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Simple Summary: Drugs released into the aquatic environment create serious problems for the
organisms that live there. For this reason, the present study investigates the in vitro effects of the
antibiotic sulfamethoxazole, widely found in wastewater, on the fertilization and development of the
Arbacia lixula sea urchin. The results showed a significant reduction in the percentage of fertilized
oocytes at the highest drug concentrations, together with an increase in anomalies and delays in
the development of the embryo. Therefore, the data obtained suggest urgent intervention on the
release of these drugs in order to prevent important alterations in the species’ development and to
preserve biodiversity.

Abstract: To date, drugs released into the aquatic environment are a real problem, and among
antibiotics, sulfamethoxazole is the one most widely found in wastewater; thus, the evaluation of
its toxicity on marine organisms is very important. This study, for the first time, investigates the
in vitro effects of 4 concentrations of sulfamethoxazole (0.05 mg/L, 0.5 mg/L, 5 mg/L, 50 mg/L)
on the fertilization and development of the sea urchin Arbacia lixula. The gametes were exposed
to drugs in three different stages: simultaneously with, prior to, and post-fertilization. The results
show a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations.
Moreover, an increase in anomalies and delays in embryo development following the treatment with
the drug was demonstrated. Therefore, the data suggest that this antibiotic can alter the development
of marine organisms, making it urgent to act to reduce their release and to determine the concentration
range with the greatest impact.

Keywords: antibiotic; echinoderms; embryos; environmental toxicity; gametes; invertebrates

1. Introduction

To date, different types of pollutants are released into aquatic environments, negatively
affecting the lives of the aquatic organisms that inhabit them [1–3]. These organisms are
very important as a resource of bioactive molecules as food, and in the study of immune
responses under stress conditions and human disease [4–8]. The use of drugs is widespread
in the treatment of human, animal, and plant diseases, and the problem of pharmaceutical
waste being released into aquatic environments is becoming urgent [9]. After their use, the
remaining drugs are usually disposed of in an inadequate manner via the sinks, toilets, and
drains of hospitals and pharmaceutical factories, often in the form of active compounds that
have not been metabolized, thus maintaining their original chemical structures and biologi-
cal functions [10–14]. Conventional wastewater treatment plants often cannot effectively
remove these pharmaceutical compounds (PCs) since their elimination is influenced by
the characteristics of drugs, the techniques used, and the environmental conditions [15,16].
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This leads to the frequent detection of PCs in wastewater, and their concentrations generally
range from ng/L to µg/L [17–19]. It is known that their persistence in wastewater can
negatively affect the ecosystem as these compounds are potentially toxic for non-target
organisms, including marine animals [20,21]. In fact, several studies in the literature high-
light the negative effects of drugs on different aquatic species, including oxidative stress,
metabolic and immunological alterations, and reductions in the success of fertilization and
the development of organisms [3,22–27]. Fertilization, in particular, is a critical phase of
the lifecycle that ensures the preservation of a species, and the presence of pharmaceutical
compounds can seriously interfere with this process, affecting the production and quality
of the gametes. Indeed, De Oliveira et al. [23] reported on the adverse effects of 4 com-
mon pharmaceuticals (acetaminophen (1.2–9.0 mg/L), chlorpromazine (0.50–3.14 mg/L),
diclofenac sodium (52.0–155.3 mg/L), and propranolol (4.0–11.9 mg/L) on the reproduction
of Daphnia magna after analyzing the mobility of the gametes and the quantity of offspring.
The authors demonstrated the dose-dependent immobility of gametes in the presence of all
of the tested drugs, as well as a significant decrease in the production of offspring caused
by chlorpromazine and propranolol. Similarly, another study on Mytilus galloprovincialis
showed that diclofenac (100 µg/L) causes the down-modulation of tyrosine metabolism
and the up-modulation of tryptophan metabolism, which are involved in the production
and release of gametes [28]. Among these pharmaceuticals products, and specifically
among the classes of antibiotics, sulfonamides—synthetic antimicrobial molecules whose
structure mimes that of para-aminobenzoic acid (PABA)—are widespread [29,30]. One of
the most common and diffuse drugs belonging to this category is sulfamethoxazole (SMX),
a competitive inhibitor of the enzyme dihydropteroate synthase, which prevents the forma-
tion of dihydropteroic acid, a precursor of folic acid, which is required for bacterial growth.
It is widely used in the treatment of several bacterial infections in humans, and it is effective
against both Gram-positive and Gram-negative bacteria [31]. The average concentrations
of the drug that are detected in wastewater range from ng/L to µg/L [32,33], and several
studies have demonstrated its negative effects (i.e., oxidative stress, the suppression of the
immune response, inflammation, the inhibition of acetylcholinesterase activity, the alter-
ation of osmotic regulation, and the alteration of energy metabolism) in marine vertebrates
and invertebrates [34–37]. However, other authors have recently reported that the concen-
trations of this drug discarded by the livestock industry and in aquaculture wastewater
can rise to the level of mg/L [38,39]. Focusing on invertebrates, it is known that they play
an important role as a source of bioactive molecules with antioxidant, anti-inflammatory,
and anti-tumor effects [4,5,40–42], and they also represent useful bioindicators for the
study of environmental conditions [43–48]. Among invertebrates, echinoderms possess
peculiar characteristics which make them particularly suitable for applications in the eco-
toxicological field, such as their wide distribution, the ease of sampling/maintaining them,
the ease of collecting their gametes, their availability throughout the year, their external
fertilization mechanism, their rapid development, and their sensitivity to a wide spectrum
of pollutants [49]. Furthermore, their lifecycle stages, such as fertilization and embryonic
division, are particularly sensitive to environmental conditions and are therefore increas-
ingly used in the ecotoxicological approach to assess the quality of an environment [50,51].
In light of all of this, given the importance of these invertebrates as bioindicators, and
considering the SMX concentrations reported by other authors [32,33,38,39], our study
aimed to investigate for the first time the in vitro effects of exposure to sulfamethoxazole
at different concentrations and at three different stages (simultaneously with, prior to,
and post-fertilization) on Arbacia lixula gametes and embryos. Our goal was to evaluate
whether the drug negatively affects the gametes and embryos and whether this depends
on the concentration. In fact, the obtained results could provide useful information for
the regulation of sulfamethoxazole releases into water, thus protecting the species that
live there.
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2. Materials and Methods
2.1. Experimental Animals

