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Abstract
In this paper, we propose the use of advanced and flexible statistical models to 
describe the spatial displacement of earthquake data. The paper aims to account 
for the external geological information in the description of complex seismic point 
processes, through the estimation of models with space varying parameters. A local 
version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for 
the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 
2017), estimating the model by the local Palm likelihood. We provide methods 
and approaches accounting for the interaction among points, typically described by 
LGCP models through the estimation of the covariance parameters of the Gaussian 
Random Field, that in this local version are allowed to vary in space, providing a 
more realistic description of the clustering feature of seismic events. Furthermore, 
we contribute to the framework of diagnostics, outlining suitable methods for the 
local context and proposing a new step-wise approach addressing the particular case 
of multiple covariates. Overall, we show that local models provide good inferential 
results and could serve as the basis for future spatio-temporal local model develop-
ments, peculiar for the description of the complex seismic phenomenon.

Keywords  Log-Gaussian Cox process · Local composite likelihood · Spatial point 
processes · Palm likelihood · Seismology

1  Introduction

Interest in methods for analysing spatial point processes is increasing across many 
fields of science, notably in ecology, epidemiology, geoscience, astronomy, econo-
metrics, and crime research (Baddeley et al. 2015; Diggle 2013). When the structure 
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of a given point pattern is observed, it is assumed as a realization of an underlying 
generating process, whose properties are estimated and then used to describe the 
structure of the observed pattern. Analyzing a spatial point process, the first step is 
to learn about its first-order characteristics, studying the relationship of the points 
with the underlying environmental variables that describe the observed heterogene-
ity. When the purpose of the analysis is to describe the possible interaction among 
points, that is, if the given data exhibit spatial inhibition or aggregation, the second-
order properties of the process are analysed. However, in the analysis of spatial point 
process data it can be difficult to disentangle the two previous aspects, i.e., the het-
erogeneity corresponding to spatial variation of the intensity and the dependence 
structure amongst the points (Illian et al. 2008; Diggle 2013). For this reason, it is 
attractive and motivating to define and estimate models that account simultaneously 
for dependence structure among events, including also the effect of the observed 
covariates. The spatial seismic process belongs to the class of the point pattern data 
where the location of events in space are the observations of interest. The aim is typ-
ically to learn about the mechanism that generates these events (Møller et al. 1998; 
Diggle 2013; Illian et al. 2008).

The generator process of earthquakes is quite complex, since it is character-
ized by multidimensional and multiscale dynamics, dependence features of points 
both in space and time, spatial anisotropy and spatial variation of the intensity 
according to the seismogenic sources. Several spatial and spatio-temporal mod-
els have been proposed in the literature for describing the evolution of the earth-
quake process in space, in time and both the dimensions. The temporal clustered 
structure of earthquake data has been described by self-exiting point processes, 
i.e., the Hawkes model (Hawkes and Adamopoulos 1973) or the Epidemic Type 
Aftershock Sequence (ETAS) model (Ogata 1988; Adelfio and Chiodi 2015b). 
On the other hand, when an inhibitive pattern is observed for earthquake data, 
self-correcting processes based on the strain-release models (Vere-Jones 1978) 
are used, assuming the fault fracture generating earthquakes reduces the amount 
of strain present at the break point along the fault. In the context of spatial point 
patterns, an important example of self-correcting processes is the Strauss point 
process model (Strauss 1975) with a negative association, that is also the simplest 
inhibitive Gibbs point process (Baddeley and Møller 1989). Gibbs point pro-
cesses are generally applied in the analysis of spatial interaction and inhomogene-
ity depending on covariate information. For instance, a multitype Strauss process 
and geological spatial covariates are combined to describe sequences of events in 
Anwar et al. (2012), Ye et al. (2015). In Siino et al. (2016), Hybrid of Gibbs mod-
els (Baddeley et al. 2013) are used to describe the Hellenic seismicity that shows 
interactions at different spatial scales (multiscale structure), characterising the 
spatial inhomogeneity of the processes as a function of the geological informa-
tion available in the study area (the presence of volcanoes, plate boundaries and 
faults). As for the Cox processes, they are models used to describe environmen-
tally driven processes (Cox 1955; Møller et al. 1998; Møller 2003). Møller and 
Toftaker (2014) propose a spatial model framework to estimate geometric anisot-
ropy in spatial point process. In particular, they characterise the anisotropy of the 
main seismicity around Los Angeles (California) estimating an inhomogeneous 
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log-Gaussian Cox process (LGCP). Furthermore, in the spatio-temporal context, 
Siino et al. (2018) describe earthquake sequences comparing several Cox model 
specifications (with separable and non-separable spatio-temporal covariance 
functions) estimating parameters through the minimum contrast method.

All the aforementioned models can be referred to as ‘global’ models, as they are 
globally defined and the process properties and estimated parameters are assumed 
to be constant in all the study area. However, a model with constant parameters, 
may not represent detailed local variations in the data adequately, since the pattern 
may present spatial variation in the influence of covariates, in the scale or spacing 
between points and the abundance of points. Indeed, a different way of analysing a 
point pattern can be based on local techniques identifying specific and undiscov-
ered local structure, for instance sub-regions characterised by different interactions 
among points, intensity and influence of covariates.

Throughout the paper we shall distinguish between ‘global’ models, in which the 
parameters are assumed constant as in regular regression models, and ‘local’ mod-
els, in which the parameters are allowed to vary with location.

For earthquake data, Ogata and Katsura (1988), Ogata (1989) used a space-adap-
tive space-time point process model. In Ogata and Katsura (1988) a method is devel-
oped for estimating both the spatial intensity of the point locations and the spatial 
variation of a characteristic parameter of the distributions for the attached marks, 
analysing seismological and ecological data. In Ogata (1989) the occurrence rate of 
earthquakes is extended to include multiple aftershock sequences.

For spatial point process, Baddeley (2017) presents a general framework based on 
the local composite likelihood to detect and model gradual spatial variation in any 
parameter of a spatial stochastic model (such as Poisson, Gibbs and Cox processes). 
In particular, the parameters in the model that govern the intensity, the dependence 
of the intensity on the covariates and the spatial interaction between points, are esti-
mated locally. Moreover, this approach has the advantage to detect and model spatial 
variation in any property of a point process, within a formal likelihood framework 
providing space-varying parameter estimates, confidence intervals and hypothesis 
tests.

This paper aims at using these recent results for the local composite likelihood 
for spatial point processes to describe the spatial displacement of earthquake data, 
accounting for external geological information. We show that models with param-
eters that vary in space can be suitable for describing both seismic catalogues and 
sequences.

Seismicity catalogs are datasets with statistical units describing earthquakes, 
and variables consisting in their location, origin time, and magnitude, together with 
additional metadata such as associated uncertainties and focal mechanism infor-
mation (Woessner et al. 2010). Earthquakes typically occur in sequences that may 
include foreshocks, the mainshock (the largest event or events), and aftershocks. 
Aftershocks are smaller earthquakes following the mainshock. They typically occur 
on or near the rupture plane of the mainshock, resulting from changes of stress and 
frictional properties of the fault zone caused by the mainshock. The duration of 
aftershock sequences is typically a few years for earthquakes at plate boundaries, but 
can last much longer within stable continental interiors (Liu and Stein 2019).
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In this paper, we consider two case studies, analysing datasets concerning seismic 
activity in Greece and Italy.

The Central Mediterranean area is one of the most geodynamically complex areas 
and active regions of the world. In this framework are embedded the Italian penin-
sula and the Greek region and its Hellenic arc, which are considered the most tec-
tonically complex and seismically active regions of Mediterranean, object of study 
in this work. The tectonic evolution of Greek region, is strongly related to the active 
subduction along the Hellenic arc which is the boundary between the African and 
the Anatolian-Aegean microplates (Le Pichon and Angelier 1979; Hall et al. 2005). 
The overall tectonism of the region can be attributed to several events, such as the 
collision of African and Eurasian plates, convergence between Arabian and Eura-
sian plates and displacement of the Anatolian-Aegean microplate (Ryan et al. 1982; 
Taymaz et al. 1991). The stress regime in Hellenic arc region is a multi-component 
one (Oya 2016). There are subduction zones governing the seismicity in the region, 
back arc events, and tension areas induced by the interference of continental and 
oceanic basins (Spakman et al. 1988; Taymaz et al. 1991; Papazachos et al. 1995). 
The shape and seismicity distribution of the Italian peninsula and Sicily island are 
consequence of the convergence between the African and Eurasian plates, active 
since at least 65 Ma and especially on the Quaternary evolution of Central Mediter-
ranean (Amato et al. 1997; Di Stefano et al. 1999; Sgroi et al. 2012). In the Italian 
peninsula and Siciliy, at least 5 tectonic districts can be identified: (1) the Alpine 
arc, with evidence of past subduction; (2) the North Apennines, where subduction 
of the oceanic lithosphere was followed by continental collision; (3) the Calabrian 
arc, with clear evidence of subducting slab of oceanic lithosphere; (4) the Southern 
Appenines, where a detached slab is revealed by seismicity and seismic tomogra-
phy; (5) the Sicilian region that represents a portion of the Apennine-Maghrebide 
fold-and-thrust belt (Amato et al. 1997; Di Stefano et al. 1999; Sgroi et al. 2012).

Hence, when analysing seismic catalogues, the analysis of the dependence of 
the first-order intensity function on external covariates is a crucial issue. This is 
accounted properly by the local Poisson model, describing large scale variation by 
including external covariates and letting their effects vary along the studied area. 
This is shown with a case study for the description of the seismic events occurred 
in Greece between 2005 and 2014, an area of high seismic hazard that has been 
characterised by many destructive earthquakes in the last century. Furthermore, the 
local version of the Poisson model, fitted with a spatial varying effect of covariates, 
is compared to a global inhomogeneous Poisson model in terms of fitting and inter-
pretability of results.

