece HI 18 0.18 0.15 0.00 0.42 

Guatemala LMI 8 0.17 0.08 0.05 0.29 

Honduras LMI 2 0.14 0.07 0.09 0.18 

Hong Kong SAR HI 17 0.10 0.08 0.00 0.25 

Hungary HI 18 0.21 0.14 0.04 0.49 

India LMI 13 0.08 0.06 0.00 0.21 

Ireland HI 14 0.32 0.27 0.07 1.09 

Israel HI 18 0.18 0.08 0.07 0.40 

Italy HI 17 0.25 0.13 0.02 0.46 

Japan HI 18 0.17 0.08 0.05 0.33 

Jordan LMI 12 0.05 0.05 0.00 0.17 

Korea HI 18 0.23 0.14 0.06 0.50 

Latvia HI 17 0.19 0.10 0.03 0.42 

Lithuania HI 18 0.16 0.12 0.00 0.50 

Malaysia LMI 13 0.15 0.14 0.00 0.50 

Mexico LMI 17 0.29 0.16 0.03 0.66 

Moldova LMI 18 0.30 0.24 0.02 0.85 

Morocco LMI 17 0.07 0.05 0.00 0.19 

Netherlands HI 18 0.20 0.12 0.02 0.41 

New Zealand HI 17 0.15 0.11 0.02 0.37 

Nicaragua LMI 4 0.27 0.09 0.15 0.35 

Norway HI 18 0.21 0.15 0.04 0.58 

Panama HI 7 0.10 0.06 0.03 0.20 

Peru LMI 18 0.24 0.14 0.00 0.56 

Philippines LMI 7 0.16 0.07 0.06 0.25 

Poland HI 18 0.25 0.11 0.06 0.47 

Portugal HI 17 0.19 0.10 0.03 0.38 

Romania LMI 18 0.19 0.10 0.07 0.44 

Russia LMI 18 0.26 0.10 0.04 0.48 

Saudi Arabia HI 6 0.13 0.06 0.08 0.23 

Singapore HI 18 0.08 0.06 0.00 0.25 

Slovak Republic HI 18 0.13 0.08 0.02 0.27 

Slovenia HI 17 0.15 0.11 0.00 0.37 

South Africa LMI 18 0.54 0.38 0.06 1.34 

Spain HI 18 0.24 0.11 0.05 0.44 
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Sweden HI 18 0.21 0.12 0.03 0.42 

Switzerland HI 18 0.28 0.24 0.06 0.82 

Tunisia LMI 17 0.27 0.25 0.01 0.75 

Turkey LMI 18 0.31 0.15 0.14 0.72 

Ukraine LMI 17 0.27 0.13 0.07 0.62 

United Kingdom HI 18 0.43 0.30 0.15 1.18 

United States HI 18 0.23 0.12 0.06 0.54 

Uruguay HI 18 0.21 0.13 0.03 0.45 

Whole sample - 1008 0.21 0.17 0.00 1.34 

Note: CG indicates the country group. HI indicates High income economies; LMI indicates low- and middle-

income economies 
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Table 1. A3.  Instrumental Variable – robustness check (WUSI-USA) 

 

First stage k=0 k=1 k=2 k=3 k=4 k=5 

  
      

Instrument 0.281*** 0.280*** 0.273*** 0.255*** 0.242*** 0.330*** 

 (0.029) (0.029) (0.031) (0.036) (0.040) (0.054) 

       

 IV results k=0 k=1 k=2 k=3 k=4 k=5 

  
      

WUIit 

-

13.032*** 

-

34.450*** 

-

62.456*** 

-

72.358*** 

-

132.590**

* 

-

73.739*** 

 (4.662) (7.514) (10.465) (15.272) (25.435) (18.355) 

WUIit-1 -1.181 1.990 19.607*** 17.932** 36.506*** 12.444 

 (2.541) (4.052) (5.750) (7.736) (12.643) (8.485) 

WUIit-2 
-0.585 -1.475 -9.161*** 

-

13.295*** 
-4.713 -7.318 

 (1.616) (2.607) (3.337) (4.082) (6.167) (4.779) 

Patents (log)it-1 -0.264*** -0.290*** -0.339*** -0.326*** -0.649*** -0.490*** 

 (0.039) (0.062) (0.083) (0.106) (0.155) (0.136) 

Patents (log)it-2 -0.072* -0.031 0.052 -0.127 -0.103 -0.142 

 (0.038) (0.061) (0.082) (0.102) (0.154) (0.124) 

 
      

Observations 990 946 884 826 765 703 

KleibergenPaap_rk_Wald_F_stati

stic 
97.26 90.35 79.20 50.84 36.05 37.58 

Note: k=0 is the year of the shock. k=1,2,3,4,5 are the years after the shock. IV first stage estimates based on equation (1.1) 

in the main text. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Country-specific time trends 

included but not reported. The Kleibergen–Paap rk Wald F-statistic tests for weak identification. 
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Table 1. A4.  Instrumental Variable – robustness check (WUSI-USA+UK) 

 

First stage k=0 k=1 k=2 k=3 k=4 k=5 

  
      

Instrument 0.340*** 0.335*** 0.341*** 0.368*** 0.363*** 0.518*** 

 (0.025) (0.025) (0.031) (0.038) (0.044) (0.067) 

       

 IV results k=0 k=1 k=2 k=3 k=4 k=5 

  
      

WUIit 

-

9.567*** 

-

22.516*** 

-

64.075*** 

-

55.274*** 

-

116.957*** 

-

95.766*** 

 (3.626) (5.524) (9.258) (10.883) (17.783) (16.905) 

WUIit-1 -2.926 -2.262 19.970*** 9.803 31.192*** 20.497** 

 (2.215) (3.372) (5.350) (6.060) (9.559) (8.196) 

WUIit-2 
-0.969 -2.689 -9.651*** 

-

11.711*** 
-4.713 -7.988 

 (1.671) (2.570) (3.496) (3.915) (5.721) (5.427) 

Patents (log)it-1 

-

0.257*** 
-0.268*** -0.339*** -0.287*** -0.615*** -0.546*** 

 (0.039) (0.059) (0.083) (0.095) (0.137) (0.146) 

Patents (log)it-2 -0.068* -0.018 0.054 -0.124 -0.097 -0.148 

 (0.038) (0.058) (0.082) (0.092) (0.139) (0.137) 

 
      

Observations 972 928 867 810 750 689 

KleibergenPaap_rk_Wald_F_statis

tic 
191.8 182.8 118.2 94.52 67.26 60.27 

Note: k=0 is the year of the shock. k=1,2,3,4,5 are the years after the shock. IV first stage estimates based on equation (1.1) 

in the main text. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Country-specific time trends 

included but not reported. The Kleibergen–Paap rk Wald F-statistic tests for weak identification 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

Chapter 2 

 

Environmental Policies and Innovation in Renewable Energy 

 

2.1. Introduction 

 

The fight against climate change is a key global priority to ensure a healthy planet and 

guarantee a sustainable future. Countries must commit to drastically reduce emissions to 

stabilize global temperatures and ease the green transition, as put forward by numerous 

international agreements, e.g., the United Nations (UN) 2030 Agenda for Sustainable 

Development. In the path towards a greener economy, a key role is played by innovation, as 

technological advancements may reduce the cost of renewable energy production and facilitate 

the adoption of green energy worldwide (UNEP, 2011; World Bank, 2021). In addition, green 

innovation and diversification of energy sources may help economies to better cope with 

shocks due to climate change, thus favoring economic resilience.  

          However, innovation is both money- and time-expensive. It requires investing in 

projects with unpredictable returns, particularly in sectors where benefits tend to materialize 

over time, such as the renewable energy sector (Slawinski et al., 2017). As established in the 

literature, innovation responds to different drivers, such as the existence of localized 

competences (Storper, 1997), specialized human capital (Davies, 1996), the ability of firms to 

exploit changing market conditions (Porter, 1996), and also economic and policy uncertainty. 

As discussed in the previous chapter, government regulations and policies may also affect the 

production of innovation (Ashford, 2000; Acemoglu et al., 2012). Although we found that 

more stringent environmental policies tend to cushion the negative effects of uncertainty on 

green patenting (thus spurring green innovation), the theoretical effect that such kind of 

policies may exert on the creation of new knowledge is ambiguous. One the one hand, 

environmental regulations may impose additional burdens on firms and weaken the incentives 
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of economic agents to invest and innovate (Dechezleprêtre and Sato, 2017). On the other hand, 

public policies may positively affect innovation, both when interventions are directly targeted 

to foster innovative activities, e.g., credit and subsidies to R&D, and indirectly when they aim 

to reduce detrimental production’s techniques, thus stimulating a firms’ willingness to change 

and innovate. Moreover, as noted by Popp (2010) environmental policies may increase the 

demand for clean energy that further incentivizes firms to invest in green technologies, as 

expected returns from green innovation would exceed investment costs. 

         The relationship between environmental policies and green innovation can be further 

conceptualized through the Porter Hypothesis. This hypothesis suggests that well-designed 

environmental regulations can stimulate innovation that may partially or more than fully offset 

the costs of complying with these regulations. Porter's Hypothesis posits that stringent but 

flexible environmental regulations can encourage firms to innovate, leading to the 

development of new technologies, products, or processes that not only reduce environmental 

harm but also enhance competitiveness and efficiency.  

The empirical evidence on the role of policies in facilitating green innovation is so far 

limited. Nesta et al., (2014) ; Hille et al., (2020) ; Johnstone et al., (2010) ; and Wang et al., 

(2022) show that renewable energy policies may contribute to stimulate technological 

advancements in different green sectors, such as solar and wind in the US, Europe and some 

other OECD economies. Zhang et al., (2022) extend this finding to a larger set of 33 OECD 

and non-OECD economies. Our paper contributes to this literature by investigating the 

dynamic response of green innovation to climate change policies (CCPs), for a sample of 40 

advanced and emerging countries, over the period 2000-2021. We use the Environmental 

Policy Stringency Index (EPS), provided by the OECD, to measure the extent to which 

countries implement CCPs. In terms of green innovation, we consider the number of new 

patents related to green technologies—classified by country, year, and sector of application 
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(industry, building, power, transport and waste)—using the IRENA (2022) database.7As a 

result, our final dataset is composed of 4,400 observations: 40 countries, 5 sectors, and 22 

years.   

Our empirical analysis consists of four main steps. In the first step, we analyze the 

dynamic macro-level response of green patents to an increase in the stringency of CCPs. In so 

doing, we employ the local projection approach, proposed by Jordà (2005), to estimate the 

evolution of green patent applications following an increase in the degree of stringency of 

CCPs. Our results show that CCPs increase green patents, with the effect that gradually 

increases over time. This effect, however, varies across types of CCPs and is positive and 

statistically significant only in case of non-market-based policies—such as emission limits and 

R&D subsidies—and technology-support policies.8 In the next step, we try to address possible 

endogeneity issues due the reverse causality. Indeed, countries may be more prone to 

implement CCPs when green innovation is weak, implying that the OLS estimates would be 

biased towards zero and therefore underestimate the “true” effect of CCPs on green innovation. 

To address this issue, we follow Furceri et al., (2022) and use an instrumental variable (IV) 

strategy that exploits cross-sectional variation in the probability of a country to implement 

CCPs—due to its exposure to climate risks—and time-varying variation in climate-related 

events at the global level.  

 In the third step, we allow the response of green innovation to CCPs to be state-

dependent and vary across countries and with economic conditions. In particular, the literature 

suggests that innovation is lower in countries with more limited product market competition 

and during periods of high economic uncertainty (Bloom et al., 2012), financial stress, and 

weak demand (Kopytov et al., 2018). Following this literature, we examine whether these 

 
7 See Table 2.A1 in the Appendix for more information about economic sectors.  
8 OECD distinguishes between market, non-market based and technology-support CCPs. For details about CCPs’ 

classification see Botta and Koźluk, (2014) and Kruse et al., (2022). 
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characteristics also affect the response of green innovation to CCPs, using a local projection 

smooth transition approach (Auerbach and Gorodnichenko, 2013).  

Finally, we extend the analysis at the sectoral level using a difference-in-differences 

approach (Rajan and Zingales, 1998) based on the theoretical assumption that CCPs have 

weaker effects in fostering innovation for sectors that face tighter financial constraints (Bloom, 

2009; Alfaro et al., 2022). Our difference-in-differences approach includes a constellation of 

fixed effects, and therefore effectively control for country- and sector-specific time varying 

unobserved factors. In particular, country-time fixed effects absorb any unobserved cross-

country heterogeneity in macroeconomic conditions that could be correlated with CCPs and 

affect the innovation process in the same way across sectors. This would not be possible in a 

cross-country time-series setting, that would leave open the possibility that the impact 

attributed to CCPs could be due to other unobserved factors. Therefore, this approach further 

strengthens the identification of the causal effect of CCPs on innovation. 

Our contribution to the literature is threefold. First, the use of a dynamic setting is a 

crucial improvement with respect to previous studies, as the production of innovation is 

expected to react to policy changes only gradually. Moreover, patenting activity, our proxy for 

innovation, requires technical time before being recognized by official data (Ascani et al., 

2020). By analyzing the evolution of green patents over time, we account for the temporal gap 

between the adoption of CCPs and innovation output. Second, we show that the response of 

green innovation to policies is larger in countries with greater product market competition and 

it is magnified in periods of stronger economic activity. This result has important policy 

implications, as it highlights the importance of identifying the right timing to implement CCPs 

(that is, “fix the roof when the sun is shining”) as well as the role of complementary policy to 

strengthen economic activity at the time of CCPs’ implementation. In addition, the results also 

have implications for models analyzing the economic effect of CCPs and suggest that these 
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models should generate a higher sensitivity in the response of green innovation during 

economic expansions. Finally, we strengthen the causal identification of CCPs using IV and 

sectoral difference-in-differences approaches.  

