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ABSTRACT

Laser cavity-solitons can appear in systems comprised of a nonlinear microcavity nested within an amplifying fiber loop. These states are
robust and self-emergent and constitute an attractive class of solitons that are highly suitable for microcomb generation. Here, we present a
detailed study of the free-running stability properties of the carrier frequency and repetition rate of single solitons, which are the most suit-
able states for developing robust ultrafast and high repetition rate comb sources. We achieve free-running fractional stability on both optical
carrier and repetition rate (i.e., 48.9GHz) frequencies on the order of 10�9 for a 1 s gate time. The repetition rate results compare well with
the performance of state-of-the-art (externally driven) microcomb sources, and the carrier frequency stability is in the range of performance
typical of modern free-running fiber lasers. Finally, we show that these quantities can be controlled by modulating the laser pump current
and the cavity length, providing a path for active locking and long-term stabilization.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0134147

Cavity-solitons1,2 are an important class of dissipative solitary
waves studied in both spatial and temporal configurations. In the
field of “Microcombs” or optical frequency combs achieved in
nonlinear microcavities,3,4 temporal cavity-solitons5,6 have been
instrumental in harnessing phase coherence, eventually enabling
many practical applications.7–16 Among the different properties of
a pulsed source, the long-term stability of the two defining quanti-
ties of the spectrum,17 i.e., the carrier (or the carrier-envelope
offset) and the repetition rate frequencies, defines the metrological
quality of the comb laser.

To date, the most investigated microcomb states are the cavity-
soliton solutions obtained in continuous-wave driven microresonators,
which can be well-described by the Lugiato–Lefever equation.18,19

Such structures originate from a four-wave mixing process, which
transfers the energy from a coherent “driving” laser (pump) to the

comb lines. Early investigations on the stability properties of electro-
optic modulated combs20 reported a fractional stability of the repetition
rate of 2� 10�8 at 1 s gate time and have motivated further studies.
Soliton states, in particular, later demonstrated similar figures—typical
free-running repetition rate fractional stability at 1 s gate time on the
order of 10�9 [e.g., 7� 10�8;21 6:6� 10�8;22 4:5� 10�9;23 and 2
� 10�9 (Ref. 24)]. The engineering of thermal effects25–28 has been
shown to benefit soliton robustness. In Ref. 27, the authors reached
free-running fractional stability of approximately 1� 10�9 for single
soliton operation, relying on a Brillouin laser pumping scheme to
exploit thermo-optical self-stabilization, which have also been recently
studied in a nested configuration,29 although Allan deviations were not
reported. These excellent free-running properties allowed the imple-
mentation of active locking schemes,23,24,27 and microcombs demon-
strated several breakthroughs as metrological references.12,15,28,30–39
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Among the different techniques for microcomb generation, we
introduced a microresonator-filtered laser approach40,41 that can sus-
tain the laser cavity-solitons.42–45 These pulses arise when light is
allowed to resonate within two group-velocity matched nested cavities,
namely a nonlinear micro-ring and an amplifying cavity. One of the
distinctive traits of this topology is the absence of any external coher-
ent driving source, in contrast to most microcombs, or of an ultrafast
saturable absorber, in contrast to most passive mode-locking lasers. A
very effective implementation utilizes an erbium-doped fiber as the
amplifying element.42–45 The filtering action of the microresonator
constrains the repetition rate of such a system to be an integer multiple
of the main cavity free-spectral range (FSR). It selects only the main
cavity modes falling inside the microresonator resonances in coherent
operation. To this aim, the fiber cavity needs to have an FSR compara-
ble to or smaller than the linewidth of the microcavity resonances. As
such, this scheme practically allows operating a fiber laser at an
extremely high harmonic of the cavity round trip frequency. In our
experiments, in particular, a typical single soliton implementation
operates between the 500th and the 700th harmonic of the fiber cavity
FSR (usually between 70 and 100MHz) when using a 50GHz micro-
resonator. Harmonic mode locking (HML) techniques have been
largely investigated in pulsed fiber lasers.46–51 However, depending on
the HML regime, the laser cavity may fill with many pulses whose rela-
tive distance can generally fluctuate. Supermode instabilities typically
affect HML fiber lasers,52,53 which usually do not achieve the perform-
ances of metrological, passive-mode-locked fiber lasers operating at
the cavity FSR. The frequency of an individual comb line of state-of-
the-art metrological fiber lasers can show fractional stability well
below 10�10 at 1 s of gate time in a free-running configuration, e.g.,
5� 10�10 in Ref. 54 and 1� 10�11 in Ref. 55. These facts motivate fur-
ther investigations of the stability properties of a microresonator-
filtered fiber laser. Finally, recent approaches based on driven loop
configurations56–60 are becoming increasingly popular, motivating the
need to understand multi-cavity sources further.