Describing seismic sequences, the analysis of the small scale variation is of inter-
est, focusing on the second-order characteristics of the process. Therefore, we intro-
duce and fit local log-Gaussian Cox Process to study a seismic sequence. At the 
best of our knowledge, our proposal is a novelty for this field of application, and 
represents a first step for suggesting the use of local complex models for describing 
the fractal seismic phenomena. The interaction among points is typically taken into 
account by the Log-Gaussian Cox Processes models through the estimation of the 
covariance parameters of the Gaussian Random Field. In their local version, these 
parameters vary in space, allowing the description and characterization of the study 
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area through a multiple underlying process, meaning that it would make sense to 
assume a generating process of the observed point pattern that is not unique. The 
peculiarity of the newly local spatial Log-Gaussian Cox Processes lies in the inho-
mogeneity of the point process being simultaneously addressed via spatial covari-
ates, a latent error process, and their estimated local coefficients. Therefore, after 
providing an application of the local Poisson models to the Greek seismic catalogue, 
and identifying the regions that display the most inhomogeneous behaviour, a local 
Log-Gaussian Cox Process model is fitted to describe a selected Greek seismic 
sequence, with space varying effects of both intensity and interaction parameters. 
Indeed, one crucial issue in local analysis of spatial as well as spatio-temporal point 
patterns, is the identification of subregions where points behave differently in terms 
of clustering. In addition, based on the assumptions on the underlying processes, 
local estimates provide further insight into the relationship of the intensity of the 
process on external covariates, as well as on the correlation structure, that in this 
setting is allowed to vary with location. Local models are also applied to the Italian 
data, since as Greece, Italy is an area of high seismic risk and in particular, Central 
Italy, where our analysis focuses, has been characterised by a strong series of earth-
quakes between 2009 and 2017. The results are reported in “Appendix 1”, for the 
sake of brevity. The key assumption stating that for each spatial location there is 
an unobserved spatial subdomain inside which the template model is exactly true, 
allow us to exploit the statistical properties of the spatially varying parameters, as 
they were the ones of a model with constant parameters in that specific subregion. 
This feature is particularly appealing as it allows us to build diagnostic tools and 
interpret parameters as we are used in classical log-linear models. Besides this, we 
also test on the two case studies that local models provide good inferential results, if 
compared to the semi-parametric competitors.

Moreover, this work represents a contribution to the framework of diagnostics for 
local models.

Indeed, when a model is fitted to a set of random points, diagnostic measures are 
necessary to assess the goodness-of-fit and to evaluate the ability of that model to 
describe the random point pattern behaviour (Adelfio et al. 2019). However, tools 
for checking or criticizing the fitted model are quite limited. There is currently no 
analogue for spatial point patterns of the comprehensive strategy for model criticism 
in the linear model, which uses tools such as residual plots and influence diagnostics 
to identify unusual or influential observations, for assessing the model assumptions 
sequentially and to individuate the any departures from the model (Baddeley et al. 
2005).

It is a widespread practice in the statistical analysis of spatial point pattern data to 
focus primarily on comparing the data with a homogeneous Poisson process (‘com-
plete spatial randomness’), which is generally the null model in applications, rather 
than the fitted model. This approach considers a stationary Poisson residual process 
by randomly rescaling (Meyer 1971; Schoenberg 1999) or thinning (Schoenberg 
2003), and investigates whether the second-order properties of the observed residu-
als are consistent with those of the stationary Poisson process.

An alternative approach is to define a weighted second-order statistic, 
where essentially to each observed point a weight inversely proportional to the 
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conditional intensity at that point is given. This method was adopted by Veen and 
Schoenberg (2006) in constructing a weighted version of the spatial K-function of 
Ripley (1977) and Veen (2006), although the spatial weighted analogue of Rip-
ley’s K-function which was first introduced by Baddeley and Turner (2000).

Therefore, establishing a coherent strategy for model criticism in spatial point 
process models, resembling the existing methods for the linear model, depends 
crucially on finding the right definition of residuals for a spatial point process 
model fitted to point pattern data.

In this paper, we propose the use of some diagnostics tools generally consid-
ered for global point processes, e.g. the smoothed raw residuals and the inho-
mogeneous K-function (Baddeley et al. 2005), to the local context, and properly 
review local tests and the test of departure from ‘homogeneity’ (Baddeley 2017), 
meaning that the observed pattern is generated by a template model with constant 
parameters. Our contribution concerns a bootstrap procedure, carried out to sup-
port the model selection process, retaining also local information. Furthermore, 
a stepwise procedure is also developed, assessing the single local effects of the 
considered covariates on the rejection of the given ‘homogeneity’ hypothesis. 
The method provides a ranking of the covariates that most contribute to the local 
features, together with p-values maps, useful for progressively identifying the 
variables’ effects within the study area.

Therefore, this paper contributes to the framework of the local spatial processes, 
in two main directions: providing a formalization and characterization of local 
LGCP for earthquake data and contributing to diagnostic methods for this class of 
models.

This paper is structured as follows. A review of spatial point processes and log-
linear Poisson models, in terms of both global and local methodology, is reported 
in Sect. 2. In Sect. 3 spatial local log-Gaussian Cox processes are introduced and in 
Sect. 4 their estimation procedure is discussed. Section 5 is dedicated to diagnostics 
methods for local models. In particular, Sect. 5.1 contains global diagnostics tools, 
well established in spatial point pattern analysis, and suitable for local models. In 
Sect. 5.2, we propose two local diagnostics procedures, based on the test of local 
departure from ‘homogeneity’ testing (Baddeley 2017). In Sect. 6, local models are 
applied to describe seismic activity in Greece, describing both the entire Greek seis-
mic catalogue and a particular seismic sequence. Section 7 is devoted to conclusions 
and final remarks.

2 � Local spatial Poisson Processes

2.1 � Spatial point processes

Following Cressie (2015), we introduce point processes by a mathematical approach 
that uses the definition of a counting measure on a set X ⊆ ℝ

d, d ≥ 1 , with positive 
values in ℤ : for each Borel set B this ℤ+-valued random measure gives the number 
of events falling in B.
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Definition 1  Point process Let (�,A,P) be a probability space and � a collec-
tion of locally finite counting measures on X ⊂ ℝ

d . Define X  as the Borel �-alge-
bra of X and let N  be the smallest �-algebra on � , generated by sets of the form 
{� ∈ � ∶ �(B) = n} for all B ∈ X  . A point process N on X is a measurable mapping 
of (�,X) into (�,N) . A point process defined on (�,A,P) induces a probability 
measure �N(Y) = P(N ∈ Y),∀Y ∈ N .

Then, for any set B ∈ X  , N(B) represents the number of points falling in B, such 
that if B is the union of disjoint sets B̃1, B̃2,… , then N(B) =

∑
N(B̃i) . A spatial point 

pattern N is an unordered set � = {�1,… , �n} of points �i where n(�) = n denotes 
the number of points, not fixed in advance. If � is a point pattern and D ⊂ ℝ

2 is a 
bounded region, we write � ∩ D for the subset of � consisting of points that fall in 
D and n(� ∩ D) for denoting the number of points of � falling in D. A point process 
model assumes that � is a realization of a finite point process N in D without multi-
ple points. A point location in the plane is denoted by a lower case letter like � . Any 
location � can be specified by its Cartesian coordinates � = (u1, u2) in such a way 
that we do not need to mention the coordinates explicitly. The first-order property of 
N is described by the intensity function, defined as

where d� is an infinitesimal region that contains the point � ∈ D , |d�| is its area and 
�[N(d�)] denotes the expected number of events in d� . When the intensity is con-
stant the process is called homogeneous. In the inhomogeneous case, the intensity 
is not constant in the study area but may depend, for instance, on the coordinates of 
points. A point process model, assuming independence, is completely described by 
its intensity function �(�) (Daley and Vere-Jones 2007). The inter-point interaction 
between events is measured by the second-order moment characteristics, studied 
through the second-order intensity function, defined as

where � ≠ � . Refer to Daley and Vere-Jones (2007), Preposition 3.3.I, for existence 
and convergence property of the point processes intensity.

Several functional summary statistics are used to study the second-order charac-
teristics of a point pattern and to measure dependence.

A general spatial log-linear Poisson model (Cox 1972), generalizes both homoge-
neous and inhomogeneous models, such that:

where � ∈ D , B(�) and �(�) = (Z1(�),… , Zp(�)) are known functions 
(covariates), �⊤ = (𝜃1,… , 𝜃p) are unknown parameters, and therefore 
�⊤�(�) = (𝜃1Z1(�) +⋯ + 𝜃pZp(�)) . These models have an especially convenient 
structure, since the log intensity is a linear function of the parameters and covariates 

�(�) = lim
|d�|→0

�[N(d�)]

|d�|

�2(�, �) = lim
|d�||d�|→0

�[N(d�)N(d�)]

|d�||d�|

(1)𝜆(�) = 𝜆(�,�) = exp(B(�) + �⊤�(�)),
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can be quite general functions, making them a very wide class of models. The esti-
mation of the point process parameters is carried out through the maximization of 
the log-likelihood, defined by:

where the sum is over all point �i in the point process � (Daley and Vere-Jones 
2007).

2.2 � Local composite likelihood for Poisson processes

In this section, we report some basic definitions and results about the local composite 
likelihood applied to Poisson point processes, following the notation used in Baddeley 
(2017). In the local context, given a spatial point pattern x, realization of a finite point 
process N1 in D, the template model is defined as a point process N2 , governed by a 
parameter � ∈ 𝛩 ⊆ ℝ

p . N2 is defined as the “template" model rather than the “homo-
geneous" one, because the potential dependence of the distribution of N2 on some spa-
tial covariates would make N2 a spatially inhomogeneous point process. The template 
model is assumed to provide good local approximations to N1 , in the sense that, in any 
small region B ⊂ D , the distribution of N1 ∩ B is well-approximated by the distribution 
of N2 ∩ B of parameter � which may depend on B.

When spatial log-linear models are used, the model parameters are usually assumed 
to be constant across the entire study region. This assumption may be too simplistic in 
contexts that are characterised by multi-scale and fractal features, like the seismic one, 
where the relationship between the intensity of earthquakes and other possible charac-
teristics of the area where events occur. In this context, the features can be described by 
a Poisson process with intensity

with local coefficients, where �(⋅) is a function of the spatial location. This is the 
“inhomogeneous" alternative to the template log-linear intensity (1). For estimating 
local models as in Eq. (3), the likelihood at � is used, being a weighted version of 
the original likelihood in Eq. (2), with the greatest weight on locations close to �.

Therefore, in the local context, the local log-likelihood associated with location � 
(Loader et al. 1999) is:

where wh(�) = h−dw(�∕h) is a weight nonparametric function, and h > 0 is a 
smoothing bandwidth. It is not necessary to assume that wh is a probability density. 
Throughout the paper, we will consider a kernel of fixed bandwidth h. In the local 
likelihood in Eq. (4) this is usually chosen by the cross-validation criterion (Loader 
et al. 1999). The optimal bandwidth hopt maximises

(2)logL(�) =
∑

i

log�(�i;�) − ∫D

�(�;�)d�

(3)𝜆(�) = 𝜆(�;�(�)) = exp(B(�) + �⊤(�)�(�))

(4)log L(�;�) =

n∑

i=1

wh(�i − �) log �(�i;�) − ∫D

�(�;�)wh(� − �)d�
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where �̂(�) = �̂(�, h) is the local estimate of � at location � using bandwidth h > 0 , 
and �̂i(�i) = �̂i(�i;h) is the corresponding ‘leave-one-out’ estimate at the location �i 
computed from the data omitting �i.