The remaining of the paper is organized as follows. Section 2.2 presents an overview of 

the literature. Section 2.3 presents the data used in the empirical analysis. Section 2.4 examines 

the response of green innovation at the macro level. Section 2.5 focuses on the sectoral 

difference-in-differences analysis. Section 2.6 concludes by summarizing the main results and 

the policy implications.  

2.2 Literature Review 

 

In last decades, and particularly since 2000, many governments around the world have 

substantially expanded environmental regulation with the aim to reduce carbon emissions and 

facilitate the green transition (OECD, 2021). It is, therefore, not surprising that there has been 

a revival in the economic literature looking at the effect of CCPs on several measures of 

economic activity—such as productivity (Albrizio et al., 2017), employment (Dechezleprêtre 

et al., 2020) domestic investment (Dlugosch and Koźluk, 2017), foreign direct investment 

(Dlugosch and Koźluk, 2020), and international trade (Koźluk and Timiliotis, 2016).  

The literature has also examined the effect of CCPs on innovation both theoretically 

and empirically. From a theoretical point of view, Xepapadeas and Zeeuw, (1998) show that 

the net effect of green policies on innovation is ambiguous a priori and depends on the relative 

strength of two opposite channels: downsizing and modernization. The first channel suggests 

that environmental policies are likely to increase firms’ input costs (e.g., energy) and, thereby, 

reduce investment including those related to innovation (Zhao et al., 2022). The second 

channel—based on the “Porter Hypothesis” (Porter and Van der Linde, 1995)—predicts that 

the associated increase in energy costs may induce firms to modernize their production 

techniques and switch to a more energy-efficient production process. Popp et al., (2010) show 
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that, as demand for clean energy sources increases following CCPs adoption, green innovation 

is likely to expand due to higher investment returns.  

From an empirical standpoint, Johnstone et al., (2010)  based on a panel of OECD 

countries, find that public policy stimulates innovation in the renewable energy sectors, with 

the effectiveness of different types of policy varying according to technologies, based on 

power generation costs. Nesta et al., (2014) analyze the interplay between green policy and 

market competition in a sample of 27 OECD countries, during the period 1976-2007, showing 

that energy policies generate a stronger effect on green innovation in case of more competitive 

energy markets. Hille et al., (2020) and Kim et al., (2017) focus on solar and wind technologies 

and differentiate between policy instruments. They find that policies incentivize technological 

advancements, particularly in case of R&D support programs and fiscal incentives. A recent 

study of Wang et al., (2022)  focusing on China between 2008 and 2019, shows that different 

policies issued by the government significantly stimulate firms’ green innovation. A positive 

effect of environmental regulation on green innovation is also found by Li and Shao, (2021) 

who analyze OECD countries over the period 1990-2015. Bel and Joseph, (2018) show a 

positive link between the enhancement of policy strictness and more green innovation in the 

European Union. Zhang et al., (2022) use the OECD environmental policy stringency index 

to evaluate the impact of environmental regulatory frameworks in 33 OECD and non-OECD 

countries and find that an increase in the stringency of CCPs positively affects green 

innovation, particularly for geothermal, hydro and marine energy, and in case non-marked 

based CCPs. Moreover, they find that the effects of policy are magnified in case of countries 

characterized by high innovation capacity, economic development and level of emissions. Few 

studies, particularly focusing on the US, have associated more stringent environmental policies 

to a downsizing effect and a reduction of green investment and innovation (Greenstone, 2002; 

Nelson et al., 1993).  
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We extend this literature in several ways. We extend the sample of analysis compared 

to previous studies, considering 40 advanced and merging market economies, and data up to 

2021. We use a dynamic empirical setting that allows us to analyze the short- and medium-

term response of green innovation to stringent CCPs. More importantly, we extensively 

improve the identification strategy by using an IV-approach and a 3-dimensional setting 

including a comprehensive battery of fixed effects. Finally, we recognize that other factors 

may affect the production of new green technologies and mediate the link between 

environmental policies and innovation, particularly economic and financial conditions. 

Among drivers of investment and innovations, the literature has long recognized the role of 

political and economic uncertainty (Bernanke, 1983; Dixit et al., 1994; Bloom, 2009; 

Caggiano et al., 2017; Ahir et al., 2022). In fact, uncertainty reduces investment, since rational 

agents hold back their investment decisions when uncertainty is high (Bloom, 2009). This 

argument is consistent with the real options theory (Myers, 1977), according to which firms 

postpone decisions that are costly to reverse under uncertain conditions (Dixit et al., 1994; 

Bernanke, 1983; Bloom, 2009; Bloom et al., 2012). In line with these arguments, we expect 

that the effect of CCPs on green innovation is larger during periods of low uncertainty, 

measured using the World Uncertainty Index by Ahir et al., (2022).  

Another aspect identified by the literature as relevant for investment and innovation is 

the health of the financial system. In fact, access to finance represents one of the most serious 

barriers to firms’ innovative activity and growth (Choi et al., 2018). A rise in the cost of 

intermediation (i.e., episodes of financial distress) reduces the capacity of financial institutions 

to extend loans, the supply of credit and may negatively affect investment in green innovations 

that are characterized by extremely uncertain and skewed returns (Cecere et al., 2020). We use 

the Romer and Romer, (2017) measure of financial stress to proxy the health of the financial 

system of countries.  
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Similarly, investment in innovation is expected to be procyclical, with expenditures in 

R&D (and then patents) increasing during macroeconomic booms and decreasing during 

recessions (Griliches, 1990; Geroski and Walters, 1995; Fatas, 2000; Comin and Gertler, 2006; 

Kopytov et al., 2018). Thus, we expect that the effect of CCPs is larger during periods of 

economic expansions.   

Finally, there exists a long-standing debate in the literature linking innovation to 

economic competition (Schumpeter, 1942) even if theoretical predictions about the effect of 

the latter on the former are mixed. On the one hand, competition may be detrimental for 

innovation, as monopolistic firms face less market uncertainty and are more prone to invest in 

innovative activities (Cohen and Levin, 1989). On the other hand, high competition forces 

firms to invest and innovate in order to survive (Aghion and Howitt, 1998). In fact, when 

product market competition between firms is intense, the incentive of firms to increase their 

technological lead over rivals is higher (Autor et al., 2020). Recent empirical studies mostly 

disclose a positive effect of competition on both investments and innovation (Ahn, 2002; 

Aghion et al., 2022; Cappelli et al., 2023). We consider an indicator of product market 

regulation as a potential factor mediating the effect of CCPs on green innovation. The 

indicator—that we expect to positively mediate the effect of CCPs—identifies country-level 

real sector reforms affecting pro-competition regulation in the markets for goods and services 

(Alesina et al., 2023). 

2.3. Data 

 

This section describes the data used to measure green innovation and the stringency of Climate 

Change Policies (CCPs). The Annex provides additional information regarding the coverage 

(i.e., time, country and sector), as well as descriptive statistics of all the variables employed in 

the empirical analysis (Tables 2.A1-2.A4).  
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2.3.1. Green Innovation 

 

We measure green innovation by counting the number of new patents related to green 

technologies, classified by country, sector and year. Though not perfect, patents are usually 

considered as the best proxy for innovation output, as patented inventions possess adequate 

standards of originality to be considered as a good proxy for innovation (Jaffe et al., 1993; 

Aghion et al., 2015; Ascani et al., 2020; Acs et al., 2002; Jaffe, 2000).  

Our green patents data are retrieved from the International Renewable Energy Agency 

(IRENA) dataset, which provides information about 140 thousand patents filed for renewable 

energy worldwide, classified by 6 economic sectors, for a sample of 64 economies during the 

period 2000-21.9 We restrict the sample to the 40 countries for which we also have information 

about CCPs, and to the 5 sectors that can be associated with NAICS codes, i.e., Industry, 

Transport, Building, Waste and Power.10  In the period under analysis (2000-2021), the overall 

number of new patents has grown by five times, from about 50 to 250 thousand, experiencing 

a sudden stop due to the COVID-19 crisis. Prior to the crisis, the most dynamic sector in term 

of new patents was the power sector, accounting for about a half of total new patents, followed 

by the transport sector. Marginal and with similar evolution are the number of new patents in 

the other sectors such as Building, Industry, and Waste.  

Figure 2.1 shows the dynamic evolution of new renewable energy patents’ shares 

(computed using total patents for the countries included in our sample) for the top 10 countries 

with higher average shares over 2000-2021. Three key facts emerge. First, the top 10 innovator 

 
9 The IRENA dataset collects information on patents related to renewable energy and filed to the European Patent 

Office (EPO). Data refers to published patents and are provided to EPO by national statistical offices. Sectors of 

application of patents are retrieved from the Climate Change Mitigation Technologies (Y02) classification, provided 

by EPO, and reported in the IRENA dataset. Patents are assigned to countries according to the residence of inventors. 

Thus, a patent could be allocated to more than one country at the same time. 
10 See Table 2.A1, in the Appendix, for details about the way we assign a NAICS code to IRENA sectors. We exclude 

the CCUS (Carbon Capture, Usage and Storage) sector because it does not directly correspond to NAICS 

classification. However, that sector accounts for less than the 1% of green patenting activity of countries, across our 

sample.   
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countries account for more than 90 percent of the total number of the new patents, with the 

share of “all other countries” shrinking year-by year. Second, the relative importance of China 

skyrocketed in the latest years prior to COVID-19. China’s share increased from about 6 

percent in 2000 to about 65 percent in 2019, while that of Japan steadily dropped to about 7 

percent in 2019 (declining 30 percentage points from 2000). Third, the relative importance of 

the US and Korea has remained quite constant, with values in the range of 15-20 percent and 

6-10 percent, respectively. 

2.3.2. Climate Change Policies (CCPs) 

 

To evaluate the degree of stringency of environmental regulation at the country level, we use 

the OECD Environmental Policy Stringency Index (EPS): a composite index that measures 

the degree of stringency of environmental regulation, defined as higher costs (explicit or 

implicit) imposed by the regulation on polluting or other harmful activities (Botta and Koźluk, 

2014; Kruse et al., 2022). It varies year-by-year at the country level, with higher values 

corresponding to more stringent regulations. This structure allows comparisons across years 

and countries.  

The EPS index is available for 40 countries during the period 1990-2020. Figure 2.2 

shows the evolution of the EPS, and of the 25th and 75th percentiles of its distribution, across 

countries over time, with an average change of about 0.09, bounded between -.84 (minimum 

change over the period) and 1.5 (maximum change over the period). The figure also shows 

that the index increases rapidly since 2000 following a wave of regulations for the energy 

sector and tightening of emissions regulations and R&D subsidies. By way of example, when 

the European Union Emissions Trading System (EU ETS) entered into force in 2005, the 

median change in EPS index was about 0.47, which is 11.75 times the sample median. A 

similar impact on EPS resulted from the adoption of the Kyoto Protocol. Figure 2.3, panel A, 
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shows the average yearly change of EPS for each country in the sample, ranging from 

approximately 0.03 in New Zealand to 1.6 in France. Figure 2.3, panel B, shows the 

distribution of the average EPS across countries in the last year available (i.e., 2020), and 

unmasks important heterogeneity with the index ranging from 0.83 in New Zealand to 4.89 in 

France.       

The OECD database also provides disaggregated climate stringency indices classified 

in market-based instruments such as taxes on emissions (these are direct taxes imposed on the 

emission of pollutants, such as carbon taxes. They provide a financial incentive for polluters 

to reduce their emissions to avoid or minimize the tax burden); Emission Trading Systems 

(This creates a market for emission allowances and encourages companies to reduce their 

emissions), non-market-based instruments such as emission limit (These policies set specific 

limits on the amount of pollutants that can be emitted from specific sources),  and technology-

support instruments such as low-carbon R&D expenditures (These are financial incentives 

provided to support the development of new and improved technologies that reduce pollution 

or promote energy efficiency).In the empirical analysis, we will show that this distinction is 

key to better understand the dynamic response of green innovation to CCPs. Figure 2.A1, in 

the Appendix, shows the breakdown by country of each sub-component of EPS. 

2.4. Macro-level analysis 

 

2.4.1. Baseline Estimates 

 

We estimate the dynamic response of green innovation at the country/sector/year-level to a 

change in the degree of stringency of the environmental regulation. In detail, we follow Jordà 

(2005) to estimate impulse-response functions of renewable energy patents to environmental 

policy shocks (Auerbach and Gorodnichenko, 2013; Ramey and Zubairy, 2018; Alesina et al., 

2020).  
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The regression equation takes the following form: 

𝑦𝑖,𝑠,𝑡+𝑘  – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−𝑙 + ∑ 𝛿𝑙

𝑘
𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−𝑙+ 휀𝑖,𝑠,𝑡+𝑘      (2.1) 

 

where, 𝑦𝑖,𝑡 is the (log of the) number of renewable energy patents for country i, sector s, in 

time t; 𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 indicates the percent change of green patents between t and t+k; 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘  

represents country-sector specific time trends—that is, country fixed effects*sector fixed 

effects* a time trend; ∆𝐶𝐶𝑃𝑖,𝑡 measures the yearly variation in the degree of environmental 

policy stringency in country i, between years t and t-1. The specification also includes 2 lags 

(i.e., l=0,1,2) of the dependent variable and of ∆𝐶𝐶𝑃𝑖,𝑡 to account for serial correlation in the 

patent growth and in the stringency index. Equation (2.1) is estimated for a balanced panel of 

40 countries, across 5 sectors, over the period 2000-2021, for each horizon (year) k=1,..,5, with 

robust standard errors clustered at the country/sector level.11  

2.4.2. Baseline Results 

 

Figure 2.4 reports the evolution of the (percent) number of patents following a 1 standard 

deviation increase in the EPS indicator (roughly corresponding to a yearly change of EPS of 

0.24 point)—that is, the estimated  𝛽𝑘 coefficients from equation (2.1). The results indicate 

that an increase in the stringency of environmental policy significantly contributes to the 

production of green innovation (patents). Moreover, the positive impact of the policy gradually 

increases over time, thus further validating our dynamic modelling choice. In particular, we 

find that a 1 standard deviation increase in the EPS index increases the number of new green 

patents by about 4 percent, one year after the introduction of the policy, and by 18 percent in 

the medium term—that is, five years after. The effects are strongly statistically significant as 

indicated by the narrow confidence bands, and large in magnitude. Taking these effects at the 

 
11 Results are robust to clustering the standard errors at the country-level. 
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face value and translating it to major reforms (corresponding to changes in EPS at the 99th 

percentile of the distribution in our sample—that is, about 0.91), such as the big wave of new 

policy instruments introduced under the EU ETS system (around 2005) or the Canadian Action 

Plan in early 2000s, it implies an increase in green patenting of about 65 percent.  