A total of 54 specimens of Arbacia lixula (16 ± 1 g) were collected in the spring from
the rocky seabed of Mongerbino (Gulf of Palermo) and housed in the aquarium of the
University of Palermo (STEBICEF Department). The animals were maintained for 2 weeks,
respecting the photoperiod in different tanks (with the same conditions) containing aerated,
filtered, refrigerated seawater (16 ± 1 ◦C), at a salinity level of 38‰ and with oxygenation
of 8 mg/L. During this period, the animals were fed with invertebrate food (Azoo, Taikong
Corp., New Taipei, Taiwan) until 24 h prior to the beginning of the experiment (which were
performed according to the guidelines of the OECD, 2012 [52]).

2.2. Gamete Collection

The emission of the gametes from each individual was induced by the intracelomic
injection of 1 mL of 0.5 M KCl through the peristomial membrane [53–55]. The eggs and
spermatozoa were collected and washed 3 times in filtered seawater (FSW: 0.5 M NaCl,
8 mM KCl, 30 mM Na2SO4, and 2 mM NaHCO3, with a pH 8.1, and pasteurized at 60 ◦C);
the vitality and the number of the gametes was assessed using a Neubauer chamber [56].

2.3. Experimental Plan

SMX was dissolved in the FSW to perform three different experiments:

- The simultaneous exposure (SE) of the gametes, which were simultaneously combined
in multiwell plates with the experimental solutions. The effects were observed on the
first embryonic division after 4 h. The percentages of unfertilized eggs and the regular
divisions were evaluated;

- The pre-exposure (PE), which was achieved by pre-treating the eggs and spermatozoa
separately for 2 h before fertilization. The percentages of unfertilized eggs and the
regular divisions were evaluated; and

- The post-fertilization exposure (PFE), in which previously fertilized eggs were subse-
quently exposed to differing drug concentrations for 2 h. The effects were observed
starting at 4 h post-exposure. The percentages of irregular, regular, and delayed
divisions were evaluated.

