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Abstract
We leverage a granular representation of mobility patterns before and during the first wave of
SARS-COV2 in Italy to investigate the economic consequences of various forms of lockdown
policies when accounting for mobility restrictions between and within local jurisdictions, i.e.
municipalities, provinces and regions. We provide an analytical characterization of the rate
of economic losses using a network-based spectral method. The latter treats the spread of
contagion of economic losses due to commuting restrictions as a dynamical system stability
problem. Our results indicate that the interplay between lower level of smartworking and the
polarization of commuting flows to fewer local labor hubs in the South of Italy makes South-
ern territories extremely important in spreading economic losses. We estimate an economic
contraction of total income derived from commuting restrictions in the range of 10–30%
depending on the economic assumptions. However, alternative policies proposed during the
second wave of SARS-COV2 can pose a greater risk to Northern areas due to their higher
degree of mobility between jurisdictions than Southern ones. The direction of economic
losses tend to propagate from large to medium-small jurisdictions across all alternative lock-
down policies we tested. Our study shows how complex mobility patterns can have unequal
consequences to economic losses across the country and call for more tailored implementa-
tion of restrictions to balance the containment of contagion with the need to sustain economic
output.
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1 Introduction

Mobility reduction has been identified as a key intervention to effectively limit the spread
of the epidemics during both the early stages of the virus diffusion and in subsequent waves
of contagion (Aleta et al., 2020; Schlosser et al., 2020; Spelta & Pagnottoni, 2021; Giudici
et al., 2023). This aspect motivated the adoption of lockdown policies grounded on mobility
restrictions as mechanisms to effectively limit infections (Chinazzi et al., 2020; Hsiang et al.,
2020; Xiong et al., 2020). However, such interventions cause severe disruptions on mobility
patterns (Schlosser et al., 2020; Zhang et al., 2020; Smolyak et al., 2021) and have significant
drawbacks to the social fabric and negative consequences for the real economy (Alfaro et al.,
2020; Glaeser et al., 2020; Guan et al., 2020; Jay et al., 2020; Sarkodie & Owusu, 2021).

There exists ongoing effort to understand the balance between the impacts of mobility
restrictions on the spreading of contagion and their direct and indirect effects on economic
systems (Altig et al., 2020; Haug et al., 2020; Saltelli et al., 2020). For instance, recent
studies have recognized how mobility reductions carried detrimental effects on economic
systems during the lockdown phase (Bonaccorsi et al., 2020; Chang et al., 2020; Polyakova
et al., 2020; Jay et al., 2020). In particular, mobility restrictions have been shown to be
strongly correlated with the reduction of consumption (Carvalho et al., 2020; Chetty et al.,
2020; Sheridan et al., 2020; Dietrich et al., 2022) and the loss of aggregate economic output
(Fernández-Villaverde & Jones, 2020; Pagnottoni et al., 2021). Literature has identified some
relevant factors favouring a fast and short (V-shaped) recovery vs. a slower and longer one
(U- or L-shaped), highlighting the interplay between local socio-economic conditions and
lockdown policies (see, e.g., (Deb et al., 2020; Eichenbaum et al., 2020; Gregory et al.,
2020; Guerrieri et al., 2020; Kaplan et al., 2020; Martin et al., 2020; van Der Voet, 2021;
Bonaccorsi et al., 2021; Demirgüç-Kunt et al., 2021)). More generally, lockdown measures
and mobility restrictions have been shown to be relevant Non Pharmaceutical Interventions
(NPIs) for contagion containment (Davies et al., 2020; Flaxman et al., 2020; Lau et al.,
2020; Della Rossa et al., 2020; Maier & Brockmann, 2020; Kumar et al., 2021; Gajpal
et al., 2022). The economic assessment of such mobility restriction measures is of utmost
importance for policy makers and motivates a growing interest on the investigation and
measurement of trade-offs between the need to limit the spread of contagion and the provision
of adequate levels of economic output (Baker et al., 2020; Haug et al., 2020; Saltelli et al.,
2020; Spelta et al., 2020; vanDer Voet, 2021). In fact, mobility restrictions heavily affect both
the configuration of mobility networks and the structure of economic systems by influencing
the inter-dependencies among geographical zones. For instance, Bonaccorsi et al. (2020) find
that the impact of lockdown measures on mobility is stronger in Municipalities with higher
fiscal capacity and that mobility contraction is stronger in those Municipalities characterized
by higher levels of inequality but lower levels of income per capita, thus indicating the
potential for a segregation effect, while Bonaccorsi et al. (2021) find evidence of persistent
effects even when mobility restrictions are lifted. van Der Voet (2021) discusses how policy
preferences to cope with the evolution of SARS-COV2 relate to the way decision-makers
interpret the nature of the pandemic in terms of the negative economic prospects and impact
on health. Coibion et al. (2020) show how differential timing of local lockdowns impacts on
households’ spending andmacroeconomic expectations at the local level, whileGoolsbee and
Syverson (2020), by using mobile phone data on customer visits to more than 2.25 million
businesses, find that, although lockdown measures account for only a modest share of the
massive changes in consumer behavior, they had a significant role in reallocating consumer
visits away from nonessential to essential businesses. Mobile phone data are also employed
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in Jay et al. (2020), who find that people living in high-income areas increased their “days at
home” substantially more than those in low-income neighbourhoods, who instead are more
likely to work outside their residence.

Our work relies on this stream of researchwhich has already shown the efficacy ofmassive
data collection from social networks, credit cards payment systems and mobile phone data to
the study of SARS-COV2 (see, e.g., (Grantz et al., 2020; Kuchler et al., 2020; Kumar et al.,
2021)). Contributing to this literature, our study integrates mobility data with local economic
information to build a model of economic losses due to local mobility restrictions, which
we use to evaluate heterogeneous policy interventions. Here, we opt for a parsimonious,
network-based, spectral model to study the stability conditions of an economic system in
which workers move across territories contributing to their aggregate level of economic
output. More specifically, we investigate the impact of SARS-COV2 on the economy in
terms of policy restrictions preventing workers to reach workplaces. Such restrictions can
have a detrimental effect to the available economic resources of local jurisdictions due to
the increasing rates of unemployment, contraction of consumption, etc., which can lead to
further reductions to local production by inducing more limitations to workers commuting
from other territories. In this work, such higher-order effects are nuanced by the role of
smartworking that allows some workers to continue their activities remotely, thus limiting
the negative impacts of lockdown restrictions. We model the economic environment as a
system composed by interconnected units that are linked by agents commuting to work. By
taking into account the heterogeneous business characteristics of local jurisdictions and the
complex network of commuting patterns, we design a framework to assess the economic
consequences of various forms of lockdown policies. To do so, we model the spread of
economic losses as a dynamical system stability problem. This approach has been already
employed in several domains, from biology to economic and financial systems, to study
complex non-linear interdependencies (May, 1972, 1974; Newman, 2010; Markose et al.,
2012, 2021; Bardoscia et al., 2017)

We design a spectral method to identify the stability of tipping point of the mobility
network (seeMarkose et al., 2012, 2021), thus producing a signal that can support regulators in
assessing the behavior of the system and help them to prevent/mitigate negative consequences
of systemic events triggered by lockdowns. The application of spectral methods of stability
has been well adopted in financial models of systemic risk due to the significance of their
steady-state solutions and fixed point algorithms that reflect internal consistency to a high
order of interconnectedness (Gauthier et al., 2012). The popular financial network model of
Eisenberg andNoe (2001) and further extensions (Rogers&Veraart, 2013; Schuldenzucker et
al., 2020),among others rely on a fixed-point method to assess the losses suffered by financial
units in a payment network. As an example, Battiston et al. (2016) uses a similar approach to
the above-mentioned spectral method by deriving a centrality fixed-point solution, although
they do not adopt the concept of stability tipping point as an endogenous fixed point solution.
The latter is provided by Bardoscia et al. (2017) for interbank networks and by Heath et al.
(2014) for central clearing counterparts. To the best of our knowledge, the present study is
the first to extend spectral methods to mobility networks. The value added of our approach is
the derivation of steady-state solutions at both the macro level, i.e. whole system instability,
and at the micro level, i.e. the contribution of individual local jurisdictions to the national
level of instability, as well as a network-based characterization that allows for testing several
NPIs.