Maximizing the local likelihood for each fixed � gives local parameter esti-
mates �̂(�) of the original model, confidence intervals, hypothesis tests and other 
standard tools (Baddeley 2017). These fitted coefficients can be plotted as a func-
tion of spatial location � . Also the fitted intensity can be obtained as a function 
of � , as 𝜆̂(�) = 𝜆(�; �̂(�)) . It is worth to recall that the local likelihood approach 
assumes that the template model is a good local approximation to the data. On the 
one hand, this allows to use existing statistical techniques and theory for the tem-
plate model to be easily modified in local estimation and inference. On the other 
hand, there is no explicit description of the “true" model, but only of the template 
model, which is the local approximation of the true one.

The key assumption is that, for each spatial location � ∈ D , there is an unob-
severd spatial subdomain D(�) containing � where the template model is exactly 
true and parameter �(�) . If the support of the kernel centred at � falls entirely 
inside D(�) , then the statistical properties of �̂(�) are the same as they would be 
if the entire process followed the template model with constant parameter value 
� = �(�) (Baddeley 2017).

3 � Local spatial log‑Gaussian Cox processes

The main feature of the Poisson point process is independence and stationarity, that 
is a theoretical assumption often inappropriate for describing real data. However, 
considering more general point process models may be a complex issue in terms of 
inference and diagnostics (Adelfio and Schoenberg 2009; Adelfio and Chiodi 2015a), 
but necessary if dealing with real contexts where dependence structure among data 
is of main interest (Siino et al. 2016, 2018). Two large classes of alternative models 
for spatial point processes are the Gibbs and Cox processes (Van  Lieshout 2000; 
Møller 2003; Illian et al. 2008). For clustered point patterns, the most commonly-
used models are Cox and cluster processes (Baddeley et al. 2015, Chapter 12).

The Cox processes are a generalisation of the inhomogeneous Poisson pro-
cesses, where the intensity is a realisation of a random field. For this reason, they 
are also called doubly stochastic Poisson processes. The point process N is said to 
be a Cox process driven by � , if the conditional distribution of the point process 
N given a realisation �(�) = �(�) is a Poisson process on D with intensity func-
tion �(�) . The most used Cox point processes are the shot-noise Cox processes 
(Møller 2003) and the log-Gaussian Cox processes (Møller et al. 1998). In a shot-
noise Cox process, offsprings are observed around unseen parents representing 
the random unobservable variability.

(5)LCV(h) =
∑

i

log 𝜆(�i; �̂i(�i)) − ∫D

𝜆(�; �̂(�))d�
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Following the inhomogeneous specification in Diggle et  al. (2013), the log-
Gaussian Cox process for a generic point in space has the following intensity

where S is a Gaussian Random Field (GRF) with mean function 
� = �(S(�)) = −

�2

2
 so that �[exp(S(�))] = 1 . The covariance function is 

ℂ(S(�), S(�)) = ℂ(||� − �||) = �2�(r) under the stationary assumption, i.e. only 
depends on the variance parameter �2 , and distance r = ‖� − �‖ between locations 
� and �.

�(⋅) is the correlation function of the GRF, completely specified by its first and 
second moments. Following the notation used in Baddeley et  al. (2015), the ran-
dom intensity �(�) = exp(S(�)) is a log-Gaussian or log-normal distribution. If 
Z ∼ N(�, �2) and � = exp(Z) then � has mean exp(� + �2∕2) . In this paper, we 
assume the exponential structure for the covariance function as in Brix and Diggle 
(2001),

depending only on � and �2 that represent the scale parameter for the spatial distance 
and the variance, respectively. The effect of increasing �2 is to generate higher peaks 
in the surface intensity which leads to clusters of points. Increasing the spatial scale 
parameter � , the underlying GRF presents a strong spatial correlation and it cor-
responds to a diffuse aggregation of points of the LGCP. Other basic stationary and 
isotropic family models commonly used for the spatial component are the Matérn, 
Cauchy, Gaussian and Spherical covariance functions (Gelfand et  al. 2010). In a 
spatial log-Gaussian Cox process, the intensity model can be expressed as a func-
tion of further covariates, according to a loglinear model as in Eq. (1). We know that 
�(�) = �(�(�)) = �(exp(S(�))) = exp((�(�) + �2∕2)) , where

is the mean function of the Gaussian random field. This peculiarity, together with 
the possibility of detecting the clustered structure of the point process, makes the 
LGCP model attractive for modelling seismic data.

In this paper, we formalize the characteristics of the local version of the LGCP 
model, allowing also the additional parameters � and � to vary in space (denoted by 
�(�) and �(�) throughout the rest of the paper), as well as the effects of the consid-
ered covariates, according to a loglinear model as in Eq. (3). Recalling the specifica-
tion of the global LGCP, we know that now, as the interaction parameters can vary in 
space, the GRF and its moments will also depend on the locations � . In other words, 
for each location � we obtain a local GRF. Basically, while the global LGCP implies 
a unique generating process, the local LGCP implies that events are generated from 
multiple processes, i.e. with different correlation patterns, that can yet be estimated 
through a unique model. Therefore, the local LGCP represents an interesting model 
to analyse and describe those observed regions for which it is reasonable to assume 

(6)�(�) = �(�) exp(S(�))

(7)ℂ(r) = �2 exp
(
−
r

�

)

(8)�(�) = −
�2

2
+ B(�) + �T�(�)
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different generating GRFs, characterized by different covariances. Furthermore, this 
implies that a local version of a LGCP model can be useful to spot regions with dif-
ferent correlation structures, and the mean of the local process in Eq. (8), also depends 
on the space varying parameters �T (�) and �2(�) . Therefore, if in the global model the 
mean of the process is influenced just by the linear predictor and by the constant �2 , in 
the local LGCP, the mean varies also because of the local variation of �T (�) and �2(�) 
parameters. Then, the covariance function, assumed in Eq. (7), now depends on the 
local variance parameter �(�) and spatial scale parameter �(�) . A visual displaying of 
the space varying estimates of the interaction parameters may suggest the presence of a 
space varying clustered structure.

4 � Model estimation

In this Section, the model estimation procedure based on the local version of the 
Palm likelihood of Ogata and Katsura (1991), and developed by Baddeley (2017), is 
reported. The Cox models are usually estimated by a two-step procedure, involving 
both the intensity and the cluster or correlation parameters. In the first step, a Poisson 
model is fitted to the point pattern data, providing the estimates of the coefficients of 
all the terms in the model formula characterizing the intensity, as the one in the most 
general log-linear model in Eq. (1). This intensity is then considered as the true one 
in the second step, and the cluster or correlation parameters are estimated by either 
the method of minimum contrast (Pfanzagl 1969; Eguchi 1983; Diggle 1979; Diggle 
and Gratton 1984; Siino et al. 2018), Palm likelihood (Ogata and Katsura 1991; Tan-
aka et al. 2008) or composite likelihood (Guan 2006). Hereafter we will denote by � 
the vector of (first-order) intensity parameters, and by � the cluster parameters, also 
denoted as correlation or interaction parameters by some authors. In the case of a spa-
tial Log-Gaussian Cox process with exponential covariance as the one in (7), the cluster 
parameters correspond to � = (�, �).

In order to estimate the local version of the LGCP models, we refer to the adaptation 
of the Palm likelihood to a general nonstationary point process, considered by Badde-
ley (2017) because of its formal similarity to the Poisson likelihood. Ogata and Katsura 
(1991) developed a surrogate likelihood function called Palm likelihood for the analysis 
of stationary point processes.

The Palm distribution formalises the concept of conditioning on a point of the pro-
cess. Assume that the process has the intensity function �(�;�) for � ∈ D and second 
moment intensity �2(�, �;�) for �, � ∈ D , depending on parameters � ∈ � . Define the 
intensity of the Palm distribution at � as

The Palm log-likelihood can be written as

(9)�p(�|�;�) = �2(�, �;�)∕�(�;�).

(10)

log PAL(�) =
∑

i

[∑

j≠i
Q(�i, �j) log �p(�j|�i;�) − �D

Q(�i, �)�p(�|�i;�)d�
]
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where Q(�, �) is a 0/1 valued constraint function, designed to simplify computation 
and optimise statistical properties, typically taken to be Q(�, �) = I{‖� − �‖} ≤ R 
where I{⋅} is the indicator function, such that I{x} = 1 if x is true, and R > 0 is 
an upper bound to the correlation distance of the model. The quantity in square 
braces is recognisable as the log-likelihood of a Poisson point process with intensity 
�p(⋅|�i;�) restricted to the set where Q(�i, ⋅) = 1.

Dealing with the Cox processes, it is usual to work with models in which the 
intensity and interaction parameters are ‘separable’

where � = (�,�) , with � representing the intensity parameters and � the interaction 
parameters, and � is the correlation function. As stated by Baddeley (2017), exam-
ples include log-Gaussian Cox processes and certain inhomogeneous Neyman–Scott 
processes (Waagepetersen 2007; Waagepetersen and Guan 2009). Recalling what 
previously introduced, specifying a local Log-Gaussian Cox process, � is the vec-
tor of parameters representing the effects of the covariates included in the intensity, 
while � is the vector of the interaction parameters � and � , representing the spatial 
scale parameter and the variance of the underlying GRF.

The Palm log-likelihood (10) involves summation and integration over pairs 
of spatial points. To define a local version of the Palm likelihood it is possible 
to apply local weights to the second element of each pair, that is, the weights are 
applied just to the points for which ‘predictions’ are made. Summing over the first 
element �i , we get:

that is basically the same Eq. (10) obtained replacing Q(�, �) by wh(� − �)Q(�, �) . 
This must be maximised numerically. We assume a separable isotropic model as in 
Eq. (11). Recalling Eq. (9), then we have

so that the local Palm log-likelihood to be maximised is

A two step estimation procedure is used, as follows:

(11)�2(�, �;�) = �(�;�)�(�;�)�(�, �;�)

log PAL(�;�) =
∑

i

∑

j≠i
wh(�j − �)Q(�i, �j) log �p(�j|�i;�)

−
∑

i
�D

wh(� − �)Q(�i, �)�p(�|�i;�)d�

�p(�|�;�) = �(�;�)�(||� − �||;�)

(12)

log PAL(�;�) =
∑

i

∑

j≠i
wh(� − �i)Q(�i, �j){log �(�j ∶ �) + log �(||�i − �j||;�)}

−
∑

i
�D

wh(� − �)Q(�i, �)�(�;�)�(||�i − �j||;�)d�.
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•	 The intensity parameters � are estimated by maximising the Palm likelihood of 
the Poisson process with intensity �(⋅;�) , that is equivalent to a weighted Pois-
son likelihood.

