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a b s t r a c t

We introduce an extended generalised logistic growth model for
discrete outcomes, in which spatial and temporal dependence
are dealt with the specification of a network structure within
an Auto-Regressive approach. A major challenge concerns the
specification of the network structure, crucial to consistently
estimate the canonical parameters of the generalised logistic
curve, e.g. peak time and height. We compared a network based
on geographic proximity and one built on historical data of trans-
port exchanges between regions. Parameters are estimated under
the Bayesian framework, using Stan probabilistic programming
language. The proposed approach is motivated by the analysis
of both the first and the second wave of COVID-19 in Italy, i.e.
from February 2020 to July 2020 and from July 2020 to December
2020, respectively. We analyse data at the regional level and,
interestingly enough, prove that substantial spatial and temporal
dependence occurred in both waves, although strong restrictive
measures were implemented during the first wave. Accurate
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predictions are obtained, improving those of the model where
independence across regions is assumed.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Several approaches for modelling and forecasting COVID-19 incidence, prevalence, and related
utcomes have been recently proposed. When high-quality data are available, compartmental
odels such as SIR/SEIR (Diekmann et al., 2013) are well known to describe the contagion
ynamics satisfactorily and lead to scenario evaluation. However, high-quality data are unlikely
o be collected for the current epidemic, leading to the failure of most forecasts based on those
pproaches (Ioannidis et al., 2020). Italy is not an exception. Indeed, public Italian data are gathered
or mere descriptive and surveillance purposes, and present several issues that severely affect their
uality. Coherency, comparability, and consistency have been largely overlooked. Measurement
rrors and systematic biases are common. Data collection systems are not standardised nor nec-
ssarily supported by proper digital or electronic devices and infrastructures. Late notifications,
orrections, and adjustments to the daily cases occur repeatedly. In this context, empirical direct
ata modelling seems to be a more viable option than mechanistic compartmental models, allowing
he researcher to deal with measurement error and restrict prediction to a short term (Girardi
t al., 2020; Cabras, 2020; Alaimo Di Loro et al., 2021). An approach of this kind, as proposed
y Alaimo Di Loro et al. (2021), involves the specification of an appropriate parametric distribution
or the available aggregated data (e.g., Poisson or Negative Binomial for counts), perhaps meaningful
redictors and offsets, and a logistic-type time trend. One of the limitations of this approach is that
ndicators in each area are modelled independently. That is clearly only a working assumption,
s mobility have occurred across Italian regions also during the hard lockdown of Spring 2020.
ven sick people with COVID-19 have been sometimes transferred from one region to another.
urthermore, it is likely that regions close to each other culturally, economically, or geographically
e.g., sharing borders) present similar features as people experience similar climates, pollution and
ave similar lifestyles. For these reasons, this work aims to overcome this limitation by explicitly
aking into account the spatial dependence across regions and the temporal dependence within
egions. We make this extension for different specifications of the generalised growth model
f Alaimo Di Loro et al. (2021), in a Bayesian framework. The Bayesian formulation by itself is
lready a notably additional advancement, regardless of the model specification. We report here
hat posterior summaries, in our experience, seem to be more stable compared to the maximum
ikelihood estimates, possibly due to difficulties in finding a global optimum for the likelihood of an
nherently non-linear model. Furthermore, exploiting hierarchical models’ flexibility in a Bayesian
ontext, we replace the Negative Binomial assumption in Alaimo Di Loro et al. (2021) with the
oisson distribution. The still present over-dispersion and unobserved heterogeneity are accounted
or by including observation-specific random effects. If the random effects were assumed to be
amma-distributed, the corresponding marginal would indeed be a Negative Binomial and the
ethod would be analogous to the original modelling framework. However, we rather consider
ormally distributed random effects on the log scale. Gaussianity allows for a more straightforward
pecification of prior information and inclusion of possible dependence structures in the process
overning such effects. While temporal correlation is dealt with an Auto-Regressive (AR) structure,

spatial dependence is included by specifying a suitable Conditional Auto-Regressive (CAR) prior,
where the covariance matrix is identified using two possible networks: one based on geographic
proximity and one built on historical data of transport exchanges between regions (taken from Della
Rossa et al., 2020). The advantage of introducing this dependence structure is twofold. On the
one hand, the resulting simultaneous model provably gives more accurate description of the true
pandemic evolution than separate models for each region. On the other hand, it can be expected that
parameter estimates of characteristics of interest (e.g., peak time and height) can benefit from the
2
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pooling information from multiple regions. We separately evaluate the first and the second wave
of Sars-CoV-2 in Italy. Similarly to Bartolucci and Farcomeni (2021), we consider weekly incidence,
even if observed cases are made available daily. That is done in order to mitigate the issues with
erratic daily fluctuations due to late reporting. Even though we are aware that this does not solve
the data issues, it sufficiently alleviates them, as testified by the smoother time series obtained at
the weekly level. The remainder of the article is organised as follows: Section 2 gives the necessary
background, with some information about the available data and the growth curve models proposed
in a frequentist framework by Alaimo Di Loro et al. (2021). The hierarchical structure of our model
proposal is described in Section 3, while further details about the inclusion of the spatial and
temporal dependence are given in Section 3.1. Section 4 describes our Bayesian sampling strategy
for approximating the posterior distribution of the model, and give insights on how to modify the
CAR specification to gain in computational efficiency. Results of our modelling options for the first
and second wave of COVID-19 in Italy are reported in Sections 5 and 5.1. Concluding remarks can
be found in Section 6.

2. Setup

Public data about COVID-19 in Italy are published every day by the Civil Protection Department,
ince February 24th, 2020.1 For each of nineteen regions and two provinces (Trento and Bolzano,
forming the region of Trentino Alto Adige), these include (i) prevalence indicators (currently
positive, Intensive Care Unit (ICU) occupancy, hospital occupancy) and (ii) incidence indicators
(e.g. newly diagnosed positives, deceased, new admissions to ICU, swabs, subjects tested). For a
more technical description refer to Dicker et al. (2006) and Alaimo Di Loro et al. (2021). For any
of the incidence indicators in a given area, the number of new cases at time t = 1, . . . , T can be
btained as the first difference of its cumulative counterpart as Yt = Y c

t − Y c
t−1 where Yt and Y c

t
re the number of new and cumulative cases at time t , respectively, and where we may assume
c
0 = 0 without loss of generality. Cumulative indicators present some peculiarities: they are
onotone non-decreasing and their behaviour usually follows a logistic-type growth curve. These
urves have been widely used to describe various biological processes (Werker and Jaggard, 1997).
ore recently, they have also been adapted in epidemiology and biostatistics for modelling the
nset and the spreading of epidemics (Hsieh, 2009; Hsieh and Chen, 2009; Hsieh, 2010).
Alaimo Di Loro et al. (2021) proposed a modified Richards’ curve (Richards, 1959), also known

s the Generalised Logistic Function, for modelling cumulative incidence indicators. The generalised
ogistic function can accurately model various monotone processes and include other widely-used
ogistic growth curves as special cases (Tsoularis and Wallace, 2002; Gompertz, 1825). In Alaimo
i Loro et al. (2021) a parametric model is specified for region-specific incidence indicators
e.g., Poisson or Negative Binomial), where the cumulative indicators are assumed to follow a
ive-parameters Richards’ curve. The classical formulation of Richards’ curve can be expressed as:

Λγ (t) = b +
r

(1 + eh(p−t))s
, γ⊤

= [b, r, h, p, s] (1)

where b ∈ R+ represents a lower asymptote (or baseline), r ∈ R+ is the distance between
the upper and the lower asymptote, h ∈ R represents the growth rate, p ∈ R determines the
point of inflection (when s = 1 it corresponds exactly to the peak position), and s ∈ R is an
asymmetry parameter regulating differences in the behaviour of the ascending and descending
phase of the curve. Due to the monotone behaviour of cumulative incidence indicators, growth
rate h and asymmetry parameter s are constrained to be positive. However, a maximum of b+ r is
foreseen for the Richards’ curve as t → ∞. This implies that the virus would be eradicated at some
point, an option which seems unlikely so far. In order to allow the model to reach an endemic state
in which there is a constant (hopefully, small) growth, we generalise Eq. (1) by considering a linear
trend on the baseline b:

Λγ (t) = b · t +
r

(1 + eh(p−t))s
. (2)

1 GitHub repository: https://github.com/pcm-dpc/COVID-19.
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This is similar to the use of an endemic parameter for the first differences as pursued in Alaimo Di
Loro et al. (2021).

Assuming that the expected value of Y c
t (cumulative incidence indicator at time t) can be

modelled with a (possibly modified) Richards’ curve, i.e. E[Y c
t ] = Λγ (t), the expected value for

he innovation Yt can be straightforwardly obtained as:

E[Yt ] = E[Y c
t ] − E[Y c

t−1] = Λγ (t) − Λγ (t − 1) = λγ (t), (3)

here:

λγ (t) = b + r ·
[
(1 + exp {h(p − t)})−s

− (1 + exp {h(p − t + 1)})−s] . (4)

. Generalised Logistic Growth Curve model with space–time dependence

Let Yg =
[
Ygt

]T
t=1 denote the time-series of number of new cases in area g , for g = 1, . . . ,G,

uch that

Y =
[
Y⊤

1 ,Y⊤

2 , . . . ,Y⊤

G

]⊤
.

he main assumption of our model is that Ygt arises from a Poisson distribution with mean µgt =

g · mgt . This can be expressed as:

Ygt |µgt ∼ Pois(µgt )
log(µgt ) = log(Eg ) + log(mgt ), g = 1, . . . ,G, t = 1, . . . , T ,

here log(Eg ) is an offset term that accounts for region-specific exposures levels.
When the offset is present, all other parameters impacting the overall rate become dimen-

sionless, regardless of the scale of the corresponding region. In other words, the term mgt can be
interpreted as a relative measure of the risk of region g at time t with respect to the considered
offset Eg .

Different specifications of mgt lead to different models, each with its own characteristics. We
decompose the log-risk in three main components:

log(mgt ) = φgt + log
(
λγg (t)

)
+ x⊤

gtβ, (5)

where φgt is a specific random effect for the gth area at time t , λγg (t) is a deterministic function
denoting the general time trend, with possibly region specific parameters γg as for Eq. (4), and x⊤

gtβ
a linear predictor based on K covariates with associated regression coefficients β.

3.1. The spatio-temporal CAR model

The observation-specific random effects
{
φgt : g = 1, . . . ,G, t = 1, . . . , T

}
are included to ac-

count for unobserved heterogeneity in the data. At each time, possibly correlated random effects
allow regional curves to deviate from their global average. Besides, their presence corrects for the
evident over-dispersion (with respect to the Poisson assumption) present in the time-series.

These random effects can either be completely independent, present temporal dependence,
spatial dependence, or spatio-temporal dependence. In a Bayesian framework, the covariance
structure can be induced hierarchically by specifying a suitable prior on the complete set of random
effects. In order to simplify the formulation of the random effects prior, we collect all of them in a
set of time-varying vectors φt = [φ1t , . . . , φGt , ]⊤ , t = 1, . . . , T .

Spatial dependence at each time point can be introduced by using a CAR prior (Besag, 1974)
over some network, that under Gaussianity produces a so-called Gaussian Markov Random Field
(GMRF, Rue and Held, 2005). This approach falls into the wide range of methods related to disease
mapping (see Waller and Carlin, 2010 and Lawson, 2018 for a review). Such CAR prior specification
allows incorporating the undeniable spatial correlation at the second level of the model hierarchy,
avoiding analytical complications inherent in modelling spatial correlation within non-Gaussian
distributions with inter-related mean and variance structures (Gelfand et al., 2010). This form of
4
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dependence is valid on discrete domains arranged over a network, where neighbouring relationships
are determined by an adjacency matrix W (possibly weighted). The matrix W = [wij] is a
G × G symmetric matrix with all diagonal elements equal to 0 (as no region/area/unit is its own
neighbour), and where off-diagonal elements wij are greater than 0 if and only if areas i and j
are connected (i ∼ j): the larger the connection strength wij, the closer the two random effects
are pulled together. The original expression of this prior starts from the consideration of the full
conditional of each random effect given all the others. For the generic t ∈ {1, . . . , T }, the full
onditional φgt |φ−gt , g = 1, . . . ,G has mean equal to the weighted combination of the random
ffects in its neighbourhood:

φgt |φ−gt ∼ N

⎛⎝ G∑
j=1

wgjφjt , σ 2

⎞⎠ , ∀ g = 1, . . . ,G,

here φ−gt =
[
φ1t , . . . , φ(g−1)t , φ(g+1)t , . . . , φGt ,

]⊤ and σ 2 is the overall variance of the random
ffect. This induces smooth variations over close regions, as determined by W . Following Brook’s
emma, for a fully connected graph (i.e. with no ‘‘islands’’), this local specification implies a very
pecific global multivariate prior on the vector φt , centred at 0 and with precision matrix Q
hich depends on the network structure. Under row-wise normalisation of the weights in W , and

ntroducing a spatial smoothing parameter α, this global prior can be expressed as:

φt ∼ NG
(
0, σ 2

· Q (α,W )−1) , ∀ t = 1, . . . , T , (6)

here Q (α,W ) = (D − αW ) and the matrix D is a diagonal matrix containing the row sums
f the weights of each region on the diagonal. This simply ensures that the weights of each
egion are properly normalised over all its neighbours (i.e. the row-wise normalisation). The
patial smoothing parameter α regulates the amount of spatial dependence: values close to 0
pproximate independence (no impact of W ) and values close to 1 strong spatial dependence
full impact of W ). This spatial CAR expression introduces spatial dependence among random
ffects belonging to connected regions at the same time-point. Nevertheless, we cannot neglect the
ndisputable temporal correlation which characterises such kind of data. Following the original work
y Rushworth et al. (2014), we induce such dependence by imposing a temporal Auto-Regressive
tructure over the vectors