Since Italy was among the first countries implementing mobility restrictions to contain
the spread of SARS-COV2, we consider it as a relevant benchmark to test the predictions of
our model. We employ a granular representation of mobility patterns in Italy using Facebook
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Data for Good Prevention maps see Maas et al. (2019). This data contains geo-localized
dailymovements acrossMunicipalities of about fourmillion of individuals.We then combine
mobility data with socio-economic information, such as pro-capita income and number of
workers in different jurisdictions, to compute economic losses derived from different levels
of mobility restrictions, which we use as proxies for different lockdown policies.

The contribution of this paper is twofold. We first provide an analytical characterization
of the rate of economic losses, at the jurisdiction level (Municipality or Province level), origi-
nating from commuting restrictions. Specifically, the proposed spectral method identifies the
tipping point at which the extent of losses coming from mobility restrictions produce insta-
bility, i.e. when the economic resources available at the local administrative level might no
longer be sufficient to absorb economic losses caused bymobility restrictions. Ourmodel also
provides both the importance and vulnerability of each jurisdiction to the overall instability of
the system. These rankings shed light on the expected impact of mobility restrictions across
different territories and are useful to guide policy makers in adopting the most cost-effective
lockdown policies.

Second, we show how different degrees of mobility restrictions generate heterogeneous
impacts at the level of Italian jurisdictions. The proposed network-based approach reveals
complex mobility patterns differentiating jurisdictions across economic areas, with Southern
territories appearing more penalized than Northern ones, although the former represents a
much smaller proportion of all economic resources at stake. This feature is the result of the
interplay between lower level of smartworking and the polarization of commuting flows to
fewer industrial hubs in the South of Italy, which leave these territories extremely important in
spreading economic losses. Indeed, when controlling for smartworking, we observe thatmore
populated administrative units contribute the most to the overall system instability, regardless
of their geographic location. However, mobility patterns around those large jurisdictions vary
between the North and the South of Italy. The former is characterised by a high degree of
mobility between neighbour jurisdictions compared to the latter, in which the vast majority
of commuting is observed within the same jurisdiction.

Our approach suggests that the complexity of mobility patterns contributes to non-linear
outcomes as a result of alternative lockdown restrictions. Specifically, mobility policies that
treat the mobility within and between jurisdictions differently can have notably different
economic consequences in different parts of the country. Those alternative policies were
proposed in the recent lockdown implemented during the second wave of SARS-COV2 in
Italy (Presidente del Consiglio deiMinistri, 2020), with mobility allowedwithin jurisdictions
while enforcing harder restrictions between Provinces and Regions. Overall our results show
that the effects of lockdown policies are unequally distributed across territories as a result of
the observed complexmobility patterns and call for amore tailored implementation of restric-
tions that minimize negative economic consequences. Although the comparison between pre
and post lockdown measures on economic stability helps controlling for endogenous struc-
tural weaknesses within each region, we acknowledge that endogenously mobility patterns
determined by the endowment of infrastructures can affect lockdown restrictions and stability
outcomes. The ability of our framework to calibrate the dynamics of the system at the local
level provides a powerful tool to ad-hoc calibrations with higher expected accuracy.

The paper is organised as follows. Section2 describes the data and estimationmethodology
of the network approach. The spectral dynamical model is presented in Sect. 3 along with its
stability conditions. Section4 gives the results on Italian jurisdictions. Section5 concludes
by discussing policy implications of the work.
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2 The dataset

In order to study the economic consequences derived from alternative lockdown schemes
and mobility patterns, we employ a massive dataset of human commuting of near real-time
observations provided by Facebook Disease Prevention maps (Maas et al., 2019) through its
Data for Good program.

Facebook Disease Prevention maps offer information about geo-localized movements of
individuals. We consider movements in Italy over the period from February 24th to March
23rd 2020. The dataset contains about 800,000 distinct observations (recorded with a 8-hour
frequency) covering dailymovements across 3000 ItalianMunicipalities of about fourmillion
individuals.

Each observation in the dataset tracks movements of individuals across tiles1 (Schwartz,
2018). The granularity of the data allows us to map mobility among different jurisdictions,
from Municipal to Provincial and Regional level depending on the specific focus of our
analysis. The aggregation process consists of summing together all data records belonging
to the same territorial unit (e.g. Municipalities, Provinces), allowing for a high level of
geographic scalability required when assessing different lockdown policies.

We investigate mobility patterns through the lens of network theory by interpreting the
dataset records as a directed weighted graph, with nodes representing territorial units and
edges being the weighted connections measuring the amount of traffic of individuals flowing
between two locations. In order to investigate economic losses caused by lockdown inter-
ventions, we build up two mobility networks corresponding to Pre and Lock phases of the
mobility restrictions. In particular, mobility data is aggregated over two 14-day windows,
before and after the 9th of March 2020, the announcement date of the main policy mobility
restriction in Italy see Presidente del Consiglio dei Ministri (2020). Mobility data is then
combined with socio-economic information to assess economic losses. We gather socio-
economic variables at Municipality and Province level from the Italian National Institute
of Statistics2 (ISTAT) and from the Italian Ministry of Economy and Finance3 (MEF). The
dataset contains information on pro-capita income and number of workers in different ter-
ritories for the year 2019. We also include the percentage of smartworkers at the Regional
level estimated by Barbieri et al. (2020).

In our analysis, the Pre lockdown network will serve as baseline specification of com-
muting patterns for building our stability model and for measuring the consequent economic
losses derived from different lockdown schemes. The Pre mobility network will later be
compared with the Lock network to evaluate the actual impact of lockdown to mobility and
draw conclusions on how different territorial unis have been effectively exposed to economic
losses4. The comparison of those outcomes with our estimates of losses after the first wave
of lockdown measures can also provide validation of our approach.

Figure 1 shows the georeferenced mobility network at the Municipality level, before and
during the national lockdown. On one hand, the mobility reduction is clearly observable in
this illustrative example. On the other hand, densely connected zones, such as Torino,Milano,
Bologna, Roma andNapoli areas are still connected during lockdown.Moreover, the national

1 Geographical and georeferenced polygons of size 0.6 km × 0.6 km.
2 https://www.istat.it.
3 https://www.finanze.gov.it/opencms/it/statistiche-fiscali/.
4 Note that Southern regions lag behind Northern regions in terms of infrastructure development, including
highways and railroads (see among others ISTAT, 2006; Bucci et al., 2021). These differences might have
affected the changes in mobility patters during lockdown.
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Fig. 1 Mobility patterns in Italy before and during the lockdown. The figure reports the network of mobility
patterns on the Italian territory before and during the lockdown. It highlights the reduction of the national
mobility induced by the lockdown measures of March 9th

transportation infrastructure is not disrupted as highlighted by the presence of long distance
links at the time of the lockdown phase. However, important changes in commuting patterns
traveled by individuals are clearly observed.