In addition, our results suggest that previous estimates based on a static framework 

may underestimate the “true” medium-term effect of CCPs on innovation. The results are also 

consistent with previous findings of the literature. For example, Zhang et al., (2022) find that 

a 1-point increase in EPS increases green innovation by about 57 percent, that is approximately 

equal to the average effect that we estimate across the time horizons we consider.12 

While we keep our baseline equation very parsimonious in terms of number of 

regressors, we test the robustness of baseline results to the inclusion of additional controls, 

potentially affecting the production of (green) innovation and correlated with changes in 

climate policies. In particular, we extend the baseline regression to include GDP growth, an 

index of financial stress, and oil prices (see Table 2.A3 in the Annex for data sources). Figure 

2.5 presents the results when controls are first included one at the time and then all together—

the effect of CCPs on green innovation does not qualitatively change with respect to Figure 

2.4. As additional robustness checks, we perform the following exercises: first, we change the 

number of lags in equation (2.1), from 2 (i.e., l=2) to 3 and 4; second, we estimate the model 

accounting also for contemporaneous effects of EPS changes on the dependent variable; third, 

we exclude potential outliers by cutting top and bottom 1 and 5 percent of the distribution of 

the dependent variable; fourth, we exclude one country and one year at time; fifth, we control 

for the lagged stock of patents at the country level as the increase in patents is typically lower 

 
12 Zhang et al., (2022) analyze the effect of CCPs (using the same EPS index as we do) on green innovation, employing 

a static panel fixed effects model, on a sample of 33 countries, during the period 1990-2015. Their estimated coefficient 

shows that 1 point increase in the EPS index raises the number of green patents by 101.6 (they scale the coefficient 

dividing it by 100). As the average number of green patents in their sample is 176.9, then the percent average effect is 

equal to: (101.6/176.9) *100=57.4%. If we translate our results in terms of 1 point increase in EPS, instead of 1 standard 

deviation, we find that the short-term effect of green patenting activity would be approximately equal to 16 percent, 

and the medium-term effect (5-years after the shock) equal to 80 percent. 
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when the initial stock is higher (Eugster, 2021). The results reported in the Annex (Figure 

2.A2, panels A2a-.A2h) are qualitatively similar to the baseline one.   

As discussed in the literature, alternative types of climate change policies may produce 

different effects on green innovation. To test this hypothesis, we follow Zhang et al., (2022) 

and distinguish between market-based, non-market-based and technology-support policies. 

Market-based policies use a market signal like taxes on emissions to contrast the impact of 

economy on environment; differently, non-market-based policies pose direct pressure on firms 

to introduce green practices, by mandating emission limits and standards; finally, technology-

support policies directly incentivize firms to adopt environmentally friendly technologies. The 

latter, being specifically aimed to support green innovation, are expected to significantly foster 

the production of new patents. Moreover, non-market-based policies, as a form of institutional 

and social pressure, may stimulate firms to adopt clean production techniques (Ren et al., 

2018; Zhang et al., 2022).  

The results obtained by estimating equation (2.1) with measures of market-, non-

market-based, and technology-support CCPs are reported in Figure (2.6). In line with 

expectations, we observe that the effect of CCPs on green patents is positive and statistically 

significant in the case of non-market-based and technology support CCPs, while is not 

statistically different from zero for market-based policies.13  

2.4.3. Instrumental Variable (IV) analysis 

 

As previously discussed, the baseline estimates may suffer from reverse causality, as our 

indicator of environmental policy may be endogenously determined by the intensity of green 

 
13 However, even if our findings indicate that market-based policies do not directly stimulate green patenting activity, 

it is worth noting that they play a key role in advancing the green transition in several other ways. For instance, as 

documented by an extensive literature, market-based policies efficiently reduce emissions by making dirty productions 

more expensive (Zhao et al., 2015; Chang and Han, 2020). Moreover, they generate resources that can be used to 

compensate for the costs associated with CCPs (Känzig, 2023). Overall, previous studies have highlighted that a right 

policy-mix, including both market- and non-market-based policies, efficiently fight climate change, while mitigating 

the economic and distributional costs of CCPs (Bettarelli and Yarveisi, 2023).   
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innovation. If green innovation is weak, a country may have more incentives to adopt stringent 

environmental policies, particularly those directly linked to green innovation (e.g., subsidies 

for R&D activities), to stimulate economic agents to invest in new green technologies. In these 

circumstances, the OLS estimated coefficients may be biased towards zero. Moreover, 

potential measurement errors cannot be excluded a priori, especially in case of policy reform 

indicators (Furceri et al., 2022). To address these concerns, we employ an instrumental 

variable (IV) approach. In particular, we instrument ∆𝐶𝐶𝑃 with the interaction between a time-

varying global term and a constant country-specific term (Nunn and Quian, 2014). As for the 

former, we use a variable measuring the environmental pressure for policy actions at the global 

level due to actual weather-related shocks. In detail, we use an indicator of the number of flood 

events. The rationale for choosing this instrument is that preferences toward CCPs change 

after major natural disasters (Bird et al., 2014; Welsch and Biermann, 2014; Latré et al., 2017). 

Moreover, we believe that this global indicator is exogeneous to specific policy actions 

implemented in a single country (Furceri et al., 2022).  With the country term, we identify the 

extent to which a country is exposed to climate-related events, thus making the adoption of 

CCPs more likely. To do it, we use geographical characteristics, since they can reasonably be 

assumed to be randomly distributed across countries and thus should not drive green 

innovation. In our preferred specification, we consider the length of the coastline.14  

The regression equation takes the following form: 

𝑦𝑖,𝑠,𝑡+𝑘  – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶�̂�𝑖,𝑡 + ∑ 𝜌𝑙

𝑘

𝑙

∆𝑦𝑖,𝑠,𝑡−𝑙 + ∑ 𝛿𝑙
𝑘

𝑙

∆𝐶𝐶𝑃𝑖,𝑡−1−𝑙+ 휀𝑖,𝑠,𝑡+𝑘     

    ∆𝐶𝐶𝑃𝑖,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡 + 𝜑 𝑍𝑖,𝑡−1 + ∑ 𝜃𝑙

𝑙

∆𝑦𝑖,𝑠,𝑡−𝑙 + ∑ 𝜆𝑙

𝑙

∆𝐶𝐶𝑃𝑖,𝑡−1−𝑙+ 𝜂𝑖,𝑠,𝑡;                        (2.2) 

 
14 Note that IV results are qualitatively similar when we use alternative instruments, such as the number of major 

hurricanes multiplied by the minimum distance of a country’s centroid to the coast, the number of people affected by 

earthquakes multiplied by the share of urban population and the number of wildfires around the globe per annum 

multiplied by the agricultural land (in km2) per capita. 
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where 𝑍 is the instrument.15 

The IV results are reported in Table 2.1 and Figure 2.7. Table 2.1 shows the first-stage 

estimates, which suggest that the instrument is “strong”, statistically significant and exhibits 

the expected sign. The Kleibergen‒Paap rk Wald F statistic ranges from 85.9 (for t=4) to 97.2 

(for t=5), approximately 7 times the associated Stock-Yogo critical value for strong 

instruments (16.38) (Andrews et al., 2019). Figure 2.7 reports the second stage estimates and 

confirm that the effect of a 1 standard deviation increase in EPS on green innovation is larger 

when using the IV approach, thus corroborating the idea that the OLS baseline estimates are 

biased towards zero.  

 

2.5. State-dependent effects 
 

In this section, we examine whether the response of green innovation to CCPs is state- 

dependent and varies with the level of competition and economic conditions, such as the 

business cycle, the level of economic uncertainty, and financial stress. In terms of competition, 

we use an indicator from Alesina et al., (2023) identifying regulation in the markets for goods 

and services at the country level. In detail, the variable ranges from -1 to 1, with higher values 

indicating more liberalization (or more competition), and lower values tightening reforms (or 

less competition). As measures of the business cycle, we follow the literature on state-

dependent fiscal multipliers (Auerbach and Gorodnichenko, 2013) and we consider GDP 

growth. For uncertainty, we use the World Uncertainty Index (WUI), developed by Ahir et al., 

(2022), which captures country-level uncertainty related to both economic and political events, 

for a large sample of developed and developing countries (see Ahir et al., 2022, for a detailed 

 
15 Consistently with baseline estimates, we standardize the predicted value of the endogenous variable in the second-

stage. 
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discussion). Finally, we use the Romer and Romer, (2017) discrete measure of financial stress 

as a proxy of the health of the financial system.  

To estimate the role of these factors in shaping the response of innovation in renewable 

energy to environmental policy, we follow the approach proposed by Auerbach and 

Gorodnichenko, (2013) and extend the baseline specification as follows: 

 

𝑦𝑖,𝑠,𝑡+𝑘 − 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝐹(𝑧𝑖𝑡)[𝛽𝐿

𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐿,𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−𝑙 + ∑ 𝛿𝐿,𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−𝑙] +

(1 − 𝐹(𝑧𝑖𝑡))[𝛽𝐻
𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐻,𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−𝑙 + ∑ 𝛿𝐻,𝑙

𝑘
𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−𝑙] + 𝜙𝑙

𝑘𝐹(𝑧𝑖𝑡−1) + 휀𝑖,𝑠,𝑡+𝑘       (2.3)                                             

with  𝐹(𝑧𝑖𝑡) =
𝑒𝑥𝑝−𝛾𝑧𝑖𝑡

(1+𝑒𝑥𝑝−𝛾𝑧𝑖𝑡)
,     𝛾 > 0; 

  

in which z is alternatively an indicator of product market regulation, the business cycle (GDP 

growth), uncertainty, and financial stress, normalized to have zero mean and unit variance. For 

the variables that have the same scale across countries (uncertainty, product market regulation 

and financial stress), we exploit both within and cross-country variation in the normalization, 

that is we use 𝑧𝑖𝑡 =
𝑠𝑖𝑡−�̅�

𝑠𝑑(𝑠𝑖𝑡)
.  Differently, GDP growth changes widely across countries; thus, 

we exploit the within-country variation, and construct 𝑧𝑖𝑡 =
𝑠𝑖𝑡−𝑠�̅�

𝑠𝑑(𝑠𝑖)
. The weights assigned to the 

regimes vary between 0 and 1 according to the smooth transition function 𝐹(. ). The coefficient 

𝛽𝐿
𝑘 is the coefficient in the case of very low output growth (low competition, uncertainty or 

financial stress)—that is, when 𝐹(𝑧𝑖𝑡) ≈ 1 and z goes to minus infinity. 𝛽𝐻
𝑘  is the coefficient in 

the case of very high output growth (high competition, uncertainty or financial stress)—that is, 

when (1 – 𝐹(𝑧𝑖𝑡)) ≈ 1 and z goes to plus infinity. As in Auerbach and Gorodnichenko, (2011) 

we do not estimate the parameters of the smooth transition model and set γ=5 to give an 

intermediate degree of regime switching.16 

 
16 Results do not change when varying the value of γ (e.g., γ=2.5 or γ=7).  
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This approach—which is similar in spirit to the smooth transition approach of Granger 

and Teravistra, (1993)—presents two main advantages over traditional interaction models: (i) 

it allows us to directly test if the effect of CCPs changes across regimes, such as low vs. high 

uncertainty; (ii)  differently from a linear interaction model or structural vector 

autoregressions, this method allows the effect of CCPs to vary non-linearly and smoothly 

between regimes, as a function of different economic variables.  

The results obtained from estimating equation (2.3) are reported in Figures 2.8-2.11. 

All figures show on the left the results for the low regime—that is, low competition, low 

uncertainty, low financial constraints, and low economic growth—and on the right the results 

for the high regime—that is, high competition, high uncertainty, high financial constraints, 

and high economic growth. In Table 2.2, we report the F-test for the difference in the responses 

between the two regimes (e.g., recessions vs expansions), across all horizons. 

Figure 2.8 reports the results for GDP growth as the state variable, which suggests that 

the positive effects that CCPs exert on the production of new green patents are larger during 

economic expansions. In particular, the effects are positive and statistically significant, and 

larger (about 1.5 times) in magnitude than the baseline results. The difference in the responses 

between low and high growth regimes is statistically significant for most of the horizons. 

Figure 2.9 reports the results for uncertainty. In line with expectations, we see that 

environmental policy stimulates green innovation more intensively when uncertainty is low. 

This result corroborates the hypothesis that uncertainty negatively affects the innovation 

process by reducing the willingness of firms to invest (Bloom et al., 2012). The difference in 

the responses between low and high uncertainty regimes is statistically significant across all 

horizons. 