{
φt

}T
t=1. This yields a spatio-temporal CAR model (CAR-AR) whose only

ifference in this work from the original version is that, instead of the mixed specification of Leroux
t al. (2000), we here consider the typical CAR of Besag (1974). In particular, we also extend the
riginal AR(1) formulation introduced in Rushworth et al. (2014) to order J ≥ 1. The extended
pecification amounts to the following prior for the collection of time-varying spatial vectors:

φt ∼ NG
(
0, σ 2

0 · Q (α,W )−1) , t = 1, . . . , J,

φt | φ1, . . . ,φt−1 ∼ NG

⎛⎝ J∑
j=1

ρj · φt−j, σ 2
· Q (α,W )−1

⎞⎠ , t = J + 1, . . . , T ,
(7)

here
{
ρj

}J
j=1 is the set of coefficients governing the amount and direction of temporal dependence

t different lags. Such a complex AR structure may be very useful to catch dependence and
easonality patterns at different temporal scales. For instance, we may expect to observe a strong
eekly seasonality at the daily level, which may be well-captured by an AR(7) specification
potentially with some of the lower order coefficients set to zero). Remark that AR(J) processes
re stationary only if the characteristic polynomial φ(z) = 1 −

∑J
j=1 ρjz J−j has the reciprocal of its

roots
{
ηj

}J
j=1 lying inside the unit circle. This property is desirable as it favours the identification

of all the considered space–time components. This is not easily enforced for arbitrary values of J .
A general prior choice in this sense is provided in Huerta and West (1999), where the process is
reparametrised in terms of ηj’s and other auxiliary latent components. Section 5 focuses on the
analysis of weekly data that do not show any cyclic behaviour. Therefore, we only expand on

the case J = 1, where stationarity is guaranteed by simply enforcing ρ1 = ρ ∈ (−1, 1). In the

5
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time series literature the first J time points are usually ignored, and just conditioned upon. Eq. (7)
akes a simplifying working assumption of independence of the first J time points to obtain a
arginal parameterisation. This clearly is irrelevant for the case J = 1, while in the other cases
e recommend checking the goodness of fit of the initial joint distribution, and maybe adjust
he assumptions. All abovementioned hyperparameters are then ascribed standard hyperpriors,
ommonly found in the literature:

α ∼ Be(0.5, 0.5) ρ ∼ Unif (−1, 1) σ 2
∼ IG (2, 2) ,

here the latter has been coded as σ 2
=

1
τ2

with τ 2
∼ Ga (2, 2) (see Algorithm 1 in the Appendix).

3.2. The logistic growth trend

In Section 2, we state that we want to model the general trend of COVID-19 counts (of positives)
in a single outbreak by using the first differences of the Richards’ curve as in Alaimo Di Loro
et al. (2021). The first differences in Eq. (4) do not present an elegant expression and are slightly
cumbersome to work with. Since data are collected at equally spaced time intervals, we propose to
linearly approximate λγ (t) with the derivative of the Richards’ curve, as follows:

λγ (t) ≈ λ̃γ (t) =
d
dt

Λγ (t) · ∆t = b + r · s · h · exp {h · (p − t)} · (1 + exp {h(p − t)})−(s+1) ,

(8)

here ∆t = 1. In our implementation, we initially considered both the exact and the linearised
ersion of Eq. (4) and (8), respectively. In the final results, differences were negligible, but the latter
rovided improved numerical stability and convergence of the chains. Thus, we decided to stick to
his version, which is also used to produce the final results included in Section 5.1.

The expression in Eq. (5) implicitly considers a very highly parametrised model, where each
egion is allowed its own vector of parameters

{
γg

}G
g=1, hence its own Richards’ curve, to drive

he trend of the regional outbreaks. In the sequel, we alternatively envision the existence of one
ommon single Richards’ curve governing the spread of the epidemic in all the Italian regions, which
hen deviate from this global average as an effect of specific characteristics (observed or unobserved).
his is obtained as a particular case of the former, where γg = γ, ∀ g ∈ {1, . . . ,G}.
There is an essential difference between these two specifications, especially in terms of the role

f the space–time random effects. The first one is a local model, where the random effects represent
emporal variations of the mean underlying each regional counts-series from the region-specific
rend. In the second case, they instead represent the spatio-temporal deviations of each region’s
eans, at each time, from the common curve. From a dependence interpretation standpoint, in the

irst case we are assuming that if region g and region j are connected, when region g deviates from
ts trend λγg (·), then region j will likely have similar deviation from its own trend λγ j (·) as well. In
he second case, we are assuming that if region g and region j are connected, when region g deviates
rom the general trend λγ (·), then region j will also deviate from the general trend similarly.

Let us recall that the parameters {b, r, h, s} governing the differences of the Richards’ curve
re constrained on the positive domain R+. In order to favour the elicitation of diffuse pri-
rs and the Bayesian estimation process, these have been parametrised on the log-scale as
log(b), log(r), log(h), log(s)}. The first two have been assigned a N (0, 100) prior, while the last two
N (0, 1) one. These correspond to very vague priors on the log-scale, where the second are assigned
lower variance given their double-exponentiated nature in Eq. (8). One may argue that the same
rior specification for log(b) and log(r) does not reflect the natural intuition about b being some
rder of magnitude lower than r . However, while this may seem obvious in the case of COVID-19
andemic waves, we here want to point out that this is not necessarily true in general. For instance,
n the case of an endemic disease, we may observe a relatively high baseline (endemic rate) with
nly small seasonal waves of infections that could be rapidly contained. However, we performed
ome preliminary runs embedding such prior belief before proceeding to the final analysis of
6
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Section 5. The results were indistinguishable to the ones obtained using vague priors and therefore
we opted for the latter in order to let the data drive the final estimates.

The parameter p, unlike the others, belongs to the whole real line R and, more importantly, is
ot dimensionless. Its magnitude is indeed related to the dimension of the analysed time window.
t can be loosely interpreted as the lag-phase of the outbreak (for s = 1 it represents precisely the
oint of maximum of the curve), which is the point in time when the exponent h · (p− t) becomes
egative. It is not well-identified for varying s, and hence it has been given a N (T/2, T/(2 · 1.96))
rior to help it move inside the observed time interval (included in [0, T ] with 95% probability).

3.3. The linear predictor

The linear predictor x⊤
gtβ describes the effect of covariates on the log-risks. Since the dimension

of the region is already accounted for in the offset term, such covariates shall account for exogenous
factors that affect the spread of the virus, or the ability to detect the infected people in each area
at different times. In practice, this term shall represent all the meaningful observed heterogeneity
between regions and within regions over time.

For instance, the population density is a region-specific and constant over time feature that
can likely impact on the rate of infection. This covariate has been considered in the recent work
by Jalilian and Mateu (2021) and proved to be valid for both explanation and prediction purposes.
Another interesting variable to study may be the number of daily swabs. Its inclusion accounts for
the effort in detecting positive cases carried out by a region at a specific time.

If K covariates are considered, then the vector x⊤
gt is associated to a (K ×1) vector of coefficients

β. In our Bayesian machinery, this vector is assigned a multivariate Normal prior with independent
components NK (0, 100 · IK ), which corresponds to a fairly diffuse prior considering the log-linear
link.