We notice in Fig. 1 how commuting between different Municipalities decreases during the
lockdown and many of them become isolated from the rest of the Italian territory, especially
in the South of Italy and in the Alps and Apennines territories. This outcome is quantified
in Fig. 2. Starting form the upper panel, the histograms describe the probability of observing
a certain number of individuals travelling either within a Municipality (left) or between
different Municipalities (right), before and during the lockdown phase. We notice that the
implementation of lockdown measures has caused a right shift of the within Municipality
distribution and the corresponding left shift of the curve representing movements between
differentMunicipalities. This suggests that, while a decrease of themobility flows is observed
at the aggregate level, part of this effect is offset by a change in the proportions of people
travellingwithin and betweenMunicipalities.We further investigate this outcome in the lower
panel of Fig. 2 by reporting the between over within mobility ratio, aggregated at Regional
level. As expected, the ratio declines more than half in many cases, from highest values
during the pre-lockdown phase of 40:1 to 15:1 during the national lockdown. Interestingly,
Northern high populated regions, like Lombardia, Veneto and Piemonte are characterised
by the highest ratios compared to Southern Regions, where the vast majority of mobility
is concentrated within Municipalities. As we will see in our stability analysis of Sect. 4,
heterogeneous mobility patterns across the country will play an important role in shaping the
economic importance and vulnerability of different geographic areas during the lockdown.

The clustering coefficient is another topological measure of interest to characterize the
complex structure of the Italian mobility network, measuring the probability of nodes in
a graph to cluster together forming triangles. Evidence suggests that in most real-world
networks, and in particular social networks, nodes tend to create tightly knit groups, charac-
terized by a relatively high density of ties (see Holland & Leinhardt, 1971; Watts & Strogatz,
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Fig. 2 Change ofmobility patterns in Italy due to lockdownmeasures. The upper panel reports the distributions
of the within Municipality mobility patterns (left) and the between Municipality mobility flows (right) before
the intervention (blue) and during the lockdown phase (orange). The lower panel shows the between-within
mobility ratio at regional aggregation level, both for the pre-lockdown and lockdown phases

1998). Indeed, the existence of self-reinforcing loops and triadic structures between Munic-
ipalities can amplify initial shocks and exacerbate economic losses through the network,
thus decreasing system stability. This quantity has been shown to contribute to the instability
of social networks and relate to the spectral tipping point result we adopt in our approach
(Markose et al., 2012, 2021). As will see in the result Sect. 4, different degrees of clustering
at the jurisdiction level can help explaining the importance of some territories in contributing
to the overall instability of the economic system.

In graph theory, the node-level clustering coefficient for directed and weighted network
(see Fagiolo, 2007) is defined as:

Ci = (f1/3 + f ′1/3)3i i
2[(kini + kouti )(kini + kouti − 1) − 2(kini + kouti − ki )]

(1)

where f represents the weighted adjacency matrix of the mobility network, kini and kouti
node’s i in- and out-degree respectively and, finally, ki the degree centrality of the i th node.

Figure3 shows normalized clustering coefficient for the top-20 Provinces, for both the pre-
lockdown and lockdown phases. The upper panel reports the clustering coefficient computed
by holding network links connecting only Municipalities belonging to different Provinces,
named “between-Province clustering”. On the contrary, the lower panel shows clustering
coefficient when considering links between Municipalities in the same Province, named
“within-Province clustering”. In the pre-lockdownphase,which represents our baseline struc-
ture to derive stability conditions, we note that Northern Provinces, especially in Lombardia,
show the highest values of the between-Province clustering coefficient. This is due to the high
volume of commuting between the Milano’s Province and neighboring areas like Monza-
Brianza, Lecco and Como. Interestingly, the same behavior is observable in Toscana, where
the Provinces of Prato, Pistoia and to a less extent Firenze display high values of this measure.
If we restrict our attention to the within-Province clustering, we see a more homogeneous

123



Annals of Operations Research

Fig. 3 Between and within clustering coefficient for the top-20 Provinces. The upper panel reports the normal-
ized value of the clustering coefficient (aggregated at Province level) where only links between Municipalities
belonging to different Provinces are maintained. The lower panel shows the normalized within clustering
coefficient where only links between Municipalities belonging to the same Province are maintained. The blue
bars refer to the pre-lockdown phase, while red bars are associated with the lockdown period

distribution of clustering values across the country with Central and Southern Provinces of
Roma, Napoli and Cagliari climbing top positions. The lockdown phase does not affect much
the rank order of clustering: the correlation coefficient of the clustering measures computed
on Pre and Lock mobility networks is indeed 0.967 and 0.966 for the between-Province
and within-Province clustering, respectively. We observe a few exceptions, in particular the
province of Prato that dominates the ranking. Moreover, we provide in “Appendix A” an
additional robustness check about how the mobility has reacted after the lockdown policy,
and in particular whether the network backbone has undergone changes.

Finally, to validate the representativity of Facebook mobility data, we carry out a com-
parison exercises against the 2011 commuting network provided by the Italian National
Institute of Statistics (ISTAT). Such data provides movements of employees/students trav-
eling between municipalities that were recorded in the most recent census. Although there
are several limitations to this comparison since the ISTAT network only includes inhabitants
who said they were traveling for business or school and it is nine years old and information
refers to the Italian mobility patterns of 9 years ago, we still think it is helpful for further
validating the situation of Italian mobility prior to lockdown. Indeed, because the ISTAT data
is not biased towards those who own a phone and are registered on social networks, as is
Facebook data, we believe it is relevant to further confirm the representativity of the Italian
mobility data observed prior to entering the lockdown phase. We create an averaged mobility
graph during a 14-day period just before the shutdown (9th March). After that, we ran a
Pearson correlation test on the metrics for node degree, node strength, and edge weight. In
every instance, we discover a sizable positive association at the level α = 0.001 (see Fig. 4).
These findings provide us with a solid background for using Facebookmobility data as proxy
of communing between and within Italian jurisdictions.
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Fig. 4 Scatterplot of Degree and Strength of nodes, andWeight of edges in Facebook mobility network before
lockdown (x-axis) vs ISTAT commuting network (y-axis). Pearson’s correlation coefficient and pvalue are
shown in the heading

3 Model

This Section presents the network-based spectral method employed to determine the stability
of economic systems under lockdown. The spectral method threats the spread of contagion
of economic losses, arising from restrictions of the Italian commuting mobility network, as
a dynamical system stability problem. This approach has been shown to be quite effective to
assess financial contagion and systemic risk (Markose et al., 2012, 2021; Heath et al., 2014;
Bardoscia et al., 2017).

Let �t
xy be the number of people commuting from location x to location y at day t , i.e.

the number of individuals moving between the two locations. The estimates of entries in
matrices fh , where h = {Pre, Lock}, represent mobility flows across local jurisdictions and
are obtained as the average ofmobility flows across locations aftermapping eachMunicipality
to the corresponding Province. In formulae:

f hi j =
∑

x∈i

∑

y∈ j

∑

t∈h

�t
xy

h
(2)

Fh
i j = f hi j∑

j f hi j
Ii (3)
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Hence, elements
f hi j∑
j f hi j

represent the probability of an individual to leave district i for

commuting to district j during the period h. Therefore, Fh
i j estimates the number of workers

commuting from i to j as the product between the probabilities of mobility and the total
number of workers Ii in each jurisdiction i .

Let the vectorE0 be the initial economic resources representing the total income earned by
workers of each jurisdiction, S the level of smart working andW the average pro-capita wage

of workers at the juristiction level. We define Xh , with entries Xh
i j = Fh

i j W i

E0
i

, the matrix of

expected income produced by commuters from location i to j as a percentage of the economic
resources of the jurisdiction i of the worker. This matrix maps the share of expected income
of jurisdiction i produced by workers commuting to jurisdiction j and provides a direct
economic measure of expected loss of income in the event of mobility restrictions from i to
j .

3.1 Dynamical model of systemic local losses of lockdown

Following the spectral approach presented in Markose et al. (2012) and further extended by
Markose et al. (2021), we define Ut as the state vector of cumulative economic losses at the
jurisdictional level, also known as the “rate of failure” of each jurisdiction. In our framework,
the dynamics of the state vector Ut is driven by the economic ties between jurisdictions and
measured by X. Mobility restrictions caused by a lockdown in jurisdiction j can have a
negative impact on the economic resources of i due to commuters Fh

i j not be able to travel
to work, or smart working. This, in turn, can impair the economic activity in the jurisdiction
i itself due to, for instance, a decline in the consumption level and local taxes, including the
supply of labour with knock-on effects to other Provinces via the mobility channel.