Figure 2.10 presents the results for financial stress as mediating factor in the 

relationship between CCPs and green innovation. When financial stress is high, the impact of 
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CCPs is not statistically significant, while it is large and precisely estimated in periods of no 

or low financial stress—in this case, the difference in the response is statistically significant 

in the medium term. 

Finally, Figure 2.11 illustrates the results when we use the product market regulation 

index as the mediating factor, to proxy the degree of economic competition faced by firms.  

The results show that the effect of CCPs on the production of green patents is larger when 

competition is high. This indicates that firms that face high competition are more incentivized 

to invest in new technology in response to climate-related policy actions. The difference 

between low and high competition regimes is highly statistically significant across all 

horizons. 

 

2.6. Sectoral analysis 

In this last exercise, we exploit sectoral heterogeneity in the response of green patents to CCPs.  

We consider a difference-in-differences approach (Rajan and Zingales, 1998) based on the 

theoretical assumption that CCPs have weaker effects in fostering innovation for sectors that 

face tighter financial constraints (Bloom, 2009). This approach is used to estimate the causal 

effect of a policy intervention by comparing the before-and-after differences in outcomes 

between a treatment group (exposed to the policy) and a control group (not exposed to the 

policy). This methodology is particularly insightful for understanding the nuanced effects of 

CCPs on industries with varying levels of financial constraints. Financially constrained sectors 

are generally less able to invest in innovation due to limited access to external capital. 

Moreover, this approach allows to control for a constellation of fixed effects, and country- and 

industry-specific time trends to account for unobserved factors. In particular, country-time 

fixed effects help to absorb unobserved cross-country heterogeneity in macroeconomic 

conditions that could be correlated with CCPs and that affect the innovation process in a 
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similar way across industries. To measure financial constraints, we follow Rajan and Zingales, 

(1998) and construct a measure of external financial dependence (EFD) defined as the ratio of 

total capital expenditures minus current cash flow to total capital expenditures. To construct 

this sectoral variable, we use US firm-level data from Compustat (as in Samaniego and Sun, 

2015), and we aggregate them at sector-level by computing the median score for each sector. 

To match firms and sectors we exploit information about NAICS codes.17 The regression that 

we estimate reads as follows: 

𝑦𝑖,𝑠,𝑡+𝑘  – 𝑦𝑖,𝑠,𝑡 = 𝛼𝑖𝑠
𝑘 + 𝛼𝑖𝑡

𝑘 + 𝛼𝑠𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 ∗ 𝐸𝐹𝐷𝑠 + ∑ 𝜌𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−𝑙 + ∑ 𝛿𝑙

𝑘
𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−𝑙 ∗

𝐸𝐹𝐷𝑠 + 휀𝑖,𝑠,𝑡+𝑘               (2.4) 

 

where α𝑖𝑠
𝑘  are country-sector fixed effects included to controls for differences in sectoral 

comparative advantages across countries; α𝑖𝑡
𝑘  are country-time fixed effects which allows to 

control for aggregate macroeconomic shocks; and α𝑠𝑡
𝑘  are sector-time fixed effects to control 

for changes in common sectoral compositions across countries. 𝛽𝑘 captures the differential 

impact of CCPs on green innovation between a sector with low financial constraints and sector 

with high financial constraints. The specification also includes 2 lags (i.e., l=0,1,2) of the 

dependent variable and of the interaction term ∆𝐶𝐶𝑃𝑖,𝑡 ∗ 𝐸𝐹𝐷𝑠. Standard errors are clustered 

at the country-sector level. We include EFD, alternatively, as a ranking variable and as a 

continuous variable. In the former case, it takes values 1, …, 5, where 1 indicates that EFD 

has its lowest score in sector s, and 5 the highest score. Table 2.A4, in the Appendix, reports 

the ranking by sector. As a continuous variable, EFD represents the median score for each 

sector of the average firm-level score. The results, reported in Figure 2.12 (continuous) and 

Figures 2.A3 in the Appendix (ranking), provide similar results. Consistent with the macro 

 
17 See Table 2.A1, in the Appendix, for further details. 
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results on the role of financial stress, we find that the effects of CCPs on green patent is higher 

for sectors that face low financial constraints. In particular, the results show that the gain in 

green patent growth from a 1 standard deviation increase in EPS for an industry with low 

external financial dependence (i.e., the 25th  percentile of the distribution) is about 1.5 

percentage points in the short term (one year after the policy change) and about 4 percentage 

points in the medium term (5 years after) higher than that for an industry with high external 

financial dependence (i.e., the 75th percentile).  

2.7. Conclusion and Policy Implications 

 

Climate change is (one of) the greatest challenge of our time. The use of conventional energy  

is the principal cause of global warming and climate change, leading to a series of issues for 

the society, such as natural disasters and weather extreme events. The transition to green 

energy is thus becoming key to ensure the sustainability of the planet. To stimulate the 

reduction of greenhouse emissions and ease the spread of renewable energy, most 

governments attempt to formulate and implement numerous environmental policies. However, 

the effect of CCPs on national economies may be ambiguous, as noted by several studies (see 

OECD, 2021, for a review). On the one side, CCPs may negatively affect the economy by 

imposing additional costs on firms. On the other side, they may stimulate the willingness of 

firms to invest and innovate (Porter, 1996).  

            With this article, we offer a dynamic analysis of the extent to which CCPs affects the 

production of green innovation. We make use of the Environmental Policy Stringency index, 

provided by the OECD, to measure the degree of environmental policies stringency and data 

on new patents filed for renewable energy to proxy green innovation. Our results show that 

the production of green innovation drastically increases when CCPs become more stringent. 

In detail, a 1-standard deviation increase in EPS positively fosters green patent activity by 

about the 18 percent, five years after the policy shock. To give a sense of the result, our 
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estimates suggest that major reforms like the introduction of the EU Emissions Trading System 

(ETS) in 2005, increase green patenting by about the 69 percent in the medium term. These 

effects, however, mask two important sources of heterogeneity that are key for policy design. 

First, not all CCPs spur green innovation as the positive effects of CCPs are mostly related to 

non-market-based policies (such as R&D subsidies). Second, the state of the economy at the 

time of CCPs implementation matters: the effects are particularly strong in countries with more 

pro-competitive regulation and when the economic environment is strong and characterized 

by low uncertainty and financial stress. These results are important for policy design on how 

to maximize the positive effects of CCPs on green innovation. For example, the 

implementation of financial measures such as grants, low-interest loans, and tax incentives to 

support R&D and the commercialization of green technologies, especially in sectors that are 

financially constrained or in the early stages of green technology adoption, can help 

magnifying the positive effect of more stringent CCPs on green innovation. 
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Figures 

 

Figure 2.1. Evolution of patents by country 

 
Notes: The chart shows the share of new renewable energy patents by country, for top 10 countries with higher 

average share over the period 2000-2021. All the other 30 countries in our sample are grouped together. 
 

 

 

Figure 2.2: Evolution of the EPS index over time (median, 25th percentile, 75th 

percentile) 

 

Notes: authors elaboration on OECD data. x-axis indicates years (from 2000 to 2020); y-axis indicates the EPS 

score, where the box refers to the 25th and 75th percentiles of the EPS distribution and the black line the median 

across countries. 
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Figure 2.3: average change of EPS index across countries (panel A), and distribution of 

EPS across countries in 2020 (panel B) 

 

 

Notes: authors elaboration on OECD data. The charts reports the average yearly change of the EPS index and 

the average EPS score in 2020 for all countries in the dataset. 
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Figure 2.4: Impact of CCPs on green innovation 

 

Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly 

change in the EPS index in country i, between t and t-1. Controls include 2 lags of the dependent variable and of 

the CCP shock. Standard errors are clustered at the country/sector level. 
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Figure 2.5: Impact of CCPs on green innovation—robustness checks with additional 

controls 

            (a) baseline with GDP growth                   (b) baseline with financial stress 

 

            (c) baseline with oil price         (d) baseline with GDP growth, financial stress, oil 

price 

 

Notes: The charts show the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly 

change in the EPS index in country i, between t and t-1. Controls include 2 lags of the dependent variable and 

of the CCP shock. Additional controls have been included for robustness check: (a) GDP growth; (b) financial 

stress; (c) oil price; (d) GDP growth, financial stress, oil price. Standard errors are clustered at the 

country/sector level. 
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Figure 2.6: Impact of market based (left), non-marked based (center) and technology-

support (right) CCPs on green innovation 

 

 

 

Notes: The charts show the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5. In the left panel, ∆𝐶𝐶𝑃𝑖,𝑡 indicates the market-

based CCP shock, that is the yearly change in the market-based EPS index in country i, between t and t-1. In the 

right panel, ∆𝐶𝐶𝑃𝑖,𝑡 indicates the technology-support CCP shock, which is the yearly change in technology-support 

EPS index in country i, between t and t-1 In the center panel, ∆𝐶𝐶𝑃𝑖,𝑡 indicates the non-market-based CCP shock, 

which is the yearly change in the non-market-based EPS index in country i, between t and t-1. Controls include 

2 lags of the dependent variable and of the CCP shock. Standard errors are clustered at the country/sector level. 

 

 

Figure 2.7: impact of CCPs on green innovation—IV approach 

 

Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.2): 𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶�̂�𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶�̂�𝑖,𝑡 is the predicted CCP shock, that is 

the yearly change in the EPS index in country i, between t and t-1, with the instrument being the number of floods 

at global level at time t, multiplied by the length of the coastline in country i. Controls include 2 lags of the 

dependent variable and of the CCP shock. Standard errors are clustered at the country/sector level. 
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Figure 2.8: impact of CCPs on green innovation in case of economic recession or 

growth  

 

Notes: The charts show the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.3): 𝑦𝑖,𝑠,𝑡+𝑘 − 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 +

𝐹(𝑧𝑖𝑡)[𝛽𝐿
𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐿,𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐿,𝑙

𝑘
𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + (1 − 𝐹(𝑧𝑖𝑡))[𝛽𝐻

𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐻,𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐻,𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + 𝜙𝑙
𝑘𝐹(𝑧𝑖𝑡) +

휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting activity in country i, sector s, 

between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly change in the EPS index in 

country i, between t and t-1. Controls include 2 lags of the dependent variable and of the CCP shock. Standard 

errors are clustered at the country/sector level. 𝐹(𝑧𝑖𝑡) is the smooth transition function that refers to the low 

regime, i.e., economic recession (left). 1-𝐹(𝑧𝑖𝑡) is the smooth transition function that refers to the high regime, 

i.e., economic growth (right). Economic recession and growth are defined in terms of the GDP percent change in 

country i between t and t-1.  
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Figure 2.9: impact of CCPs on green innovation when uncertainty is low or high 

 

Notes: The charts show the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.3): 𝑦𝑖,𝑠,𝑡+𝑘 − 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 +

𝐹(𝑧𝑖𝑡)[𝛽𝐿
𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐿,𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐿,𝑙

𝑘
𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + (1 − 𝐹(𝑧𝑖𝑡))[𝛽𝐻

𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐻,𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐻,𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + 𝜙𝑙
𝑘𝐹(𝑧𝑖𝑡) +

휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting activity in country i, sector s, 

between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly change in the EPS index in 

country i, between t and t-1. Controls include 2 lags of the dependent variable and of the CCP shock. Standard 

errors are clustered at the country/sector level. 𝐹(𝑧𝑖𝑡) is the smooth transition function that refers to the low 

regime, i.e., low uncertainty (left). 1-𝐹(𝑧𝑖𝑡) is the smooth transition function that refers to the high regime, i.e., 

high uncertainty (right). Uncertainty is the defined as the change in the World Uncertainty Index by Ahir et al. 

(2022), in country i, between t and t-1. 
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Figure 2.10: impact of CCPs on green innovation when financial constraints are low or 

high 

 

Notes: The charts show the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.3): 𝑦𝑖,𝑠,𝑡+𝑘 − 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 +

𝐹(𝑧𝑖𝑡)[𝛽𝐿
𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐿,𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐿,𝑙

𝑘
𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + (1 − 𝐹(𝑧𝑖𝑡))[𝛽𝐻

𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐻,𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐻,𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + 𝜙𝑙
𝑘𝐹(𝑧𝑖𝑡) +

휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting activity in country i, sector s, 

between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly change in the EPS index in 

country i, between t and t-1. Controls include 2 lags of the dependent variable and of the CCP shock. Standard 

errors are clustered at the country/sector level. 𝐹(𝑧𝑖𝑡) is the smooth transition function that refers to the low 

regime, i.e., low financial stress (left). 1-𝐹(𝑧𝑖𝑡) is the smooth transition function that refers to the high regime, 

i.e., high financial stress (right). Financial stress is the defined as the change in the Romer and Romer (2017) 

index of financial distress, in country i, between t and t-1. 
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Figure 2.11: impact of CCPs on green innovation when competition is low or high 

 
Notes: The charts show the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.3): 𝑦𝑖,𝑠,𝑡+𝑘 − 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 +

𝐹(𝑧𝑖𝑡)[𝛽𝐿
𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐿,𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐿,𝑙

𝑘
𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + (1 − 𝐹(𝑧𝑖𝑡))[𝛽𝐻

𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐻,𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐻,𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + 𝜙𝑙
𝑘𝐹(𝑧𝑖𝑡) +

휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting activity in country i, sector s, 

between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly change in the EPS index in 

country i, between t and t-1. Controls include 2 lags of the dependent variable and of the CCP shock. Standard 

errors are clustered at the country/sector level. 𝐹(𝑧𝑖𝑡) is the smooth transition function that refers to the low 

regime, i.e., low competition (left). 1-𝐹(𝑧𝑖𝑡) is the smooth transition function that refers to the high regime, i.e., 

high competition (right). Competition is proxied by making use of the product market regulation index (PMR) 

by IMF, in country i, at time t. 
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Figure 2.12: Impact of CCPs on green innovation—sectoral analysis and interaction 

external finance dependence (EFD). 