It is here important to highlight that we are not including the intercept in the linear predictor.
In the case of region-specific Richards’ curves, the intercept is implicitly defined by the parameters
bg and rg already, and its inclusion would introduce a non identifiable parameter and jeopardise
proper convergence of the estimation algorithms. In the case of a common single Richards’ curve,
one may want to include region-specific intercepts

{
β0g

}G
g=1. These would have the effect of moving

the whole region-specific curve up or down with respect to the global average, again accounting for
unobserved heterogeneity among regions. However, the goal is to have this heterogeneity explained
by the spatio-temporal random effects φgt : the inclusion of such individual intercepts would add
an unwanted player in the game and make the interpretation of the final results intricate.

4. Estimation

Estimation has been carried out using Stan,2 which is a probabilistic programming language
for statistical modelling and high-performance statistical computation (Carpenter et al., 2017; Stan
Development Team, 2021). It interacts with R and can be called directly from RStudio (Allaire,
2012) through the rstan package (Stan Development Team, 2020). Among its many capabilities,
it allows to get full Bayesian inference by drawing from the posterior density by a specific Markov
Chain Monte Carlo (MCMC) sampling method known as Hamiltonian Monte Carlo (HMC, Betancourt,
2017). The HMC techniques provide an efficient sampling scheme based on the simulation of
Hamiltonian dynamics for approximating the target distribution (Neal et al., 2011). Its functioning
relies on the analogy between the parameter value and the trajectory of a fictitious particle
subject to a potential energy field, preserving its total energy (the Hamiltonian), obtained as the
sum of potential and kinetic energy. In practical terms, given the chain’s current value and the
corresponding log-density, it picks the new value of the chain by proposing a random shift in the
log-density value and then moving arbitrarily far away from that point along the corresponding
contour line. The latter allows for fast and complete exploration of the whole density that does

2 Webpage at https://mc-stan.org/.
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not negatively affect the acceptance rate, minimising the risk of wasting time (or even getting
stuck) in local high-density areas. Unlike the Metropolis–Hastings (Metropolis et al., 1953) or Gibbs
sampler (Geman and Geman, 1984), it provides robust performances and easily reaches convergence
even for very complex models, e.g.: posterior density characterised by complex geometries, multi-
layered hierarchical models with many parameters, models depending on large sets of latent
variables, etc. One of the advantages of Stan is that it allows for an easy implementation of the No
-Turn Sampler (NUTS, Hoffman and Gelman, 2014). NUTS proved to perform at least as efficiently
s the standard HMC but, generally, does not require any tuning of the hyperparameters governing
he proposals. Hence, it sensibly reduces the computational burden and averts any user intervention
r wasteful runs. Another advantage of the NUTS algorithm is that situations in which the sampling
annot thoroughly explore the whole posterior distribution are easily detectable. Indeed, when the
pproximation of the Hamiltonian dynamic fails to reach specific areas without departing from
he original Hamiltonian value, the so-called divergent transitions arise. For more details we refer
o Betancourt (2016). The Stan interface reports divergences as warnings and provide ways to
ccess which iterations encountered them. The bayesplot package (Gabry et al., 2019) can be used
o visualise them and locate the areas in which the exploration failed. If no divergences occur, we
an be confident that the chain was able to explore the whole domain of interest of the log-posterior
ensity.
After few warm-up iterations, during which the NUTS automatically adapts its future behaviour

o the shape of the posterior density, chain convergence and desirable accuracy are usually reached
ven in few iterations (≈103). Nevertheless, doing more iterations does not harm and longer chains
ead to more robust result. When the log-posterior density is computationally intensive to compute
r the geometry of the posterior is particularly complex, the approximation of the Hamiltonian
ynamics can be significantly slowed down and negatively impact on the total run-time. For
nstance, for the model in Section 3, there are T spatial vectors of random effects that contribute to
he overall density. The evaluation of the contribution of each of these requires the computation of
he corresponding prior, which in turn involves the computation of inverse and determinant of the
×G matrix Q (α,W ). It is clear how the naive implementation of such a model is all but efficient.
evertheless, we can exploit two facts in order to ease computations. First, the spatial covariance
tructure does not vary over time, especially along iterations; this implies that we can compute
he inverse and determinant only once in advance without doing the same calculations repeatedly.
econd, each region has only a few neighbours, and the matrix Q (α,W ) is not full, paving the way
or efficient algebraic solutions. In practice, many efficient strategies can be adopted in order to
lleviate the computational burden by speeding up linear algebra operations. Here, we based ours on
he Exact-sparse CAR elaborated in Joseph (2016), which accrues significant computational efficiency
y more than halving the needed run-time.3 The original code has been slightly modified in order
o include the temporal AR structure of our spatio-temporal CAR. The core of the Stan program
eeded to update the CAR-AR random effects is presented in Algorithm 1 of the Appendix. The full
odes to reproduce the results presented in Section 5 are available in a public GitHub repository
ccessible at https://github.com/minmar94/Covid19-Spatial.

. Application to COVID-19 incidence in Italy

We test and compare our proposals defined in Sections 3 and 4 on the data described in Section 2.
e consider the time series of the weekly positives at the regional (G = 20) level, for the first and

he second wave of the epidemic. From an epidemiological perspective, there is no strict definition
or what is or is not an epidemic wave (or phase). However, the scientific community agrees on the
act that the word wave implies a natural pattern of peaks and valleys, suggesting that even during
lull, future outbreaks of the disease are possible. Our proposal is able to model only one epidemic
ave at a time, since the Richards’ curve entails a single peak time and height. The latter implies
hat the start and end date of each wave must be set by the researcher. Albeit this is a drawback
f our approach, it can be easily seen through sensitivity analyses that results do not drastically

3 The computational gain is inversely proportional to the degree of the network defining neighbourhoods.
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Fig. 1. Regional weekly time series for positives during the first (a) and second (c) waves.

depend on this choice. We mention here the work by Bartolucci and Farcomeni (2021), which can
flexibly model more than one wave at a time, but at the price of not being able to explicitly estimate
important characteristics of each wave (e.g., peak time, onset time, etc.). Similarly, Farcomeni et al.
(2021) do not require to identify a time frame for waves, but it is restricted to short term predictions.

In our application, we set the 24th of February 2020, as the start date of the first wave, namely
when systematic data recording started, while the 19th of July 2020 is set as the end date. That is
the day in which discos and pubs were re-opened after the lockdown period (a total of 22 weeks).
For the second wave, the 20th of July 2020 was set as the start date, while the 27th of December
2020 was set as the end date (for a total of 24 weeks), which corresponds to the end of the last
week of the year and, more importantly, is the day the vaccine campaign began in all Europe (a.k.a.
V-day). The regional time series of the weekly positives for both waves are reported in Fig. 1(a) and
Fig. 1(b), respectively. It can be seen that the second wave had a slower onset (due to the seasonality
of infections in early Summer) but a much higher peak for most regions. That is not only due to a
larger number of infected with respect to the first wave (which has mostly hit only the northern
part of Italy) but also to the much larger proportion of identified cases.