According to Markose et al. (2012), there exist two major rates that drive the dynamics of
the state vectorUt . The first rate is the proportion of economic resources, or buffer, that each
jurisdiction can allocate to absorb losses. In our setup, these loss absorption facilities can
take, for instance, the form of unemployment subsidies, tax reliefs, etc. In epidemic literature
this is also known as the “cure rate” aimed at slowing down the spread of the virus. This
buffer represents the stability threshold of each jurisdiction and it is denoted in our model by
the vector ρ. Economic losses above this threshold can lead a local unit to default, i.e. the
jurisdiction is no longer able to sustain the local economy.

The second rate is the expected loss caused by other jurisdictions implementing lockdown
measures and therefore limiting the accumulation of economic resources of a jurisdiction via
commuting. Losses erode the economic resources of the local entity. Therefore, the state
vector Ut can also be interpreted as the cumulative losses measured as percentage of the

initial economic resources, Ut
i = E0

i −Et
i

E0
i

for any jurisdiction i . Thus, the state vector Ut

monitors the cumulative losses of the local administrative unit at time t relative to the initial
economic condition E0.

The dynamics of Ut
i can be described by the following linear system:

Ut+1
i = (1 − ρi )U

t
i +

N∑

j=1

{[(
1 − S j

)
g(X)i j

]
L j

}
Ut

j (4)

where (1 − ρi )Ut
i is the contribution of the economic buffer ρi in reducing its current failure

rate Ut
i (i.e. the cumulative percentage losses) while the second part of the LHS of Eq. (4),
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∑
j {. . . }, is the contagion channel of losses from other administrative units via the mobility

matrix and weighted by their current failure rate Ut
j . The higher the failure rate, the larger

the contagion from other units.
Economic ties among jurisdictions, Xi j , can cause contagion losses that will reduce the

economic resources of exposed jurisdictions via a function g(X). This function maps the
reduction of income due to commuting restrictions into economic losses of the jurisdiction.
These losses aim at capturing contraction in consumption, local taxation, etc., that, in turn,
will weaken the local economy, businesses and eventually the labour market. The contagion
channel is also affected by the level of smart working in j (the higher S j ∈ [0, 1], the lower
the losses propagated from unit j to i due to mobility restrictions) as well as the level of
lockdown restrictions imposed in j (the higher L j ∈ [0, 1], the greater the losses propagated
from unit j to i). Note that all of the contagion elements are weighted by the rate of failure of
the local unit j , i.e. the cumulative level of losses of j at that time, namelyUt

j . The higherU
t
j ,

the more fragile the local unit j is (in terms of losses relative to the stability threshold) and
therefore the higher the expected economic shocks to be propagated to other jurisdictions.

3.2 Stability analysis

The dynamical system of Eq. (4) can be described in matrix notation as:

Ut+1 = θUt (5)

with

θ =
⎡

⎣ 1 − ρi + [
(1 − Si ) g(X)i i

]
Li

[(
1 − S j

)
g(X)i j

]
L j

[
(1 − Si ) g(X) j i

]
Li 1 − ρ j +

[(
1 − S j

)
g(X) j j

]
L j

⎤

⎦ (6)

It is simple to show that the dynamics of Ut can either be explosive, i.e. all jurisdictions
are unable to absorb losses, or converge to zero in the steady-state. In the first case, the system
will be unstable to any non-negative external shock, while it will be stable in the second case
as contagion losses will be internalised. The stability condition is controlled by the largest
eigenvalue of θ with the condition (see (Markose et al., 2021), for proof):

λmax (θ) < 1 (7)

The corresponding left and right eigenvectors, ←−v (θ) and −→v (θ), describe the systemic
importance and vulnerability of each jurisdiction to the system instability, respectively. In a
non-symmetric matrix, ←−v maps the relations from each column entry j to all row entries,
while −→v maps the relations from each row entry i to all column entries. According to
the definition of rows and columns of the matrix θ in system of Eq. (6), the direction of
contagion propagates from columns j to rows i , and therefore the left eigenvector ←−v (θ) can
be interpreted as a measure of systemic importance (Importance) whereas −→v (θ) a measure
of systemic vulnerability (Vulnerability). As a result of any non-negative initial perturbations
of the matrix θ , such as mobility restrictions caused by lockdown, the relative importance
of local units in spreading economic losses to the whole system is measured by the left
eigenvector ←−v (θ), while the relative economic exposure of each unit to the system caused
by mobility restrictions is measured by −→v (θ). Recall that the economic interpretation of the
eigenvectors relates to their contribution to the eigenvalue that measures the overall system
stability. Eigenvectors are normalised by the 1-norm, making entries percentage values and
allowing for comparison across different stability assessments. Note that individual levels
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of Li and ρi allow for heterogeneous degrees of economic stability and lockdown measures
across areas. This is a useful assumption in countries characterised by inherited structural
differences5.

3.2.1 Special case

We present a special case with simplified model inputs to gauge the relationships among each
of themainmodel inputs and the system stability. Let assume ρi = ρ, Si = S, Li = L, ∀i .
We also assume a simple function g(X) = αX that maps commuting reduction to economic
losses at the jurisdiction level in a linear fashion, governed by a scalar α. This means that,
for every percentage point of income that can be lost by the worker commuting from i to j ,
Xi j , its local jurisdiction i could face an economic loss in consumption, taxes and supply of
labour up to αXi j .

Since matrix θ differs from X only by a constant multiple of the identity matrix, by the
shift eigenvector theorem we can rewrite the stability condition in Eq. (7) for this special
case as follows:

λmax (θ) = (1 − ρ) +αL (1 − S)λmax (X) < 1 (8)

leading to the stability condition of:

λmax (X) <
ρ

αL(1 − S)
. (9)

The stability condition in Eq. (9) for this special case provides direct implications for the
role of the stability threshold, the level of lockdown and smartworking to stabilize the system.
Given X, the higher ρ and S the better the chances of the system to be stable, vice versa for
the level of lockdown L and the loss map parameter α.

4 Results

We present two main sets of results concerning the economic stability of the Italian territory,
derived from the spectral model. The first ensemble estimates the stability conditions of
the economic system in the pre-lockdown phase, for which we test different scenarios of
lockdown policies by controlling for the level of smartworking and by differentiating among
restrictions “within” and “between” jurisdictions. Within this framework, we also investigate
importance and vulnerability conditions at both Province andMunicipality level to emphasize
local heterogeneity between the North and South of the Italian territory. The second set of
results present a stability analysis grounded on actual (real) lockdown data estimated via the
mobility reduction observed during the first wave of SARS-COV2 in Italy. We discuss the
implications of heterogeneous reactions to national lockdown by jurisdictions characterised
by different mobility patterns pre and during lockdown. Throughout the subsections, we
keep the assumption of ρi = ρ for all i and interpret this value as stability threshold, with

5 In Italy, for example, the historical divide between the North and the South and the inner fragilities suffered
by Italian underdeveloped areas are well documented (see among others (Vecchi, 2017)).
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[
ρ|λhmax (θ) = 1

]
being the minimum cost of income the jurisdictions on average need to

absorb in order to keep the system stable.6

4.1 Pre-lockdown analysis of Italian Provinces andMunicipalities

We first evaluate the system stability of the Italian territory at the Province level, based on the
mobility matrix FPre ∈ R

N×N , in which N = 106 denotes the Italian Provinces. Figure5
shows the λmax

(
θ Pre) for different combinations of lockdown levels (L) and stability thresh-

old (ρ). Similar to the special case in Sect. 3.2.1, we adopt a linear cost function g(X) = αX.
Note that αi is quite difficult to estimate at local level because it is dependent on dimensions
such as the marginal rate of consumption, the taxation level, etc. of each jurisdiction. We
therefore avoid to attempt this calibration in our study and discuss the sensitivity of our out-
comeswhen varying α ∈ [0.25, 0.75]. Depending on how the economic cost is mapped (from
a very conservative α = 0.25 to a more severe case of α = 0.75), the model predicts different
areas of stability identified by the colder colors in the top-left quadrant of the plot. This area
represents (L , ρ) combinations for which λmax

(
θ Pre) < 1. For an average level of lockdown

of about 50%, that would translate into a reduction of half of the mobility flows.7 Provinces
face, on average, economic losses from about 10% up to 30% of the total income, depending
on the parameter α. This is consistent with the stability analysis at the Municipality level
reported in Fig. 15.