 

Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.4): 𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = α𝑖𝑠
𝑘 + α𝑖𝑡

𝑘 + α𝑠𝑡
𝑘 +

𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 ∗ EFDs + ∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l ∗ EFDs + 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent 

variation in patenting activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP 

shock, that is the yearly change in the EPS index in country i, between t and t-1. EFD indicates the index of 

external financial dependence, as in Rajan and Zingales (1998). Controls include 2 lags of the dependent variable 

and of the interaction between the CCP shock and the EFD index. Equation (2.4) also includes three batteries of 

fixed effects: country-year, country-sector, and sector-year. The EFD is included in equation (2.4) as a continuous 

variable. Standard errors are clustered at the country/sector level. The chart reports the percent difference in the 

effect that CCPs exert on green innovation between sectors where EFD is low (25th percentile) and high (75th 

percentile). 
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Tables 

 

Table 2.1.  The impact of uncertainty on renewable energy patents – Instrumental Variable. 

First stage 

 

First stage t=0 t=1 t=2 t=3 t=4 t=5 

              

Flood_events*coastal_lenght 

.00007**

* 

.00008**

* 

.00008**

* 

.00008**

* 

.00008**

* 

.00008**

* 

 (.00000) (.00000) (.00000) (.00000) (.00000) (.00000) 

       

Observations 2664 2664 2664 2646 2599 2418 

KleibergenPaap_rk_Wald_F_statisti

c 96.2 95.0 91.2 92.6 85.9 97.2 

Stock-Yogo weak ID test critical value for 10% maximal IV size: 16.38 

Note: The charts show the coefficient associated with the instrument Z, when estimating the following first-stage 

regression: ∆𝐶𝐶𝑃𝑖,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡 + 𝜑 𝑍𝑖,𝑡−1 + ∑ 𝜃𝑙𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝜆𝑙𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 𝜂𝑖,𝑠,𝑡. Standard errors in parentheses are 

clustered at country/sector level. *** p<0.01, ** p<0.05, * p<0.1. The Table also reports the Kleibergen–Paap rk 

Wald F-statistic tests for weak identification. 

 

 

Table 2.2.  F-tests difference 

 

 F-test difference 

 t=0 t=1 t=2 t=3 t=4 t=5 

GDP growth 14.60*** 0.03 0.00 3.30* 9.95*** 1.75 

Uncertainty 10.06*** 14.35*** 3.41* 11.89*** 9.39*** 5.36** 

       

Financial stress 0.10 0.04 0.34 0.31 2.79* 4.03** 

       

Competition 3.65* 11.29*** 8.90*** 10.44*** 7.51*** 17.48*** 

       

Notes: The Table reports the F-test of the difference between low and high regimes of the interaction variable 

between the CCP shock and the smooth transition functions 𝐹(𝑧𝑖𝑡) and 1 − 𝐹(𝑧𝑖𝑡), from equation (2.3): 𝑦𝑖,𝑠,𝑡+𝑘 −

𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝐹(𝑧𝑖𝑡)[𝛽𝐿

𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐿,𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝐿,𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + (1 − 𝐹(𝑧𝑖𝑡))[𝛽𝐻
𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝐻,𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−l +

∑ 𝛿𝐻,𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l] + 𝜙𝑙
𝑘𝐹(𝑧𝑖𝑡) + 휀𝑖,𝑠,𝑡+𝑘. *** p<0.01, ** p<0.05, * p<0.1.  
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Appendix 2 

 

Figure 2.A1: Distribution of sub-components of EPS, by country. 
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Figure 2.A2: Impact of CCPs on green innovation—robustness checks. 

A2a—baseline with different lag structure, i.e., using 3 lags  

 

 
 

 

 

A2b—baseline with different lag structure, i.e., using 4 lags 

 
 

 

 
Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly 

change in the EPS index in country i, between t and t-1. Controls include 4 and 4 lags of the dependent variable 

and of the CCP shock. Standard errors are clustered at the country/sector level. 
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A2c—baseline with contemporaneous CCP shock, instead of 1-period lagged 

 
Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly 

change in the EPS index in country i, between t+1 and t. Controls include 2 lags of the dependent variable and 

of the CCP shock. Standard errors are clustered at the country/sector level. 
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A2d—baseline excluding top and bottom 1% percent of the distribution of the 

dependent variable 

 
 

Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly 

change in the EPS index in country i, between t and t-1. We exclude top and bottom 1% of the distribution of the 

dependent variable. Controls include 2 lags of the dependent variable and of the CCP shock. Standard errors are 

clustered at the country/sector level. 
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A2e— baseline excluding top and bottom 5% percent of the distribution of the 

dependent variable 

 
 
Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly 

change in the EPS index in country i, between t and t-1. We exclude top and bottom 5% of the distribution of the 

dependent variable. Controls include 2 lags of the dependent variable and of the CCP shock. Standard errors are 

clustered at the country/sector level. 
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Figure A2f—baseline excluding a country at time (reported in chart’s caption) 
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Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly 

change in the EPS index in country i, between t and t-1. Controls include 2 lags of the dependent variable and of 

the CCP shock. Standard errors are clustered at the country/sector level. Each chart excludes a country in the 

sample, as reported in the caption. 
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Figure A2g—baseline excluding a year at time (reported in chart’s caption) 

 
 

Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is the year of 

the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘  – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 + ∑ 𝜌𝑙

𝑘
𝑙 ∆𝑦𝑖,𝑠,𝑡−l +

∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting activity in country i, 

sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly change in the EPS index in 

country i, between t and t-1. Controls include 2 lags of the dependent variable and of the CCP shock. Standard errors are 

clustered at the country/sector level. Each chart excludes a year in the sample, as reported in the caption. 
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Figure A2h—baseline controlling for the lagged stock of patents 

 

 

Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.1):  𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = 𝑡𝑖𝑚𝑒𝑖𝑠,𝑡
𝑘 + 𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1−l+ 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent variation in patenting 

activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP shock, that is the yearly 

change in the EPS index in country i, between t and t-1. Controls include 2 lags of the dependent variable and of 

the CCP shock, and the lagged stock of patents (i.e., the cumulative sum of patents) at country level. Standard 

errors are clustered at the country/sector level.  
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Figure 2.A3: Impact of CCPs on green innovation—sectoral analysis and interaction 

with external finance dependence. 

 
Notes: The chart shows the impulse response functions and the associated 90 percent confidence bands; t=-1 is 

the year of the shock. Coefficients have been estimated using equation (2.4): 𝑦𝑖,𝑠,𝑡+𝑘 – 𝑦𝑖,𝑠,𝑡 = α𝑖𝑠
𝑘 + α𝑖𝑡

𝑘 + α𝑠𝑡
𝑘 +

𝛽𝑘∆𝐶𝐶𝑃𝑖,𝑡 ∗ EFDs + ∑ 𝜌𝑙
𝑘

𝑙 ∆𝑦𝑖,𝑠,𝑡−l + ∑ 𝛿𝑙
𝑘

𝑙 ∆𝐶𝐶𝑃𝑖,𝑡−1 ∗ EFDs + 휀𝑖,𝑠,𝑡+𝑘; where the dependent variable indicates the percent 

variation in patenting activity in country i, sector s, between t+k and t, with k=1, …,5; and ∆𝐶𝐶𝑃𝑖,𝑡 is the CCP 

shock, that is the yearly change in the EPS index in country i, between t and t-1. EFD indicates the index of 

external financial dependence, as in Rajan and Zingales (1998). Controls include 2 lags of the dependent variable 

and of the interaction between the CCP shock and the EFD index. Equation (2.4) also includes three batteries of 

fixed effects: country-year, country-sector, and sector-year. The EFD is included in equation (2.4) as a ranking 

variable, which takes the value 1 in the sector where EFD has its lowest score across sectors (with s=5), and 5 

when EFD has its highest score. Standard errors are clustered at the country/sector level. The chart reports the 

percent difference in the effect that CCPs exert on green innovation between sectors where EFD is low (25 th 

percentile) and high (75th percentile). 
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Table 2.A1: Economic sectors used in the analysis and associated Naics codes 

SECTORS NAICS CODES 

Building 23 

Industry 31-33 

Power 22 

Transport 48 

Waste 562 

 

 

Table 2.A2: List of countries included in the analysis 

List of countries 

Australia Finland Italy Russia 

Austria France Japan Slovak Republic 

Belgium Germany Korea Slovenia 

Brazil Greece Luxembourg South Africa 

Canada Hungary Mexico Spain 

Chile Iceland Netherlands Sweden 

China India New Zealand Switzerland 

Czech Republic Indonesia Norway Turkey 

Denmark Ireland Poland United Kingdom 

Estonia Israel Portugal United States 

 

Table 2.A3: Descriptive statistics of all variables used in the analysis 

 Variable  Obs.  Mean  Std. Dev.  Min  Max Source 

 Patent 4782 544.859 3652.181 0 100429 IRENA 

 Patent (log) 4782 2.887 2.372 0 11.517 IRENA 

 CCP 4782 2.3 1.101 0 4.889 OECD 

 ∆CCP 4782 .093 .249 -.833 1.5 OECD 

 CCP_mkt 4782 1.183 .861 0 4.167 OECD 

 CCP_non_mkt 4782 3.943 1.689 0 6 OECD 

 ∆CCP_mkt 4782 .046 .244 -1.333 1.5 OECD 

 ∆CCP_non_mkt 4782 .164 .502 0 4 OECD 

 Gdp_growth 4782 2.476 3.37 -14.629 25.176 OECD 

 Financial stress 1830 1.428 2.401 0 11.5 Romer & Romer, 

2017 

 Oil Price 4782 63.818 28.233 24.444 111.67 BP Statistical 

Review of World 

Energy 

 WUI 4476 .214 .167 0 1.343 Ahir et al., 2022 

 PMR index 3324 .186 .398 -1 1 Alesina et al., 

2023 

 EFD 3489 -.430 .463 -.961 .232 Compustat 

 Intangibility 3489 .0533 .0421 0 .112 Compustat 
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Table 2.A4: Ranking of sectors in terms of External Financial Dependence (EFD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sector   N   Rank 

 Building 4134 1 

 Industry 4134 2 

 Waste 4134 3 

 Transport 4134 4 

 Power 4134 5 

 

Source:author’s elaboration based on compustat data 
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Chapter 3 

Climate Change Policies and Income Inequality 
 

3.1. Introduction 

 

In 2015, the United Nations (UN) adopted the Agenda 2030 for Sustainable Development, 

commonly known as Agenda 2030. All the 193 countries of the UN General Assembly 

committed to unprecedent policy efforts to achieve 17 Sustainable Development Goals 

(SDGs), that range from fight poverty and zero hunger (SDG1 and SDG2, respectively), to 

quality education (SDG4), innovation (SDG9) and climate action (SDG13). While the 

achievement of each individual SDG is key to guarantee a sustainable future, there may exist 

trade-offs between goals. An example of potential trade-off is related to climate actions 

(SDG13) and the achievement of reduced inequality (SDG10), as the implementation of strict 

climate actions may lead to significant distributional costs. Indeed, recent studies in the 

literature suggest that climate change policies (CCPs) may have negative short-term economic 

consequences—e.g., job losses, higher costs of energy—that are unevenly distributed among 

income groups (Markannen and Anger-Kraavi, 2019; Kanzig, 2023), therefore resulting in 

higher income and consumption inequality (e.g., Kanzig, 2023; Yu et al., 2021; Zhao et al., 

2022; Soergel et al., 2021).18  

 In this paper, we contribute to this literature by analyzing the dynamic—short- and 

medium-term—effect of CCPs on several measures of income inequality for an unbalanced 

 
18 Other streams of the literature have analyzed the economic and environmental effects of CCPs (Abrell et al., 

2011; Kozluk and Timiliotis, 2016; Marin and Vona, 2021; Wang et al., 2022); the impact of climate change—

increasing temperature, frequency of extreme events—on global (between-country) inequality—as climate 

change greatly affects developing regions, typically more exposed to extreme climate events (Burke et al., 2015; 

Hsiang et al., 2012; Dell et al., 2017; Tang et al., 2023); and the impact of climate change on within-country 

income inequality (Ferrara, 2023; Cevik and Jalles, 2023). 
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panel of 39 developed and developing economies, during the period 1990-2020.19 The use of 

a dynamic model is crucial, as the effect of CCPs1 may take time to materialize. In addition, 

the breath of the country and time coverage allows us to explore how the effect of CCPs varies 

depending on countries’ structural characteristics (such as the share of less educated workers), 

the role of policy (fiscal policy and redistribution), and the phase of the business cycle.  

In terms of data, we use the OECD’s environmental policy stringency (EPS) index that 

measures the stringency of climate policy regulation. We consider several measures of income 

inequality—Gini, Palma ratio, P90/P10, S80/S20, and P50/P10—as they provide different 

information about the distribution of income (Campagnolo and Davide, 2019)—for 

consistency, these indicators have been also retrieved from the OECD. 

The results—obtained using the local projection method (Jordà, 2005)—show that a 

unitary increase in the EPS leads to a significant and persistent increase of income inequality 

of about 1 standard deviation. This effect is sizeable, given that inequality measures are 

typically slow-moving indices. The results are consistent across all the measures of inequality 

considered, and they are robust to a battery of sensitivity tests, including a difference-in-

differences instrumental variable approach, which considers as instrument the interaction 

between a global term capturing the policy pressure to implemented CCPs (e.g., the yearly 

number of floods in the world) and a country-specific factor denoting the exposure of a country 

to climate change events (such as its length of the coastal area). The effects of CCPs on income 

distribution are also consistent with the evidence that CCPs tend to reduce employment, 

specially with workers with lower education. 