We recall that we used the logarithm of the number of residents scaled by a factor of 104 as an
offset, essentially studying the number of positives per 10,000 residents rather then crude incidence.
This is necessary in order to be able to compare different regions, which can have very different
number of infected only due to a very different number of residents. We also included the number
of total weekly swabs (standardised) as covariate, to take into account different contact tracing
efforts. The number of positive swabs can be assumed to be negatively associated to the proportion
of undetected cases, and is one of the official indicators of the World Health Organisation.

We also compared two different specifications for the adjacency matrix in the CAR-AR model. The
first matrix, which we refer to as W 1, specifies a neighbourhood structure based on proximity flows
and the availability of direct train, flights, and ferry connections. This matrix has been also used
in Della Rossa et al. (2020), and can lead to distant regions to be neighbours because of, for instance,
frequent internal flight connections. The original matrix is a weighted measure of commuters’ flow
and is not symmetric since exchanges may have different magnitudes in the two directions. As a fast
and viable solution to symmetrise the matrix in this application, we decided to dichotomise it. We
set w∗

ij = 1 if there exists a positive flow in at least one of the two directions. The second adjacency
matrix, which we refer to as W 2, is the most typically adopted network defined on regions’ mutual
geographical position. In our application, we considered a first-order structure, where only pairs of
regions sharing at least one land border are considered as neighbours.
9
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Fig. 2. Network structure of the two adjacency matrices considered: W 1 (a) and W 2 (b).

The two different neighbourhood structures are shown in Fig. 2(a) and Fig. 2(b), respectively. In
particular, we report the number of edges (connections) and the (scaled) degree of each region. We
notice that using W 1 we end up with 18 out of 20 regions that have at least one connection (Molise
and Valle d’Aosta have none), three of them having 12 neighbours (which is the mode), and where
Sicilia is the most connected area with 15 neighbours. On the other hand, using W 2 we end up with
even regions that have 3 neighbours; two regions that have 6 neighbours, while Sardegna, which
s an island, has no connections. For Sicilia, which is also an island, we selected Calabria as the only
eighbour. The two regions are separated by very few kilometres of sea (the Strait of Messina), with
xtremely frequent ferry connections.
As a baseline model for comparison, we also considered the possibility of a completely discon-

ected graph W 0 = [0]ij , ∀ i, j, hence assuming complete spatial independence between regions.
evertheless, being temporal dependence undeniably present in the observed series, we always
etain the temporal AR structure between subsequent vectors φt−1, φt , t = 2, . . . , T . As a matter of
act, preliminary runs that neglected this feature of the date produced way worse results (especially
n terms of out-of-sample performances) that will not be reported in the sequel.

.1. Main results

For the sake of brevity, we will refer to the model ignoring spatial dependence with the fully
isconnected graph W 0 as M0, and as M1 and M2 to the models including spatial dependence using
1 and W 2 as adjacency matrices, respectively. We considered these three dependence structures

or the model with one common Richards’ curve, which we name common, and the model with
egion-specific Richards’ curves, which we name regional.

For all models considered, we ran two separate chains for 10,000 iterations, allowing Stan to
perform 5000 warm-up iterations each, which were discarded for inferential purposes.
10
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Table 1
Out-of-sample predictive performances of our proposals with a common or region-specific Richards’ curve in the first and
the second wave.
Wave Metric Common Regional

M0 M1 M2 M0 M1 M2

I
Coverage 0.98 0.98 0.98 0.96 1 0.96
PIW 1535 1178 1144 3311 846 1017
RMSE 423 184 272 399 331 314

II
Coverage 0.96 0.97 0.92 0.97 0.96 0.92
PIW 33393 4497 4046 16900 3131 3121
RMSE 12841 910 995 3669 1008 1038

We computed several metrics in order to compare the goodness-of-fit and predictive perfor-
ance of the model’s alternatives. The large flexibility of the space–time random effects specifi-
ation easily makes the model fit the observed set of data almost perfectly. This feature exposes
he typical in-sample metrics to over-fitting, flawing any sensible interpretation of the results, and
ould inevitably favour the highly parametrised regional model. Therefore, we decided to avert the
ver-fitting issues by artificially subtracting 15% randomly selected points from each region’s time
eries. These are treated as missing data in the estimation process, and the ability to reconstruct the
issing pieces properly is then verified in terms of various metrics: Coverage, Root Mean Squared
rror (RMSE) and Predictive Interval Width (PIW). Comparison of these three metrics for the three

dependence structures, with common and regional Richards, for the two waves, are presented in
Table 1.

We can clearly observe how the out-of-sample performances are comparable across the common
and regional specifications. The coverage is close (actually larger in most cases) to the 95% nominal
level in both cases, for all the dependence structures. M1 and M2, under both the common and
regional specification of the logistic trend, show equivalent coverage and similar PIWs. However,
the common specification provides more accurate out-of-sample predictions in terms of RMSE,
whenever the random-effects account for the spatial dependence (M1 and M2). Therefore, given the
comparable out-of-sample performances and the more parsimonious specification of the common
model, we chose this one as the preferred option. All future results will then be referred to this
specification.

Parameter estimates for the spatial (α) and temporal (ρ) auto-correlation, together with the
swabs’ effect (β) are reported in Table 2. Here, we want to first highlight that there is a clear
evidence of strong dependence both spatial and temporal, with values of ρ̂ > 0.8 in all models
for both waves. It is instead notable how the transport based graph detects low spatial dependence
(α̂ ≈ 0.14) during the first wave, and a large spatial dependence during the second wave (α̂ ≈ 0.93).
This change in the spatial correlation parameter between the first and the second wave for M1,
highlights the different type of non-pharmaceutical measures that were adopted to contain the
spread of the contagion and the estimated values are completely reasonable, given the harder block
to inter-regional movements that characterised the first wave as compared to more liberal mobility
policies that accompanied the second one. On the contrary, the geographic vicinity effect is stable
across the two waves, probably capturing similarities between close regions that depend on shared
unobserved characteristics more than on people exchange.

The parameter β represents the effect of additional swabs on the number of detected positives.
Being the swabs variable standardised, this does not allow for a trivial interpretation. However,
we can observe a positive effect which was more evident during the first wave than the second
wave. This happens unsurprisingly, since the testing efforts were not yet at full capacity during the
first outbreak, with many undetected cases, detected as soon as additional testing hubs were made
available.