Our system can be configured to indefinitely maintain soliton
states, which are its dominant attractors44 and are spontaneously initi-
ated and preserved by the balance of the slow nonlinearities driving
the system. The nonlinear locking properties enhance the soliton
state’s robustness and stability against external perturbations.
However, an important open question is how the robustness of the sol-
iton is effectively translated into its frequency stability properties.

In this work, we perform a detailed study of the long-term stabil-
ity of the comb carrier and repetition rate frequencies. We start with a
characterization in free-running operation, focusing on the Allan devia-
tions for averaging times> 1ms. We show how these frequencies can
be controlled by manipulating easily accessible experimental parame-
ters, such as the amplifying cavity length and the pump current. The
free-running Allan deviations at 1 s gate time are 3:55� 10�10 and
4:95� 10�9 for the carrier and repetition rate frequencies, respectively.

Our comb scheme relies on a nested-cavity design [Fig. 1(a)]. A
four-port nonlinear Kerr microresonator (FSR¼ 48.89GHz) is nested
into a polarization-maintaining amplifying fiber loop (main cavity).
The main cavity comprises a free-space delay line, polarization con-
trollers, and a bandpass filter (BPF) to provide a smooth shape to the
gain amplification spectrum.

Coherent pulsed sources can be described by two main degrees of
freedom: the carrier frequency (fc) and the repetition rate frequency

(frep). We characterized the stability of both quantities with the setup
depicted in Fig. 1(b). In our measurements, the microcomb signal
interfered with a comb (Menlo Systems) tied to a GPS (Global
Positioning System) reference signal, and a dense wavelength division
multiplexing (DWDM) filter selected the portion of the spectrum rela-
tive to the carrier frequency fc � 194:2THz (corresponding to
kc � 1543:7 nm). The signal generated by beating with the reference
comb line was then detected and electrically filtered [see Fig. 1(c)].

We also synchronously acquired the repetition rate frequency
frep � 48.894GHz. To this aim,61 we modulated a portion of the
through output port signal driving an electro-optic modulator (EOM)
in saturation with a GPS-referenced microwave oscillator (Keysight
EXG N5173B). The GPS-referenced microwave oscillator drove the
EOM at a frequency f0 � 8.146GHz. In this way, we obtained a rich
harmonic content of the modulating signal resulting in multiple side-
bands around each comb line. With our choice of values, the fre-
quency difference between the third sidebands of any adjacent comb
line was about 20MHz, resulting in an RF beat-note signal, which we
extracted and frequency-counted [Figs. 1(b) and 1(c)]. We refer to the
frequency of this beat-note with fb. Within this scheme, given the
modulation frequency f0, the repetition rate is

f rep ¼ f b þ 6 f 0: (1)

We measured frep and the variations of fc with two synchronized
frequency counters. The reference comb, microwave oscillator, and
frequency counters were locked to the same GPS-referenced signal.
We verified that the oscillator did not affect our stability measure-
ments for gate times greater than 1ms.

When set in stable single soliton operation, the system provided a
48.894GHz repetition rate comb with a 60nm bandwidth, which
could be collected at the two output ports of the system, as highlighted
in Fig. 1(a). These states were further monitored with an optical spec-
trum analyzer (OSA) and an auto-correlator (AC).

The spectra at the Through and Drop ports of the microcavity of
a typical single soliton are reported in Figs. 1(d) and 1(e), respectively,
together with the gain spectrum of the system (in yellow), which has a
much smaller bandwidth than the generated comb. A typical auto-
correlation trace is reported in Fig. 1(f) over a window of 80 ps, show-
ing the presence of four background-free pulses, as expected for a
�50GHz train of pulses. An electrical spectrum analyzer (ESA) trace
of the down-converted repetition rate signal is also shown in Fig. 1(g).

A typical long-term characterization of a free-running single soli-
ton state is reported in Fig. 2. We acquired the frequency stability sig-
nals for a 15-min-long segment of stable soliton operation, along with
AC traces [Fig. 2(a)] and OSA traces [Fig. 2(b)], showing that the free-
running state was maintained for the whole period of observation.

Figure 2(c) depicts the output power fluctuations at the Drop
port, which were always below60.5% of the average power (16 mW).
Within this period of observation, the repetition rate drifted by
approximately 20 kHz over an absolute frequency of approximately
48.894GHz [Fig. 2(d)], while the carrier frequency drifted by approxi-
mately 50MHz over an absolute frequency of approximately
194.2 THz [Fig. 2(e)]. A better understanding of the stability of the
microcomb can be obtained by looking at the Allan deviations [Fig. 2(f)]
evaluated for the temporal series [Figs. 2(d) and 2(e)].