Next, we acknowledge that different climate policy instruments may have 

heterogeneous effects on inequality. The literature has already shown that the impact of CCPs 

 
19 We focus on income inequality because of more comprehensive data availability and given that it directly 

influences other measures of inequality, such as the health status, access to education and housing (Markkanen 

and Anger-Kraavi, 2019). 
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may vary depending on the specific policy implemented. For example, while market-based 

policies are the most effective in reducing emissions (e.g., Yin et al., 2015; Shapiro and 

Walker, 2022), they are also those associated with larger employment (Bettarelli et al., 2023a) 

and political costs (Furceri et al., 2023). However, studies so far do not have investigated the 

same source of heterogeneity in the effect of CCPs on inequality. We do so by exploiting the 

sub-indicators of the EPS index; in fact, OECD also provides a disaggregated score for 

different policy instruments, thus allowing separate estimations. We show that the negative 

impact of CCPs on inequality materializes in the case of market-based policies—such as taxes 

on emissions—while is not statistically different from zero for non-market-based or 

technology support policies.  

We also allow the response of income inequality to CCPs to be nonlinear, depending 

on country-specific factors and economic conditions, using the smooth transition local 

projection approach (Auerbach and Gorodnichenko, 2013). The results indicate that the impact 

of CCPs on income inequality is larger in countries with a high share of low-skilled workers 

and those characterized by higher initial level of inequality. In contrast, the effects are smaller 

in countries with comprehensive redistribution policies, and during periods of fiscal 

expansions and stronger economic growth.  

Overall, the results have important policy implications for the design of CCPs—in 

terms of policy instrument—and for the role of compensatory (fiscal) policies that may 

alleviate the regressive effects of CCPs. 

The rest of the paper is structured as follows. Section 3.2 reviews the existing literature; 

Section 3.3 introduces the data and the empirical strategy; Section 3.4 presents the results; 

Section 3.5 concludes and draws some policy recommendations. 
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3.2. Literature Review 

 

In the last decade, a growing body of literature has analyzed the efficacy and costs of CCPs, 

in terms of environmental and economic effects. Overall, there is a broad consensus in the 

literature about the efficacy of CCPs to reduce emissions.20 Empirically, Yin et al., (2015); 

Song et al., (2020) and more recently Wang and Zhang, (2022) find that environmental 

regulation mitigates carbon emissions in China. Shapiro and Walker, (2018) find a similar 

negative relationship between increasing regulations and emissions in the US. Yirong (2022), 

using a sample of high-polluted countries (i.e., China, USA, India, Russia, and Japan), shows 

that CCPs reduces CO2 emissions, over the period 1990–2019. Cole et al., (2005) provide 

supports that environmental regulations successfully mitigate pollution emissions of industries 

in the UK. De Angelis et al., (2019) focus on 32 European and non-European countries, over 

the years 1992–2012, and show that the impact of CCPs on emissions is particularly strong in 

Europe and in the post-2005 period, when the European Trading System (ETS) and the Kyoto 

Protocol entered into force.  

As for the economic effects, scholars have predominantly emphasized potential short-

term detrimental effects of CCPs. CCPs may increase input costs for firms with negative 

consequences on productivity (Albrizio et al., 2017) employment (Dechezleprêtre and 

Nachtigall, 2020) domestic investment (Dlugosch and Kozluk, 2017) foreign direct investment 

(Garsous et al., 2020) and international trade (Koźluk and Timiliotis, 2016). However, these 

negative economic effects are likely to be concentrated in energy-intensive sectors (Marin and 

Vona, 2021) and short-lasting. Indeed, CCPs may contribute to spur innovation (Bettarelli et 

 
20 Exceptions are Sinn (2008) and Smulders et al., (2012), who sustain the “green paradox” theory, according to 

which households and firms increase fossil energy consumption, and energy owners increase their extraction 

activities if they predict more stringent environmental regulations, thereby increasing CO2 emissions in the short 

term. 
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al., 2023b), thus improving productivity and employment in the longer term (Porter and Van 

der Linde, 1995).  

Previous studies in the literature also suggest that CCPs are likely to have negative 

distributional consequences, mainly through two main channels: by reducing employment, 

especially for less-skilled workers, and by increasing energy costs.21 Kanzig, (2023) uses a 

dynamic setting and a high-frequency identification strategy that looks at how carbon prices 

change around regulatory events in the EU carbon market. He shows that the enactment of 

CCPs—carbon pricing schemes—in Europe reduces emissions, but at economic costs, as 

production and employment declines, with the effects on employment being particularly 

severe. In addition, he finds that the economic costs of carbon policy are unequally distributed 

across the population, with low-income households suffering the most. Zhao et al., (2022) 

show that carbon pricing policies significantly increase income inequality in China, with Gini 

coefficient that is estimated to be 0.53% higher than the benchmark scenario (with no CCP) 

in 2030. Tang et al., (2023), using a panel dataset of 147 countries between 1961-2017, show 

that inequality may decline in the short term but increase in the long run, as a result of strict 

policy actions to limit global warming. A similar effect is found by Hussein et al., (2013); 

Nyiwul, (2021) and Soergel et al., (2021), who note that climate policies implemented through 

carbon price may impose additional financial burdens on the poor globally, thus increasing 

poverty and inequality if not compensated by redistribution policies. Dorband et al., (2019) 

 
21 In particular, policies imposing costs on production and consumption of dirty energy—e.g., carbon pricing—

affect relative prices of clean and dirty energy (Pisani-Ferry J, 2021). In a situation in which the production of 

clean energy is still insufficient to meet rising demand, the overall cost of energy is expected to increase (Stern 

and Stiglitz, 2021. This may lead to higher consumption inequality, as low-income households devote a larger 

share of their total budget to energy relative to higher-income segments of the population (Menyhért, 2022; 

Battistini et al., 2022). Empirically, Cullen et al., (2005) find that increasing home energy costs affect 

consumption habits of low-income US households, which may decide to cut back on spending for other essential 

goods and services (e.g., medical care). Long and Zhang, (2022) show that Chinese urban residents’ consumption 

significantly increases in response to a decline in oil price. In a recent article, Bettarelli et al., (2023c), studying 

a large sample of 129 advanced and developing economies during the period 1970-2013, show that a 100% 

increase in energy prices increases consumption inequality by about 0.2 Gini point. They also show that the effect 

is larger in developing economies, where access to finance is limited, and during weak monetary policy 

framework and economic growth. 
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assess the incidence of moderate carbon price increases for different income groups in low- 

and medium-income countries, and find that poorest households would be charged a greater 

proportion of their income than national average. Dinan and Rogers, (2002) found that for a 

15% reduction in CO2 emissions by an ETS, each US household in the lowest income quintile 

would be worse off on average by around 500 dollars per year, while each household in the 

top income quintile would reap a net gain of about 1000 dollars. In contrast, Yu et al., (2021) 

focus on the effect of carbon emissions trading schemes on urban-rural income inequality, 

based on data of 273 cities in China during the period 2010-2018, and find that carbon ETS 

significantly reduces urban-rural inequality, possibly because costs of CCP are more binding 

for urban citizens due to differences in expenditure patterns. He also shows that the impact of 

carbon ETS on inequality changes depending on the level of development of China’s cities 

and of CO2 emissions, with the effect that is larger in case of highly polluting and rich cities. 

Vona, (2023) highlights that costs of CCPs also depend on the set of skills available to workers, 

as communities with the right set of green skills may benefit from climate policies.  

We contribute to this growing literature in several ways. First, we focus on a large set 

of developed and developing economies and use a dynamic model that is particularly suitable 

to examine persistent and non-nonlinear effects. Second, we try to identify causality using a 

recent instrumental variable approach suggested in the literature to isolate exogenous changes 

in CCPs. Third, we try to uncover several potential sources of heterogeneity and examine how 

the effect of CCPs vary with the type of policy implemented (e.g., market- vs. non-market-

based CCPs), the economic conditions (e.g., recession vs. boom), the extent of redistribution 

policy and countries’ structural characteristics (such as the initial level of inequality and the 

share of low-skilled workers).  
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3.3. Data and methodology 

3.3.1 Data 

 

We assemble an unbalanced panel dataset consisting of 39 OECD and non-OECD countries, 

for the period 1990-2020. 22 All data used in this article have been retrieved from OECD to 

guarantee a consistent country/time coverage.  

 The OECD Environmental Policy Stringency Index (EPS) is a country-specific and 

internationally comparable measure of the stringency of environmental policy. Stringency is 

defined as the degree to which environmental policies put an explicit or implicit price on 

polluting or environmentally harmful behavior. The EPS index allows for a year-by-year 

comparison of policy stringency across countries, ranging from zero to six, with higher values 

corresponding to the adoption of more stringent policies (Botta and Koźluk, 2014). As shown 

in Figure 3.1—which portrays the average evolution of EPS over time—the index has steadily 

increased during the period under analysis, particularly from 2000 following waves of tighter 

regulations associates with the implementation of the Kyoto protocol and European Emission 

Trading Scheme (ETS).  

             In addition, the OECD database offers climate stringency indices that are 

disaggregated and categorized according to (i) market-based instruments, including taxes on 

emissions (which are carbon taxes or other direct levies on pollutant emissions. Fiscal 

incentives for polluters to reduce emissions in order to avoid or minimize the tax burden); 

Emission trading systems (which encourages companies to reduce emissions by creating a 

market for emission allowances); (ii) non-market-based instruments such as emission limits 

(which establish specific limits on the quantity of pollutants that can be emitted from particular 

sources); (iii) and technology-support instruments such as investments in low-carbon research 

and development (Financial incentives, known as such, are established to facilitate the 

 
22 See Table 3.1 for the list of countries included in the analysis. 
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progress of innovative and enhanced technologies aimed at energy conservation and pollution 

reduction).  

          Further, Market-based policies create economic signals that encourage firms and 

individuals to internalize the costs of environmental degradation and adopt cleaner, more 

efficient practices. Non-market-based policies use legal and administrative mechanisms to 

enforce environmental requirements, ensure compliance, and protect public health and the 

environment. Technological policies provide financial, technical, and institutional support to 

accelerate the development, deployment, and commercialization of sustainable solutions. 

Overall, these policy approaches complement each other and can be tailored to specific 

contexts and objectives. By combining market-based incentives, regulatory measures, and 

technology support initiatives, policymakers can create a comprehensive policy framework 

that promotes environmental sustainability, economic prosperity, and social well-being. 

 This granularity allows us to empirically investigate whether the impact of CCPs on inequality 

depends on the type of policy implemented.  

 In terms of income inequality data, we use several indicators from OECD, where 

income is defined as household disposable income, and consists of earnings, self-employment 

and capital income and public cash transfers, after income taxes and social security 

contributions.23 In detail, we use five indicators of income inequality. The Gini coefficient 

compares the cumulative proportions of population and income, and it ranges between 0 

(perfect equality) and 1 (perfect inequality); S80/S20 represents the ratio of the average 

income of the 20% richest to the 20% poorest; P90/P10 is the ratio of upper bound values of 

the 10% of people with highest income, to that of the 10% of people with lowest income; 

P50/P10 the median income to the upper bound value of the first decile; the Palma ratio is the 

share of all income received by the 10% people with highest income, divided by the share of 

 
23 Household income is attributed to each member, with an adjustment that considers differences in needs for 

households of different sizes. 
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all received by the 40% with the lowest income. The use of alternative measures of income 

inequality allows us to provide a more comprehensive characterization of how CCPs affect 

income distribution, given the different information provided by each indicator. For instance, 

the Gini index provides a broad picture of the entire income distribution, and it is more 

sensitive to changes in the middle of the distribution, while P90/P10 focuses on the extremes 

of the distribution (Campagnolo and Davide, 2019). 

Table 3.2 reports descriptive statistics of the key variables used in the analysis. 

3.3.2. Methodology 

 

Baseline model 

We use the local projection approach (Jordà, 2005) to directly estimate impulse response 

functions (IRFs) of income inequality to an increase of the degree of CCP stringency. 

Specifically, we estimate the following dynamic equation, for each horizon k, with k=0,…,5 

(years): 

𝑦𝑖,𝑡+𝑘 − 𝑦𝑖,𝑡−1 = 𝛼𝑖
𝑘 + 𝛾𝑡

𝑘 + 𝛽𝑘𝐶𝐶𝑃𝑖,𝑡 + 𝛿𝑘𝑋𝑖,𝑡−𝑙 + 휀𝑖,𝑡+𝑘.         (3.1) 

Subscripts i and t indicate country and time, respectively. The term 𝑦𝑖,𝑡+𝑘 − 𝑦𝑖,𝑡−1 denotes the 

variation of income inequality in country i between t+k and t-1.  𝛼𝑖
𝑘 and  𝛾𝑡

𝑘 are country and 

time fixed effects, respectively, included to account for differences in countries’ time-invariant 

characteristics and global shocks, e.g. the Great Recession, that simultaneously impact on 

income inequality in a similar way across countries. 𝐶𝐶𝑃𝑖,𝑡 is the EPS index. 𝑋𝑖,𝑡−𝑙 is a vector 

of controls that includes two lags (with l=1,2) of the dependent variable, and of CCP. 휀𝑖,𝑡+𝑘 is 

the error term. Equation (3.1) is estimated using OLS with Driscoll-Kraay standard errors. 

We test the robustness of baseline results to: (i) the inclusion of additional controls such as 

unemployment rate, inflation and GDP growth, (ii) excluding potential outliers, i.e., top and 
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bottom 1% of the distribution of the dependent variable, (iii) different set of fixed effects, (iv) 

standard errors clustered at country level, and (v) alternative lags’ structure. In addition, to test 

the effect of different types of policy, we substitute the variable CCP—based on the aggregate 

EPS—with its subcomponents: market-based policy, non-market-based policy, technology 

support policy. 