We then investigate the impact at micro level for each Province. The topological analysis
of single Provinces reported in Table 1 reveals that the most important and vulnerable ones
are all placed in the South of Italy. This can be explained by the fact that larger Provinces in
lower income Regions (mostly in the South of Italy) show relevant mobility flows coming
from neighbour Provinces due to the labour supply concentrated in just one or two local areas.
As a result, those Provinces become extremely important as labour hubs. This phenomenon
is clearly depicted in Fig. 6, which reports the distribution of the importance (panel A) and
vulnerability (panel B) rankings at Province level where lighter colors correspond to higher
rankings. Note, however, how these centrality scores refer to the network configuration of
jurisdictions relative to their own economic resources, the latter being very low in the South of
Italy (see, e.g., panel C). This means that the most important or vulnerable jurisdictions in our
framework are identified with respect to their structure of economic interdependencies based
on theflowsofworkers relative to their economic resources,while other economic dimensions
(e.g., GDP or total income at stake) could suggest alternative rankings of importance.

The relevance of the neighborhood of each jurisdiction in the computation of the scores
of importance and vulnerability is clearly highlighted by rankings reported in Fig. 7 and
Table 1. Network configuration in southern regions is typically fragmented, with a few larger
Provinces attracting workers from closer territories, thus determining an almost star-like
system at regional level. As a consequence, such Provinces play a role similar to a hub for the
local labor market, being therefore very central in our topological assessment. For instance,
the Province of Potenza in the Southern region of Basilicata is by far the most critical

6 By assuming that the resilience of the Italian labor market is homogeneous across areas, we potentially
oversight the impact of lockdown measures in certain areas that, for example, might rely on an underground
economy (which accounts for almost 12% of the Italian GDP), and that some 20% of workers in specific areas
are undocumented (Giovannini, 2010; Morvillo, 2012) Since the estimation of this undocumented portion of
the labor market goes beyond the scope of this paper, we leave this development to future works.
7 In reality, lockdown restrictions affect industry sectors differently depending on the policy aim. A clear
example is related to workers providing essential services for which restrictions did not apply.
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Fig. 5 StabilityAnalysis of the Italian Provinces in the Pre-Lockdownphase. The colormap represents different
levels of λmax (θ) for each (L, ρ) combinations, given the vector S from Sect. 3.1. The stability tipping line is
plotted in black and represents all combinations of (L, ρ) such that λmax (θ) = 1. The colormap tones range
from cold to warm tones, the warmer the tone the higher the value of λmax (θ). The top-left corner identifies
the region of system stability with λmax (θ) < 1 (cold color tones), while the bottom-right the region of
instability with λmax (θ) > 1 (warm color tones)

unit, accounting for 86.8% and 75.3% of the whole system importance and vulnerability,
respectively, although representing a very small proportion of total economic resources at
stake (see Fig. 6 panel C and Table 1 last column).

On a deeper investigation, it turns out that Potenza is one of the Province with the high-
est rate of “within” commuting, along with the lowest level of smartworking due to more
traditional economic activities. Figure7 panel (a) plots the weighted mobility network in the
Basilicata Region showing strong commuting flows from peripheral Provinces to the few
main labour hubs, the largest being in the Province of Potenza. As an example, this is com-
pared with the Northern Region of Lombardia in panel (b), which instead is characterised by
a more spread distribution of links that have lower weights and connect many more industrial
areas. Hence, in Lombardia there are several large Provinces connected with each other, thus
determining a very dense network in which it is more difficult to identify only one single
Province that is deeply more relevant than the rest of the local territory. Hence, the local area
of the Basilicata region is mainly dominated by a few Provinces, mainly Potenza and, to a
lesser extent, Matera; by contrast, in Lombardia along with the Province of Milano, which is
obviously relevant for the labour market, there are several other relevant nodes (e.g., Berg-
amo, Brescia, Monza e della Brianza, Varese, to name a few). In Sect. 4.2 we will discuss
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Fig. 6 Importance and vulnerability of Italian Provinces. The figure reports the Italian Provinces colored
according to their ranking of importance (panel A) and vulnerability (panel B). Panel C reports the wage
ranking. Colder colors represent lower ranking in the importance/vulnerability or wage scores, warmer colors
are associated to high ranked Provinces

Fig. 7 Mobility patterns around local economic hubs. The figure reports an enlargement on mobility patterns
in Basilicata and Lombardia as representative examples of commuting flows in South and North of Italy.
Municipalities are reported as blue triangle, while links represent the flows between them. While mobility
flows in South of Italy form a tree like structure (left panel), mobility between Municipalities in the North of
Italy is much more dense and characterized by a high number of redundant links (right panel)

additional elements differentiating Northern and Southern regions and that contribute to such
differences in the levels of centrality.

We also observe that the direction of the economic shocks is usually propagated from
large to medium-small Provinces. As expected, when shifting from the importance to the
vulnerability rankings, highly densely populated Provinces such as Bari, Napoli and Salerno
move from 3rd to 5th, 4th to 16th and 5th to 13th place, respectively. Overall, we can observe
from Table 1 that the most important Provinces tend to show lower levels of vulnerability,
with only a few exceptions in the top positions.

Since the vast majority of commuting is recorded within Provinces, this level of aggrega-
tion could lead to loss of information. In order to avoid this effect, we also propose a more
granular assessment of the impacts of mobility restrictions at the level of Italian Municipal-
ities, where FPre ∈ R

M×M , and M = 2790 denotes the Italian Municipalities. We confirm
that the overall system stability at the Municipality level is in line with what discussed for
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Provinces (see Fig. 15). We therefore focus our attention on the importance and vulnerability
rankings in order to detect the emergence of specific patterns within Provinces.

Table 2 confirms the importance of Southern local units, specifically in Municipalities
located in the Potenza Province, which dominates this ranking, although representing a
very small proportion of total economic resources. More specifically, the scalability from
Provinces to Municipalities helps to pint-point those specific Municipalities and the interac-
tions between them in contributing to the Province level of importance and vulnerability.

The next Section investigates the role of smartworking in skewing the importance and
vulnerability results towards Southern regions.

4.2 The role of smart working

To better understand the causes leading to the high rankings of territories located in the South
of Italy, we turn our attention to the distribution of smartworking. On average, the national
level of smartworking during the lockdown was assessed at about 33% (see (Barbieri et al.,
2020)), with below average values among Southern Provinces compared to above average
values in the Northern and few Central ones (e.g., Rome and neighbours). These differences
are clearly represented in Fig. 8. Specifically, the left tail of the distribution in panel (a) is
mainly represented by Southern Provinces as highlighted in panel (b).