All experiments were performed in polystyrene, 6-well plates with SMX solutions
at final concentrations of 0.05 mg/L, 0.5 mg/L, 5 mg/L, and 50 mg/L (with a 10 mL
final volume for each well). Embryotoxicity was evaluated using eggs and sperm at a 1:8
ratio (1 × 106/mL eggs and 8 × 106/mL sperm). Each experiment (SE, PE, and PFE) was
repeated 3 times using 6 individuals for replication (18 in total: 9 males and 9 females). For
all experiments and for all experimental points, a total of 100 unfertilized eggs (including
regular, irregular, and delayed divisions) were counted, and the data were expressed as the
number in each individual category.

2.4. Statistical Analysis

All of the results obtained were grouped by experimental condition (simultaneous
exposure, preventive exposure, and post-fertilization exposure) and concentration of sul-
famethoxazole treatment (0.05, 0.5, 5, 50 mg/L) comprising the control group for the
statistical analysis. The assumption of the normality of distribution and homogeneity of
variance were verified before the analysis. One-way ANOVA and non-parametric Kruskal–
Wallis tests were carried out to verify significant differences in unfertilized eggs, regular
divisions, and delayed divisions (only in the PFE analysis) between data groups. In the case
of significant differences, parametric (Tukey test) and non-parametric (Kruskal–Wallis post-
hoc test) multiple comparison tests were performed. The statistical analysis was performed
with R 3.2.2 software (R Development Core Team) using the R Commander environment.
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3. Results
3.1. Simultaneous Exposure Effects

The simultaneous exposure (SE) of the gametes to the experimental solutions of the
drug showed significant increases in the percentage of unfertilized eggs compared to
the controls (2.89 ± 0.76%) only at concentrations of 5 mg/L (12 ± 0.61%) and 50 mg/L
(15.10 ± 3%) (Df = 4; F value = 120.8; p < 2 × 10 − 16) (Figure 1A).

Animals 2022, 12, 2483 4 of 11 
 

3. Results 

3.1. Simultaneous Exposure Effects 

The simultaneous exposure (SE) of the gametes to the experimental solutions of the 

drug showed significant increases in the percentage of unfertilized eggs compared to the 

controls (2.89 ± 0.76%) only at concentrations of 5 mg/L (12 ± 0.61%) and 50 mg/L (15.10 ± 

3%) (Df = 4; F value = 120.8; p < 2 × 10 − 16) (Figure 1A). 

 

Figure 1. Percentage of unfertilized eggs (A) and regular divisions (B) considering division stages 

with a number of blastomeres ≥16 after the simultaneous exposure (SE) of the eggs and spermatozoa 

to the SMX solutions. Black bars represent medians. 

Regarding the percentage of regular divisions, the results showed a dose-dependent 

trend. As shown in Figure 1B, compared to the control (92,29 ± 1%), a significant decrease 

was observed after exposure to 0.5 mg/L, 5 mg/L, and 50 mg/L of SMX (70.11 ± 3.59%, 

49.04 ± 5.81%, and 37.99 ± 5.56% respectively). 

3.2. Preventive Exposure Effects 

In the second set of experiments, the gametes were pre-treated for 2 h before fertili-

zation with the four different concentrations of SMX. The exposure of the gametes to the 

drug showed a dose-dependent effect on fertilization (Kruskal–Wallis chi-square = 49.21, 

df = 5, p-value = 0.000). The multiple comparison after the Kruskal–Wallis test showed that 

the percentages of the unfertilized eggs resulted significantly higher as compared to the 

controls (3.06 ± 0.69%) only at two SMX concentrations, i.e., 5 mg/L and 50 mg/L (18.02 ± 

1.9% and 29.21 ± 3.69%, respectively; p < 0.05) (Figure 2A). The results of the effects on the 

regular division of embryos demonstrated a significant reduction in the percentage of reg-

ular divisions compared to the control samples (mean square = 6358; F value = 302.7; p = 2 

× 10 − 16) at all experimental SMX concentrations (Figure 2B). 

Figure 1. Percentage of unfertilized eggs (A) and regular divisions (B) considering division stages
with a number of blastomeres ≥ 16 after the simultaneous exposure (SE) of the eggs and spermatozoa
to the SMX solutions. Black bars represent medians.

Regarding the percentage of regular divisions, the results showed a dose-dependent
trend. As shown in Figure 1B, compared to the control (92.29 ± 1%), a significant decrease
was observed after exposure to 0.5 mg/L, 5 mg/L, and 50 mg/L of SMX (70.11 ± 3.59%,
49.04 ± 5.81%, and 37.99 ± 5.56% respectively).