 

Instrumental variable 

We recognize that our analysis may suffer from issues of endogeneity. For example, when 

inequality is high the government may lack the political capital to implement strict CCPs, due 

to the expected distributional costs. This may lead to reverse causality. Moreover, as typical 

with variables assigning a score to policy, there may exist measurement or evaluation errors 

(Clinton, 2017). To address these potential concerns, we adopt an instrumental variable 

strategy. Following the approach proposed by Furceri et al., (2023), we let the probability of 

a country to adopt a strict CCP to depend on (i) the policy pressure at the global level induced 

by weather-related shocks and (ii) country-level morphological conditions that may make the 

adoption of CCPs more likely. In fact, previous evidence shows that preferences toward CCPs 

changes after major natural disasters (Bird et al., 2014; Latré et al., 2017). Moreover, it is 

reasonable to assume that global indicators are independent to specific policy actions 

implemented in a single country.  

Following the above intuition, we construct our instrument as the interaction between the 

number of global flood events in a given year and the length of the coastline of a country, i.e., 

𝑍𝑖,𝑡 = 𝐹𝐿𝑂𝑂𝐷𝑆𝑡   ×   𝐶𝑂𝐴𝑆𝑇𝐿𝐼𝑁𝐸𝑖 . 

 Empirically, we estimate the following equation: 

𝐶𝐶𝑃𝑖,𝑡 = 𝛼𝑖
𝑘 + 𝛾𝑡

𝑘 + 𝜑 𝑍𝑖,𝑡−1 + +𝛿𝑘𝑋𝑖,𝑡−𝑙+ 𝜂𝑖,𝑡 

𝑦𝑖,𝑡+𝑘 –  𝑦𝑖,𝑡−1 = 𝛼𝑖
𝑘 + 𝛾𝑡

𝑘 + 𝛽𝑘𝐶𝐶�̂�𝑖,𝑡 + +𝛿𝑘𝑋𝑖,𝑡−𝑙+ 휀𝑖,𝑡+𝑘;          (3.2) 
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where, in the first stage, we regress 𝐶𝐶𝑃𝑖,𝑡 on the same set of controls as in equation (3.1), 

and one lag of the instrument 𝑍𝑖,𝑡−1, as defined above. The second stage is equivalent to 

equation (3.1), with the predicted value of CCP.  

The expectation is that years with a higher number of global flood events would see an 

increased push for the adoption of stricter CCPs, as countries respond to the heightened 

awareness and pressure to act against climate change. Moreover, countries with longer 

coastlines are more exposed to the impacts of climate change, such as sea-level rise and 

extreme weather events, making them more likely to adopt stringent CCPs as a preventive or 

mitigative measure. 

 

Nonlinear effects 

We exploit the flexibility of the local projection approach to nonlinear frameworks to 

investigate if the effect of CCPs on inequality depends on country-specific characteristics and 

economic conditions.  In particular, following the approach proposed by Auerbach and 

Gorodnichenko, (2013). We augment the baseline specification as follows:  

 

𝑦𝑖,𝑡+𝑘 − 𝑦𝑖,𝑡−1 = 𝛼𝑖
𝑘 + 𝛾𝑡

𝑘 + 𝐹(𝑧𝑖𝑡)[𝛽𝐿
𝑘∆𝐶𝐶𝑃𝑖,𝑡 + 𝜃𝐿

𝑘𝑋𝑖,𝑡−𝑙] + (1 − 𝐹(𝑧𝑖𝑡))[𝛽𝐻
𝑘∆𝐶𝐶𝑃𝑖,𝑡 +

𝜃𝐻
𝑘𝑋𝑖,𝑡−𝑙] + 휀𝑖,𝑡+𝑘;                                                                               (3.3)                                                                                                                                                     

 

with   𝐹(𝑧𝑖𝑡) =
𝑒𝑥𝑝−𝛾𝑧𝑖𝑡

1+𝑒𝑥𝑝−𝛾𝑧𝑖𝑡
 ,       𝛾 = 2.5   

 

where z is alternatively an indicator of the business cycle (GDP growth), magnitude of  
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redistribution policy, fiscal policy shocks, and the share of workers with low education, 

normalized to have zero mean and unit variance.24 We exploit both within and cross-country 

variation in the normalization for all mediating variables, i.e., we use 𝑧𝑖𝑡 =
𝑠𝑖𝑡−�̅�

𝑠𝑑(𝑠𝑖𝑡)
, with the 

only exception of GDP growth for which we exploit only within-country variation and we 

construct 𝑧𝑖𝑡 =
𝑠𝑖𝑡−𝑠�̅�

𝑠𝑑(𝑠𝑖𝑡)
, as it varies widely across countries. 𝐹(𝑧𝑖𝑡) is the smooth transition 

function, which varies between 0 and 1, and indicates the probability of being in a specific 

country-(time-)regime. Taking the example of the business cycle, when 𝐹(𝑧𝑖𝑡) is close to zero, 

it indicates a situation of recession, while  𝐹(𝑧𝑖𝑡) close to one refers to booms. 

This approach—qualitatively identical to the smooth transition model developed by 

Granger and Teravistra, (1993)—permits a direct test of whether the effect of CCPs varies 

across different regimes, such as recessions vs. expansions. Moreover, it allows the magnitude 

of the effect of CCPs to vary non-linearly and smoothy as a function of the different country-

level characteristics. 

3.4. Results 

3.4.1. Baseline Results 

 

Figure 3.2 reports the evolution of income inequality following a unitary increase of the EPS 

index, that is the estimated  𝛽𝑘 coefficients from equation (3.1), for each horizon k=0,…,5 

(years). Time (year) is indicated on the x-axis; the solid line displays the average estimated 

response; shaded areas denote 90 percent confidence bands. The results show that CCPs lead 

to distributional costs, as income inequality persistently increases after the policy shock, with 

the effect that particularly materializes in the medium term. The fact that the effect is 

increasing with time corroborates our dynamic modelling choice. Moreover, the effect is 

consistent across income inequality measures, as each of them increases after the 

 
24 We will describe these variables in Section 3.4, when commenting results.  
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implementation of a strict climate policy. In terms of magnitude, the effect is not negligible, 

considering that inequality is typically slow-moving. Specifically, a 1-point increase in the 

EPS index increases inequality of approximately 1 standard deviation of the yearly change in 

the sample, with results that are quantitatively identical across inequality measures. To give a 

sense of the magnitude of the effect, the average (across indicator/country/year) increases in 

inequality in response to a 1-point increase of EPS is about the 5%, while the average yearly 

change of EPS in our sample is much smaller than 1-point, i.e. 0.08. Thus, our data suggest 

that, on average, the yearly change of EPS increases inequality by about 0.4 percent, per year. 

If we consider the entire period under analysis (1990-2020), our results suggest that climate 

policy may have contributed to increasing inequality by up to 10%. 

 In what follows, we test the robustness of baseline results to several checks. First, we 

include additional control variables, that may potentially have an impact on inequality and bias 

our estimates: unemployment, inflation and GDP growth at country level. We include them 

one-by-one and together, with a 1-year lag.25 Second, we change the lag structure in equation 

(3.1) to 4 lags, instead of 2. Third, we control for the presence of outliers by excluding 1 and 

99 percentiles of the distribution of the dependent variable. Fourth, we include country-

specific time trends. Fifth, we cluster standard errors at the country level. The results in Figures 

3.A1-3.A5 in the Appendix are qualitatively identical to those presented in Figure 3.2, 

reassuring us about the validity of our analysis.  

3.4.2. Instrumental variable approach 

 

To address potential endogeneity issues, we also adopt an instrumental variable strategy, 

where we instrument our index of climate change policy with a composite variable that 

considers weather related shocks at global level—the number of floods at time t in our case—

 
25 We consider 1-year lag as these variables capture the channel through which CCP can affect inequality.  



124 
 

multiplied by morphological conditions of country i—the length of the coastline. The results 

from the first-stage equation suggests that instrument exhibits the expected sign (+) and is 

“strong”, with the Kleibergen‒Paap rk Wald F statistic being larger than the associated Stock-

Yogo critical value for strong instruments.  

Figure 3.3 shows results from the headline equation (equation 3.2) and the effect of 

CCPs on income inequality remains qualitatively similar to baseline results, but the estimated 

coefficients are now approximately two times larger than in the baseline scenario, in the 

medium term. This indicates that, not controlling for endogeneity, may lead to underestimating 

the effect of CCPs on income inequality.  

3.4.3. Transmission Channels 

 

To shed light on the transmission channels through which climate policy actions affect 

inequality, we use the same empirical framework as in equation (3.1) and regress 

unemployment rate, and the share of employment of workers with low education, on CCP.26  

 Figures 3.4 shows that stricter CCPs contribute to increase the unemployment rate, 

with coefficients that are large in magnitude, highly statistically significant and persistent. 

Specifically, a 1-point increase in the degree of stringency of CCPs raises unemployment rate 

by about 1.3 percentage points, in the medium term. Considering the average yearly change 

of EPS index in our sample, CCPs may increase unemployment rate by about 0.12 percentage 

points in the medium term, a result similar to that in Kanzig, (2023). In addition, job 

disruptions are likely to affect more those workers—such as those with lower skills—that are 

unable to reallocate to green jobs. In fact, from Figure 3.5 we observe that the effect of CCPs 

on the share of employment of worker with low-education/low-skills is negative in the medium 

 
26 In detail, we use equation (3.1) and we alternatively consider as dependent variables (i) unemployment rate, 

in country i, at time i, (ii) the share of employment of people aged 25-64 with lower than upper secondary 

education over total employment of people aged 25-64 in country i at time t. Data are retrieved from OECD. 
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term. These two results confirm the idea that CCPs have adverse employment effects, 

especially for low-skilled workers.  

3.4.4. Heterogeneity due to the type of policy 

 

As outlined above and confirmed by previous literature, not all the policy instruments available 

to policymakers have the same effect (Furceri et al., 2023). Some may be better fitted to deal 

with specific goals such as reducing emissions or promoting green innovation, other may be 

less costly in terms of political support. The same may be true for inequality. 

 To test this potential heterogeneous effect across policy, we use the sub-components 

of EPS index. In detail, we differentiate between market-based policies (i.e., taxes and 

certificates), non-market-based policies (i.e., emission standards), and technology-support 

policies (i.e., support to low-carbon R&D expenditure and technology adoption support 

policies) (see Botta and Koźluk, 2014, for a detailed description of types of policy), and 

include them one-by-one in equation (3.1). Figure 3.6 reports the results of this exercise 

applied to different indicators of income inequality. They suggest that the baseline results are 

driven by market-based policy actions. In fact, the implementation of such type of policy leads 

to increases in income inequality that are, on average across indicators, 50% larger than in the 

baseline scenario. Particularly larger increases are observed for the P90/P10 indicator (+70%), 

thus suggesting that market-based policies are especially detrimental for households at the 

bottom of the distribution. In contrast, non-marked-based and technology support policies 

have no or feeble effects on income inequality.  

3.5. Heterogeneity due to country characteristics and economic conditions  

 

Next, we consider that different country-level characteristics/conditions may mediate the way 

CCPs affect income inequality, either amplifying or moderating the effect. In so doing, we can 

disclose potentially efficient compensating policy actions that policymakers may implement 
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to alleviate distributional costs associated with CCPs. Empirically, we construct smooth 

transition functions based on moderating variables, and interact them with the EPS index, as 

well as controls, as described in equation (3.3).  

We first investigate the role of the business cycle. The results in Figure 3.7 show that 

while CCPs tend to increase inequality when implemented in recessions (with the medium-

term effect about 1.2-1.5 times larger in the baseline), they are associated with a decline in 

inequality when are implemented during economic expansions. 

Next, we consider the role of country’s structural characteristics related to the share of 

workers with low education (lower than upper secondary education), and the GINI index of 

market income, with data retrieved from the OECD. Figures 3.8-3.9 show that the effect of 

CCPs on inequality is 2-3 times larger in countries where the share of workers with low 

education is high; and 2-2.5 times larger in countries characterized by higher initial inequality.  

 In Figures 3.10, we focus on the role fiscal policy at the time of the adoption of stricter 

climate change policy. We follow Furceri and Zdzienicka, (2020) to identify unexpected fiscal 

policy shocks using the forecast errors in government spending at annual frequencies (see 

Furceri and Zdzienicka,(2020) for additional details about the method). This approach allows 

us to capture unanticipated changes in government spending, that are exogenous to other 

relevant macroeconomic variables—such as lagged output growth, output gap and government 

revenues—and other macroeconomic shocks. The results, independently from the measures of 

income inequality, show that expansionary fiscal policies significantly reduce the negative 

impact of CCPs on inequality. 

Finally, we consider the extent to which governments implement redistribution policy. 

Here, we use the difference between GINI based on market income before taxes and transfers 

and GINI based on disposable income post taxes and transfers, with data from OECD. The 
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results in Figure 3.11 show that in countries with strong redistribution policies, the effect of 

CCPs on inequality is not statistically significantly different from zero.  

3.6 Conclusion and Policy Implications 

 

The literature has shown that CCPs may cause some negative economic effects—e.g., job 

losses, high energy prices—that are potentially concentrated among the weakest household 

and workers.  

 In this paper, we contribute to this literature by using a dynamic empirical approach 

that estimates the short- and medium-term response of income inequality to an increase in the 

degree of stringency of climate change policy, for an unbalanced panel of 39 OECD and non-

OECD economies for the period 1990-2020. We consider several measures of income 

inequality—i.e., GINI, P90/P10, P50/P10, Palma ratio, S80/S20—and the OECD 

Environmental Policy Stringency Index to quantify the stringency of climate change policy at 

the country level.   