Table 3 shows the estimated parameters of the common Richards in all settings. We here recall
that b represents the baseline (endemic rate), r the final size of the outbreak (in terms of cases every
10,000 residents), h the contagion speed, p the lag-phase and s the asymmetry. We can clearly
11
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Table 2
Comparison of parameters’ estimates for the spatial (α) and temporal (ρ) auto-correlation, and for the swabs’ effect in
he first and the second wave.
Wave Param. M0 M1 M2

I
α – 0.14 (0.02, 0.21) 0.76 (0.71, 0.81)
ρ 0.89 (0.87, 0.91) 0.88 (0.90, 0.93) 0.86 (0.85, 0.89)
β 0.36 (0.26, 0.44) 0.34 (0.25, 0.42) 0.21 (0.14, 0.29)

II
α – 0.93 (0.92, 0.95) 0.87 (0.85, 0.90)
ρ 0.88 (0.86, 0.90) 0.87 (0.85, 0.89) 0.82 (0.80, 0.85)
β 0.42 (0.38, 0.46) 0.27 (0.24, 0.30) 0.13 (0.09, 0.16)

Table 3
Parameters’ estimates of the Richards’ curve for the first and the second wave.
Wave Model b r h p s

I
M0 0.05 (0.04, 0.06) 23 (20, 27) 0.62 (0.60, 0.64) 2.0 (1.5, 2.5) 7.8 (6.3, 9.9)
M1 0.06 (0.05, 0.07) 20 (17, 22) 0.62 (0.59, 0.65) 2.2 (1.7, 2.8) 7.9 (5.5, 9.3)
M2 0.05 (0.04, 0.06) 26 (21, 31) 0.61 (0.58, 0.65) 2.2 (1.5, 2.9) 7.8 (5.2, 9.3)

II
M0 7 · 10−5 (1 · 10−6 , 1 · 10−3) 158 (143, 172) 3.46 (3.26, 3.63) 23.2 (23.1, 23.3) 0.06 (0.05,0.07)
M1 2 · 10−4 (3 · 10−5 , 7 · 10−3) 178 (127, 215) 2.72 (2.33, 3.08) 22.9 (22.8, 23.2) 0.09 (0.07,0.10)
M2 4 · 10−4 (3 · 10−6 , 1 · 10−2) 194 (163, 220) 3.50 (3.20, 3.70) 23.1 (22.9, 23.2) 0.06 (0.05, 0.07)

observe how the second wave is characterised by a larger final outbreak size, a larger endemic
rate and a longer lag-phase (meaning the curve approximates exponential growth for a longer
time window) in all cases. Furthermore, while the first outbreak was characterised by positive
asymmetric behaviour (with a fast and sudden growth followed by a long descending phase) the
second wave presented a negative asymmetric evolution, probably because of the softer lockdown
measures undertaken. Indeed, the positive asymmetry characterising the first wave reflects the hard
containment measures implemented by the Italian government at the beginning of the epidemic
(March 2020), which were gradually loosened. On the contrary, the second wave experienced a
negative asymmetry as the prevention policies were mild at the beginning of the second outbreak
(mid Summer 2020) and were suddenly strengthened following the abrupt increase of positive cases
in late November 2020.

Fig. 3(a)–3(c) and Fig. 4(a)-4(c) show the estimated common Richards’ curves (red solid line)
y the proposed models with the associated uncertainty (grey areas represent the 95% credible
ntervals) for the first and the second wave, respectively. In Fig. 3(d)–3(f) and Fig. 4(d)–4(f) we
nstead report the heatmaps of the estimated spatio-temporal effect for each model specification
or the first and the second wave, respectively. The estimated common Richards’ curve and random
ffects during the first wave highlight how deviations from the global average presented a strong
eographic clustering effect, as the number of positive cases increased from the South to the North

of Italy. On the contrary, there is relative homogeneity in the deviations of each region from
the national epidemic at each time point during the second wave. This means that all regions
experienced a similar epidemic trend in terms of shape but different in terms of relative magnitude.
Notably, some peculiar regional behaviours are highlighted very clearly. For example, a sudden
surge in the contagion between October and November 2020 experienced by Trentino Alto Adige
and Umbria. In general, we notice that a larger uncertainty characterises the common Richards’
estimated by M1 for the second wave compared to the other two models. Considering that the PIWs
(see Table 4) do not vary much across the proposed dependence structures, this implies a stronger
identification of the random effects, i.e. less variability of the random effects. We can then assume
that this model provides a better description of the regional heterogeneity in the data.

In order to fully compare the different dependence structures on the space–time random effects
for the common model, we also evaluated the overall fitting performances in terms of two wide-
scope indicators: the Watanabe–Akaike Information Criterion (WAIC) (Watanabe and Opper, 2010),

nd the Leave-One-Out (LOO) score as in Vehtari et al. (2017). These two metrics shall be considered

12
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Fig. 3. Common Richards’ curve for the first wave for the different specifications of the random effect (top panels);
Posterior mean of the random-effect (bottom panels). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 4. Common Richards’ curve for the second wave for the different specifications of the random effect (top panels);
Posterior mean of the random-effect (bottom panels). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

as a proxy of the out-of-sample prediction accuracy, but can be directly computed from the fitted
Bayesian model by retaining the log-likelihood values at the different steps of the chain (Vehtari
et al., 2017). Results of the estimated validation metrics for the three models for both the first and
the second wave are reported in Table 4. We notice that results are comparable, with M1 performing
lightly better in terms of RMSE, WAIC and LOO for both waves, guaranteeing a greater or equal
overage in both scenarios. Furthermore, comparing the in-sample and out-of-sample RMSE, we
an see how the independent M0 model strongly overfits on the training set. On the other hand,
imiting and driving the behaviour of the random effects through a spatial structure (such as M0 and
M1) strongly improves the predictive power of the model and leads to way more reliable results. All
things considered, M1 is then chosen as the best dependence structure, also in light of the appealing
interpretation of the varying spatial dependence strength as expressed by α in the two waves (see
able 2). Hence, the following results will be referred to this model.
Fig. 5(a)–5(b) show the map of the temporal averages of the space–time effects of each region:

φ̄g =
∑T

t=1 φ̂gt/T . These values can be interpreted as the effect of the over-dispersion on the

ontagion’s spread due to the interactions with the neighbourhood and the auto-regressive term.

13
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Table 4
Validation metrics for the estimated models for the first and the second wave: coverage and rmse out-of-sample
(in-sample), WAIC and LOO.
Wave Model Coverage RMSE WAIC LOO

I
M0 0.98 (1) 423 (2.1) 2869 3087
M1 0.98 (1) 184 (2.3) 2650 2849
M2 0.98 (0.99) 272 (2.5) 2774 2982

II
M0 0.96 (0.99) 12841 (2.8) 4112 4393
M1 0.97 (0.99) 910 (4.6) 3820 4080
M2 0.92 (0.99) 995 (4.1) 3971 4252

Fig. 5. Average estimated spatial random effect φ̄g by M1 for the first (a) and the second (b) wave. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)

hat allows to verify which regions generally presented an infection rate larger than the national
verage along the two waves. As already pointed out, we can notice a stronger geographical
lustering during the first wave, which is even more evident looking at the maps than at the
eatmaps. Given the low value of the estimated α in the first wave, this effect is not really linked
o the superimposed networking structure, but is an inherent characteristic of the data at regional
evel: the pandemic initially hit stronger the North of Italy and only later slowly spread to the
outh. On the contrary, the geographic clustering effect vanishes during the second wave and the
olouring of the map looks smoother. Regions similarity is actually explained by people exchange
nd transportation between regions (larger value of α). It is crucial to notice that, differently from
hat was often reported by the news in Italy, Lombardia did not perform worse in terms of positive
ases with respect to the rest of the country along the second wave (net of the tracking effort and
egional offset). We added the maps obtained using M2 for comparison in Figs. 7(a) and 7(b) of the
Appendix, and we only report here that differences were negligible.