3.2. Preventive Exposure Effects

In the second set of experiments, the gametes were pre-treated for 2 h before fertil-
ization with the four different concentrations of SMX. The exposure of the gametes to the
drug showed a dose-dependent effect on fertilization (Kruskal–Wallis chi-square = 49.21,
df = 5, p-value = 0.000). The multiple comparison after the Kruskal–Wallis test showed
that the percentages of the unfertilized eggs resulted significantly higher as compared to
the controls (3.06 ± 0.69%) only at two SMX concentrations, i.e., 5 mg/L and 50 mg/L
(18.02 ± 1.9% and 29.21 ± 3.69%, respectively; p < 0.05) (Figure 2A). The results of the
effects on the regular division of embryos demonstrated a significant reduction in the
percentage of regular divisions compared to the control samples (mean square = 6358;
F value = 302.7; p = 2 × 10−16) at all experimental SMX concentrations (Figure 2B).
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3.3. Post-Fertilization Exposure Effects

The toxic effects of the exposure to SMX were also evaluated by incubating the embryos at
2 h post-fertilization. Regarding the percentage of regular and irregular divisions, a significant
decrease was observed only at two SMX experimental concentrations (5 mg/L and 50 mg/L)
compared to the controls (Kruskal–Wallis chi-square = 51.687, df = 5, p-value = 6.25 × 10−10).
In particular, a significant decrease in the percentage of regular divisions (49.3 ± 1.65%
and 30 ± 1.66%, respectively) compared to the controls (92.40 ± 0.98%, Figure 3A) and a
significant increase in the percentage of irregular divisions (23.43 ± 1.06% and 28.13 ± 1.30%,
respectively); Kruskal–Wallis chi-square = 42.429, df = 4, p-value = 1.36 × 10−8) with respect to
the controls (1.97 ± 0.18%, Figure 3B) were observed. On the other hand, the results showed a
significant increase in the percentage of delayed divisions of the embryos only at 0.5 mg/L
(9 ± 0.23%), 5 mg/L (12.27 ± 0.36%), and 50 mg/L (14 ± 1.67%), as compared to the controls
(1.5 ± 0.62%, p < 0.05), as showed in Figure 3C.
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4. Discussion

The growing presence of drugs in the aquatic environment [57], imposes the need to an-
alyze and better understand their impact on aquatic organisms, with particular attention to
their reproduction, a critical and important phase of the lifecycle [58]. In fact, in the aquatic
environment, most animal species reproduce via external fertilization through the release of
gametes into the surrounding environment. When pollutants, including drugs, are poured
into the aquatic environment, the gametes are exposed to these substances, which alters
their quality and fertilization processes [58]. As reported by Duan et al. [38], although SMX
concentrations range from only ng/L to µg/L in natural water, the discharge of livestock
and aquaculture wastewater can cause the elevation of SMX levels (54.83 mg/L, [39]). For
this reason, with information about the toxicity of this drug being scarce and unclear [38],
our study aimed to analyze for the first time its in vitro effects on the gametes and fertiliza-
tion of A. lixula in particular so as to evaluate whether the negative effects occur during the
gametes’ simultaneous exposure or during pre- or post-fertilization exposure.

The obtained results show that treatments with different concentrations of SMX neg-
atively affect in a dose-dependent manner the percentage of both unfertilized eggs and
the regular divisions of embryos, highlighting the negative effects of the drug on the ga-
metes. In fact, it is known that pollutants present in the aquatic environment can alter
the motility of spermatozoa or interfere with the chemotactic mechanisms (spermatozoa’s
attraction towards eggs via chemotactic substances) with a consequent reduction in fer-
tility [59]. Moreover, the negative effects observed on the regular divisions could be due
to changes in the expressions of genes involved in detoxification, growth, development,
and reproduction, or due to the actions of the drug as an endocrine disruptor [60,61]. In
light of the results obtained from the simultaneous exposure experiment, we wanted to
understand whether the effects of the drug were negative in the case of pre-treating the
eggs and spermatozoa for 2 h before fertilization with the different experimental SMX solu-
tions. In this case, as in the case of the simultaneous exposure of the gametes, significant
dose-dependent increases in the levels of unfertilized eggs and significant dose-dependent
decreases in the levels of regular divisions were observed. To date, no one has analyzed
the effects of the pre-exposure to sulfonamides on the gametes of A. lixula sea urchins.
However, similar results have been reported in studies in which anti-inflammatory drugs,
another category of drugs widely detected in wastewater, were tested [62]. In addition,
in this case, in our experiment, we could speculate that the pre-exposure of gametes to
SMX influences sperm motility, thereby affecting the percentage of fertilized eggs. This
is confirmed by Zanuri et al. [63], who investigated the effects of two anti-inflammatory
drugs (diclofenac and ibuprofen) on the fertilization of the echinoderms Asterias rubens and
Psammechinus miliaris after pre-incubation of the gametes with the drugs. As discussed
above, the reduction in the quality of the gametes, in terms of sperm motility; the inability
to fertilize the egg; and the damage to the genetic material could be the main causes of
the decreased fertilization rate. Moreover, exposure to the drug could also alter or inhibit
the normal mechanisms necessary for fertilization, such as polyspermy prevention and
cortical granule exocytosis [64,65], inevitably leading to a reduction in normal embryonic
development and subsequently to a reduction in the regular division of embryos.