•	 The interaction parameters � are estimated separately at each location � by max-
imising the local Palm likelihood (12) using the simplex algorithm.

If the Palm likelihood is taken in the form (10), the natural analogue of the Poisson 
likelihood cross-validation criterion (5) for Palm likelihood is

for bandwidth h, where �̂−j(�j) is the ‘leave-one-out’ estimate, that is, the local 
parameter estimate at � = �j based on the data � ⧵ �j.

Alternative approaches for fitting local Cox and cluster processes include the 
methods of minimum contrast (Pfanzagl 1969; Diggle and Gratton 1984) and 
model-based clustering (Banfield and Raftery 1993; Dasgupta and Raftery 1998; 
Walsh and Raftery 2002, 2005). In particular, a local version of the minimum con-
trast approach is developed using the local K-functions or the local pair correlation 
functions by Baddeley (2017), bearing a very close resemblance to the local Palm 
likelihood approach.

5 � Diagnostics

This section outlines relevant methods for carrying out diagnostics for local mod-
els. A particular focus is given to the model selection, dealing with multiple covari-
ates. First, some well-known methods for diagnostics are reviewed and proposed as 
model selection approaches in the context of local models. These basically concern 
intensity-based methods. After that, we focus on local tests, that are specific diag-
nostic tools for models with space varying parameters, testing the significance of 
parameters and the properness of a local model. Finally, we propose a stepwise pro-
cedure to identify the spatial covariates that most contribute to the choice of the 
local model, that is the covariates whose effects can be correctly considered as vary-
ing in space.

5.1 � Global diagnostics methods for local model selection

This section reviews some methods widely used for diagnostics of global spatial 
point processes models, here proposed as diagnostic methods for spatial models in 
the local framework. As stated in some previous papers (Adelfio et al. 2019; Adel-
fio and Schoenberg 2009), the main problem when dealing with residual analysis 
for point processes is to find a correct definition of residuals, since the one used 
in dependence models cannot be used for point processes. Two of the mostly used 
methods for diagnostics of spatial point processes are the inhomogeneous K-function 

(13)

LCV(h) =
∑

i

∑

j≠i
Q(�i, �j) log 𝜆p(�j|�i; �̂−j(�j)) −

∑

i
�D

Q(�i, �)𝜆p(�|�i; �̂(�))d�
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and the smoothed raw residuals, here reported. A widely used summary statistics, 
for descriptive analysis and diagnostics, is the Ripley’s K-function (Ripley 1976, 
1988), which is defined as

for a stationary and isotropic process for which �2(r) = �2 (Schabenberger and Got-
way 2017). It is also known as the reduced second moment measure (Cressie 2015), 
as the second reduced moment function (Chiu et al. 2013), and as the second order 
reduced moment measure (Møller 2003).

Given that in a stationary process the distribution of N is the same as the distribu-
tion of the shifted process N + � , for any vector � , the K-function is defined as

for any distance r ≥ 0 and any location � . Being a measure of the distribution of the 
inter-point distances, K(r) captures the spatial dependence between different regions 
of a point process. Under the homogeneous Poisson assumption the following theo-
retical relation holds Kpois(r) = �r2 . When the process is stationary, the most com-
monly used estimator is introduced in Ripley (1976):

where I{⋅} is the indicator function, n is the number of points in the pattern, |D| is 
the area of the window, e(�i, �j, r) is the Ripley’s edge correction and dij = ||�i − �j|| 
is the pairwise distances between all distinct pairs of points �i and �j in the pattern. 
When a process has K̂(r) < 𝜋r2 , it means that the points tend to cluster, and when 
K̂(r) > 𝜋r2 , it means that the points tend to inhibit each other.

Let �(�i) be the intensity function characterizing the generating process N, each 
point �i can be weighted by the inverse of the intensity function, i.e. 1��(�i) , the 
reciprocal of the intensity at �i , and each pair of points �i, �j will be weighted by 
1∕(�(�i)�(�j)) . The inhomogeneous K-function is defined as:

assuming that this does not depend on the location �i (Baddeley et al. 2000). The 
standard estimator of the K-function in Eq. (14) can be extended to the inhomogene-
ous K-function as follows:

K(r) = 2��−2 ∫
r

0

�2(x)xdx,

K(r) =
1

�
�
[
number of r-neighbours of �|N has a point at location �

]

(14)K̂(r) =
|D|

n(n − 1)

n∑

i=1

n∑

i=1,i≠j
I{dij ≤ r}e(�i, �j, r)

Kinhom(r) = �

��

�j∈�

1

𝜆(�j)
I{0 < ‖�i − �j‖ ≤ r}

����
�i ∈ �

�

(15)K̂inhom(r) =
1

D

�

i

�

j≠i
I{‖�i − �j‖ ≤ r }

𝜆̂(�i)𝜆̂(�j)
e(�i, �j;r)
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where e(�i, �j, r) is an edge correction weight as before, and 𝜆̂(�) is an estimate of 
the intensity function �(�) . If 𝜆̂(�) is the intensity estimated through a fitted model, 
then the inhomogeneous version of the K-function can be used as a diagnostic tool.

The inhomogeneous K-function is useful for interpreting the local features of 
data, since if the estimated intensity 𝜆̂(�) is close to the generating one �(�) , the 
estimated K̂inhom(r) should behave like the corresponding function under a Poisson 
model. Moreover, K̂inhom(r) values greater than the expected value under the Poisson 
model Kinhom,pois(r) = �r2 (exactly as for the homogeneous case) indicate that the fit-
ted model is not appropriate, since the distances computed among points exceed the 
Poisson theoretical ones, suggesting those locations where departures are more evi-
dent. In practice, given the fitted competitive models, the model with the estimated 
inhomogeneous K-function which most resembles the theoretical Poisson one, has 
to be preferred.

For an inhomogeneous Poisson process model, with fitted intensity 𝜆̂(�) , the pre-
dicted number of points falling in any region D is ∫

D
𝜆̂(�)d� . Hence, the residual in 

each region D ⊂ ℝ
2 is the ‘observed minus predicted’ number of points falling in 

D (Alm 1998), that is R(D) = n(� ∩ D) − ∫
D
𝜆̂(�)d� , where x is the observed point 

pattern, n(� ∩ D) the number of points of x in the region D, and 𝜆̂(�) is the intensity 
of the fitted model. A simple residuals visualization can be obtained by smoothing 
them. The ‘smoothed residual fields’ are defined as

where 𝜆̃(�) = e(�)
∑n(�)

i=1
𝜅(� − �i) is the nonparametric, kernel estimate of 

the fitted intensity 𝜆̂(�) , while �†(�) is a correspondingly-smoothed ver-
sion of the (typically parametric) estimate of the intensity of the fitted model, 
𝜆†(�) = e(�) ∫

W
𝜅(� − �)𝜆̂(�)d� . Here, � is the smoothing kernel and e(�) is the edge 

correction. The smoothing bandwidth for the kernel estimation of the raw residuals 
is selected by cross-validation, as the value that minimises the Mean Squared Error 
criterion defined by Diggle (1985), by the method of Berman and Diggle (1989). 
See Diggle (2013) for further details. The difference in Eq. (16) should be approxi-
mately zero when the fitted model is close to the real one. Therefore, the best model 
is the one with the lowest values of the smoothed raw residuals.

In the next sections, these residuals are used for diagnostics, both for their flex-
ibility and their simplicity of implementation, and the complexity of model estima-
tion when the parameters vary on the space domain.

5.2 � Local diagnostics methods: testing the local departure from ‘homogeneity’

In this section, we introduce local methods for local models diagnostics, namely the 
tests of local departure from the ‘homogeneity’ assumption, as proposed in Bad-
deley (2017). For further confuting this hypothesis, still retaining local features, and 
for assessing the contribution of each covariate to the rejection of the null hypoth-
esis, dealing with multiple linear predictor, we propose a bootstrap and step-wise 
procedure, in Sects. 5.2.1 and 5.2.2, respectively.

Let us introduce the following system:

(16)s(�) = 𝜆̃(�) − 𝜆†(�)
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where 𝛩0 ⊂ 𝛩 , a ‘local test’ can be introduced assessing for parameters depend-
ence on the spatial location � ∈ D . In the simplest case, suppose � = (�1,… , �p) and 
assume that we want to verify

The local version of the Wald test can be computed to assess the significance of the 
spatial covariates effects as a function of � . This test is based on the standardised 
local coefficient estimate or ‘t-statistic’

whose asymptotic null distribution is the standard Normal. For asymptotic proper-
ties of local tests refer to Baddeley (2017).

Local tests can be also used for clusters detection, defining a formal hypothe-
sis test of local departure from ‘homogeneity’. In this context, the pattern is con-
sidered ‘homogeneous’ if it is generated by the template model, called ‘global 
model’, with a constant parameter vector � . Therefore, let us consider the null 
hypothesis H0 of a Poisson process with the template log-linear global model 
as in Eq. (1). The ‘inhomogeneous’ alternative H1 is a Poisson process with the 
intensity function as in Eq. (3), called ‘local model’, with �(⋅) function of the 
spatial location. So the test of local departure from ‘homogeneity’ refers to the 
following hypotheses system:

To assess this hypothesis, a Monte Carlo test can be carried out for a locally-fitted 
Poisson point process model, using either the local likelihood ratio test statistic or, 
as in this paper, the local score test statistic:

where �̇(�) is the maximizer of logL(�;�) subject to � ∈ �0 . These statistics require 
a separate computation at each spatial location � , and their asymptotic null distribu-
tion is �2

d
 . By visual inspection of the maps of the resulting local p-values (one value 

for each spatial location � ) we individuate those regions of the analysed area where 
the hypothesis is confuted. Therefore, it can be possible to identify the regions where 
the local model is more appropriate than the global one, gathering information on 
the areas with the most inhomogeneous behaviour, that is, where the effect of the 
considered covariates varies. Of course, if the hypothesis is rejected in the majority 
of the area under study, the local model should be preferred to the global one.