We argue that the chosen model is able to reconstruct the true evolution of the incidence
curve, also at missing points in the series. Some examples are in Fig. 6(a)–6(h). The fit along all
14
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Fig. 6. Observed time series (red dots) and model fit (black solid) with 95% prediction intervals (black dashed) for
randomly chosen regions in the first (top panels) and the second wave (bottom panels). (For interpretation of the

eferences to colour in this figure legend, the reader is referred to the web version of this article.)

ime points (in sample and out-of-sample) are plotted together with the 95% posterior predictive
ntervals for four randomly selected regions (Abruzzo, Emilia Romagna, Lombardia and Sicilia),
or the first and the second wave of the epidemic. We can clearly notice how the random effect
llows the model to capture the wiggly behaviour of the observed data, and how almost all the
bserved data fall into the prediction intervals in spite of the large over-dispersion of the observed
ounts. More importantly, the predictive intervals obviously widen in correspondence of the missing
bservations, and practically always include the true value, even when this deviates from a typical,
xpected behaviour (see again Fig. 6(a)–6(h)). Given the homogeneity assumptions for Richards’
urve for all regions, this must be mainly due to the dependence structure induced by M1. Fig. 8 in
he Appendix shows specifically the out-of-sample predictive performances, where values in the test
et are plotted on the log-scale. Appendix includes an evaluation of the forecasting performances
i.e. prediction of future outcomes) of the model, yielding results very coherent to the ones included
n this section.

. Discussion

Modelling incidence cases poses several issues, ranging from the discrete nature of the observa-
ions to the dependence structure of the data across times and neighbouring regions. The proposed
eneralised logistic growth curve accommodates the main data features, and provides a satisfactory
olution for data analysis and prediction under a spatially heterogeneous framework. The proposal
s applied to Italian regional data, but it can be applied to data from any other country. Similarly,
f data were available at the province and/or municipality level, within-region spatial dependence
ould be explored, promptly identifying clusters of positive cases.
The spatio-temporal dependence is modelled through the inclusion of region-specific random

ffects. The inclusion of random effects relaxes the working assumption used in Alaimo Di Loro
t al. (2021), where independence was assumed. Failure of the independence-assumed model to
it the data could be due to misspecification of any of the elements defining the linear predictor.
ere, not all possible covariates, such as population density or pollution exposure levels, were
onsidered in model specification. Their joint effect is, however, summarised by latent variables,
.e. the random effects. On the one side, the additional computational burden can be dealt with
tan within a Bayesian framework with minor efforts. On the other side, the improvements in
he goodness of fit and predictions are evident. As shown in Section 5, the dependence network
lays a crucial role and gives useful insights. Here, we analysed two separate waves in Italy.
15
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During the first wave, strict restrictions were applied, strongly limiting mobility across the country,
mainly allowing for transportation routes only. As a result, the spread of the contagion was mostly
influenced by geographic proximity, with northern regions being more affected by the epidemic
than those in the Centre and South of Italy. During summer, instead, people took the chance of
less restrictive travelling constraints and enjoyed the summer season having holidays far from
their region of residence. This led to a completely different spatial association. The country was
not anymore divided into three geographical macro-regions, but a more uniform development of
the epidemic was observed. Regions’ colouring Fig. 5(b) reflects both the type of regional policy in
terms of screening and the type of non pharmaceutical measures taken. For example, Calabria did
not develop a consistent screening activity, and hence was subject to more strict restrictions than
other regions.

These results, together with the considerations about the data collection procedures imple-
ented in Italy and their impacts on data quality in Section 1, have important consequences in

erms of public health policies. In particular, they make even more clear that the ability to monitor,
redict and hence govern a pandemic is directly linked to the availability of high quality data, fully
armonised at regional level. Although in a country like Italy, with a high level of regional autonomy,
he data collection procedures are necessarily decentralised, the COVID-19 pandemic has shown
he need of an integrated system of health data collection, transmission, storage and dissemination,
hich must be necessarily centralised in order to avoid the heterogeneity, time misalignment and

ack of quality which have characterised the available data in this critical period, and have hampered
he possibility to obtain from the data the best possible information to support public decisions.
oreover, all our results also point out that in a country with marked geographical, environmental,
ocial and economic regional differences, like Italy, the management of a pandemic must be
oordinated at national (and perhaps even at supranational) level, but implemented through specific
easures that take into account regional heterogeneity. At the same time, inter-regional mobility
hould always be considered as crucial, since it can jeopardise the effectiveness of restrictions
mposed at regional level, as shown by the different role played by the spatial component in the
econd wave compared with the first wave in Italy.
The latent dependence structure consistently aids interpretation. However, it may induce some

ias in the predictions if the underlying network is misspecified. To avoid such bias, the network
ight be explicitly modelled, and estimated together with all other parameters in the MCMC
achinery. There are some examples of this approach in the recent literature (Rushworth et al.,
017; Ejigu and Wencheko, 2020; Corpas-Burgos and Martinez-Beneito, 2020), and it is a possible
urther development for our model. In the future we will also consider weighted spatial structures as
n Della Rossa et al. (2020), by specifying W 1 as

(
W 1 + W⊤

1

)
/2. Indeed, using weighted adjacency

matrices may better reflect the underlying similarity among geographical units and either boost or
mitigate the neighbourhood effect on the mean of each one of them. However, this was not pursued
in this paper in order to directly compare unweighted versions of the two spatial graphs. We do
not generally expect results to differ extremely when applying the weighted matrix. However, we
are aware that the specification of the spatial weights matrix can both affect model fitting and
parameter estimation. More importantly, in a recent paper by Duncan et al. (2017), where 17
different specifications of W have been compared to perform spatial smoothing, the model using
binary, first-order adjacency weights proved to be an optimal choice for achieving a good model
fit. Another important extension would be the development of a space–time model capable of
capturing the entire evolution of an epidemic, fitting all waves within the same model specification.
That could be done by developing a model based on a mixture of Richards’ curves, each capable of
describing individual epidemic waves. In particular, a change-point model, in the spirit of Girardi
et al. (2021), could be specified under our framework. The unknown change point, which could be
in principle more than one, could be estimated along with all other model parameters. The resulting
model is a (constrained) finite mixture model that could be implemented in future research, whose
computational burden is not much different from the one considered here. Similarly, assessing the
effectiveness of the Italian risk-zones policy during the different waves (Pelagatti and Maranzano,
2021) could also be implemented under the proposed framework, providing further insights to
the decision-makers to govern the epidemic spread better. Eventually, to exploit the general idea
16
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of dependence in both space and time, we may imagine defining a space–time neighbourhood
structure linking neighbouring regions at different time points. In all mentioned developments, we
have to remember that swabs play a crucial role. Hence, we have to imagine a nested, hierarchical
model structure where a proper predictive model is added if the prediction of cases becomes a
crucial feature.