Once we had evaluated the effects of SMX on the gametes, the third set of experiments
in this study allowed us to investigate the consequences of post-fertilization exposure to the
different concentrations of SMX on the fertilized eggs. Toxic effects were observed at the
highest SMX concentrations, with a significant decrease in the percentage of regular division
and an increase in the percentage of irregular and delayed divisions. There is currently no
similar evidence in the literature on invertebrates, and particularly on echinoderms, which
tests the effects of sulfonamides after fertilization. However, comparable results on the
embryos of Mellita quinquiesperforata were obtained with anticancer drugs, as shown by the
recent study by Mello et al. [66]. Moreover, evidence in the literature reports the anticancer
effects of sulfonamides, which exert their action through cell cycle arrest [67,68]. Probably,
the concentrations of SMX tested in our study could conceivably block DNA replication,
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the cell cycle, and cell proliferation. The delays recorded in the development of the embryos
could also be caused by the dose-dependent increases in the accumulation of ROS species
and the up-regulation of inflammatory genes, which are responsible for alterations and
damage at the biochemical and cellular levels [34,69,70]. Furthermore, alterations in the
normal development of fertilized eggs, due to interference with the mitotic apparatus could
happen, in agreement with a previous study which evaluated the effect of the drug diamino
diphenyl sulfone on the embryonic development of the sea urchin Lytechinus variegatus [71].
However, there is also conflicting evidence in the literature showing that treatment with
50 mg/L of SMX does not induce obvious alterations during the development of P. lividus
embryos [72]. In view of this, it is evident that the effects of SMX could be species-specific
and could depend on exposure concentrations and combinations with other drugs. It
would therefore be important to perform further experiments that clarify the cellular and
molecular mechanisms by which SMX negatively affects the embryonic development of
A. lixula.

5. Conclusions

Given the increasingly abundant and disproportionate use of antibiotics that inevitably
are poured into wastewater and then into the aquatic environment, it is necessary to
investigate their potential toxicological effects. Our analysis on the consequences of the
exposure of the gametes and embryos of Arbacia lixula to increasing concentrations of
the antibiotic sulfamethoxazole (SMX) has shown for the first time in this species the
manner in which the evaluated drug affects the reproduction of the sea urchin, causing
adverse effects during the simultaneous exposure as well as the pre- and post-fertilization
exposure of gametes. This has made it possible to identify that the drug acts negatively from
the beginning on the gametes when released into the aquatic environment, reducing the
possibility of fertilization. Subsequently, the drug can further negatively affect embryonic
development, causing, in the end, negative effects on the fitness of this species. In fact,
our results show that the fertilization rate was reduced in a dose-dependent manner,
and the fertilized eggs showed alterations in cell division, morphological anomalies, and
degeneration. The stages of reproduction are extremely important for animals as they
ensure the continuity of the species, and for this reason, such a negative impact of SMX on
the fertilization and development processes could lead to a serious reduction in their fitness,
endangering the survival of the species and disturbing the entire ecosystem. The choice to
use different SMX concentrations in this study allowed us to highlight its toxicity and to
determine which concentrations cause the greatest negative effects, and consequently the
level of concentration that should not be exceeded. All of this can therefore provide the
basis for the proper monitoring and improvement of procedures and technologies suitable
for limiting the release of drugs into the aquatic environment.
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