{
H0 ∶ � ∈ �0

H1 ∶ � ∈ �

{
H0 ∶ �j = 0

H1 ∶ �j ≠ 0

(17)tj(�) = 𝜃̂j(�)∕se(𝜃̂j(�)),

{
H0 ∶ 𝜆(�) = 𝜆(�,�) = exp(B(�) + �⊤�(�))

H1 ∶ 𝜆(�) = 𝜆(�;�(�)) = exp(B(�) + �⊤(�)�(�))

T2(�) = U(�; �̇(�))I(�; �̇(�))−1U(�; �̇(�))
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5.2.1 � Bootstrap procedure for ‘homogeneity’ testing

However, when the rejection of the null hypothesis, based on the above tests, is 
particularly due to some specific areas, it becomes interesting to individuate those 
regions with inhomogeneous behaviour, that is splitting the study area into sub-
regions requiring further study or different models. Therefore, for confuting the 
hypothesis of ‘homogeneity’, however retaining information about the local fea-
tures, a bootstrap procedure is proposed and carried out in this paper. Indeed, the 
bootstrap procedure (Efron 1982) is often used as an alternative to the statistical 
inference based on the assumption of a parametric model when that assumption is 
in doubt. The procedure used in this paper can be outlined as follows: 

1.	 Set M as the number of bootstrap samples to be considered.
2.	 Bootstrap M times from the analysed point process, that is, random sample with 

replacement the points of the process, obtaining M new point processes.
3.	 The candidate local model is fitted to each of the M bootstrapped samples.
4.	 For each of the M resulting local models, the test of ‘homogeneity’ is carried out, 

obtaining M sets of local p-values for the given confidence level a.
5.	 The local p-values are averaged over the M samples.

The resulting averaged local p-values can be plotted as a function of the spatial 
location � , together with their standard deviations. This map visually identifies 
the regions with inhomogeneous behaviour, i.e. where there is evidence against 
the hypothesis of ‘homogeneity’. Contrary to the global p-value, computed as the 
average of the local p-values of one ‘homogeneity’ test, this bootstrap procedure 
contributes to the model selection process, retaining also local information. Fix-
ing a confidence level a, e.g. 0.05, the areas where the local p-values are less than 
a confute the hypothesis of ‘homogeneity’, while values greater than a provide 
evidence in favour of the null hypothesis, that is, where the global model could 
be more preferable than the local one. An average of the resulting local p-values 
can also be computed, contributing to the model selection procedure, empirically 
comparing this value with the fixed level a (Diggle and Gratton 1984).

5.2.2 � Assessing the effect of covariates on the local departure from ‘homogeneity’

When the previously discussed local tests provide evidence against the null 
hypothesis of ‘homogeneity’, we can describe the available point pattern by a 
local model. At this point, we wonder which are the covariates that most contrib-
ute to the rejection of this hypothesis, that is to say, what covariates’ effects really 
vary in space. Indeed, the ‘homogeneity’ test compares the linear predictor of the 
local model to the one of the corresponding global model, and therefore it does 
not provide information on each covariate individually.

In this section, we contribute to the framework of diagnostic tools for local 
models by proposing a stepwise procedure that highlights the effect of each 
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covariate on the rejection of the hypothesis of ‘homogeneity’. The procedure that 
we describe in this section can be used for local Poisson models with a multiple 
linear predictor, that is, dealing with multiple covariates.

Suppose that the chosen model is a local Poisson model with spatial varying 
intercept �0(�) and parameters �(�) = (�1(�),… , �p(�)) corresponding to the spatial 
varying effects of the p covariates �(�) = (Z1(�),… , Zp(�)) . Several local Poisson 
models are fitted, starting from the one in which only the space varying intercept 
is added into the linear predictor, and adding one spatial covariate at a time. The 
covariates are added starting from the most significant in explaining the intensity 
marginally, based, for instance, on the information obtained from results of Ber-
man’s tests (Berman 1986). This test is used to assess the dependence of a point pro-
cess on a spatial continuous covariate Z(�) . It can be carried out before formulating 
and fitting a model, to get a first indication of the variables influencing the intensity 
of the process, marginally. Then, the test of ‘homogeneity’ is carried out in sequence 
to each of the local Poisson models, basically comparing each time the local Poisson 
model to its global counterpart. This procedure can be outlined as follows: 

1.	 The Berman tests are computed on each available coviariate, marginally. 
The covariates �(�) = (Z1(�),… , Zp(�)) are then ranked from the most sig-
nificant in explaining the intensity of the analysed process (therefore the one 
with the lowest p-value), to the least significant, obtaining the ordered vector 
�∗(�) = (Z∗

1
(�),… , Z∗

p
(�)) . The corresponding parameters are also ranked accord-

ingly.
2.	 The model �(�) = exp(�0(�)) is fitted and the first test of local departure from 

‘homogeneity’ is carried out for comparing 

 obtaining the first map of p-values, where values smaller that 0.05 indicate the 
regions where the local model should be preferred to the global one.

3.	 The second local model is fitted, adding the covariate that resulted the most sig-
nificant in explaining the intensity of the process marginally, to the linear predic-
tor �(�) = exp(�0(�) + �∗

1
(�)Z∗

1
(�)) . Therefore, the second test of local departure 

from ‘homogeneity’ is carried out for comparing 

4.	 Repeat the last step for each Z(�) following the ranking given in step 2, until the 
test of local departure from ‘homogeneity’ is carried out on the chosen model 

The result is a set of maps, as many as the performed tests, that is, the number 
of covariates in the chosen model, plus the intercept. Each maps will display the 

{
H0 ∶ �(�) = exp(�0)

H1 ∶ �(�) = exp(�0(�))

{
H0 ∶ �(�) = exp(�0 + �∗

1
Z∗
1
(�))

H1 ∶ �(�) = exp(�0(�) + �∗
1
(�)Z∗

1
(�)).

{
H0 ∶ �(�) = exp(�0 + �∗

1
Z∗
1
(�) +⋯ + �∗

k
Z∗
k
(�))

H1 ∶ �(�) = exp(�0(�) + �∗
1
(�)Z∗

1
(�) +⋯ + �∗

k
(�)Z∗

k
(�)).
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p-values associated to the test of ‘homogeneity’ that compares the local model con-
sidered at that step with its global counterpart. Looking at each map individually, 
we obtain information about the regions in which the ‘homogeneity’ hypothesis is 
rejected. Of course, the wider the area leading to rejection, the stronger the evidence 
against the global model. By comparing the rejection areas obtained through the 
subsequent tests, carried out adding one variable at time, we are able to identify the 
most contributing variables to the overall rejection of the ‘homogeneity’ hypothesis 
in the final chosen model. In particular, if adding one variable to the model, say 
Zj(�) , the rejection area of the corresponding map gets wider than the one relative 
to the model without Zj(�) , then Zj(�) strongly contributes to the overall rejection, 
that is, the effect of Zj(�) varies in space. Otherwise, if no significant differences 
are evident between to subsequent maps, then, the variable Zj(�) does not contribute 
significantly to the overall rejection, suggesting that the effect of Zj(�) , though con-
sidered as local in the model, could actually be considered as constant. This proce-
dure is validated on the basis of the chosen local Poisson model fitted to the Greek 
seismic catalogue data in Sect. 6.1.

6 � Analysis of the Greek seismicity

In this section, local models are applied to study the recent seismicity in Greece, 
assessing their goodness-of-fit by the diagnostics tools previously introduced.

All the analysis in this paper are carried out using the software R (R Core Team 
2019). Global models, the diagnostic tools reviewed in Section 4.1 and Berman’s 
tests are computed with functions implemented in the spatstat package (Bad-
deley and Turner 2005). As for the local tests, and the fitting of the local models 
we refer to the spatstat.local package (Baddeley 2019). All the codes of the 
analyses carried out throughout the paper are available on request.

The analysed data (1105 events) concern earthquakes occurred in Greece between 
2005 and 2014. Only seismic events with a magnitude larger than 4 are considered 
in this study, and the analyses in this paper are marginal with respect to time, focus-
ing on the spatial dependence of events. In Fig. 1a earthquakes are reported together 
with the location of the five active volcanoes of the area (in green), the plate bound-
ary (in red), and the faults (in blue). Data about the seismic events come from the 
Hellenic Unified Seismic Network (H.U.S.N.), while covariate information come 
from the Greek Database of Seismogenic Sources (GreDaSS).

In Fig. 1b the observed K-function, is represented. The dotted red line represents 
the values of the K-function for a homogeneous Poisson process, while the black 
one represents the K-function of the observed point process. The K statistic of the 
observed point pattern, with larger values than the theoretical one of a Poisson pro-
cess, suggests that distances in the observed pattern are shorter than the Poisson 
ones. In other words, events are more clustered than an homogeneous Poisson pat-
tern, as it is also evident in Fig. 1a.

Starting from the information of the area under study, we are interested in assess-
ing if the presence of seismic sources affects the intensity of the process, that is if 
the effect of the available covariates can improve the fitting of the model, by fitting 
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a global inhomogeneous Poisson process. Therefore, the considered explanatory 
variables are Distance from the faults ( Df (�) ), Distance from the plate boundary 
( Dpb(�) ) and Distance from volcanoes ( Dv(�) ), computed as the Euclidean distances 
from the spatial location � of events and the map of geological information (Bad-
deley et al. 2015). In particular, only the information about the top segment of the 
fault is used to compute the distances. The covariate surfaces are displayed in Fig. 2.

The Berman’s tests, are computed for assessing the dependence of the intensity of 
the process from the continuous spatial covariates. The corresponding p-values are 
displayed in Table 1.

Therefore, the marginal effects of Dpb(�) and Df (�) seem significant. Other-
wise, Dv(�) does not affect significantly the earthquakes intensity (p-value 0.68). To 
assess the variables influence on the intensity of the process, we plot the marginal 
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Fig. 1   Earthquakes occurred in Greece between 2005 and 2014. Volcanoes, in green, faults, in blue, and 
plate boundary, in red (a); K-function of the observed point process of the Greek data (b). The dotted red 
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Fig. 2   The available covariates for the Greek data: Distance from the faults ( Df (�) ), Distance from the 
plate boundary ( Dpb(�) ) and Distance from volcanoes ( Dv(�) ), computed as the Euclidean distances 
from the spatial location � of events and the map of geological information
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smoothed intensity function for each covariate. Let �(�) be the intensity of the pro-
cess under study, and Z(�) the considered covariate. Then, assuming �(�) = f (Z(�)) 
where f is a nonparametric estimate of the intensity of the analysed point process, 
we wonder if the observed intensity depends on each spatial covariate, at least mar-
ginally. Smooth estimators of f (Z(�)) were proposed by Baddeley et al. (2012), and 
the smoothing procedure we consider is based on fixed-bandwidth kernel density 
estimation. The Poisson confidence bands are also computed.