We know, from Eq. (4), and the special case Eq. (9), that there exists a positive relationship
between smartworking and system stability. In particular, the distribution of the different
levels of smartworking has been shown to be inversely correlated with the vulnerability index
(see, e.g., Table 1), skewing the results towards the South of Italy. In order to assess the impact
of a more homogeneous level of smartworking across Italian territories, or alternatively
considering the policy implication of aligning Southern regions to the same national average
of smart working, we reassessed the vulnerability of both Provinces and Municipalities by
imposing the same level Si = S for all i . In so doing, we actually control for the local level
of smartworking by reducing the national stability to a linear combination of S as in Eq.
(8). By factoring for ρ, we can rewrite Eq. (8) as ρ = αL (1 − S) λmax (X), which provides
the minimum level of economic resources for the system to be stable, i.e. the minimum
buffer needed to absorb all the losses. Setting smartworking at its average value, S = 0.33,
considering as an example L = 0.5 and knowing that λmax

(
XPre

) = 1,8 we can derive
the analytical expected minimum value of ρ that is in the range 8.25–24.5% depending on
the value of α ∈ [0.25, 0.75]. A more homogeneous distribution of smartworking, although
targeting the same average level, leads to a higher stability of the economic system by few
percentage points compared to what estimated in Sect. 4.1. This provides some valuable
indication on the negative role of heterogeneous distributions of smartworking on system
stability.

When controlling for smartworking in Table 3, the skew effect towards Southern Provinces
visible in Sect. 4.1 disappears. The most densely populated Provinces are now the most
important ones, regardless of the geographic location and economic characteristics. This is
confirmed by Fig. 9 compared to the initial lockdown scenario of Fig. 6. Those Provinces
include the major Italian cities with Milano, Napoli and Roma in the top 3 positions. This
result is expected by the volume of commuters in those areas, but also confirms how favour-
ing smartworking might prevent the concentration of importance in specific areas, which are

8 Since we assume that the probability of mobility between jurisdictions maps all workers, the row sum of
matrix X tends to be equal to 1 for all jurisdictions, making the largest eigenvalue equal to 1.
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Fig. 8 Smartworking across Italian Provinces and its relationship with importance and vulnerability. The
figure reports in the left panel the smartworking distribution across Italian Provinces. The right panel shows
the scatter plot of the importance and vulnerability scores against the level of smart. The legend displays the
correlation among these quantities

Table 3 Top 20 importance ranking of provinces pre-lockdown with constant S

Province Region Importance Economic resources

Milano Lombardia 7.09E−02 (1st) e133,453,910 (14.77%)

Napoli Campania 6.99E−02 (2nd) e26,074,343 (2.89%)

Roma Lazio 6.38E−02 (3rd) e85,597,891 (9.47%)

Catania Sicilia 5.71E−02 (4th) e6,557,622 (0.73%)

Cosenza Calabria 5.63E−02 (5th) e3,486,384 (0.39%)

Torino Piemonte 4.21E−02 (6th) e43,273,844 (4.79%)

Palermo Sicilia 2.93E−02 (7th) e6,642,489 (0.74%)

Firenze Toscana 2.81E−02 (8th) e20,197,446 (2.24%)

Salerno Campania 2.32E−02 (9th) e7,844,620 (0.87%)

Brescia Lombardia 2.08E−02 (10th) e23,093,302 (2.56%)

Bergamo Lombardia 2.00E−02 (11th) e21,556,142 (2.39%)

Bologna Emilia Romagna 1.97E−02 (12th) e25,457,739 (2.82%)

Monza e della Brianza Lombardia 1.81E−02 (13th) e19,588,812 (2.17%)

Caserta Campania 1.76E−02 (14th) e5,569,200 (0.62%)

Catanzaro Calabria 1.74E−02 (15th) e2,252,158 (0.25%)

Bari Puglia 1.74E−02 (16th) e12,865,149 (1.41%)

Varese Lombardia 1.73E−02 (17th) e13,807,806 (1.53%)

Padova Veneto 1.65E−02 (18th) e18,410,603 (2.04%)

Verona Veneto 1.52E−02 (19th) e18,174,686 (2.01%)

Treviso Veneto 1.45E−02 (20th) e16,439,457 (1.82%)

instead now structurally penalized by the absence of adequate technologies and infrastruc-
tures.
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Fig. 9 Importance and vulnerability of Italian Regions when controlling for S. The figure reports the Italian
Provinces colored according to their ranking of importance (left panel) and vulnerability (right panel). Colder
colors represent lower ranking in the importance/vulnerability scores, warmer colors are associated to high
ranked Provinces

4.3 Between versus withinmobility

As the aforementioned clustering analysis highlights (see Sect. 2), the contributions of
between-Province and within-Province mobility look different from Regions to Regions.
Specifically, there exists a higher mobility between Northern Italian Provinces, while higher
within-Province commuting is observed in the South. This Section will investigate the effect
of heterogeneous commuting patterns across the Italian territory on the economic system sta-
bility. As reported in Sect. 2, commuting in Southern Regions is heavily concentrated within
the area itself while other territories, specifically the more industrially developed zones of
the North of Italy, show mobility flows both within and between neighbour territories.

Competing lockdown restrictions have been put in place in Italy during the second wave
of SARS-COV2, targeting more severe restrictions between jurisdictions than within. Hence,
we are interested in assessing the impact of these lockdown measures to the overall stability
of the system as well as the changes in importance/vulnerability rankings. To this aim we set
all diagonal values Xii = 0 for all i . Imposing a zero diagonal has the effect of eliminating
any potential loss coming from commuting restrictions within the local area. The resulting

matrix θ̂
Pre

is therefore identical to θ Pre with the exception of the diagonal elements and
allows for direct comparison between alternative lockdown restrictions. Note, however, that
this exercise does not include extra infrastructure costs and safety measures that could be
required to keep the virus reproductive number at comparable levels.9 For this reason, we
focus our analysis only on the changes in the rankings among jurisdictions.

We briefly show the stability/instability areas of the systemwhen controlling for themobil-

ity within Provinces in Fig. 10. This is achieved by plotting λmax

(
θ̂
Pre

)
values for different

combinations of lockdown levels (L) and economic buffer (ρ). In line with the previous
assessments, areas of stability are identified by colder colors in the top-left quadrant of the

9 For instance, Spelta et al. (2020) propose a scenario based analysis to evaluate economic impacts including
hospitalization costs when salary losses refer to both mobility restrictions and contagion.

123



Annals of Operations Research

Fig. 10 Stability Analysis of the Italian Provinces in the Pre-Lockdown phase – Between Mobility only.
The colormap represents different levels of λmax (θ) for each (L, ρ) combinations, given the vector S from
Sect. 3.1. The stability tipping line is plotted in black and represents all combinations of (L, ρ) such that
λmax (θ) = 1. The colormap tones range from cold to warm tones, the warmer the tone the higher the value
of λmax (θ). The top-left corner identifies the region of system stability with λmax (θ) < 1 (cold color tones),
while the bottom-right the region of instability with λmax (θ) > 1 (warm color tones)

plot while instability areas by warmer colors in the bottom-right. For the same indicative
level of lockdown of 50%, on average Provinces would have to sustain economic losses from
4% to about 10% of total income to preserve stability, depending on the economic cost map
(see Fig. 16 for the stability analysis at Municipality level). As expected, the system appears
much more stable at different (L , ρ) combinations than the more conservative framework
of Sect. 4.1 that penalises both within and between jurisdictions mobility. Nevertheless, as
already mentioned, these costs do not account for other infrastructure and safety measures
required to keep SARS-COV2 reproductive numbers at the same level among different lock-
down scenarios. It is therefore up to policy makers to evaluate cost-benefit trade-offs of each
of these alternative policy restrictions for specific local areas.