If we consider the Allan deviation for the carrier frequency at 1 s
gate time, we get a value of 3:55� 10�10, which is of the same order
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of magnitude as the free-running performance of a state-of-the-art
fiber laser (e.g., about 5�10�10 in Ref. 54).

These results are, therefore, compatible with the performance
expected from a free-running, mode-locked fiber laser comb. Figure 2(f)
shows that the minimumAllan deviation is 4:35� 10�11 for the carrier
frequency, and 1:05� 10�9 for the repetition rate, and both were
obtained at the same averaging time of 64ms. Regarding the results on
the repetition rate, in particular, we obtained 4:95� 10�9 at 1 s gate
time, which is in line with the state-of-the-art results for micro-
combs,21–24,27 summarized in the introduction. The short-term stability
is also evident from the good phase noise properties of the down-
converted repetition rate signal [Fig. 2(g)]. Our technique did not gen-
erally allow a broadband evaluation because we necessarily had to filter
the spurious frequency harmonics resulting from the modulation, and
our ESA (HAMEG HMS-X) limited the acquisition. Specifically, our
ESA had an intrinsic phase noise above �85dBc/Hz at 20 kHz offset.
Figure 2(g) shows a phase noise of approximately �83dBc/Hz at
22 kHz offset. While better values have been reported in the literature
(e.g.,�120dBc/Hz at 20 kHz, see Ref. 21, but also in Ref. 29), our mea-
surement indicates that we reached the noise limit of our technique.

In assessing the stability of the system, it is essential to recall the
physics sustaining these soliton states in our nested-cavity configura-
tion, where the soliton states behave as the dominant attractors. As
discussed in Ref. 44, the self-emerging solitons result from balancing

the thermal and gain nonlinearities of the system. Such nonlinearities
induce a natural self-locking of the microcomb laser lines on the red-
detuned slope of the microcavity resonances. This red-detuned config-
uration is necessary to enable stable solitary operation. We expect the
stability of the carrier frequency to be dominated by the microcavity
drifts: a frequency variation of 50MHz implies a shift of the microcav-
ity resonance, with the main cavity modes locked to the microcavity
resonance red-detuned slopes. The microcavity has a linewidth of
�150MHz, and solitons are observed in a red-detuned position
between 40 and 50MHz from the center. The variation in the repeti-
tion rate, conversely, depends on the stability of the fiber cavity length,
generally affecting the group velocity of the pulses.

The slow nonlinearities of the system that maintain the state
operate on time scales of tenths of milliseconds for the microcavity
thermal detuning and tens of milliseconds for the gain response of the
fiber cavity. Hence, these effects act below the gate time showing the
minimum Allan deviations. Above few tens of milliseconds, the system
experiences the general environmental instabilities expected from a
fiber laser, although it remarkably operates at a very pure high har-
monic of the repetition rate [Fig. 2(g)].

Further insight into the behavior of the system can be obtained
by studying its response to the modulation of two easily accessible
degrees of freedom of our system, namely the pump current of the
EDFA and the main cavity length. The former was modulated by

FIG. 1. Experimental setup, measurement techniques, and typical soliton state. (a) A micro-ring cavity (green) is nested into a fiber-loop featuring an erbium-doped fiber amplifier
(EDFA), a bandpass filter (BPF), and free-space optical couplers (OC1, OCPZ). The OCPZ is mechanically coupled to a piezo actuator driven by a piezo controller (PZC). An optical
coupler (OC2) extracts the Drop output. (b) The through output is split into two arms. One is interfered with a reference comb and is filtered with a DWDM to extract the frequency
portion relative to the carrier comb line. The optical signal is then revealed with a photodiode (PD1), electrically low-pass filtered (ELP), and subsequently frequency-counted. The
signal in the second arm is sent to the electro-optical modulator (EOM) driven by a GPS-referenced microwave oscillator (OSC) at f0 � 8.146GHz. The modulated signal is
revealed with a PD (PD2) and is bandpass filtered (EBP) to improve the Signal to Noise Ratio (SNR) and frequency counted. (c) Repetition rate extraction technique. The EOM
is driven by a strong microwave signal in its saturation region. The sidebands corresponding to the third harmonics of the microwave signal contribute to an RF beat-note
(fb� 20MHz) accessible after photo-detection. (d) and (e) optical spectrum analyzer (OSA) power spectrum (PS) traces at the Through (d) and Drop (e) ports with the gain profile
of the system superimposed in yellow. The gain profile accounts for both the EDFA and the intracavity BPF properties. (f) Normalized auto-correlator (AC) trace of the Drop output.
(g) electrical spectrum analyzer (ESA) power spectrum (PS) trace of the down-converted repetition rate signal (resolution bandwidth, 10 kHz; video bandwidth, 1 kHz).
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injecting a sinusoidal voltage waveform at the control input of the
pump driver. The modulation amplitude was set to 6mA, about 0.5%
of the static pump current, which was set to 1:320A. The cavity length,
conversely, was modulated by injecting a sinusoidal waveform at the
input of the piezo controller. The mechanical amplitude of the piezo
oscillations was set to 0:3 lm, while we estimated the effective free-
space equivalent main cavity length to be approximately 3:1m, hence,
corresponding to a fractional variation of 10�7. We modulated the two
degrees of freedom independently on the same solitary state (Fig. 3).
We can clearly see the frequency quantities responding at the imposed