 The results show that CCPs significantly and persistently contribute to increasing 

income inequality, independently from the measure of inequality used. According to our 

estimates, back-to-the envelope calculations suggest that the increase in the stringency of 

CCPs occurred between 1990 and 2020 may have led to an increase in income inequality by 

approximately the 10%. We prove that baseline results are robust to several sensitivity tests, 

as well as to an instrumental variable approach. 

The type of environmental policy implemented also affects the magnitude of the impact 

of CCPs on income inequality. In this regard, we show that side-effects of CCPs on inequality 

only materialize in the case of market-based policies—e.g., carbon pricing—while non-

market-based or technology support policies do not lead to any relevant effect on income 

inequality. Moreover, the increases in inequality after CCPs are 1.5-3 times larger during 

recessions, and in countries where the share of workers with low education is high and those 
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characterized by high initial inequality. In contrast, the effect of CCPs on inequality nullifies 

if a country adopts comprehensive redistribution policy and expansionary fiscal policy.  

Taken together, these results can shed light on how to design CPPs to mitigate their 

distributional effects. First, they show that is crucial to consider the timing of adoption of 

CCPs. Second, they highlight the importance to invest in training programs and education to 

increase skills and facilitate the reallocation of workers to green sectors. Third, they show that 

redistribution as well as expansionary fiscal policy are key to prevent the increase in inequality 

after the implementation of CCPs. Fourth, involve stakeholders from various sectors, 

including vulnerable communities, in the policy design process to ensure that the policies are 

equitable and do not disproportionately burden low-income groups.  
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Figures 

 

Figure 3.1: Evolution of EPS. 
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Figure 3.2: Baseline results for different income inequality measures. 
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Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of 

each chart, to an increase of 1-pont of EPS. The shaded area represents the 90 percent confidence interval; t=-1 is the year of 

the shock. 
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Figure 3.3: Instrumental variable approach. 
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Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of 

each chart, to an increase of 1-pont of EPS. Estimates are computed using an instrumental variable approach. The shaded area 

represents the 90 percent confidence interval; t=-1 is the year of the shock. 
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Figure 3.4: The effect of CCPs on unemployment. 

 

 
Note: The charts show the impulse response function of unemployment rate to an increase of 1-point of EPS. The shaded area 

represents the 90 percent confidence interval; t=-1 is the year of the shock. 

 

 

 

Figure 3.5: The effect of CCPs on workers with low education. 

 
 

Note: The charts show the impulse response function of share of workers with low education to an increase of 1-point of EPS. 

The shaded area represents the 90 percent confidence interval; t=-1 is the year of the shock. 
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Figure 3.6: Effect of different types of policy on income inequality measures. 
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80/20 

                      market      non-market              technology support 

 
 

Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of 

each chart, to an increase of 1-point of different policy instruments. The shaded area represents the 90 percent confidence 

interval; t=-1 is the year of the shock. 
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Figure 3.7: Nonlinear effects based on the share of workers with low education. 
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Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of 

each chart, to an increase of 1-pont of EPS. Estimates are computed using smooth transition local projection approach, as 

described in eq. (3.3), with the share of workers with low education as mediating factor. Left charts report low scenarios (i.e., 

low share of workers with low education); right charts report high scenarios (i.e., high share of workers with low education). 

The shaded area represents the 90 percent confidence interval; t=-1 is the year of the shock. 
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Figure 3.8: Nonlinear effects based on initial level of inequality. 
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Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of 

each chart, to an increase of 1-pont of EPS. Estimates are computed using smooth transition local projection approach, as 

described in eq. (3.3), with the share of workers with low education as mediating factor. Left charts report low scenarios (i.e., 

low initial levels of inequality); right charts report high scenarios (i.e., high initial levels of inequality). The shaded area 

represents the 90 percent confidence interval; t=-1 is the year of the shock. 
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Figure 3.9: Nonlinear effects based on per capita GDP growth. 
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Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of 

each chart, to an increase of 1-pont of EPS. Estimates are computed using smooth transition local projection approach, as 

described in eq. (3.3), with the share of workers with low education as mediating factor. Left charts report low scenarios (i.e., 

low per capita GDP growth); right charts report high scenarios (i.e., high per capita GDP growth). The shaded area represents 

the 90 percent confidence interval; t=-1 is the year of the shock. 
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Figure 3.10: Nonlinear effects based on expansionary fiscal policy shock. 
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Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of 

each chart, to an increase of 1-pont of EPS. Estimates are computed using smooth transition local projection approach, as 

described in eq. (3.3), with the share of workers with low education as mediating factor. Left charts report low scenarios (i.e., 

low expansionary fiscal policy shock); right charts report high scenarios (i.e., high expansionary fiscal policy shock). The 

shaded area represents the 90 percent confidence interval; t=-1 is the year of the shock. 
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Figure 3.11: Nonlinear effects based on redistribution policy. 
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Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of 

each chart, to an increase of 1-pont of EPS. Estimates are computed using smooth transition local projection approach, as 

described in eq. (3.3), with the share of workers with low education as mediating factor. Left charts report low scenarios (i.e., 

low redistribution policy); right charts report high scenarios (i.e., high redistribution policy). The shaded area represents the 

90 percent confidence interval; t=-1 is the year of the shock. 
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Tables 

 

Table 3.1: List of countries. 

Australia Finland Japan Slovak Republic 

Austria France Korea Slovenia 

Belgium Germany Luxembourg South Africa 

Brazil Greece Mexico Spain 

Canada Hungary Netherlands Sweden 

Chile Iceland New Zealand Switzerland 

China India Norway Turkey 

Czech Republic Ireland Poland United Kingdom 

Denmark Israel Portugal United States 

Estonia Italy Russian Federation  

 

 

 

Table 3.2: Descriptive statistics. 

 Variable  Obs  Mean  Std. Dev.  Min  Max 

 EPS 424 2.596 1.04 0 4.72 

 market-based 424 1.332 .902 0 4.17 

 non-marked-based 424 4.403 1.597 0 6 

 technology support 424 2.085 1.354 0 6 

 GINI 424 .31 .057 .211 .626 

 P50/P10 423 2.11 .434 1.6 7.8 

 P90/P10 424 4.208 1.944 2.1 23 

 PALMA 424 1.227 .574 .69 7.14 

 S80/S20 424 5.371 2.833 3 33.1 
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Appendix 3 

 

3.A1: Robustness checks – additional controls (from left to right: unemployment, inflation, 

GDP growth, all controls). 
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                                               S80/S20 

 

Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption of each 

chart, to an increase of 1-pont of EPS. The shaded area represents the 90 percent confidence interval; t=-1 is the year of the shock. 

 

 

 

3.A2: Robustness checks – country-specific time trend (from left to right: GINI, P50/P10, 

P90/10, PALMA, S80/S20). 

 

Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption, to an 

increase of 1-pont of EPS. The shaded area represents the 90 percent confidence interval; t=-1 is the year of the shock. 
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3.A3: Robustness checks – excluding outliers (from left to right: GINI, P50/P10, P90/10, 

PALMA, S80/S20). 

 

Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption, to an 

increase of 1-pont of EPS. The shaded area represents the 90 percent confidence interval; t=-1 is the year of the shock. 

 

3.A4: Robustness checks – SE clustered at country-level (from left to right: GINI, P50/P10, 

P90/10, PALMA, S80/S20). 

 

Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption, to an 

increase of 1-pont of EPS. The shaded area represents the 90 percent confidence interval; t=-1 is the year of the shock. 
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3.A5: Robustness checks – different lags structure (from left to right: GINI, P50/P10, P90/10, 

PALMA, S80/S20). 

 
 
Note: The charts show the impulse response function of income inequality, based on different indicators as in the caption, to an 

increase of 1-pont of EPS. The shaded area represents the 90 percent confidence interval; t=-1 is the year of the shock. 
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General Conclusion: 

 

The intricate interplay between environmental imperatives, green innovation, policy frameworks, 

and socio-economic outcomes underlines the multifaceted challenges of transitioning to a 

sustainable future. Uncertainty—whether political, economic, or regulatory—poses significant 

threats to green innovation. While stringent environmental policies have proven effective in driving 

green technological advancements, they also come with unintended socio-economic consequences, 

particularly in the realm of income inequality. The renewable energy sector, emblematic of the 

broader green innovation landscape, is particularly sensitive to these dynamics. On one hand, it 

benefits from clear policy directives and incentives that promote sustainable practices. On the other 

hand, it remains vulnerable to the vagaries of shifting political and economic landscapes. The 

challenge, therefore, lies in crafting policies that not only stimulate green innovation but also ensure 

that the potential costs associated with climate policy are equitably distributed. 

The dissertation findings presented offer a comprehensive understanding of the multifaceted impact 

of uncertainty and climate change policies (CCPs) on green innovation and income inequality. 

Particularly, the first chapter emphasizes the detrimental impact of uncertainty on green innovation 

measured by renewable energy patents. A significant finding is the magnitude of this impact, with a 

standard deviation increase in global uncertainty potentially leading to a 40% reduction in patents 

five years after the policy shock. The recent upsurge in uncertainty generated by the COVID-19 

pandemic exemplifies this, potentially causing a medium-term decline in renewable energy patents 

by 70%. This adverse effect is consistent across various sectors, with pronounced impacts on the 

power and building sectors, as well as on wind and solar energy technologies. Furthermore, during 

periods of financial stress and weak demand, the negative effects of uncertainty on patents are 

exacerbated. However, a silver lining emerges in the form of policy support for a greener economy, 

which can mitigate the negative repercussions of uncertainty on green innovation. 

In the second chapter, we extend the analysis and investigate the effect of Climate Change Policies 

(CCPs) on green innovation. The empirical analysis delineates the positive influence of CCPs on 

green patents, especially when carried out by using non-market-based policies like emission limits 

and R&D subsidies. However, the study also acknowledges potential endogeneity issues, suggesting 

that countries might be more inclined to implement CCPs during periods of weak green innovation. 

To address this, we employ an instrumental variable strategy, leveraging cross-sectional variations 

in a country's exposure to climate risks. The study further delves into the state-dependent response 

of green innovation to CCPs, highlighting that innovation tends to be lower in countries with limited 
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market competition and during periods of economic uncertainty, financial stress, and weak demand. 

A sectoral analysis further strengthens the causal relationship between CCPs and innovation, 

emphasizing the importance of considering sector-specific constraints. 

In the third and final chapter, we examine the impact of Climate Change Policies (CCPs) on income 

inequality. The results show that CCPs lead to a significant and persistent increase in income 

inequality. The magnitude of this effect is substantial, with a unitary increase in the Environmental 

Policy Stringency (EPS) leading to a surge in income inequality by about one standard deviation of 

the change observed in our sample. The study further analyzes the heterogeneous effects of different 

climate policy instruments on inequality. Market-based policies, while effective in reducing 

emissions, are associated with increased employment challenges, especially for lower-educated 

workers. In contrast, non-market-based or technology support policies do not exhibit a statistically 

significant impact on inequality. The study also identifies that the repercussions of CCPs on income 

inequality are more pronounced in countries with a higher proportion of low-skilled workers and 

those with pre-existing high levels of inequality. However, countries with robust redistribution 

policies and expansionary fiscal policy as well as countries experiencing periods of economic growth 

are better positioned to offset such negative effects of CCPs on income inequality. 

The comprehensive research findings on the relationship between uncertainty, climate change 

policies (CCPs), green innovation, and income inequality discussed in this thesis, offer several policy 

implications. First, they unveil the profound impact of uncertainty on green innovation. Economic 

and policy uncertainty, especially during global events like the COVID-19 pandemic, can 

significantly hamper the growth and development of renewable energy patents. Policymakers must 

prioritize proactive management of such uncertainties. This can be achieved through clear 

communication, consistent policy directions, and robust contingency planning. By ensuring a stable 

environment, governments can foster and accelerate green innovation across various sectors. 

Moreover, during periods of weak demand and financial stress, firms are more vulnerable to the 

negative effects of uncertainty. Policymakers should be aware of these state-dependent effects and 

design interventions that can bolster firms during such challenging times. 

Second, the relationship between climate change policies (CCPs) and green innovation is 

multifaceted. While certain CCPs can stimulate green innovation, the type and design of these 

policies matter. Non-market-based policies, such as emission limits and R&D subsidies, have shown 

a positive and significant impact on green innovation. On the other hand, market-based policies 

might not always yield the desired results. Policymakers should adopt a tailored approach, 
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considering the specific needs and challenges of different sectors. Regular assessments, feedback 

loops, and cross-sectoral collaborations can help refine and optimize policies over time, ensuring 

they effectively promote green innovation. 

Third, while CCPs are essential for a sustainable future, their socio-economic implications cannot 

be overlooked. The research indicates that certain CCPs, especially market-based ones, can 

exacerbate income inequality. As countries transition to a green economy, it is crucial to ensure that 

this shift doesn't disproportionately burden certain segments of the population. Policymakers should 

design CCPs with an equity lens, considering their potential impact on income distribution. 

Compensatory measures, such as social safety nets, retraining programs for affected workers, and 

targeted subsidies, can help mitigate the regressive effects of CCPs. Furthermore, countries with 

robust redistribution mechanisms are better positioned to manage the inequality effects of CCPs. 

Strengthening such mechanisms, alongside the implementation of CCPs, can ensure a fair and 

inclusive transition to a green economy. 

Summarizing, while the transition towards a greener economy through CCPs is commendable and 

necessary, it is imperative to consider the broader socio-economic implications. This research 

underscores the need for a balanced approach, where the pursuit of green innovation does not 

inadvertently exacerbate income disparities. Policymakers are thus tasked with the challenge of 

designing CCPs that not only promote green innovation, but also to ensure equitable economic 

growth. 
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