An interesting comparison would be on the importance/vulnerability rankings when
assessing between-Province-only lockdown scenarios, as presented in Table 4. As predicted
by the mobility patterns discussed above, important Provinces responsible for propagat-
ing economic losses are those in the Northern part of Italy, specifically in Lombardia and
Piemonte Regions. Those are also the areas accounting for the largest proportion of total
economic resources. Lockdown measures that only target mobility between Provinces can
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Table 5 Top 20 importance ranking of municipalities pre-lockdown—between mobility only

Municipality Province Region Importance Vulnerability

Firenze Firenze Toscana 2.16E−01 (1st) 2.92E−02 (8th)

Fiesole Firenze Toscana 1.05E−01 (2nd) 3.98E−02 (2nd)

Prato Prato Toscana 1.04E−01 (3rd) 2.18E−02 (18th)

Bagno a Ripoli Firenze Toscana 8.27E−02 (4th) 3.92E−02 (3rd)

Signa Firenze Toscana 5.77E−02 (5th) 3.34E−02 (6th)

Calenzano Firenze Toscana 3.23E−02 (6th) 3.76E−02 (5th)

Montemurlo Prato Toscana 2.74E−02 (7th) 2.20E−02 (17th)

Vinci Firenze Toscana 2.35E−02 (8th) 1.74E−02 (24th)

Pistoia Pistoia Toscana 2.30E−02 (9th) 1.17E−02 (31st)

Scandicci Firenze Toscana 2.22E−02 (10th) 5.25E−02 (1st)

Carmignano Prato Toscana 1.35E−02 (11th) 2.55E−02 (12th)

Vaiano Prato Toscana 1.34E−02 (12th) 2.87E−02 (9th)

Massa e Cozzile Pistoia Toscana 1.31E−02 (13th) 7.98E−03 (37th)

Quarrata Pistoia Toscana 1.25E−02 (14th) 1.60E−02 (26th)

Montelupo Fiorentino Firenze Toscana 1.24E−02 (15th) 2.64E−02 (11th)

Reggello Firenze Toscana 1.15E−02 (16th) 2.45E−02 (13th)

Rufina Firenze Toscana 1.14E−02 (17th) 2.86E−02 (10th)

San Giuliano Terme Pisa Toscana 1.13E−02 (18th) 3.88E−03 (54th)

Pontassieve Firenze Toscana 9.92E−03 (19th) 3.92E−02 (4th)

Greve in Chianti Firenze Toscana 7.98E−03 (20th) 2.25E−02 (16th)

have a limited impact on the risk of contagion in Southern regions while Northern areas,
where mobility patterns between Provinces are more developed, would be more exposed to
economic losses. In line with the other lockdown scenarios presented in Sect. 4.1, the eco-
nomic shocks tend to propagate from the largest Provinces to the others in the same Region.
Indeed, Milano is the most important jurisdiction but ranks only 5th in vulnerability. For the
other Provinces, mixed results are observed on the rankings within the top 20 most important
ones.

The scalability of our mobility network allows us to test alternative lockdown restrictions
at different jurisdiction levels, specifically Province andMunicipality ones.We can thus relax
mobility restrictions only within Municipalities, while still maintaining restrictions between
different Municipalities. We can consider this scenario as a mid-ground approach that would
still allow for a certain degree of mobility within the same local jurisdiction. On the other
hand, this policy would disadvantage those Provinces with high degree of inner mobility
between their Municipalities.

Since Toscana is one of the Italian Region with the largest volume of mobility between
neighbouring Municipalities (see Sect. 2), lockdown policies targeting only commuting
between Municipalities, would make this Region the most important and vulnerable local
area in the country, with Florence as a key local hub for commuting and the most important
Province in this framework (see Table 5). This compares to what assessed in the previous sce-
nario of Table 4 in which Florence was barely making the top 20st more important Provinces.
More generally, Municipalities in Toscana dominate by far the top 100 rankings under this
scenario. This is also confirmed by Fig. 11 that presents the connectivity of Provinces in
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Fig. 11 Province Between-Mobility Importance and Vulnerability. The figure shows, in the left panel, the
importance and vulnerability scores associated to eachMunicipally relative to between mobility patterns only.
Square size is proportional to the importance of the Municipality while color, from warm to cold, represent
the vulnerability. The right panel displays an enlargement of the mobility flow in the Toscana Region from
which the high number of clusters is visible

Toscana (right panel) as well as plotting the importance and vulnerability of Provinces on the
Italian map (left panel) in this scenario. The former clearly underlines the characteristics of
jurisdictions in Toscana with large volume of between mobility and high levels of clustering.

More in general, the above discussed outcomes are likely the result of the impact of
different lockdown protocols to the fragility of local areas that are characterised by different
mobility patterns. These features would support the use of bespoke lockdown measures that
would reflect the specific characteristics of each Region as the one-rule-fit-all approach can
heavily discriminate between territories so heterogeneous.

4.4 Lockdown assessment

This Section investigates the impact of the actual lockdown measures imposed to Italian
territories during thefirstwaveofSARS-COV2.Bycomparing the changeofmobility patterns
before (Fpre) and during the lockdown (Flock), we can derive the vector L and therefore
assess the estimated economic losses and compare with those predicted in the pre-lockdown
analysis of Sect. 4.1. Figure12 reports the distribution of the estimatedL. The relative change
in mobility patterns (pre vs. post lockdown measures) can net out endogenous structural
weaknesseswithin each region.We, however, acknowledge this potential issue of endogeneity
on local infrastructure differences that can affect lockdown restrictions and stability outcomes
and leave further calibration to individual dynamical properties to future works.

The prediction of economic consequences of the Italian lockdown during the first wave
of SARS-COV2 is plotted in Fig. 13. Depending on the cost parameter α, we predict an
average economic loss in the range of about 15% to 40% of the total income among Italian
Provinces, which is few percentage points above the equivalent estimation with a constant
level lockdown of 60–65% to all jurisdiction (see Fig. 5). Hence, the analysis of economic
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Fig. 12 Distribution of Lockdown Restrictions on Commuting in Italian Provinces. The histogram displays
the distribution of the percentage reduction in commuting caused by the lockdown measures on the Italian
Provinces. It is computed by comparing mobility data before and after the implementation of the restrictions

losses due to lockdown restrictions highlights the severe economic consequences of the
mobility restrictions put in place to limit the spread of the virus, with additional emphasis
on heterogeneous changes in mobility that, similar to what we observed with smartworking,
exacerbate instability.

In line with the results derived from the pre-lockdown analysis, Southern Provinces are
the ones facing higher vulnerability to lockdown restrictions as shown in Table 6. We also
learn from the lockdown analysis that they are showing the largest reduction in mobility. In
fact, although the same lockdown restrictions have been implemented in all Italian regions
during the first wave of the contagion, the actual change in mobility can shed a light on how
those restrictions have been effectively implemented and monitored. They also reflect the
proportion of workers that were providing essential services as lockdown restrictions rolled
out. Specifically, Provinces in the Southern regions of Calabria and Sicily were the most
affected, showing extremely low values of smartworking and lockdown percentages above
the national average. In addition, similar to all other scenarios, larger Provinces are more
likely to spread losses to medium-small ones relative to their own economic resources. Note,
however, that these areas represent a very small proportion of total economic resources as
shown in Table 6 last column. The unequal distribution of actual mobility reduction towards
the South of Italy, which was already top ranked in the importance and vulnerability scores
in our pre-lockdown analysis, has contributed to boost the level of instability of the whole
national system even further.
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Fig. 13 Predicted cost of Lockdown.

5 Conclusions and policy implications

We propose a network-based spectral method to assess the spread of contagion of economic
losses coming from restrictions on the commutingmobility network. The latter is provided by
Facebook Disease Prevention maps covering about 3000 Italian Municipalities of about four
million individuals over the period from February 24th to March 23rd 2020. Our preliminary
network analysis shows complex mobility patterns differentiating jurisdictions across the
country. We observe higher degree of mobility flows between Northern areas compared to
those in the South of Italy. The latter are characterised bymobilitymainly concentratedwithin
the jurisdiction itself. When combined mobility data with socio-economic variables provided
by the Italian National Institute of Statistics (ISTAT), the Italian Ministry of Economy and
Finance and the Bank of Italy, we notice a heterogeneous distribution of smartworking that
penalizes Southern regions during lockdown. This evidence, combined with the concen-
tration of commuting flows on fewer industrial hubs in the same regions, makes Southern
jurisdictions quite dependent on local commuting to support economic outputs. The sta-
bility analysis confirms our intuition towards the importance of Southern jurisdictions in
contributing to instability. Specifically, we observe the Region of Basilicata that dominates
importance and vulnerability rankings as a result of the labour supply concentrated in very
few local central areas with the lowest level of smartworking in the country.