control frequency for each of the modulations imposed. The close-ups
in Fig. 3 further confirm that, and the OSA traces highlight that the state
is preserved throughout the control experiment. We then collected the
amplitude of the fractional variations for every modulation frequency,
degree of freedom, and frequency quantity of interest. These results are
summarized in Fig. 4. In particular, the variations of the main cavity
length affect both the carrier and the repetition rate, almost constantly
within the frequency span used here and within the same order of
magnitude. A variation of about 10�7 of the cavity length produces a
comparable fractional change (1� 10�8 for FCL and 2� 10�8 for FRL)

FIG. 2. Free running characterization and frequency stability analysis. The system stability is assessed for approximately 15min. (a) Continuous acquisition of AC traces at the
Drop port. (b) Continuous acquisition of OSA traces at the Drop port. (c) On-chip drop power. (d) Frequency variations of the repetition rate DfR (left axis) with fractional stabil-
ity yR (right axis). (e) Frequency variations of the carrier frequency DfC with fractional stability yC (right axis). Reference repetition-rate frequency: 48.893 941 GHz. (f)
Fractional Allan deviation rðsÞ of the carrier frequency (fC) and repetition rate (fR). Gate time of 1 ms. (g) Single sideband phase noise Lðf Þ of the down-converted repetition
rate RF signal. Sweep-time 100ms. We obtain a phase noise of approximately �83 dBc/Hz at 22 kHz offset, indicating that we reach the phase noise limit of our instrument.

FIG. 3. Individual modulation of the main cavity length (a)–(c) and pump current (d)–(f) degrees of freedom. The control frequency was swept to cover an equidistant logarithmic
span of six points from 0.5 to 100 Hz (0.5, 1.44, 4.16, 12.01, 34.65, 100 Hz). The darker background color in the frequency traces highlights the change to a higher control
frequency. Each modulation frequency is applied for 10 s, except for the first one (0.5 Hz), which is applied for 20 s to record several complete cycles. The insets corresponding
to the last four control frequencies provide each trace with a zoom of five control frequency cycles: (a) and (d) the carrier frequency variations (left axes) with fractional stabilities
(right axes); (b) and (e) the repetition rate frequency variations (left axes) with fractional stabilities (right axes); (c) and (f) the continuously acquired OSA traces at the Drop port.
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on both the carrier and the repetition rate, respectively (see Fig. 4). Such
a feature confirms that the cavity length dominates the position of the
lasing modes and their mutual distances, as the soliton states are sus-
tained by a single leading “supermode” filtered by the microcavity reso-
nances. Conversely, the modulation of the pump current does not act
the same way on the two quantities as it affects the phase and the group
indices within the EDFA differently. It has a strong effect on the repeti-
tion rate, inducing an almost constant variation of 1� 10�7 in the span
of frequencies explored (see Fig. 4, FRP). Differently, the effect on the car-
rier frequency drops dramatically even after only a few Hz (see Fig. 4,
FCP), in agreement with the frequency at which the Allan deviation
reaches its minimum [1 � 64ms � 16Hz, see Fig. 2(f)].

In conclusion, we have demonstrated that laser cavity-soliton
combs are a stable and powerful optical source. For the repetition rate
frequency, we found an Allan deviation at 1 s gate time of
4:95� 10�9, while for the carrier frequency, we measured a value of
3:55� 10�10. These values compare very well with the state-of-the-art
in fiber and microcomb sources. We have identified two easily accessi-
ble degrees of freedom to control the carrier and the repetition rate fre-
quency (i.e., the cavity length and the pump current). The remarkable
free-running stability of these two quantities and the identification of
two independent control parameters pave the way for locking the fre-
quency of these sources to standard metrological references.
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