The analysis of the smoothed functions confirms the results of the Berman’s tests. 
Indeed, Dv(�) does not seem to affect the intensity, and Fig. 3b shows a quite con-
stant relationship with the intensity. Looking at the smoothed functions of Dpb(�) 
and Df (�) , it is evident that the effect of both covariates varies as a function of the 
scale. In detail, the intensity exponentially decreases moving away from the plate 
boundary, while it has a piece-wise trend with respect to Df (�).

In Sect. 6.1, a local Poisson model is fitted to the Greek catalogue data and results 
are compared to those referred to a global model fitting, assuming an inhomogene-
ous Poisson models. In Sect. 6.2, a local LGCP model is fitted to a seismic sequence 
selected from this catalogue of events.

6.1 � Local Poisson model for the Greek catalogue

On the basis of the previous results and for the given data, we want to assess if the 
local features cannot be ignored, fitting an inhomogeneous Poisson model as in Eq. 

Table 1   Berman’s Tests carried 
out for the available covariates 
for the Greek data

Variable p-value

Distance from the faults 0.0000
Distance from the plate boundary 0.0000
Distance from the volcanoes 0.6862
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Fig. 3   Nonparametric estimate of the intensity of the analysed point process, as a function of the avail-
able variables for the Greek data: Distance from the plate boundary (a), Distance from the volcanoes 
(b) and Distance from the faults (c). The considered smoothing procedure is based on fixed-bandwidth 
kernel density estimation
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(18). Starting from the available variables, the choice of the final model is based on 
diagnostic approaches, as reported in Sects. 5.1 and 5.2. The chosen model is the 
one including the Distance from the faults ( Df  ), the Distance from the plate bound-
ary ( Dpb ) and the Distance from the volcanoes ( Dv ), that is

where the smoothing parameter h, obtained maximizing the LCV in Eq. (5) used 
in the local likelihood in Eq. (4), is 0.73 degrees, corresponding to approximately 
81.03 kilometers. The maps of the varying coefficients 𝜃̂1(�) , 𝜃̂2(�) and 𝜃̂3(�) are 
shown on the top three panels in Fig. 4.

The summary statistics of the local coefficients are reported in Table  2. As 
expected, the estimated coefficients are negative quite in all the area, since usually, 
as the distance from the seismic source increases the intensity decreases, but it is 
important to notice that the coefficients take quite different values along the whole 
areas, reaching the lowest values of -10.39 for 𝜃̂1(�) . The lowest values correspond 
to the earthquakes occurred along the seismic sources.

(18)�(�) = exp(�0(�) + �1(�)Df (�) + �2(�)Dpb(�) + �3(�)Dv(�))
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Fig. 4   On panels (a, b, c): Spatial varying coefficients 𝜃̂1(�) , 𝜃̂2(�) and 𝜃̂3(�) of the local Poisson Model 
in Eq. (18), the coefficients of the variables Df (�) , Dpb(�) , and Dv(�) , respectively. On panels (d, e, f): 
the corresponding T-tests. T level curves correspond to the ±1.96 threshold, associated to a 0.05 confi-
dence level. The darkest (and lighter) regions identify where the null hypothesis is rejected, that is where 
the local coefficients are significantly different from zero
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To study the effect of each covariate separately and to asses if the estimated val-
ues of the spatial varying coefficients are significant, T-tests of the parameters of the 
model are computed, as in Eq. (17). The T-test output is shown in the bottom panels 
of Fig. 4, where the level curves correspond to the ±1.96 threshold, associated to a 
0.05 confidence level. Therefore, in the darkest (and lighter) regions the null hypoth-
esis is rejected, that is, the coefficients corresponding to these locations are signifi-
cantly different from zero. It is interesting to notice that the coefficients of Df (�) 
take negative values along all the study area but for a wide area on the bottom-left 
on the window in which coefficients are positive and not significant. The coefficients 
of Dpb(�) are significant and negative basically in all the study area, but for the two 
areas at the boundary of the window. Finally, the coefficients of Dv(�) are significant 
only in three bounded areas of the window, taking both positive and negative values.

These results suggest that a local model might be suitable for describing the fea-
tures of the study area. To get more evidence supporting this hypothesis, the test 
of the ‘homogeneity’ is carried out, bootstrapping 100 datasets from the original 
one, and computing the average of the resulting p-values obtained for each loca-
tion, as discussed in Sect.  5.2.1. These values are shown in Fig.  5, together with 
their standard deviations, suggesting the inadequacy of the null hypothesis for all the 
study area: indeed, few local p-values slightly greater than the fixed level 0.05 are 
observed, but less than 0.1, in the southern region, corresponding also to the sub-
area with the largest standard errors. Besides, the mean of all the previous p-values 
is 0.01, with standard deviation equal to 0.05, further corroborating the hypothesis 
of the absence of ‘homogeneity’ in these data.

This result suggests that the proposed local model in Eq. (18) should be preferred 
to its global counterpart

To understand the effect of each variable in rejecting this hypothesis, we propose 
the stepwise comparison between the different ‘homogenenity’ settings, introduced 
in Sect.  5.2.2. Therefore, four local Poisson models are fitted, starting from the 
one in which only the local intercept is considered, and adding one spatial covari-
ate at a time. The covariates are ranked from the most significant in explaining the 
intensity marginally, based on the results of Berman’s tests in Table  1, such that 
�∗(�) = (Df (�),Dpb(�),Dv(�)) . These are subsequently added to the linear predic-
tor and the test of ‘homogeneity’ is carried out each time comparing the template 
global Poisson model to its local counterpart. Values smaller than 0.05 in Fig. 6 are 

�(�) = exp(�0 + �1Df (�) + �2Dpb(�) + �3Dv(�)).

Table 2   Summary of the space varying coefficients of the local Poisson model (18)

Min. 1st Qu. Median Mean 3rd Qu. Max.

Intercept − 0.8465 3.7821 4.6536 4.7818 5.4126 13.7942
Df − 10.3862 − 4.0474 − 2.3888 − 2.4529 − 0.6133 4.6906
Dpb − 4.735 − 1.925 − 1.413 − 1.448 − 1.04 2.17
Dv − 5.3552 − 0.6595 − 0.2799 − 0.2987 0.2351 2.9546
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plotted in lighter colors, and they are found in those regions where the hypothesis of 
‘homogeneity’ is rejected. Of course, we may notice that the more covariates with 
local effects, the more areas ‘needing’ a local model. In particular, as the greater dif-
ferences between subsequent maps are in correspondence of the addition of Df (�) 
and Dpl(�) , this means that these are the covariates with spatially varying effects. 
On the contrary, Dv(�) slightly contributes to the rejection of the hypothesis and this 
may suggest that its effect could be considered as constant. Overall, we may notice 
that the best fitting for all the area would require an even more complex model, but 
introducing local coefficients makes the model more flexible and more useful for a 
deeper interpretation.

A feasible trade-off between the flexibility of a local model and the parsimony 
of a global one could be the model with a linear predictor that includes a non-
parametric term for spatial coordinates and parametric expression for the spatial 
covariates, as

where f (⋅) is a nonparametric function for � ∈ D , estimated here through thin plate 
regression splines with 30 knots. Comparisons between the models (18) and (19) are 
first carried out by the inspection of the smoothed raw residuals, as defined in Eq. 
(16). The smoothing bandwidth used for the kernel estimation of the raw residuals is 
0.025 degrees, corresponding to approximately 27.75 kilometers. The smoothed raw 
fields of the two models are shown in Fig. 7 and their ranges are reported in Table 3.

From these results, we see that both models achieve a good fitting to the data, 
even if the global model slightly presents smaller residuals than the local one.

(19)�(�) = exp(f (�) + �1Df (�) + �2Dpb(�) + �3Dv(�))
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Fig. 5   Averaged local p-values and their standard deviations for the test of ‘homogeneity’, computed over 
100 bootstrapped datasets
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Secondly, a comparison is carried out in terms of the inhomogeneous K-func-
tion introduced in Eq. (15). In Fig. 8a, we report the inhomogeneous K-function for 
the local model (18), while in Fig. 8b, the one of the global inhomogeneous semi-
parametric model (19) is displayed. In both Figures, the solid black line represents 
the inhomogeneous K-function K̂inhom(r) estimated with the intensity of the fitted 
model, while the dotted red line represents the theoretical one Kinhom,pois(r) . The 
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Fig. 7   Smoothed raw residuals of the local inhomogeneous Poisson Model (18) and the global inhomo-
geneous semiparametric Poisson Model (19)

Table 3   Range of the smoothed 
raw fields of the local Poisson 
Model (18) and the global 
Poisson Model (19)

Min. range Max. range

GlobalPoisson − 1.27 1.41
LocalPoisson − 3.51 3.42
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Fig. 8   Inhomogeneous K-functions of the local inhomogeneous Poisson Model (18) (a) and the global 
Inhomogeneous semiparametric Poisson Model (19) (b). In both panels, the inhomogeneous K-func-
tion estimated on the observed pattern K̂inhom(r) is the solid black line and the theoretical Poisson one 
K̂inhom,pois(r) is the dotted red line, together with the corresponding envelopes, in grey (colour figure 
online)
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corresponding envelopes, that are obtained considering the inhomogeneous K-func-
tion for a given number of simulated patterns, assuming the same intensity of the 
observed patterns, are displayed in grey. For their computation, we simulated 100 
realizations from the fitted model in Eq. (18). The inhomogeneous K-function of 
both models lay very close to the theoretical Poisson curves, even if the one of the 
global model is a bit closer to its theoretical one, even for larger distances. Based on 
these results, the global model in Eq. (19) should be preferred to the local one in Eq. 
(18).