The overall system expected loss is estimated in the range of 10–30% of total income
from commuting depending on the economic assumptions. We then investigate the role of
smartworking and alternative lockdown policies to understand the impact ofmobility patterns
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to the overall system stability as well as the contribution, in terms of network importance
and vulnerability, to instability. Across all alternative restriction policies, the direction of the
economic shocks is usually propagated from the largest to other medium-small jurisdictions
as expected (large areas are the major labor supplier of the Regions). When controlling
for smartworking, the skew effect penalising Southern Provinces disappears, making the
most densely populated Provinces the most important ones, regardless of the geographic
location and economic characteristics, while the aggregate expected loss of the system is also
slightly improved by few percentage points, supporting a more homogeneous distribution of
smartworking nationwide.

Our estimates of the economic losses induced by the lockdownphase confirmhowmobility
restrictions, put in place to contain the spread of the contagion during the first wave, penalized
more those territories located in the South of the country. These findings are in line with
official statistics released by Bank of Italy (Banca d’Italia, 2020) which indicate how, in the
first semester of 2020, the highest reduction of employed people was registered in Calabria
(−4.8%), with the South accounting for an aggregate reduction equal to −2.6%, compared
to the North of the country (−1.5%) and the average level of Italy (−1.7%). Hence, the
effects of the lockdown affected most those areas already very fragile from a socio-economic
perspective, with the South characterized by an unemployment rate in the first quarter of
2020 equal to 16.3%, much higher than the average of the country (9.2%). These Southerner
areas are much smaller in terms of economic resources compared to the Northern areas and
therefore might be overlooked if assessed in absolute economic terms.

Our results suggest that important emphasis should be given to coordinate the development
of smartworking solutions that can mitigate the spread of economic losses among local
units, especiallywhen this distribution discriminates certainRegions. For instance, promoting
targeted policies aimed at limiting these differenceswould have positive results for the system
stability. Finally, the heterogeneous reduction in mobility flows should inform policy makers
regarding the most cost-effective implementation of lockdown measures. Since economic
integration implies that a more homogeneous impact on mobility favours system stability,
coordinated policies tailored at the regional level should be promoted to balance the spreading
of the pandemic with the need to sustain economic output. When looking at alternative
lockdown restrictions that are closely related to those proposed to contain the second wave
of SARS-COV2 in Italy, we notice a shift in economic risk towards Northern jurisdictions.
Specifically, policy restrictions that treat mobility between jurisdictions more severely that
within can have notably different economic consequences in different parts of the country.
Our results are confirmed by further stability analysis using actual mobility restrictions data
during lockdown, echoing the importance of supporting lockdown policies that, although
aiming at containing the spread of the virus, are tailored to the complex structure of mobility
flows and their contribution to local economic outputs.

There are some limitations in this study. First, our sample does not include commuting
flows of thoseworkers that did not enable the social network platform tomapmovements, thus
potentially bias our findings in terms of generational and geographical coverage. Second, we
impose economic impacts in terms of losses of salary as measured by the local administrative
unit average value, which may hidden relevant heterogeneity in the distribution especially
when dealing with commuter workers. Third, the estimates of economic losses do not take
into account the presence of different values of the economic local buffers ρi , which may
indicate pre-existing local socio-economic fragility. The assessment of the economic conse-
quences should also consider the impact of fiscal interventions and local policies to support
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economic output. Future works may deal with these aspects to calibrate cost-benefits analysis
of competing NPIs on real data.
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A Network dismantling robustness

In this Appendix we check how the mobility data has reacted to different forms of lockdown.
In particular we aim at discovering whether the network backbone has undergone changes
after lockdowns. In so doing, we introduce the concept of link salience (Grady et al., 2012).
Salience has been shown to be a robust approach to classifying network elements based
on a consensus estimate of all nodes. Although a number of filtering techniques have been
proposed in many contexts, such as statistical tests, Minimum Spanning Tree algorithms or
Planar Maximally Filtered Graphs, all of these approaches come with several drawbacks.
This is due to the fact that link weights are typically continuously distributed, thus making
thresholding not only arbitrary but also problematic, as key properties of the reduced networks
can sensitively depend on the chosen threshold. To cope with this, we employ link salience,
which can successfully classify links into distinct groups without external parameters or
arbitrary thresholds. The central idea of this approach is based on the notion of the average
shortest path tree, which is the collection of shortest paths from a node to all other nodes in
the network. This measure summarizes the most effective routes from the reference node to
the rest of the network and can be used to derive the salience adjacency matrix, namely, the
backbone structure mobility network.

Link salience is based on the concept of effective proximity di, j defined by the recipro-
cal coupling strength di, j = 1/wi, j . Effective proximity captures the intuitive notion that
strongly (weakly) coupled nodes are close to (distant from) each other. It also provides one
way to define the length of a path p that connects two terminal nodes (n1, nk) and consists of
a sequence of K − 1 intermediate nodes ni , and connections wni ni+1 > 0. The shortest path
minimizes the total effective distance l = ∑K−1

i=1 dni ni+1 and can be interpreted as the most
efficient route between its terminal nodes. Given the notion of shortest path that originates
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Fig. 14 Salient link distributions. The upper panel illustrates the weights distributions of the salient, non-
salient and excluded links over the pre-lockdown period. The lower panel shows weights distributions of the
salient, non-salient and excluded links during the lockdown period

at node k and terminates at node l, one can introduce the indicator function:

Ii, j (l, k) =
{
1 if link i → j is on the shortest path from k to l
0 otherwise

(10)

A shortest path tree (SPT)ϒ(k) rooted at node k can be represented as amatrix with elements

ϒ i, j (k) =
{
1 if

∑
Ii, j (l, k) > 0

0 otherwise
(11)

and the salience si,j of link i → j is given by
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si, j = 1

N

∑

k

ϒ i, j (k). (12)

The salience S = [si, j ] as defined by Eq. (12) permits an intuitive definition of the skeleton
of a network. We thus extract the skeleton of the Italian mobility network pre and during the
lockdown to seewhether this policy has effectively changed the distribution of the commuters
among municipalities. Results are shown in Fig. 14, which reports the weights distributions
of the salient, non-salient and excluded links for the pre-lockdown phase (upper panel)
and lockdown phase (lower panel). Results suggest a general decreasing in the number of
commuters (link weights) despite the distributions retains approximately the same shape in
the two sub-sample. Only the salient link weight distribution displays a decreasing right tail
thus suggesting the efficiency of the policy in dismantling the commuter network backbone.

B Supplementary figures

See Figs. 15, 16.

Fig. 15 Stability analysis of Italian municipalities pre-lockdown. The colormap represents different levels of
λmax (θ)for each (L, ρ) combinations, given the vector Sfrom Section 4. The stability tipping line is plotted in
black and represents all combinations of (L, ρ) such that λmax (θ) =1. The colormap tones ranges from cold
to warm tones, the warmer the tone the higher the value of λmax (θ). The top-left corner identifies the region
of system stability with λmax (θ) <1 (cold color tones), while the bottom-right the region of instability with
λmax (θ)>1 (warm color tones)

Fig. 16 Stability analysis of Italian municipalities pre-lockdown—between mobility only. The colormap rep-
resents different levels ofλmax (θ) for each (L,ρ) combinations, given the vector SfromSection 4. The stability
tipping line is plotted in black and represents all combinations of (L, ρ) such that λmax (θ) =1. The colormap
tones ranges from cold to warm tones, the warmer the tone the higher the value of λmax (θ). The top-left
corner identifies the region of system stability with λmax (θ) <1 (cold color tones), while the bottom-right the
region of instability with λmax (θ) >1 (warm color tones)
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