Further results (e.g. chain diagnostics) are available from the authors upon request and we point
gain the reader to the public GitHub repository available at https://github.com/minmar94/Covid
9-Spatial.
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ppendix

xact-sparse CAR algorithm

1 functions {
2 // Sparse computation of the log-posterior contribution of the single

spatial vector phi_t (phi) given the previous value phi_{t-1} (phi_old
)

3 real sparse_carar_lpdf(vector phi, vector phiOld, real rho, real tau, real
alpha,

4 int[,] W_sparse, vector W_weight, vector D_sparse , vector lambda, int n,
int W_n) {

5 row_vector[n] phit_D;
6 row_vector[n] phit_W;
7 vector[n] ldet_terms;
8 vector[n] phiNew = phi-rho*phiOld;
9 phit_D = (phiNew .* D_sparse);

10 phit_W = rep_row_vector(0, n);
11 for (i in 1:W_n) {
12 phit_W[W_sparse[i, 1]] = phit_W[W_sparse[i, 1]] + W_weight[i]*

phiNew[W_sparse[i, 2]];
13 phit_W[W_sparse[i, 2]] = phit_W[W_sparse[i, 2]] + W_weight[i]*

phiNew[W_sparse[i, 1]];
14 }
15
16 for (i in 1:n) ldet_terms[i] = log1m(alpha * lambda[i]);
17
18 return 0.5*(n*log(tau) + sum(ldet_terms) - tau*(phit_D*phiNew - alpha*(

phit_W*phiNew)));
19 }
20 }
21
22 data {
23 int<lower=0> nTimes; // Number of times
24 int<lower=0> nReg; // Number of regions
25
26 int W_n; // Number of adjacent region pairs
27 int W_sparse[W_n, 2]; // adjacency pairs
28 vector[W_n] W_weight; // Connection weights
29 vector[Nreg] D_sparse; // diagonal of D
30 vector[Nreg] lambda; // eigenvalues of invsqrtD * W * invsqrtD
31 }
32
33 parameters {
34 vector[Nreg] phi[Ntimes];
17
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Fig. 7. Average estimated spatial random effect φ̄g by M2 for the first (a) and the second (b) wave.

35 real<lower=0, upper=1> alpha;
36 real<lower=-1, upper=1> rho;
37 }
38
39 model {
40 alpha ~ beta(0.5, 0.5);
41 phi[1] ~ sparse_carar(zeros, rho, tau, alpha,
42 W_sparse , W_weight , D_sparse , lambda, Nreg, W_n);
43 for (i in 2:Ntimes){
44 phi[i] ~ sparse_carar(phi[i-1], rho, tau, alpha,
45 W_sparse , W_weight , D_sparse , lambda, Nreg, W_n);
46 }
47 }

lgorithm 1: Core of the Stan code for the sparse implementation of the spatio-temporal CAR-AR.

stimated average spatial random effect

See Fig. 7.

osterior distribution of out-of-sample predictions

See Fig. 8.

orecasting performances

As pointed out by an anonymous referee, during the COVID-19 pandemic the objective of
uthorities and researchers was to predict the future incidence. Hence, it would be interesting to
ee which of the proposed models performs ‘‘better’’ when that is the objective in mind.
We would like to remark that this model has been originally conceived as an explanatory tool,

ot as a forecasting tool. That is why the prediction performances have been assessed on values
ccurring within the waves in the main text. This conceptual limitation depends on a number of
actors, listed here below.

• The expression of the mean depends on the number of weekly swabs, which is not known
in advance at future times. In order to provide valid and accurate forecasts (together with
the corresponding uncertainty) the number of weekly swabs and positives shall be modelled
jointly. This is something worth of exploration in the future.
18
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Fig. 8. Observed points (red) and simulated predictions (boxplots) for the first (a) and the second wave (b) test sets. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

• The model includes a complex and highly parametrised spatio-temporal structure. Hence,
it likely need a relative large number of time-points to estimate its components without
introducing bias.

• The main focus on the paper is on identifying the most informative spatial structure in the
observed data. In principle, spatial dependence is much more helpful when predicting the
counts of some regions at some time t , when other regions’ counts at the same time are
available. On the contrary, the impact of spatial dependence can rapidly fade when considering
future outcomes, where temporal dependence shall dominate the process behaviour (unless
suitable space–time neighbouring structure is considered). In any case, when there is no
information from other regions at the same time, the spatial dependence shall propagate
through time and its effect is inevitably diminished week after week.

All things considered, we still believe the proposed model may provide reasonable predictions up
o 15 days (2 weeks) ahead, as for all our other works on this topic (please see Farcomeni et al., 2021
nd Alaimo Di Loro et al., 2021). Hence, in this section, we show predictions at one- and two-weeks
head, comparing the different specifications of W . We only did this for the common Richards’: the
est model, as discussed in Section 5.1. Issue 1 is overcome by assuming constant tracing effort:
19
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Fig. 9. Density and traceplot of a predicted value.

Fig. 10. Prediction error (on the log scale) at different steps ahead, for each specification of W and for each wave.

the weekly number of swabs used to predict the positive cases for the weeks ahead is assumed to
be the same as the previous (in sample) week. This is a very strong (and possibly wrong) working
assumption, which is particularly ill-suited for the first wave when the tracing was improving its
capabilities week after week. Therefore, forecasts shall be interpreted only in relative terms as a
comparison between the three dependence structures and not in absolute terms. The prediction
experiment was developed as follows.

First wave. We estimate four examples building training sets up to April 12-19-26 and May
03, 2020. We predict the following first and second week counts in each case.
Second wave. We estimate four examples building training sets up to November 22–29 and
December 06–13, 2020. We predict the following first and second week counts in each case.

Fig. 9 shows an example of posterior predictive distribution. Notice how this is strongly skewed,
hence we also considered posterior medians as point estimates for the forecasts.

Performances are evaluated in terms of root mean square predictive error (RMSPE), whose
distribution by wave, window, and dependence structure can be observed in Fig. 10. The errors are
ultimately averaged over the various regions and fitting windows, keeping 1-week and 2-weeks

ahead as separate objects, and the resulting estimates are reported in Table 5.

20
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Table 5
Average (Median) RMSPE for each model specification for the first and the second wave at
different steps ahead.
Wave Model Week(s) ahead

1 2

I
M0 244 (47) 259 (54)
M1 242 (46) 256 (53)
M2 267 (49) 282 (45)

II
M0 1670 (728) 2544 (1522)
M1 1388 (496) 2189 (1005)
M2 1749 (825) 2578 (1543)

Fig. 11. Observed time series: black dots are in-sample, grey dots are out-of-sample. Predicted values (red dots) with 95%
prediction intervals (red dashed) for 2 randomly chosen regions in the first (top panels) and the second wave (bottom
panels). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Eventually, what is found in terms of fit quality in the original application is also confirmed
for these forecasts. Along the first wave, there is no clear dominance of one dependence structure
over the others: apparently, the most of the information is carried by the temporal process. Instead,
along the second wave, the transport flows dependence structure provides clearly better forecasts
21
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than all its competitors. Note that the two-weeks-ahead prediction error is uniformly larger than
the one-week-ahead as expected, for both waves and for each specification of W .

Some examples of the point forecasts, together with the corresponding uncertainty, are shown
n Fig. 11.
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