Overall, we might now conclude that both the global model (19), in which the 
spatial component is modelled non-parametrically, and the local model (18) achieve 
good fitting to the analysed data. Nevertheless, with both models, it is not possible 
to get a concise comment about the effect of the spatial covariates, earning in terms 
of fitting but losing interpretation. On the one hand, the great advantage of local 
models is that one can get a whole map of parameters, one for each covariate added 
in the linear predictor, and this allows us to detect those regions in which covariates 
have a different effect of the phenomenon under study. Therefore, if we wish to get a 
general overview of the effect of covariates a global model is to be preferred. On the 
other hand, if we are interested in spotting those areas in which covariates may have 
a different effect, and therefore, highlighting the multi-scale nature of the observed 
generating process, local models could be more appropriate. Moreover, as we add 
more covariates into the linear predictor, complexity increases, as each one of them 
carries a whole map of parameters. Finally, local models are useful also when covar-
iates are not available. Indeed, since the test of ‘homogeneity’ can be carried out to 
any kind of linear predictor, this may spot those regions that really need a local vary-
ing intercept, that is those areas that need more attention and further analysis.

6.2 � Local log‑Gaussian Cox process model for a Greek seismic sequence

When analysing seismic sequences, the analysis of the small scale variation is of 
crucial interest (Giunta et al. 2009). For this purpose, a Log-Gaussian Cox Process 
is a candidate model, accounting for the interaction among points though a Gaussian 
Random Field. In their local version, parameters of the Gaussian Random Field vary 
in space, allowing to describe the complex dependence structure of the generating 
process. Starting from the Greek catalogue, we selected a smaller area in order to 
emphasize the dependence features at short distances. The chosen area is situated in 
the Ionian Sea, and it consists of three of ‘the Seven Islands’, namely Ithaki, Kefalo-
nia and Zakynthos, from North to South. In this area, earthquakes appear to be clus-
tered in the Western area of Kefalonia island and South to the Zakynthos island. 
For this analysis, only Df (�) and the Dpb(�) are considered, since the volcanoes are 
very far from this analysed area. In Fig. 9 earthquakes, together with plate boundary 
(in red) and faults (in blue), are displayed. Given that previous analyses have high-
lighted the highly inhomogeneity of the chosen subregion, and therefore the need 
of more complex models than the inhomogeneous Poisson, we fit the log-Gaussian 
Cox process, as our objective here is to find the model that better describes the clus-
tered structure of the point pattern.
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After choosing the following multiplicative local Poisson model for the determin-
istic component, then, it is used to fit the local LGCP model:

where the local weight function w in the local Palm likelihood is an isotropic Guas-
sian density, with smoothing parameter equal to 0.135, chosen by the cross-valida-
tion criterion (13). The summary statistics of the estimated parameters of the deter-
ministic component of the local LGCP model are reported in Table 4.

The estimates of the local interaction parameters 𝜎̂2(�) and 𝛼̂(�) are displayed in 
Fig. 10 and their summary statistics are reported in Table 5.

The results in Table 5 are quite reasonable, since the estimates of the coefficients 
𝜎̂2 and 𝛼̂ of the global counterpart of the LGCP model, estimated maximizing the 
(global) Palm Likelihood, are respectively equal to 1.92 and 0.2.

We know that the effect of increasing �2 is to generate higher peaks in the surface 
intensity, inducing a clustering effect. Increasing the spatial scale parameter � , the 
underlying GRF presents a strong spatial correlation and it corresponds to a diffuse 
aggregation of points of the LGCP. Therefore, from the visual inspection of the maps 

(20)�(�) = exp(�0(�) + �1(�)Df (�) + �2(�)Dpb(�) + �3(�)Df (�)Dpb(�))

Fig. 9   Earthquakes occurred in 
Ithaki, Kefalonia and Zakynthos 
between 2005 and 2014. The 
plate boundary is displayed 
in red while the faults are dis-
played in blue
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Table 4   Summary statistics of the local coefficients of the deterministic component of the local LGCP 
model for the Greek data

Min. 1st Qu. Median Mean 3rd Qu. Max.

Intercept − 11.264 2.372 5.797 2.943 6.396 10.052
Df − 28.259 1.318 8.095 8.303 14.777 51.888
Dpb − 23.820 − 8.782 − 0.575 6.843 25.126 55.091
DfDpb − 306.57 − 84.03 − 45.48 − 47.90 − 12.10 63.96
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of the interaction parameters in Fig. 10, we are able to identify regions with different 
underlying Guassian processes, driven by different covariance structures. Figure 10a 
shows the map of the estimates 𝜎̂(�) ; we may notice that, unexpectedly, the highest 
values are found where events are not clustered. Looking at Fig. 10b, the highest values 
of 𝛼̂(�) correspond to those regions exhibiting clustered points. From the exponential 
expression of the covariance chosen for the GRF in Eq. (7) we know that the values of 
�2 contribute to the covariance in a multiplicative way, while the values of � affect the 
covariance exponentially. Then, a unit increase of � has a greater effect on the com-
putation of the covariance, if compared to a unit increase of �2 . Therefore, inspecting 
Fig. 10, we know that the difference in the correlation among points is evident, and 
this is higher in those areas in which clusters are observed, i.e. on the top and on the 
bottom-right of the region.

A further application of the proposed local models is provided in “Appendix  1”, 
focusing on the study of an important seismic sequence of Abruzzo, a region of central 
Italy, characterized by different geological features with respect to the Greek ones.

7 � Discussion and conclusion

In this paper, we have introduced models with space varying parameters, estimated 
by the composite likelihood for spatial point processes (Baddeley 2017), for the 
description of complex earthquake data characterized by multiple and multifractal 
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Fig. 10   Local coefficients 𝜎̂(�) and 𝛼̂(�) of the global LGCP model, respectively (a, b) and the mean of 
the process 𝜇̂(�) (c)

Table 5   Summary statistics of the local coefficients of the covariance function of the local LGCP model 
for the Greek data

Min. 1st Qu. Median Mean 3rd Qu. Max.

�2 0.000105 0.802612 2.451644 2.192861 3.627219 4.157830
� 0.00001 0.00009 0.00012 0.01988 0.03764 0.11281
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dependence structure. Analyzing the recent seismicity of a highly seismic active 
area, local models seem to be suitable for accounting the complexity of the seismic 
process, since they describe its local features fitting a unique model to the whole 
area under study.

First, a log-linear relationship between the earthquakes’ intensity and the dis-
tances from the nearest seismic sources has been modelled, fitting a local inhomo-
geneous Poisson process model. From the related obtained results, it seems reason-
able assuming local coefficients, that is, location depending effects of the considered 
covariates, reflecting the complex seismic activity of the given areas. Furthermore, 
we have found that although the local models are useful in finding spatially varying 
covariate effects, they may not be optimal for summarizing these different effects. 
However, this information could be used in order to split the study region into dif-
ferent areas and separately interpreting the estimated local coefficients, following a 
multiple global approach. Secondly, interaction among points, crucial in the con-
text of the analysis of seismic events, has been taken into account by fitting a local 
LGCP model.

This represents the first main contribution of the paper, as the local Log-Gauss-
ian Cox Process is comprehensively addressed and applied here, for the first time. 
We use the LGCP for describing a seismic sequence rather than an entire catalogue, 
since their is the possibility to account for the interaction among points by the esti-
mation of the parameters of the underlying Gaussian Random Field. This makes the 
LGCP particularly suitable for the description of highly inhomogeneous areas, as 
the one chosen in the application provided in this paper. In addition, fitting a local 
version of the LGCP, it becomes possible to account both for the effect of covariates 
and for the interaction among points, as a function of the spatial location. Results 
of the reported application confirm the crucial role of the proposed approach for 
describing and characterising the study area through a multiple underlying process, 
with both the first- and second-order characteristics vary with location.

Furthermore, the second main innovation of this paper refers to our contribution 
to the framework of diagnostics for local models, outlining all the relevant meth-
ods for diagnostics and model selection, also proposing a bootstrap procedure for 
driving the model selection process, and a stepwise procedure, that is able to assess 
single local effects of covariates on the rejection of the hypothesis of ‘homogeneity’. 
These procedures have been validated by the application of the proposed methods to 
real seismic data, showing that, as the number of covariates in the linear predictor 
increases, the number of areas actually needing a local model increases too. The use 
of existing diagnostic tools for global models in the context of local fitting and the 
proposed stepwise approach provide valid results and useful hints for assessing the 
estimated models and selecting the best one, testing the need of a local model in the 
analysed area.

Overall, starting from the results of the proposed application, local models pro-
vide good inferential results in the seismic point processes context. The complex 
earthquake phenomenon is characterized by multiple and multifractal dependence 
structure, and its description demands local tools and models to address its pecu-
liar features. It seems that fitting a model with locally varying parameters is reason-
able when analysing both seismic catalogues and sequences. In particular, the local 
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LGCP models more succeed in identifying regions where the events are clustered, 
than the global LGCP models that, through the estimation of constant interaction 
parameters, can just identify the presence of a global clustered structure. Moreo-
ver, local models provide a good alternative in terms of fitting to global models, 
even to nonparametric ones. A further advantage of the application of local models 
to the seismic context proposed in our paper, is the possibility of fitting a unique 
fully parametric model, considering in a proper way the interaction between covari-
ates, peculiar in the describing the complex seismic phenomenon, compared to the 
most classical semi-parametric model proposed in the literature, and reviewed in 
the Introduction. Furthermore, as already pointed out by Baddeley (2017), some 
methodological problems still remain, such as the need for a theory of misspecified 
models and for variance estimators for Cox and cluster processes. Earthquake data, 
typically show extremely high concentrated points in small zones of high seismicity. 
Alternative approaches include the division of the study area into Dirichlet cells, 
fitting a proper model to the union of such cells (e.g the spatially-adaptive space-
time point process models for earthquakes (Ogata and Katsura 1988; Ogata 1989)), 
with the drawback of providing high dimensional models. Spatial clustering tech-
niques may work differently in different tectonic environments. In this work we have 
applied the proposed technique to a seismicity typical of a compressive tectonics 
and in particular in an area such as the Greek one where, as is well known, a lith-
ospheric subduction process is underway. It is certainly desirable in the future to test 
the spatial clustering procedure here proposed also to seismicity recorded in areas 
characterized by extensional or strike-slip tectonics, as well as in areas characterized 
by seismicity linked to volcanic processes. This would make possible to verify the 
performance of the proposed technique in different tectonic regimes and its possible 
fine-tuning aimed at optimizing the spatial clustering.

Finally, a relevant drawback of this work is that we have not accounted for the 
temporal dimension of the seismic events, whose realization depends on their past 
history, as proved by the existence of aftershocks. Given the results of this paper 
on the application of spatial local models to the seismic context, we believe that 
these models could be the basis for future development for introducing local mod-
els and methods both for spatial and temporal dimension, referring to the theory 
of the space-time point processes. Indeed, few classical models widely used in the 
spatio-temporal seismic context account for external information such as spatial or 
temporal covariates (a recent proposal for the Epidemic Type Aftershock sequence 
model is provided by Adelfio and Chiodi (2021)). Therefore, it would be interesting 
to develop spatio-temporal extensions of the spatial local models used in this paper, 
for instance exploiting the alternative estimation procedure for the local LGCP mod-
els with minimum contrast based on local second-order summary statistics.

Appendix 1: Analysis of the Italian seismicity

In this section, the local LGCP model is used to describe an important Italian seis-
mic sequence. The aim of specifying a LGCP model is to take into account the 
existing interactions among events, that are not accounted by a Poisson model, even 
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local. The analysis of the Greek seismic events has been carried out assuming that 
the intensity of earthquakes could depend only on spatial covariates, such as the dis-
tance to the seismic sources. This has been useful in order to test local models and 
to make different comparisons, but these variables only, all representing distances 
from some source of seismic activity, may not be enough in order to explain the 
phenomenon. Indeed, one could assume that other relevant variables could be useful 
to explain the intensity of the observed earthquakes, such as variables related to the 
network dislocation and measurement errors.

The Italian catalogue considered in this section is downloaded from the Istituto 
Nazionale di Geofisica e Vulcanologia (INGV) archive,1 and it describes the space-
time Italian seismicity, from May 5th 2012 to May 7th 2016 with 2.5 as the thresh-
old magnitude, and reports 2226 events and several variables, including hypocentral 
coordinates (longitude, latitude, depth, time), magnitude, hypocentral uncertainty, 
distance from the nearest station, rms, that is a measure of the quality of the location 
and the number of stations that recorded the event. As the location of faults along 
the study area is also available, the distance from the nearest fault is computed, in 
the same way as for the Greek data, and it is denoted by Df (�).

The Italian data is quite different with respect to the Greek one. While the Greek 
covariates have been obtained from information external to the analysed point pat-
tern, the Italian catalogue carries more complete information about seismic events. 
Indeed, Greek covariates are defined for all the region under study, while the Italian 
covariates refer only to those seismic events already occurred. While the structure 
of the Italian catalogue may lead to think to the available variables as marks of the 
point process, some of this variables can be actually thought as spatial covariates, if 
interpolated along the whole study area. Indeed, it makes sense to think that vari-
ables such as the Hypocentral uncertainty, the RMS and the Distance to the near-
est station (Err, Rms and Dns ) could depend on the location, and therefore it makes 
sense to get an interpolation of these variables along all the study area. On the other 
hand, variables such as the Magnitude, Depth and Time, are characteristics of the 
points, known as ‘marks’ in spatial point process theory. The spatial covariates 
obtained from the interpolation, through the application of Cubic spline interpola-
tion, are treated as potential covariates in the fitted models and denoted by Err(�) , 
Rms(�) and Dns(�).

It is worth to notice that, for computational reasons, it was not possible to 
describe the other Italian areas, such as the one corresponding to the Emilia 
sequence. Indeed, analysing the given point process would lead to both unsatisfac-
tory interpolation and computational problems when fitting local models, due to the 
strong irregularity of data. Moreover, as already stated by Baddeley (2017), the local 
composite likelihood works well if kernel smoothing performs well. Dealing with 
earthquake data, this point can not be guaranteed, since their well known features of 
inhomogeneity and clustering in space.

Consequently, we focus on a seismic sequence. The selected region is Abruzzo, 
sadly well known for its seismic history. In April 2009, in the mountainous Abruzzo 

1  https://​istit​uto.​ingv.​it/​it/​risor​se-e-​servi​zi/​archi​vi-e-​banche-​dati.​html.

https://istituto.ingv.it/it/risorse-e-servizi/archivi-e-banche-dati.html


665

1 3

Local spatial log‑Gaussian Cox processes for seismic data﻿	

region, a 6.3-magnitude quake killed nearly 300 people and destroyed or seriously 
damaged thousands of buildings. During a period of three months in 2016, Central 
Italy was hit by three large earthquakes and numerous aftershocks. The first one, 
with the magnitude of 6.0, occurred in Amatrice on August 24 and killed 298 peo-
ple. On October 26 evening, a series of shocks with the strongest one having a mag-
nitude of about 6, took place in approximately the same region (Lutikov et al. 2018). 
Those sequences are actually missing from the data analysed in this paper.

The earthquakes occurred between May 2012 and May 2016 in Abruzzo are dis-
played in Fig. 11a, consisting of 85 events with 2.5 as the threshold magnitude. As 
we may notice, a concentration of events is observed on the top-left of the region, 
in correspondence of the city of L’Aquila. So, even if the events occurred in 2009 
are not analysed in this paper, their consequences on the following sequences can be 
observed.

The K-function of the analysed point process is shown in Fig. 11b, highlighting 
a clear clustered pattern of the events. The Berman’s tests are carried out in order 
to check if these variables influence the intensity of earthquakes. As we may notice 
from Table  6, the variables that seem to influence the spatial intensity are Df (�) , 
Dns(�) , Err(�) , while Rms(�) doesn’t influence the intensity values significantly.

Model proposal

Starting from the Italian data, a local Poisson model is estimated to describe the 
local features of data, including the available covariates, assuming that they may 
influence the intensity as a function of the spatial location. After having compared 
different models through the inhomogeneous K-function and the smoothed raw 
residuals, the chosen local Poisson model is the following

(a) Spatial point process
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where only the Distance from the faults and the Distance from the nearest station are 
involved. The local coefficients of the model are shown in Fig. 12 and their summary 
statistics are reported in Table 7. Negative values of the coefficients of both vari-
ables are reasonable. Indeed, usually, as the distance from the faults increases, the 
intensity decreases. Moreover, as the distance from the nearest station recording the 
event increases, the intensity decreases, as detection of earthquakes is usually more 
accurate if they occur not far from the network station. Looking at the left panels of 
Fig. 12 both variables take different values of their coefficients along all the study 
area, though looking at their T-test, they are not significant along the whole area. 
Indeed, it seems that the area could be divided into two sub-regions (right panels of 
Fig. 12): one, on the top-right, in which the variable affecting the intensity is Dns(�) , 
and one, that is all the remaining area, in which only Df (�) affects the intensity.

For testing local departure from ‘homogeneity’, the stepwise approach already 
used for the Greek data is here considered. In order to assess the influence of each 
variable to the lack of the ‘homogeneity’, the space varying p-values of the ‘homo-
geneity’ tests are visually inspected. In Fig. 13a the p-values for the ‘homogeneity’ 
test in the Null Model are less than 0.05 in two separate areas, namely the one on the 
top-left and the one on the right of the window, corresponding to those areas where 
events appear to be clustered or are missing. Looking at Fig. 13b we see that, includ-
ing the variable Dns(�) in the model, the ‘homogeneity’ hypothesis is rejected in the 
middle of the window. Finally, in Fig. 13c, including also Df (�) , the necessity of a 
local model is more evident. Therefore, as for the Greek data, adding covariates into 
the model makes the local model more adequate for describing observed data, with 
respect to a global model with constant regression coefficients.

As already stated in the analysis of the Greek data, we fit a local LGCP model, 
with the same linear predictor selected from the above local Poisson model.

In Fig.  14 the estimates of the two additional parameters 𝜎̂(�) and 𝛼̂(�) are 
shown, and their summary statistics are reported in Table  8. The results are 

(21)�(�) = exp(�0(�) + �1(�)Df (�) + �2(�)Dns(�))

Table 6   Berman’s Tests for the 
available spatial variables in the 
Italian catalogue

Variable p value

Distance from the faults 0.002958
Distance from the nearest station 0.0002208
Hypocentral error 0.001353
RMS 0.1441

Table 7   Summary statistics 
of the coefficients of the local 
Poisson model (21) for the 
Italian data

Min. 1st Qu. Median Mean 3rd Qu. Max.

Intercept 3.17 4.04 4.51 4.52 4.99 5.82
Dns − 0.10 − 0.08 − 0.06 − 0.06 − 0.05 − 0.03
Df − 7.78 − 5.91 − 2.67 − 2.90 0.10 3.03
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coherent with the estimates of the coefficients 𝜎̂2 and 𝛼̂ of the global LGCP model 
that are respectively equal to 1.47 and 0.21.

The results indicate that these two parameters have different behaviour on the 
top-left of the selected window, with respect to the remaining region. This area 
corresponds to the region where events are more clustered, suggesting, as obvi-
ous, that in this area the correlation among points is higher and therefore the cor-
responding regions should be treated differently from the rest.
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Fig. 12   Coefficients of the local Poisson model (21) and their T-tests for the Italian data. The coefficients 
of the Distance from the nearest station are displayed on the top-left panel while the coefficients of the 
Distance from the faults are displayed on the bottom-left panel



668	 N. D’Angelo et al.

1 3

0 0.1 0.2 0.3 0.4 0.5

 0.05 

 0.05 

 0.1 

 0.1 

 0.15 

 0.15  0.2  0.2 

 0.25 

 0.25 

 0.3  0.35 

 0.4 

 0.45 

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

++
+

+

++

(a) Intercept
0 0.1 0.2 0.3 0.4 0.5

 0.05 

 0.05 

 0.1 
 0.15 

 0.2 
 0.25 

 0.3 

 0.35 

 0.4 

 0.45 

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

++
+

+

++

(b) + Distance from nearest
station

0 0.1 0.2 0.3 0.4 0.5

 0.02 

 0.02 

 0.04 

 0.04 

 0.06 

 0.06 

 0.08  0.1 
 0.12 

 0.14 

 0.16 
 0.2 

+

++

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

++
+

+

++

(c)+ Distance from the faults

Fig. 13   Test of ‘homogeneity’ change for the model (21) fitted for describing Italian data: p-values of the 
test of ‘homogeneity’ are plotted, for the Null Model (a) that involves only 𝜃̂0(�) into the linear predictor, 
the model in which also the Distance from the nearest station is added (b) and the model in which both 
the Distance from the nearest station and the Distance from the faults are added into the linear predictor 
(c)

Table 8   Summary statistics of the spatial varying coefficients of the local LGCP model for the Italian 
data

Min. 1st Qu. Median Mean 3rd Qu. Max.

�2 0.000026 2.666119 3.455831 3.055668 3.889292 4.343586
� 0.0005174 0.0094810 0.0113980 0.0194697 0.0157996 0.0770704
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Fig. 14   Spatial varying additional parameters 𝜎̂(�) and 𝛼̂(�) of the local LGCP model fitted for describ-
ing the Italian seismic sequence
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